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Abstract—Computational Intelligence encompasses tools that
allow the fast convergence and adaptation to several problems, a
fact that makes them dligible for real-time implementations. The
paper at hand discusses the utilization of intelligent algorithms
(i.e. Differential Evolution and Genetic Algorithms) for the
creation of an adaptive system that is able to provide real-time
automatic music accompaniment to a human improviser. The
main goal of the presented system is to generate accompanying
music based on the local human musician’s tonal, rhythmic
and intensity playing style, incorporating no prior knowledge
about the improvisers intentions. Compared to existing systems
previously proposed, this work introduces a constraint-free im-
provisation environment where the most important musical char-
acteristics are automatically adapted to the human performer’s
playing style, without any prior information. This fact allows the
improviser to have maximal control over the tonal, rhythmic and
intensity improvisation directions.

|. INTRODUCTION

The potentiality of automatic methods for music composi-
tion has been a subject of thorough research study. Various
systems have emerged that utilize music theory, probabilities
and evolutionary techniques among others, to compose music
in an unsupervised or supervised manner. Unsupervised music
composition alows the creation of music without any human
intervention, except from the representation modeling per se.
Supervised music composition on the other hand, modulates
the model parameters towards a direction dictated by a fithess
function, whether objective (e.g. set of musical features) or
subjective (e.g. human evaluations). The utilization of intel-
ligent adaptive techniques has proven to be an effective tool
for the creation of consistent music that inherits characteristics
specified by a fitness function. The paper at hand presents a
system that employs intelligent music composition techniques
for the accompaniment of a human improviser. Specifically,
the system is able to listen to the improviser and respond in
real-time with music accompaniment that fits the improviser’'s
playing style regarding tone, rhythm and intensity.

Severa other systems have been proposed for automatic ac-
companiment which are reviewed in Section |1, the mgjority of
which incorporate prior knowledge about the playing material
that the human improviser intents to execute. The presented
system is oriented towards a different direction, where the
human musician intents to improvise without constraints about
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the tonal, rhythmic or intensity variations. Therefore, our
system is able to decode the locall playing style of the
human performer, without using any prior knowledge about
the performer’s intentions. Afterwards, it employs intelligent
algorithms that adapt to the human’s playing directions and
generate melodic responses that are relevant but not iden-
tical to the melodies improvised by the human performer.
Therefore, the human improviser is able to express herg/his
instantaneous improvisational creativity and interact with the
intelligent algorithms producing novel music.

The rest of the paper is organized as follows. Section Il
reviews and categorizes some of the automatic accompaniment
systems that have already been presented and also reveals the
motivation about the presented work. A thorough description
of the architecture of the system and the methodol ogies that it
utilizes is provided in Section I11. The presentation of results
isrealized in Section 1V, where the strengths and weaknesses
of the proposed system are discussed. Section V provides
some concluding remarks and references for future work and
enhancements.

Il. AUTOMATIC ACCOMPANIMENT SYSTEMS
CATEGORIZATION AND OUR MOTIVATION

Intense research effort on Automatic Accompaniment Sys-
tems (AASs) has resulted in the construction of significant sys-
tems that provide music accompaniment to a human performer.
However, there is a great variability and a clear distinction
in their perspective. These systems are suitable for different
tasks and they are targeting at different musician groups.
In [1] the interested reader may find a finer categorization
of these systems according to several attributes regarding the
type of their interaction with the musician (audio or MIDI),
the representation of their knowledge (music theory or trained)
and their timing consideration (continuous time with changing
tempo or quantized time in fixed tempo). In this work we
present a coarser and less detailed categorization of these
systems in two categories that reflect their dependence on a
pre-existing score. This distinction along with the potentiality
of intelligent music composition algorithms illuminate our
aims and motivation.

1The term local refers to the dimension of time and could be also referred
to as recent and upcoming.



A. Score-Constrained AASs

Score-Constrained systems utilize information provided by
musical score to make decisions about their output. For
example, the well-known Band in a Box software utilizes
information provided by a chord grid and produces music
accompaniments with orchestration, tonal and rhythmic char-
acterigtics that are defined by a library of musical styles.
Similar educational oriented software have been introduced
that are targeted to certain musical instruments (e.g. for
guitar [2]). Score information may also be combined with
musical input provided by the human musician. A distinct
sub-category of score-constrained AASs is that of the score
followers. These systems require information not only from
the score, but also from the musician’s location in the score.
They aim to align the music performer with an existing
score, resulting in a human-computer synchronization on a
predefined musical stream given through a score. The early
work of Vercoe [3] utilized optical sensors as a means of
allocating the musician’s position in the score. Recent attempts
are focused on achieving optimal score following with spectral
analysis of audio instrument signals, e.g. by an oboe[4]. While
the aforementioned systems perform in real-time, an off-line
score-constrained system has also been proposed for finding
jazz-style arrangement of a melody and its chord sequence [5].
A real-time system that provides a jazz style bass line given
a chord grid and the improvisation content of a musician has
been presented in [6] and a system that performs the same
task for guitar accompaniment has been presented in [7].

B. Score-Free AASs

Score-free systems do not utilize score information and
decide upon their reaction to human musical input defined
by rule-based or acquired-by-training knowledge. These sys-
tems are mainly targeted in rea-time performance, with a
noticeable non-real-time exception of MySong software [8],
which deduces music rules by trained Hidden Markov Models
to create novel accompaniments of recorded singing voice
melodies. Similar models, but focused on real-time interaction
with a human musician, are the Band out of a Box [9] and
the Continuator [10] software that aim to learn the personal
style of a human improviser and create musical responses.
Earlier, a system has been presented in [11] and extended
in [12], that attempts to capture the musician’s intension
and predict a suitable accompanying context. Two systems
that are closer to the presented approach where presented by
Lewis Voyager [13] and Rowe's Cypher [14], [15]. These
systems aim to make locally consistent musical decision, based
on recent playing characteristics of the human improviser,
disregarding music-theoretic rules or machine learning.

C. Our Motivation

Music improvisation is a combination of knowledge and
creativity, expressed with the creation of musical passages
that are both structured and spontaneous. Human improvisers
create an aesthetic combination of these two characteristics,
aiming to provide anovel musical dialogue (spontaneity) using

an understandable musical language (structure). Trained AASs
are targeted towards capturing the human knowledge on music
by applying machine learning techniques, a fact that embodies
two hazards. Firstly, in these systems, the efficiency of the
training process is case-dependent, i.e. different musical styles
are represented by different tonal, rhythmical and expression
rules. And secondly, the utilization of a trained system does
not incorporate the element of surprise, depriving the human
improviser the chance to interact with a machine.

The motivation of the work at hand is to experiment
with the potentiality of computational intelligence in music
improvisation and not in music learning. To this end, we
propose the construction of a system that does not aim to
mimic human musical behavior, nor to learn music rules. On
the contrary, we explore the encapsulation of the minimal
musical information required and alow the machine to create
music background responses not according to music rules, but
with the use of computational intelligence. Several noticeable
systems have been created which aim to use computational
intelligence as a means to create machine improvisers, but
on contrast to the aim of this work, these systems are not
suitable for the accompaniment of human improviser. For
example, aresponsive computer improviser has been presented
by Biles [16] and a swarm intelligence improviser which was
driven by a singer was proposed in [17]. As described later
in detail, the proposed system utilizes Differential Evolution,
FL-systems and Genetic Algorithms to produce accompanying
music for a human improviser.

I1l. THE PROPOSED INTELLIGENT IMPROVISATION
ACCOMPANIMENT FRAMEWORK

In the presented work we consider three aspects of musical
expression, tones, rhythm and intensity. Three modules have
been constructed that implement different algorithms, one
for each of the above musical expression aspects. Intelligent
algorithms are utilized for the implementation of the tone and
the rhythmic module, while a simple yet effective statistical
model determines the intensities of the produced noted by all
the intelligent instrumentalists. All three modules listen to the
human performer and make some locally coherent decisions
about the musical elements that they should incorporate. The
musical knowledge that they adhere to is the most elementary
and it is locally adjustable, i.e. there is no extensive music
theoretic knowledge representation to predict the material of
the human improvisation. Furthermore, the constantly incom-
ing human improvisation data are analyzed according to some
qualitative information criteria, disregarding their pure musical
attributes.

Figure 1 illustrates a block diagram of the overal architec-
ture of the proposed system. All its modules are constituted of
two submodules, namely the listener and the generator, and
are all described later in this Section. The system incorporates
a steady tempo which is provided by the improviser and
gathers information from the human performer in the form
of MIDI data. The human improviser is able to choose the
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Fig. 1. Block diagram of the architecture of the proposed system, divided in
three modules, the tonal, the rhythm and the intensity module. Each module
is subdivided in the listener and the generator submodules.

accompanying instruments that are controlled by the com-
puter, creating an artificial musical ensemble. Any MIDI input
methodology is eligible, i.e. MIDI clavier or any efficient pitch
to MIDI conversion mechanism. As described later, the tonal
module is constructed in such a manner, so that polyphonic
data can by manipulated and provide tonal information. The
simulations described in Section 1V were realized with an
electric guitar using the Roland GI-20 pitch to MIDI converter,
along with a Godin LGXT guitar with hexaphonic RMC
piezo pick-ups. The described algorithms were implemented
in Max/M SP, in Java and in Processing, using the Open Sound
Control (OSC) protocol for their intercommunication.

A. The Tone Module

The tone module receives data from the human improviser
and makes a decision about the tones that are suitable to
be played as accompaniment by the artificial musicians. The
decision about the list of suitable tones is made within the
listener submodule, depicted in Figure 2 (). This decision
relies on minimal musical information in order to guarantee
the preservation of substantial local tonal characteristics. No
assumption is being made about the overall tona constitution
and the improviser’s intentions. Based on the list of suitable
tones and the tonal range of each instrument in the intelligent
ensembl e, the generator submodule (depicted in Figure 2 (b))
provides a set of notes? for each instrument as an accompani-
ment for the human improviser. The decision about the number
of voices, for polyphonic instruments, is made in the rhythm
module described later, while the decision about the intensity
of each note in the intensity module.

1) The Tone Listener Submodule: The tone listener sub-
module deduces a list of suitable tones, denoted as ¢, based
on two auxiliary lists of tones, denoted as ¢ chorg @nd tpcp. The
latter two lists, and consequently the former, are updated in
sort time intervals (of 30ms) and track the Pitch Class Profile
(PCP) of the human improvisation. The PCP [18] is a 12-
dimensional vector that expresses the density of the respective

2We use the term “tones’ to describe the Pitch Class Profile (PCP), while
the term “notes’ refers to specific notes in any octaves available for each
instrument.
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pitch classes in a musical passage. We refer to the list ¢gnorg
as the “chord list” and to the tpcp as the “Pitch Class Profile
(PCP) list”. The chord list (tchorg) is formulated when the
improviser is emphasizing on the tones of a chord, in either
of the two ways:

1) the improviser plays simultaneous notes that form a
certain chord or

2) the accumulated notes within a time window (defined
by the improviser) form a certain chord.

We consider that a certain chord is played if there is high cor-
relation (above 0.8) between some predefined chord templates
and the PCP in either a simultaneous chord stroke, or in an set
of accumulated notes within a time window. The utilization of
chord templates is among the most effective methodologiesfor
chord recognition [19]. The chord categories and the non-zero
values in their binary representation from position 0 that we
use, are demonstrated in Table I.

When a chord is recognized, then the tones that constitute
it are loaded on the list of suitable tones, t,. This leaves the
improviser the option to settle a steady tonal background when
she/he wishes to, by emphasizing on the tones of a certain
chord. On the other hand, when the improviser aims to create
tona instability, the second auxiliary list, tpcp is activated and
additional tones (different from the chord tones) are appended
in ts. This activation occurs automatically and in the rate
that the improviser dictates, i.e. the more tonally unstable the
improviser's playing style, the more notes are added from
the auxiliary tpcp list. The occurrence of tona instability
is reflected by a great value in the Shannon Information
Entropy (SIE) [20] measure of the PCP distribution, a feature
that has proven to be a very informative about the tona
congtitution of a musical piece [21]. Since the distribution
of the PCP is a vector in R'?, if additional different tones
are played by the improviser, a higher SIE value is expected
for the PCP distribution. Furthermore, there is a higher SIE
value limit that a vector in R'2? can reach, given a specified
number of non-zero elements. If the improviser at some point
highlights the tones of a chord, but plays some additional
off-chord tones then this is reflected in the SIE of the ¢pcp.
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Fig. 2. The listener and the generator block diagrams of the tone module.

These off-chord tones are appended in ¢, which is the final
tone list from which the tone generator selects tones with a
procedure described latter. Therefore, the number of tones that
are eligible for reproduction by the tone generator module are
selected according to the targeted SIE value, the list of notes
and the PCP list.

2) The Tone Generator Module: The tone generator sub-
module provides notes within a predefined range (according
to the target instrument) and with certain tonality which is
set by the ¢, list of the listener submodule. The resulting
note list is denoted as n, and it comprises of integers in
ascending order that represent notes within the specified range
and with tonality that complies with the ¢, restrictions. The
selection of notes from the n, list is performed by a well—-
known iterative scheme called the logistic map which presents
diverse dynamical behavior that aboundsin sets of fixed points
and chaotic instability. The logistic map is described by the
following equation

Tn+1 = ’I"J?n(l - xn)a

where r € [0,4] is a constant that determines the system’s
behavior and an initial value =y € [0,1] is considered. With
this » and zo setup, every iteration is guaranteed to remain
within [0,1]. Dynamica systems have exhibited interesting
music compositional capabilities [22], [23], [24], a fact that
motivated their utilization for the proposed tone generator
submodule.

The note selection procedure is quite straightforward. The
logistic map iterates with a random initial condition, z, and
the value of the current x; within [0, 1] is normalized to the
range [1, N], where N is the number of elementsin n,. The
integer rounding® of the outcome of this normalization is the
index of the ng that provides the current note. The tonal char-
acterigtics of the melody that is produced by this procedure is
dependent on the parameter r, since more complex dynamical
behavior yields more complex melodies and vice versa. The
melodic characteristics provided by the human improviser are
encompassed in the SIE of the improviser's PCP and thus the
system’s tonal adaptation relies on finding the proper r value

3We consider as rounding of areal number z the following integer quantity,
[z] = [z +0.5].

so that the logistic map produces melodies with similar SIE
values. The adaptation of the r value is performed through
the Differential Evolution (DE) agorithm [25], [26]. The DE
individuals carry a single value subject to optimization, avalue
for the r parameter, and their fitness evaluation is realized by
measuring the distance of the target PCP SIE from the PCP
SIE of the melodies they produce. For the experiments to be
as independent as possible from the z, value, we consider
the mean distance of the SIE of the PCP of 50 melodies that
are composed of 50 notes with random initial x( for each
individual.

B. The Rhythm Module

The rhythm module works by giving onset commands
(note on or note off events) in certain time instances, within
a subdivision of time in equal time segments. The human
improviser sets a tempo which is constant throughout the
improvisation session. The subdivision of timeis dependent on
the time analysis of the measure, selected by the user, e.g. an
analysis in 16ths in 4/4 measures were selected for the results
presented in Section IV. Each measure is represented as a
string of digits, with the length of this string depending on the
measure time signature and the analysis. In the representation
of the measure in the above mentioned example, a 4/4 measure
and an andlysis of 16ths, 16 digits are required to represent
each measure, following the quasi-binary [27] representation.
The quasi-binary representation incorporates the utilization of
numeric digits for representing onset events. For example, the
digit 0 may be use to represent a no-onset event and a positive
integer value could represent an onset. In Section IV we refer
thoroughly to some types of quasi-binary representations that
we have experimented. The role of the rhythm module is to
“listen” to the improviser’s rhythm, and “generate” rhythmic
sequences with similar characteristics. These rhythmic se-
guences are then “performed” by an intelligent instrument ac-
cording to its quasi-binary representation. The rhythm strings
are produced with the Finite L-systems (FL-systems) [27], and
their adaptation according to the improviser's playing style is
realized with the evolution of the FL-systems with genetic
algorithms [28], as studied in [29].

1) The rhythm listener module: A block diagram of the
rhythm listener submodule is depicted on the upper part of
Figure 3. This module detects the location of the improviser's
onsets within a dliding window of 4 measures. |.e., in every
metronome beat the current onset event is calculated and a
digit that describes it (1 if an onset occurs, otherwise 0) is
added to the current position of the improviser's rhythm se-
guence, while at the same time the final digit of this sequence
is discarded. At each metronome beat, several descriptive
rhythm features are calculated from the improviser’'s rhythm
sequence. These features are fed in the generator module
as “target fitness values’ and the FL-systems are genetically
evolved to produce rhythmic sequences that comply with these
features.

The aforementioned features are descriptive about the
rhythm, in a sense that they describe general qualitative
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Fig. 3. Therhythm module block diagram with the listener and the generator
submodules. Rhythmic features are collected in real-time by the human
improviser, which are used as input to the FL-systems. The rhythmic sequence
is created according to the intelligent musician’s instrument modeling.

characteristics of rhythmic sequences, but do not decode them
explicitly. These features are the following:

1) Density: This indicator describes the number of events
within a rhythmic sequence and it is expressed through
the ratio of onsets events to total events.

2) Syncopation: The syncopation of a rhythms has been
thoroughly studied with complex theoretic models [30]
and cognitive subjective studies [31] among others.
For the paper at hand we have utilized the rhythm
syncopation measure described in [32].

3) Symmetry: The symmetry of a rhythm can be described
asthe repetitiveness of the distances of consecutive onset
events and it is calculated through the interval vector
representation [33] by dividing its standard deviation
with its mean value.

2) The rhythm generator module: The rhythm generator
submoduleisillustrated at the lower part of Figure 3. This sub-
module generates rhythmic sequences using the FL-systems,
with fitness evaluation value provided by the improviser's
rhythmic features collected in the listener submodule. At this
point, it is important to remark that for the task at hand it
is crucial to maintain a clearly descriptive set of features for
rhythmic sequences. If we had a set features that describe
a rhythmic sequence explicitly, then the produced sequence
would be a more or less “exact copy” of the improviser's
sequence. This would violate the aim of this system, which
is to provide independent yet consistent accompaniment to a
human improviser, resulting in human replication. The rhyth-
mic sequences are generated in accordance to the intelligent
instrument’s modeling, i.e. the set of digits needed for the
quasi-binary representation of rhythm. The results described
in Section 1V provide some examples of such modelings.

C. The Intensity Module

The intensity module, on contrast to the tone and the rhythm
modules, does not incorporate evolutionary agorithms. It
adapts to the improvisers vel ocities with a simple combination
of elementary statistics. The intensity “listener” submodule
keeps track of the MIDI velocity mean and standard deviation

values of the active notes played by the improviser within a
diding time window. This window may be arbitrarily long, an
issue examined in the results Section. The intensity “genera-
tor” submodule sets the current note with an intensity value
in uniform distribution with the mean value provided by the
listener, and a range given by the standard deviation. A more
sophisticated adaptation scheme for intensities could be tested
in a future work, but there are no evidences that it would
produce more impressive results, since the intensity modeling
is straightforward.

IV. RESULTS

The results include statistics gathered from 3 improvisation
sessions which are available online*, where one of the authors
was playing the guitar and two artificial intelligent musicians
were provided accompaniment with decisions made in rea
time. The improvisation sessions were recorded in such a
manner, so that a wide range of the system’'s capabilities
can be examined, e.g. steep and gradual intensity changes
were included, combined with rhythm and tonal diversity.
The first two improvisations were modal, and the third was
a standard blues form, with jazz playing feel. During the
recording of these improvisations, a set of features was aso
recorded at every 16th of the measure, for every instrument,
namely the human guitar player and the intelligent pianist
and bassist. These features were the SIE of the PCP, rhythm
density, syncopation, symmetry and onset intensity. By these
procedure, 5 time series were created for each instrumentalist,
one for each feature.

To examine the rhythmic potentialities, we followed two
different rhythmic models for the intelligent instrumentalists,
formalizing a polyphonic rhythmic decoding for the pianist
and a monophonic for the bassist. As mentioned earlier, the
FL-systems provide a rhythmic sequence with a quasi—binary
representation, i.e. a string of integers that is decoded to
rhythm. In the case of the bassist, the string is binary, meaning
that we utilized the digit 1 to denote an onset and O to denote
a no-onset event. The polyphonic model we follow utilized
5 digits, from O to 4. At every metronome beat, the rhythm
sequence is scanned and a digit with a numeric value greater
than or equal to 1 produces an onset event. The numeric
value of this digit is trandated into the number of notes
that the target instrument (the piano in our case) will play
simultaneously. The intensities follow the smple statistical
model that is described in Section I11-C.

Due to limitations in CPU power® the training of the
tona and rhythmic generator submodules, with DE and GA
respectively, was not possible to be performed in small time
intervals. The DE algorithm for the tone submodule was set
to run every 5 seconds, and the GA for the FL-systems was
set to run every 4 measures for the pianist, with a 3-second

“4http://sites.google.com/site/maximoskp/I mprolgdom.mp3,
http://sites.google.com/site/maximoskp/l mpro2aDorian.mp3,
http://sites.googl e.com/site/maximoskp/impro3aBlues.mp3

5The system was simulated with a MacBook Pro Iaptop, using Open Sound
Control for the intercommunication of the described submodules.



delay for the bassist. This fact in a manner violates the real-
time adaptation of the system, nevertheless an overview of
its capabilities and weaknesses can be realized. Moreover,
the great CPU consumption by the application of the GA
for the FL-systems does not alow us to perform the genetic
adaptation with as many individuals as necessary, leading to
evolution simulations that included 20 individuals in each
generation for a total of 20 generations. The DE evolution
was more CPU-friendly, alowing the incorporation of 100
individuals per generation, for 100 generations.

As mentioned earlier, five feature are monitored every 16th
beat, creating five time series for each instrument in every
improvisation. These time series for al instrumentsin the first
improvisation are illustrated in Figure 4. The respective time
series for the rest improvisations had similar characteristics to
the presented ones. The human improviser controls the tonal,
rhythmic and intensity parameters of the improvisation with
herg/his playing style, leaving the system to adapt and respond
with a similar music performance style. It is thus crucia to
pinpoint the adaption of the system to the improviser'sstyle in
the tonal, rhythmic and intensity domain. This can be redlized
by studying the relations between the leading feature time
series, i.e. the time series of the human improviser’s features,
and the time series of the followers features, i.e. theintelligent
instrumentalists features.

Figure 4 reveds that some time series, for example the
syncopation time series, present vague behavior in al im-
provisation sessions, with dense and sudden changes that do
not explicitly follow any trend. This fact is indicative about
the sensitivity of these features in small changes. In turn,
this sensitivity imposes restrictions on the conclusion to safe
results from these time series, since small diversification of the
playing style between the human improviser and an intelligent
musician could lead to large differences in the time series. To
this end, we also consider the smoothed time series that is
created by the Moving Average (MA) of each time series. The
smoothing was performed within a window of four measures.
Table Il demonstrates the linear correlation of the human
improviser's features time series and the ones of the intelligent
instrumentalists, considering both the initial and their MA time
series. The time series' values were documented in real time
and they captured the instantaneous musicians' (human and
artificial) responses within a time window of 3 seconds for
the tonal SIE features, 4 measures sliding window for the
rhythmic, and a 3-seconds window for the intensity features.

On the column with the “no delay” indication, the time
series are taken as they are, without considering the delay
between feature capturing and training. The column denoted
with the “delay” indication includes the correlation results
with proper shifting of the piano and bass time series, so that
the beginning of training coincides with the beginning of the
collection period for the target features. The tona SIE time
series for both instruments is shifted for a 5-second interval
(in accordance the tempo). For the piano rhythmic time series
(density, syncopation and symmetry) a shift of 64 values oc-
curred (16 beats for 4 measures) and for the bass an additional

shift of 3 seconds was realized. The intensity module does
not incorporate any explicit time delay in training, since the
intensity features are updated every 16th beat. Therefore, the
consideration of the delay expresses the “ideal” adaptation of
the system, while ignoring the delay indicates the “pragmatic”
system’s response.

The correlations demonstrated in Table Il reveal that some
features in the playing style of the human improviser are
reproduced quite accurately by the intelligent musicians.
Specifically, the rhythmic density and the intensity follow are
in al cases highly correlated. For the intensity feature, the
high correlation value is expected because of its simple and
straightforward statistical modeling. The tonal SIE and the
rhythm syncopation MA features seem moderately correlated,
especialy with the delay adjustment. The rhythm symmetry
feature is exhibited to be the less correlated feature, meaning
that in terms of symmetry, the rhythms produced by the human
improviser and the intelligent instrumentalists are not similar
in terms of symmetry as we have defined it. These results
indicate that the system is able at some extent to capture and
reproduce the improviser’s instantaneous tonal, rhythmic and
intensity playing style.

TABLE Il
CORRELATION OF THE GUITAR FEATURESWITH THE RESPECTIVE PIANO
AND BASS FEATURES.

improvisation 1
no delay delay
piano bass piano bass
SIE 0.4280 | 0.5571 | 0.4240 | 0.5735
SIE (MA) 0.6516 | 0.7700 | 0.6829 | 0.8320
density 0.4659 | 05321 | 0.7045 | 0.8557
density (MA) 05416 | 0.6053 | 0.7771 | 0.9064
syncopation 0.1789 | 0.4802 | 0.2230 | 0.3418
syncopation (MA) | 0.4542 0.6417 0.6551 | 0.7188
symmetry -0.2060 | -0.3752 | -0.0050 | 0.4130
symmetry (MA) 0.1425 | 0.0314 | 04222 | 0.2274
intensity 0.6696 | 0.6731 — —
improvisation 2
no delay delay
piano bass piano bass
SIE 0.1949 | 0.1236 | 0.2601 | 0.0551
SIE (MA) 0.6189 | 0.4954 | 0.7198 | 0.5529
density 05229 | 0.6316 | 0.7907 | 0.7220
density (MA) 0.7090 | 0.7133 | 0.8941 | 0.8520
syncopation 0.0326 | 0.2958 | 0.0977 | 0.2191
syncopation (MA) | 0.5455 | 05357 | 0.7203 | 0.6710
Ssymmetry -0.1455 | 0.0474 | 0.2701 | 0.0616
symmetry (MA) 0.2125 | 0.3113 | 0.4305 | 0.4902
intensity 05459 | 0.5745 — —
improvisation 3
no delay delay
piano bass piano bass
SIE 0.3686 | 0.2823 | 0.4133 | 0.2826
SIE (MA) 0.6455 | 0.4098 | 0.7308 | 0.4166
density 0.6011 | 0.5285 | 0.8002 | 0.7011
density (MA) 0.7139 | 05964 | 0.8951 | 0.7687
syncopation 0.0152 | 0.0764 | -0.0298 | 0.1130
syncopation (MA) | 0.4374 | 0.2382 | 0.6900 | 0.3164
symmetry -0.1904 | 0.0927 | 0.1161 | 0.0235
symmetry (MA) 0.1348 | 0.2161 | 0.4947 | 0.2656
intensity 0.6242 | 0.6345 — —

For all features, the MA time series present higher correla
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Fig. 4. Fluctuations of all the feature for all instruments in the first improvisation.

tion than the initial time series. This reveals the instability of
theinitial features, afact that not only aters the assessment of
safe results, but more importantly affects the training process
and the adaptation potential of the system, i.e. the training
target features are heavily dependent on the exact time that
these features are captured. The instability that these features
present results from their computation methodology, which is
an open subject of computational music research. A possible
solution to the feature instability problem would be to use
the feature MA in stead of the features per se. Such an
approach however, is expected to introduce additional latency
to the responses of the system. Moreover, a greater correlation
is presented for all the measurements that incorporate the
training delay, exposing the “adaptation lag” of the system.
As previously mentioned, due to CPU limitations the adap-
tation lag is high (5 seconds for tonal and approximately
7-10 seconds for rhythmic depending on the tempo). This
problem could be overcome with additional code optimization,
implementation with a compiled programming language (like
C++) and distribution of several tasks to different computer
systems.

Another interesting result is derived by the accumulative
chroma profile of all the recorded improvisations, which is
the summation of al the pitch class activations throughout
the piece. This feature has proven to be evident about the
composition key of a piece [34], thus it expresses the tonal
identity of a music piece. The accumulative chroma pro-
files of al instrument in each improvisation are similar, a
fact that is expressed with their strong correlation which is
demonstrated in Table I11. In this Table we observe that the
accumulative chroma profiles of al instruments in the first
two improvisation, which are modal, are correlated with a
linear correlation above 0.9 and 0.95 for the first and second
improvisation respectively. For the blues improvisation, the
correlations drops to around 0.85, which is again strong. These
strong correlations indicate that the tone module listens to the
improviser accurately and reproduces the tonal environment
effectively, so that the overall tonal impression created by
the human improviser and the intelligent instrumentalists is
consistent.

V. CONCLUDING REMARKS

We have presented a system that provides intelligent au-
tomatic accompaniment to a human improviser without any
prior musical considerations. This system adapts to the human
improviser's tonal, rhythmic and intensity performing style

and composes novel music that inherits descriptive qualitative
characteristics from the human’'s performance. With the pro-
posed methodologica approach, the reproduction or alteration
of the human’s performance is avoided and the generation
of novel music is accomplished with directions given by the
human improviser. The tonal characteristics are based on the
statistical confidence of the chord that the human performer
accentuates, the Pitch Class Profile (PCP) and its Shannon
Information Entropy (SIE). The rhythmic characteristics are
described by three features (density, syncopation and symme-
try) which are captured in real-time during performance. The
intensity features are described by simple statistical quantities,
the mean and standard deviation, and are captures during
performance within a dliding window. These features are
then used as fitness values for the generation of notes with
the Differential Evolution (DE) agorithm, the generation of
rhythmic sequences with Genetic Algorithms (GA) and Finite
L-systems (FL-systems) and intensity variations by simple
statistical distribution modeling.

Results are presented where 3 improvisation simulations
with different play styles are performed with two intelligent
accompanying instrumentalists, a polyphonic pianist and a
monophonic bassist. These results indicate that the system
is able to adapt to the improvisers playing style, producing
musical responses that are qualitative similar but not identical.
At the same time, the results expose some limitations of the
system in its present infant form and provide indications about
the improvements that need to be done. The first drawback
that emerged is the instability of some features, which present
steeply alternating behavior. The second is the introduction of
“adaptation lag”, a fact that delays the system’s responses to
the music stimuli presented by the human improviser.

Future improvements should primarily address the afore-
mentioned two possible improvements. At first, its should be
examined whether the training process could be based on the
Moving Average (MA) time series of features. Second, a more
efficient implementation of the system should be realized and
parallel distribution of several tasks to multiple computer sys-
tems should be tested (a framework that is already considered
by the existing one, since al the different module intercom-
munications are carried out through the Open Sound Control
(OSC) protocal). Further adjustments could be investigated
for the improvement of both the listener and the generator
submodules of each module. For the listener submodules, the
system could enhanced by the introduction of new features that
incorporate further descriptive knowledge. For example, the



TABLE 111
CORRELATION MATRIX OF THE CHROMA PROFILES OF THE GUITAR, PIANO AND BASS.

improvisation 1 improvisation 2 improvisation 3

guitar piano bass guitar piano bass guitar piano bass

guitar | 1.0000 | 0.9208 | 0.9160 || 1.0000 | 0.9583 | 0.9806 || 1.0000 | 0.8418 | 0.8490

piano | 0.9208 | 1.0000 | 0.9722 || 0.9583 | 1.0000 | 0.9754 || 0.8418 | 1.0000 | 0.9213

bass | 0.9160 | 0.9722 | 1.0000 || 0.9806 | 0.9754 | 1.0000 || 0.8490 | 0.9213 | 1.0000
tone listener submodule could evaluate the note transition with  [17] T. M. Blackwell and P. Bentley, “Improvised music with swarms.” in
the help of Markov transition tables and the rhythmic listener Proceedings of the 2002 Congress on Evolutionary Computation, 2002.

. S CEC 02, vol. 2. |EEE, 2002, pp. 1462-1467.

could be given the ability to alocate pauses, anong many [4g) T. Fjishima, “Realtime chord recognition of musical sound : a system

others. Additionally, the generator submodules of al the mod-
ules could be further enhanced by utilizing more sophisticated
intelligent and adaptive techniques. All these improvements
should be examined on more improvisation sessions conducted
by musicians with awide range of expertise levels and playing
styles.
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