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Abstract
In recent years, great availability of various language resources in different forms
as well as rapid development of computer technology and programming skills
have made researchers in the fields of linguistics and computer science cooperate
in solving different problems of computational linguistics and natural language
processing. Building large monolingual as well as bilingual corpora in digital
forms and storing them in computer memories has enabled linguists and lan-
guage engineers to automatically explore techniques for processing information
with the help of various computer programs without any need to manually col-
lect and analyze data.
One of the main applications of monolingual corpora can be seen in developing
automatic spell-checking systems. In such systems, a large monolingual corpus
can function as a database instead of a monolingual dictionary. In the present
study, it has been tried to demonstrate the effectiveness of a large monolingual
corpus of Persian in improving the output quality of a spell-checker developed
for this language.
In the present spelling correction system, the three phases of error detection,
making suggestions, and ranking suggestions are performed in three separate
stages. An experiment was carried out to evaluate the performance of the
spell-checking system.

.................................................................................................................................................................................

1 Introduction

We live in the world of technology where the huge
available information should be processed and
translated into knowledge to be accessible and ap-
plicable for further applications. However, trad-
itional methods of information gathering and
storing will no longer be sufficient in the coming
centuries. Exploiting modern technology in solving
various problems of language studies can be re-
garded as an efficient way in learning environments.

Corpus-based linguistics has provided an accur-
ate description of language, and its new potentials
for language structure and use have many
applications in linguistics and some other related
fields.

Recent availability of large monolingual as well as
bilingual corpora in digital and online forms enables
linguists and language engineers to automatically
explore techniques for processing information dir-
ectly from different types of linguistic texts. It pro-
vides them with great opportunities in language
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analysis, quickly and accurately, with the help of
various computer programs without any need to
manually collect and analyze data.

Spell-checking can be considered as one of the
main applications of large monolingual corpora.
Developing human–computer technologies has
emerged some novel applications demanding mis-
spelled words identification and their correction
abilities. The majority of spell-checkers need to
have a dictionary to be used as a database in
which all and only legitimate words of the given
language occur. It is obvious that no dictionary in-
cludes all different paradigms of a given word or
most of proper nouns, specifically person names.
So, it is necessary to incorporate a lemmatizer
and/or morphological analyzer as well as a table of
all existing proper nouns of the language to the
database of the system, otherwise the output
would be insufficient. One practical solution to
this problem is to have a sufficiently large monolin-
gual corpus to be used instead of a dictionary as a
database in a spell-checking system. The general
idea of the present article is to focus on this very
issue.

To make the readers well-informed with
the whole process of our spell-checking system,
Figure 1 can be of great help in this respect:

The process of spell-checking, firstly, is divided
into three phases: Detection of errors or misspelled
words, during which the lexical analyzer detects
the misspelled word in the input string. Making
suggestions for detected misspelled words, dur-
ing which the system creates a set of possible can-
didates as potential replacement for the given
erroneous word. And ranking as well as auto-
matic correction of errors, during which these can-
didates are sorted out from the most likely
replacements to the least likely ones based on their
associated error weight. Most techniques treat each
phase as a separate process and perform them in
sequence.

The following parts of this section are the at-
tempts to give a detailed description of these three
phases, different types of errors, and sources of
errors in general as well as in Persian language.
Section 2 tries to provide readers with some
information about major properties of Persian

language, especially morphological patterns in this
language. In section 3, a review of some recent
works on different approaches toward spell-check-
ing is provided. Section 4 deals with describing
methodology applied in the experiment carried
out in this article. Section 5 thoroughly describes
the processes involved in performing the experi-
ment using our large monolingual corpus of
Persian. Sections 6 and 7 are dedicated to analyzing
the results from the experiment, and conclusion and
further developments, respectively.

Fig. 1 Spelling-checker algorithm flowchart.
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1.1 Detection of errors
The first step in spell-checking process is correct
detection of an error or a misspelled word.
This process usually consists of looking for each
input word in a dictionary or database to find
out if it is a valid word belonging to that dictionary
or database. Here there are two possibilities, as
follows:

(a) The detected misspelled word is a valid word.
That is, the word detected as an error is
among the existing words in database of the
system. They are usually referred to as ‘real
word errors’. An example for this case is the
word ‘after’ instead of ‘alter’, or instead
of .

(b) The detected misspelled word is a non-word.
That is, the word detected as an error cannot
be found in database of the system. Replacing
‘tgis’ instead of ‘this’, or instead of

, may be an example for this case.

Detecting the errors of the first type is not in the
scope of the present investigation, as in most cases,
it requires context analysis and a robust intelligent
syntactic parser and a reliable stemmer for the given
language. However, some researchers tried to deal
with real-word errors with the help of statistical
methods. To mention a case, Faili used Mutual
Information as well as a confusion set for every
Persian word. Based on his report, his method got
the 79% performance both in detecting the error
and non-error correctly (Faili, 2010). In a similar
study, Faili and his colleague presented a lan-
guage-independent approach based on a statistical
machine translation framework to deal with con-
text-sensitive spelling errors or real-word errors
and grammatical errors in Persian language. They
reported encouraging results out of their experi-
ments (Ehsan and Faili, 2011), and we confine our
study to the second case. In its simplest form, a
spell-correction system reads the input string
word-by-word, searching each one in its own data-
base. If the given word is not available in the data-
base, it will be marked as a misspelled word or an
error. The proper nouns, some inflections, as well as
out-of-vocabulary words also follow the same rule.
That is, they are considered misspelled words, unless

the identical cases be found in the database.
This way, the error is detected by the system sub-
jected to the subsequent steps to be corrected.

1.2 Candidate generation for errors
A high-quality spell-checker should have the cap-
acity not only to detect misspelled words, but also
to provide users with some possible suggestions
for every already detected error, as the users
expect spelling checkers to suggest corrections for
non-words.

There are a variety of approaches toward
arranging possible suggestions for each error
detected, such as minimum edit distance
techniques (Damerau, 1964), similarity key tech-
niques (Zobel and Dart (1996), rule-based tech-
niques (Yannakoudakis and Fawthrop, 1983b),
n-gram-based techniques (Ullman, 1977), probabil-
istic techniques (Pollock and Zamora, 1984), dy-
namic programming techniques (Oommen and
Kashyap, 1998), and neural nets (Hodge and
Austin, 2003). However, the most common tech-
niques for organizing a set of possible suggestions
use a dictionary or a database of legal n-grams to
locate some possible correction terms (Golding and
Schabes, 1996).

1.3 Ranking and automatic correction
of errors
After detecting erroneous words and providing one
or more potential suggestions, it is time to sort out
these candidates from the most likely replacements
to the least likely ones. Using various techniques, an
error weight is associated with each candidate.
Then, the list of suggestions is sorted in descending
order. Having this, automatic correction usually
takes the first candidate as the correct replacement
for misspelled word. In interactive systems in which
there is a kind of interaction between user and com-
puter, ranking is the task performed by the com-
puter, whereas selection is left to be done by the
user.

The most usual techniques for ranking process
use some lexical-similarity measure between the
misspelled word and each potential candidate or a
probabilistic estimate of the likelihood of the cor-
rection to rank order the candidates (Kukich, 1992).
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At present, the system presented in this study has
not the potential for automatic correction of errors.
The possible suggestions are displayed according to
their degree of edit distance, from the minimum
edit distance to the maximum one. In fact, it is a
kind of automatic ranking, from the most likely
occurring suggestions to the least likely ones. The
selection of a possible substitute for the erroneous
word will be left to the user.

1.4 Types of errors
As the previous researches in spell-checking re-
vealed, there are four types of errors responsible
for making a vast majority of misspelled words in
any language (Damerau, 1964). These four error
types are as follows:

(a) Insertion: adding one or more characters in
front, at the end, or between any two charac-
ters of a valid word to make it a misspelled
one, examples:

assuyme instead of assume
instead of

(b) Deletion: deleting one or more characters
from a valid word, examples:

corection instead of correction
instead of

(c) Substitution: changing a character into an-
other character, examples:

pussible instead of possible
instead of

(d) Transposition: switching a character with an-
other one (usually the one next to it),
examples:

recieve instead of receive
instead of

The aforementioned error types when involved
in one character are often referred to as single-error
misspellings, as opposed to dubbed multi-error
misspellings, the errors involved in more than one
character to be deleted, inserted, substituted, or
transposed. The latter case is true for errors
caused by two error types together. For instance, it
is possible for the writer to type ‘moultipel’ instead
of ‘multiple’, to which the two processes of insertion

and transposition have been applied. It is also pos-
sible that a valid word of a given language is pro-
duced while a kind of mistyping occurred. For
example, the word ‘ate’ may be produced when
the intention is ‘are’, or the Persian word ‘ ’
(house) may be replaced by the word ‘ ’
(don’t break) or ‘ ’ (possible). Correcting
these types of errors that lead to a valid word
needs a spell-checking system that uses context
and/or is provided with a syntactic analyzer
(although shallow one).

Also, it should be noted that the types of errors
committed by an OCR1 program may be different
from those committed by a human being. The ma-
jority of OCR-generated errors are of the type sub-
stitution. Studies show that the error types related to
OCR are various depending on factors such as font
input quality, etc., ranging from recognizing one
character instead of the other one (‘o’ instead of
‘c’) to taking two or more characters as one and
vise versa (‘iii’ instead of ‘m’ or ‘d’ instead of ‘cl’)
(Johns et al., 1991).

1.5 Sources of errors
There are a variety of causes for a misspelled word
to be produced by a writer or a typist. As the focus
of this article is going to be on tackling errors lead-
ing to non-word errors, the error sources of this
type are to be taken into account. Three sources
for non-word misspellings are often distinguished
as: (1) typographic errors, (2) cognitive errors,
and (3) phonetic errors (Kukich, 1992).

Typographic errors are those produced due to
writing slips. Although the correct form of the word
in question is already known, it is mistakenly mis-
spelled by the writer. Writing ‘typas’ instead of
‘types’ or ‘ ’ (non-word) instead of ‘ ’
(analysis) may be good examples for the typo-
graphic errors.

Phonetic errors are divided into two types. The
first one caused by the writer’s lack of knowledge on
how to write the correct form of the word.
Replacement of ‘development’ by ‘developement’
and ‘ ’ (waiting) by ‘ ’ (non-word) are ex-
amples for the second case. In Persian, there are
several letters having different forms, which give
rise to serious problems for incompetent Persian
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writers. For instance, there are four different forms
for a single character sounding ‘z’ as ‘ ’
and three forms for a single character sounding ‘s’
as ‘ ’ in Persian alphabet. Every word con-
taining one of these various forms might be writ-
ten in alternative form due to the writer’s
misconception. The second one is a type of error
in which an assumed phonetically correct mis-
spelled form is produced by a really correct
word. When the word ‘speshle’ is written instead
of the word ‘special’ or the Persian word ‘ ’
(non-word) instead of ‘ ’ (sister), phonetic
error has occurred. These types of errors are fre-
quently seen in writing unfamiliar names and
words.

In this study, it has been tried to develop a robust
program used to detect and correct mistyped words
of Persian. The problem is to be solved by checking
whether a word already exists in the corpus (instead
of dictionary). In case the word was not found, the
program detects it as an error. As it is not always
clear which word was intended by the writer to be
replaced the misspelled word, the program provides
the user with a range of suggestions to be selected as
the replacement for the erroneous word. That is, it
tries to extract words from the corpus that are most
similar to the word in question. The list of sugges-
tions is produced based on minimum edit distance
to the misspelled word without taking context into
account. Letter N-grams (bi-gram and tri-gram) are
also incorporated in the minimum edit distance
process to enhance its performance.

In some spelling correction systems, the three
phases of error detection, making suggestions, and
ranking suggestions or automatic correction are
performed in three separate stages. However, there
are some other systems in which these three phases
are to be executed in one step. The technique pre-
sented in this study divides the spell-checking pro-
cess into three phases and goes through the first two
ones, leaving the third phase for a separate study.
However, in the third phase, we manage to rank the
candidate suggestions generated in the second phase
according to their relative frequencies in the corpus.
Our goal is to develop a spelling checker that can
treat only non-word errors in Persian effectively and
quickly.

2 Persian Background

Persian is a member of synthetic language family. It
means that in Persian, a new word is to be created
by adding prefix, suffix, infix or another noun, ad-
jective, preposition, or verb to the beginning or the
end of the word or verb stem. In these cases, the
basic form of the word or verb stem usually is not
broken. (Mosavi Miangah, 2001). Grammatical word
order of Persian is subject–object–verb (SOV),
although a relatively free word order is also possible,
but not grammatically acceptable. In Persian, every
verb has two stems, present stem and past stem, and
different inflectional forms of a verb are constructed
either using the present stem or the past one.

In addition to verbs, many nouns, adjectives, and
adverbs in Persian are constructed from the present
or past stem of the verbs. In these cases, we name
such words as ‘derivative’ words, as opposed to
‘concrete’ (primary) words, in which no verb stem
is involved. Nouns or da:nsh (science) and

or da:nshga:h (university), adjectives
or da:nshmnd (scientist) and

or bida:nsh (ignorant), as well as the
adverb or da:nshmnda:nh (schol-
arly) have been constructed from present stem

or da:n, which means ‘know’ in English.
The elements within a noun phrase are linked by

the enclitic particle called ezafe. This morpheme is
usually an unwritten vowel, but it could also have an
orthographic realization in certain phonological en-
vironments (Megerdoomian, 2000). For example,
when the last letter of the first noun is ‘a:’ or ‘u’,
we have to add an ‘-e’ to it to combine the next
noun or the next adjective (notice that in Persian,
the adjectives precede the nouns). Consider the
noun phrase or a:hu-e nr (red deer or
stag) in which ‘–e’ is the realization of ezafe be-
tween the two nouns. In the most other cases, the
ezafe is pronounced as ‘e’ but it is not written. The
realization of this enclitic particle in Persian texts
is a challenging problem in the tokenization part in
the spell-checking system of this language.

Adjectives follow the same morphological pat-
terns as nouns. They can also appear with compara-
tive and superlative morphemes. Certain adverbs,
mainly manner adverbs, can behave like adjectives
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and can appear with all the adjectival affixes
(Megerdoomian, 2000).

The inflectional system for the Persian verbs con-
sists of simple forms and compound forms; the
latter are forms that require an auxiliary verb. The
simple forms are divided into two groups according
to the stem they use in their formation, present or
past. The citation form for the verb is the infinitive
(Megerdoomian, 2000).

Although inflectional morphemes can attach to
the verbs for conjugation, they also may attach to
the end of the nouns or adjectives and convey a
complete sentence enclosing subject and verb.
However, in these cases, the verb can only be in-
transitive and in the form of ‘be’. Consider the fol-
lowing example:

or fqir (poor)þ or id¼ or
fgirid (you are poor.)

ketab (book)þ ha:ye (s)þ
ma:n (our)¼ (our books)

The vast variety of inflectional and derivational
suffixes in Persian causes some complexities in com-
putational detachment of Persian words, which, in
turn, makes the process of detecting and correcting
the errors more difficult in this language.

In Persian writing system, letters in a word are
often connected to each other. Most characters have
two or three alternative forms depending on their

position within the word. The initial form indicates

that no element is attached to the element from the

right. Note that an initial form does not mean that

the character is in the beginning of a word, it only

indicates that the character is not at the end of the

word. Characters are in medial form if they have an

attaching character both before and after them. The

final form denotes that the character is at the end of

a word. The final forms can therefore be used to
mark the word boundaries. However, certain char-

acters have only one form regardless of their pos-

ition within the word.
In most languages, there is often a space between

two separate words; however, in Persian, this is
always not the case. There are some cases in which
a space occurs within a single word. In such cases,
the two parts of the mentioned word can be written
totally separated, connected to each other, or using

a zero-width non-joiner character (ZWNJ) to keep
the two parts closer. The third possibility is the only
acceptable format of writing for such words. As all
Persian writers do not observe this rule, there are so
many problems for tokenizing Persian texts in this
connection.

Compounds and detachable morphemes (i.e.
morphemes following a word ending in final form
character), however, are written without a space
separating them. In other words, the two parts of
a compound appear next to each other but the first
element in the compound will usually end in a final
form character; hence it would be possible to rec-
ognize the two parts of the compound. This form is
not very consistent, however, and sometimes words
can appear without a space between them. If the
first word ends in a character that has a final
form, then we can easily distinguish the word
boundary. But if the first word ends in one of the
characters that have only one form, the end of the
word is not clear. Although this latter case is usually
avoided in written text, it is not rare. Furthermore, a
space is sometimes inserted between a word and the
morpheme. In such cases, the morpheme needs to
be reattached (or the space eliminated) before pro-
ceeding to morphological analysis of the text
(Megerdoomian, 2000). Considering word
inter-spacing and intra-spacing issues in Persian
language is among the key points in designing a
robust spell-checker for this language.

3 Related Work

Automatic spell-checking and spell-correction sys-
tems have a relatively long story, probably as long as
the computers. In fact, work on these systems began
in 1960s and is continually developing up to the
present. Many researchers tried to tackle the prob-
lem in distinct phases as detection, suggestion, and
correction, separately. Some studies only deal with
the first stage, whereas some others treat the first
two stages or the three stages altogether. The
UnixTM spell program, for example, is an effective
and efficient program for spelling error detection
that deals only with the first stage. This program
takes a document as input, searches each string in
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a dictionary consisting of 25,000 terms in the field
of technical writing, and then generates a list of all
strings that did not belong to the dictionary. The
program does not provide any means to suggest
some candidates or correct the misspelled words,
leaving the task to the user (McIlroy, 1982).
Grope, on the other hand, is another Unix tool de-
veloped to deal with the second phase—creating a
list of candidate suggestions for the misspelled
word. It is, in fact, in the form of an interactive
system in which after detecting typos, the user is
encountered by an ordered list of suggested words
based on similarity metrics, among which s/he can
choose the best one (Taylor, 1981).

Some researchers have used rule-based tech-
niques for error detection and correction.
Rule-based techniques are heuristic programs
using the knowledge of the most common error
types to extract some rules to be able to correct a
misspelled word. Yannakoudakis and Fawthrop
used the knowledge of predictable errors to convert
the non-word into lexicon words. They extracted
the rules from 1,377 misspelled words. The rules
display various spelling errors so that they can be
applied to different non-words to create corres-
ponding correct words. They tested their program
on a set of 1,534 misspelled words selected from a
variety of sources. They found that a large portion
of the errors could be dealt with by a set of seven-
teen heuristic rules, twelve of which related to the
misuse of consonants or vowels in graphemes, and
five of which related to sequence production
(Yannakoudakis and Fawthrop, 1983a,b).

Some other studies, like that reported by Ahmed
Hassan and his colleagues, tried to find appropriate
solution for the problems of detecting misspelled
words, generating candidate corrections for them,
and ranking corrections. They used finite state auto-
mata for automatic correction of spelling mistakes
to propose candidates corrections within a specified
edit distance from the misspelled word. First they
provided a list of some candidate suggestions for the
misspelled word using minimum edit distance and
then they used a language model to assign scores to
these candidate suggestions and choose best correc-
tion in the given context. Their presented approach
is claimed to be a language-independent one and

requires only a dictionary and text data to build a
language model. They tested their approach on both
Arabic and English text and achieved accuracy of
89%. This accuracy deals with testing the
auto-correction process using a list of 556 words
having common spelling errors in both languages
(Hassan et al., 2008).

Fossati and Eugenio addressed the problem of
real-word spell-checking, i.e. the detection and cor-
rection of errors that result in real words of the
given language, such as peace and piece. Although
handling these types of errors is far more intricate
than non-word errors, as the former needs context
information, they used a mixed trigrams language
model to present a statistical method for context-
sensitive spell-checking. Their model was imple-
mented, trained, and tested with data from the
Penn Treebank and showed promising results with
respect to the hit rates of both detection and cor-
rection (Fossati and Eugenio, 2007).

In another study, Zamora et al. tried to evaluate
the effectiveness of trigram frequency statistics for
spell-checking applications. They compiled a tri-
gram matrix in which instead of binary values, the
frequency counts or probabilities extracted from a
sufficiently large corpus of text (e.g. at least a mil-
lion words) were shown. To determine the differ-
ence between the trigram compositions of correct
and misspelled words and see whether the mis-
spelled words are reliably detected, they analyzed a
set of 50,000 word/misspelling pairs from seven
machine-readable databases and concluded that tri-
gram analysis can detect the error position in a mis-
spelled word accurately, but it cannot distinguish
between valid words and erroneous ones (Zamora
et al., 1981).

Colak and Resnik took a pattern recognition ap-
proach to string error correction of misspelled
words using OCR. Their pattern-recognition ap-
proach treats OCR as within the framework of the
noisy channel model, a model with attractive theor-
etical properties, contributing new techniques for
empirical parameter estimation. Their approach
was reported to work significantly better than the
naive approach of correcting errors by finding the
most similar dictionary entry according to simple
edit distance. They evaluated their model on
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artificial as well as real data and observed that the
size of the candidate dictionary affects correction
accuracy (Kolak and Resnik, 2002).

Mitton presented a developmental study of spell-
checking systems and tried to investigate different
approaches toward the problem. According to
Mitton, the spell-checking has a rather long history.
It began in the late fifties—the days of mainframes
and punched paper tape (Mitton, 2010).

As far as Persian language is involved, there have
been a few research studies in building or develop-
ing spelling checkers in this language. Rezvan and
his colleagues—while introducing FarsiTEX, a
document preparation tool in Persian language
based on LATEX—discussed some difficulties of
spell-checking as well as some suggestions in this
language (Rezvan et al., 1996). In another study,
Saburian and Dorri, discussing different compo-
nents of a spell-checker, introduced a comprehen-
sive approach toward implementation of a Persian
spell-checking system. In their study, they evaluated
different methods for designing and implementing
distinctive parts of the spell-checker, based on
which the best decisions for applying on Persian
language according to the most recent researches
as well as the properties of Persian were made. In
fact, they made use of syntactic analysis of the words
and recognizing their lemma for better detection of
errors and making appropriate suggestions. They
also store the lexicon in the MDFA (Minimal
Acyclic Deterministic Finite Automata) structure
to reduce the size of the lexicon (Saburian and
Dorri, 2006).

Also, Shamsfard and her colleagues in another
study tried to use Web as a corpus in their
method of spell-checking to modify previous classi-
fication offline methods (Shamsfard et al., 2009).

Barari and Qasemizadeh presented an adaptive
spell-checker for Persian language using a ‘Ternary
Search Tree’ data structure, which is language-inde-
pendent and built-in error pattern–free too. Their
system detected misspelled words using non-deter-
ministic traverse. That is, they solved the problem
by traversing a tree with variable weighted edges.
The system learns error pattern with some sample
from language or media. It can adapt and tune itself
by interactions by user or outer media and it

improves its suggestion list as time goes by.
The authors report that the proposed approach
has more flexibility, accuracy, data compression
rate, and reliability comparing with other
methods. Moreover, it shows that it has an accept-
able result for auto-selection problems (Barari and
Qasemizadeh, 2005).

Kashefi and his colleagues implemented a spell-
checker for Persian in which they used monolingual
corpus for patterns analysis and occurrence rate of
spelling errors. In the report of their study, they
have not gone through details of the way their
system works. Instead they focused more on the
problems and challenges in Persian language pro-
cessing and made some suggestions for tackling
them. Their study also contains some appendices
for numbers convertor, calendar convertor,
Pinglish (Persian texts with English transcription)
convertor, and modification of punctuation marks.
Their proposed method is based on production and
conjugation of verbs and adding them while loading
and studying non-verb inflectional words (which
are so many for every word in this language) with-
out occupying memory for the retention. They eval-
uated their work using cross-validation with
five-stage folding for the results to be more signifi-
cant and valid and just (Kashefi et al., 2010).

In this article, we present an alternative approach
to spell-checking of Persian texts that uses a large
corpus of Persian to detect the spelling errors and
suggest a list of candidates among which the user
can select the appropriate replacement of the mis-
spelled word. As far as authors know, it is the first
experience in making use of a corpus instead of a
dictionary as a databank in spell-checking systems
not only for Persian but for so many other lan-
guages. So, the methodology of this study can be
well-applied to other languages too.

4 Methodology

4.1 Tokenization
In almost all spell-checking systems, the first step
toward word identification is tokenization.
Tokenization may refer to the division of the text
into sentences and of sentences into words and
punctuation. Sentence segmentation is not of any
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help in spell-checkers, whereas word segmentation
is indispensable in such systems. Although punctu-
ation marks such as ‘.’, ‘,’, ‘!’, ‘?’, ‘:’, and ‘;’ are used
to separate sentences, they can also be used as word
boundary besides white-space characters such as
blanks, tabs, carriage returns, etc. Detecting errors
based on predefined word boundaries is not prob-
lematic, except in cases where the running-on of
two separate words and/or splitting a single word
into two parts result in valid word(s) in the given
language. The word ‘forgot’, for instance, may be
written mistakenly as ‘for got’, splitting the word
into two distinct ones, each of which can be found
in the dictionary or corpus of the system as a valid
word in English. Therefore, in such cases, tokeniza-
tion cannot help detect the spelling errors or correct
them. The only way for tackling this problem is to
consider the context to which the erroneous word
belongs.

4.2 Corpus preparation
For the purpose of this experiment we tried, as the
first stage, to compile a comprehensive monolingual
corpus of Persian texts consisting of >120 million
tokens. By token we mean all individual members of
a type in a text that may or may not be repetitive.
The corpus is comprehensive in the sense that it has
been divided into different sub-corpora of various
text types, such as politics, medicine, poetry, sport,
literature, art, religion, science, culture, history, eco-
nomics, and miscellaneous. These texts are mainly
extracted from books, journals, interviews, reports,
written news, etc., but the main contribution goes
with the online version of Hamshahri newspaper2.
There were so many Persian books and papers in
digital form having a variety of genres suitable for
entering into the corpus. Many Persian Web sites
contained interviews or reports on specific subjects
from which we could extract required data for our
corpus. In collecting data for the corpus, it has been
tried to compile a balanced and representative
corpus; i.e. it would contain texts from different
domains and different genres in reasonable propor-
tions to be a reasonable reflection of language use.

As for the other languages, the Persian language
is being updated almost every day with new tech-
nical words and phrases, neologisms, loanwords,

proper nouns, etc. For this reason, it is reasonable
to use a large monitoring monolingual corpus as the
source of our database used in a spell-checking
system. The corpus and its accompanying database
will be frequently building up and updating.

4.3 Persian lexicon generation
To construct a large-scale Persian lexicon to be used
as a databank in the spell-checking system in this
language, we have to tokenize the whole corpus in
word level. Persian is among languages with a com-
plicated morphological system, and there are many
writing problems in this language due to some
inconsistencies in different letter forms and space
character between letters of a word. In this regard,
a rather complicated algorithm has been designed
and implemented to separate all tokens in the
corpus. For example, there is a ZWNJ character in
Persian used when writing some prefixes, suffixes,
and compound words. Such non-printing character
is used in case that it is desirable to keep two words
closer together, which otherwise are either totally
separated or connected to each other. Consider
the following examples in this respect:

ZWNJ converts or , which are
both incorrect, into the correct form

ZWNI converts , which are
both incorrect, into the correct form

ZWNI converts , which is the in-
correct form, into the correct form

All these mentioned cases along with some other
linguistic rules have been considered in the process
of tokenization of the system.

After tokenization of the corpus, all tokens are to
be converted into types with their relative frequen-
cies in the corpus. The larger the size of the corpus
in terms of types, the better and more precise the
performance of the spell-checking system. This is
especially true when one comes to deal with un-
known words and/or proper nouns, as more and
more words are added to the databank of the
system when the size of the corpus is augmented.
In the next step, the types such extracted are to be
checked against the availability in Persian language.
This is one of the most time-consuming and hard
laboring tasks during the implementing of the
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system, which has been done manually. During this
step, all garbage data as well as misspelled ones have
been deleted from the corpus. This way, a database
of around 1,000,000 word types was generated from
the original corpus of Persian to be used in the
system.

4.4 Error detection
4.4.1 Dictionary lookup technique

In dictionary lookup techniques, a program is run
to check the whole dictionary to see if an input
string appears in a dictionary or lexicon. If the
string is not found, it is marked as a misspelled
word. There are various techniques for dictionary
lookup such as tries (Knuth, 1973), frequency
ordered binary search tries (Knuth, 1973), and
finite-state automata (Aho and Corasick, 1975).
These standard search techniques have been used
to reduce dictionary search time in different ways.
A type of data structure program called hash table is
the most common technique for fast access to dic-
tionary or lexicon, in which for looking up a string
in the lexicon, its hash address is computed and the
string stored at that address is retrieved in a hash
table, which has been previously constructed
(Knuth, 1973). The technique for looking up the
strings in the lexicon of the present spell-checker
for Persian is based on the simple technique of
indexing, which is more applicable for processing
large data. All the words in the database were
sorted alphabetically and then a string-matching al-
gorithm (Navarro, 2001) was applied.

The size of the lexicon in a spell-checking system
is a considerable factor in designing such systems. In
fact, it has a direct relationship with the response
time of search. That is, the larger the size or the
number of dictionary entries, more time it takes
to return the result of a search. For this very
reason, many designers try to apply a lemmatizer
to the lexicon of their spell-checking systems to
reduce the volume of the system database. As a
robust lemmatizer is not available for Persian, in
this study, the word types extracted from our
Persian corpus include all various paradigms of a
word, i.e. singular and plural forms for nouns, dif-
ferent tenses for verbs, comparative and superlative
forms of adjectives, and some other inflectional

forms peculiar to Persian morphology. Although
including all different forms of the words in the
lexicon increases the size of the database to a high
degree, we tried to apply a dynamic programming
technique known as Levenshtein algorithm—a
string-matching algorithm—(explained in section
4.5.1.) to deal with this problem.

Some scholars believe that the size of lexicon
should be carefully decided on. A very small lexicon
burdens the user with too many false rejections of
valid terms, whereas a very large lexicon can result
in an unacceptably high number of false acceptances
(Kukich, 1992).

4.5 Candidate generation
Making proper suggestions for every error detected
is the next stage in spell-checking systems, which
should be carefully programmed. This stage can be
divided into two sub-stages as: (1) generating a set
of words that have a minimum edit distance to the
erroneous words, and (2) selecting a subset of words
extracted from the words produced in the first sub-
stage, which exist in the database of the system. In
fact, creating a letter adjacent matrix for Persian
words, we tried to reduce the numbers of the can-
didate suggestions in the mentioned subset.

4.5.1 Minimum edit distance

The Damerau–Levenshtein distance, also known as
minimum edit distance, is defined as the minimum
number of editing operations (i.e. insertions, dele-
tions, substitutions, and transposition) needed to
convert one string into another (Wagner, 1974).
In fact, in most spelling correction algorithms, the
minimum edit distance between a misspelled word
and a dictionary entry is to be computed. An erro-
neous word with a minimum distance of one from
the correct word mostly results from pressing a key
twice, typing two keys instead of one, skipping a
key, and typing a key instead of another, and switch-
ing two adjacent letters in which the minimum edit
distance is 2.

In this study, we used a dynamic programming
technique known as Levenshtein algorithm with
quadratic time complexity (Wagner and Fisher,
1974) to calculate the edit distance between a mis-
spelled word and the words in database. Using this
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technique, it is not necessary for an erroneous input
word to be compared with each word in the data-
base to find proper candidates. In this respect, we
passed every input word through an efficient algo-
rithm to arrange a number of suggested words for
each misspelled word. The algorithm in the follow-
ing text demonstrates a set of steps to be taken to
generate a number of candidates to be exposed to
the users. In this algorithm, the minimum edit dis-
tance of the last editing operation is two, whereas
the one in the other editing operations is one:

The Algorithm

Step 1: Take each input word (IW) that does not
appear in the database as an erroneous
one.

Step 2: Space between every two adjacent letters
of IW.

Step 3: If any of the resulting words was found in
the database as a valid word, return the
result as a candidate word for the mis-
spelled one.

Step 4: First join IW to the following word and
then to the preceding one, and then
repeat step 3.

Step 5: Substitute each letter in IW by all letters
of Persian alphabet one by one, and then
repeat step 3.

Step 6: Delete each letter in IW one by one, and
then repeat step 3.

Step 7: Insert all letters of Persian alphabet one
by one between each two adjacent letters
and at the two ends of IW, and then
repeat step 3.

Step 8: Exchange every two adjacent letters of
IW, and then repeat step 3.

It should be mentioned that the two ‘word bound-
ary’ steps (steps 2 and 3) should be performed be-
fore the regular order of the other steps.

4.5.2 N-gram matrix generation

N-grams are defined as n-letter subsequences of
strings in which n is usually something between
one and four and used in a variety of ways in text
recognition and spelling correction techniques.
Bigrams and trigrams matrices in this study are
two means by which we can enhance the precision

of our spell-checking system. Firstly, a matrix of
every two adjacent characters of Persian alphabet,
as well as a matrix of three adjacent ones, was com-
piled. These binary matrices consist of subsequent
Persian characters along with their value as one or
zero based on the information gained from the data-
base depending on whether that string occurs in at
least one word in a pre-defined lexicon. Blank char-
acter is also considered as a character in creating the
two matrices. Consider, for instance, the strings
(chþ b) and (dþ pþ i), which are improbable
in Persian language, whereas the strings
(chþ p) and (dþ bþ i) are quite probable,
and can be found in words such as (plun-
der) and (tanner). This way, we can check
every two and three strings of a given word against
these two n-gram matrices. If a string with a zero
value is found anywhere in the given word, the pro-
gram marks the string as an erroneous one and that
string is regarded as the source of error in that
word. Then, the minimum edit distance algorithm
is to be applied only to the very string not to the
whole word. As a result, the number of suggestions
as well as the response time will be reduced in gen-
erating candidates for every misspelled word.
Incorporating N-gram (letter adjacent) matrices
to the minimum edit distance algorithm will inevit-
ably increase the speed of the system performance.
One of the studies that used N-gram matrices is
a system presented by Golding and Schabes. Their
system is based on trigrams that tackle the problem
of correcting spelling errors, resulting in valid words
(Golding and Schabes, 1996).

4.6 Ranking suggested candidates
In some spelling correction systems, the task of
automatic correction is performed as a separate
phase during which the system has the ability to
automatically select the most suitable word as a sub-
stitute for the misspelled one among the suggested
candidates generated from the previous phase. This
task needs a kind of context analysis and intelligent
learning from a large corpus with stochastic meas-
ures as well as some linguistic rules. At present,
there is no such possibility for our spelling checker
to be able to contextually analyze the monolingual
corpus and automatically correct the detected
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errors. In fact, in the third phase, we managed to
rank the candidate suggestions generated in the
second phase according to their relative frequencies
in the corpus. In most cases, the first priority, which
is the one having the highest frequency in the
corpus, is the most appropriate substitute of the
erroneous word. Selecting from the suggested
words thus sorted is up to the user.

5 The Experiment

To evaluate the performance of the present system,
we carried out two sorts of evaluations. First, a test
corpus of Persian texts consisting of sentences in
which some words were artificially made erroneous
with different lengths having one or two errors was
prepared. The input texts contain �10,000 words
and the erroneous words 1,000 words. We tried to
include all types of errors (deletion, insertion, sub-
stitution, exposition, and word boundary) in the
test corpus with the reasonable proportion. In add-
ition, a small set of misspelled words included
proper nouns (especially proper names of persons),
foreign words (those foreign words transcribed with
Persian alphabet), neologisms (new words recently
entered Persian language), and some technical terms
(usually with a low occurrence frequency). In our
second stage of evaluation, we tried to test the
system on real data, a test corpus consisting
�1,000 Persian words extracted from one of the
Persian weblogs about ‘cupping’ (hejamat) in trad-
itional medicine. The results concerning the second
evaluation scenario have been reported separately.

In the first phase, the text is analyzed word-by-
word from right to left (according to Persian writing
system). Each word that does not appear in the
database is underlined and supposed to be a mis-
spelled one. Here, it should be noted that nowhere
in this experiment was a dictionary used. The data-
base used in this experiment has been extracted
from a large monolingual corpus of Persian contain-
ing >100 million tokens. The performance time,
that is, the correction time as well as candidate gen-
eration and ranking time are the same as those in
the real-time systems, regardless of the word length
and the type of errors. This is one of the advantages

of the present Persian spell-checking system, which
makes it more practical than any other system.
Figure 2 is an image of the environment in which
our spell-checking system works. As the diagram
shows, once a word was underlined as an erroneous
one, a set of suggested words along with their rela-
tive frequencies in the corpus appear in a separate
box. The first priority in this box, which has the
highest frequency, is supposed to be the most prob-
able substitution for the erroneous one. However, as
selecting the first choice in the suggested list is not
always the correct choice for the misspelled word,
the Mean Reciprocal Ranking metric (suggested by
one of the respected reviewers), which is suitable for
applications in which only the first result matters, is
used for evaluating the ranking procedures through
the following formula:

MRR ¼
1

Misspellings
�� ��

X 1

RankCorrect Suggestion

If the underlined word is mistakenly recognized as
an erroneous one, the user may click on ‘add to
corpus’ button to allow the system to add it to the
database. The ‘ignore’ button let the system go on
checking the rest of the text without noticing the
underlined word. The FarsiSpell has been imple-
mented in visual C Sharp on a 2.3-GHz processor
machine under Windows.

The third stage in the whole process of spell-
checking, which aims at ranking a set of candidates
from the most probable substitute to the least one, is
not very accurate in sense that the ranking process is
only based on frequencies, not the surrounding con-
text. So, in some cases, the second, third or fourth
candidates are selected instead of the first one, be-
cause all of them are deviated from the input word
(erroneous word) only by one edit distance of in-
sertion, deletion, substitution, or transposition
transformations. Consider the misspelled word

, shown in Table 1, for which all the men-
tioned candidates were displayed.

6 Results

The experiment results have been summarized in
the tables and diagram. As Tables 2 and 3 show,
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our system works well on detecting erroneous words
resulting from different sources. The only exception
in this respect is ‘word boundary’ error type, for
which the system does not present proper solution.
The reason is, to some extent, that the tokenization
part of the system is not sufficiently robust, and this,
in turn, is due to different forms each Persian char-
acter takes depending on its position in a single
word. In fact, the program detected all misspelled

words but �15–30% of word boundary errors. In

the artificial test corpus, there were totally 123 word

boundary errors, thirty-five were split words that

were joined (e.g. and for ),

and eighty-eight were joined words that were

split (e.g. for and ). In the

test corpus of real data, there were totally 207

word boundary errors, among which 176 cases

were detected by the system.
The third column in each table represents the

percentage of misspelled words for which the can-

didate suggestions have been ranked properly. As

the first tables show, �64% of the erroneous

words in the artificial test corpus can be corrected

automatically, whereas in the real test corpus, this

quantity has been improved to up to >70%. In

ranking the candidates’ process, the mean reciprocal

ranking metric has been used, which is more precise

than calculating only the relative frequencies. In our

work, we considered the top ten candidates sug-

gested by the program to calculate the MRR.

Fig. 2 FarsiSpell system environment.

Table 1 A detailed report of the suggestion form for a

misspelled word detected by Parspell system

Misspelled

word

Candidates Frequency Edit

distance

Transformation

104,165 1 Insertion

622 1 Substitution

41 1 Deletion

34 1 Substitution

4 2 Transposition
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The idea behind MRR is that it multiplicatively in-

verses the rank of the first candidate the rank of the

correct suggestion. If, for instance, the second can-

didate is the correct one, the MRR of that case is

half. Similarly, if the third candidate happens to be

the correct one, the MRR is one-third. The sum of

all reciprocal ranks of the 1,000 erroneous words

both on artificial data set and on real data set

gained 0.76.
However, the output of this step is not precise

and is subject to some modifications. With some
improvements in tokenization of the system as
well as taking the context into account in near
future, we hope to increase automatic correction
ability to a high degree.

As mentioned earlier, one of the advantages of
the present system is making use of a large moni-
toring monolingual corpus of Persian as the basic
database of the system instead of using a monolin-
gual dictionary. A large corpus may contain so
many non-dictionary words, such as proper
nouns, neologisms, foreign words, etc. So, a data-
base extracted from such a corpus is certainly richer
than a dictionary. As Tables 4 and 5 show, the pre-
sent system can detect >96% of non-dictionary
words correctly and rank >95% of their suggested
candidates properly. It goes without saying that
some word classes overlap with each other. For ex-
ample, the word (histogram) belongs
to both technical terms and loan words, or the
word belongs to both proper nouns and
foreign words.

As far as the length of the misspelled words is
concerned, detecting process works well when the

Table 3 Different types of error found in the test corpus

of real data

Error type Detected

(%)

Correct

decision

Example

Word

boundary

85.02% 53%

Insertion 100% 91%

Deletion 98.2% 77.5%

Substitution 100% 60.6%

Transposition 100% 70.51%

Total 96.64% 70.52%

Table 2 Different types of error found in the test corpus

of artificial data

Error type Detected

(%)

Correct

decision

Example

Word boundary 60.97% 43.20%

Insertion 100% 85.1%

Deletion 100% 72.05%

Substitution 100% 56.9%

Transposition 100% 61.8%

Total 92.19% 63.81%

Table 4 Different classes of word found in the test corpus of artificial data

Word Class Detected (%) Correct decision (%) Example

Proper nouns 87% 100%

Foreign words 100% 100%

Neologisms 100% 50.8%

Technical terms 94.1% 75%

Loan words 95.2% 70.2%

Regular words 92.3% 61.6%
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number of characters in the word is less than seven.
In fact, it is difficult for the system to detect errors
in the long words. However, the proper ranking
process of the candidates shows some improvement
as the number of word characters grows. Although
detecting errors in two- or three-letter words is
completely successful, correcting them faces some
problems due to the possibility of exchanging the
characters in such words, resulting in other valid
words. However, in most of them, the second or
third priority is the correct decision. The results
gaining based on the word length criterion is some-
how similar in both kinds of evaluation perform-
ances. The relationship between the length of the
erroneous words and the ability of the present

system to detect the errors and select the right can-
didates are shown in Table 6.

Figure 3 clearly demonstrates that as the number
of word characters (N) increases, the ability of the
spell-checking program to correctly detect the
errors decreases, whereas its ability to correctly
rank the candidates for the misspelled word will
increase (with the exception of N > 8). The difficulty
of detecting errors in longer words seems to be due
to their sparseness (rare occurrence) in the corpus.
It means that, some of the long words or combined
ones may not be available in the database of the
system at all. Consider, for example, the Persian
word (the most challenging),
which is a rather rare one in Persian texts.

In this experiment, the result of the calculation
of MRR for the overall performance of the system is
0.76, and the results of the evaluation metric of
precision both on detection process and automatic
ranking of the suggestions were considered and cal-
culated as follows:

Precision on detection

¼
number of words whose correct form is ranked first

number of words detected as being erroneous

Precision on detection¼
974

1,032
¼ 94:3

Precision on ranking candidates

¼
number of words whose candidates ranked correctly

number of words detected as being erroneous

Precision on ranking candidates¼
696

1,032
¼ 67:4

7 Applications

A number of applications can be listed for which
creating a rich database based on a large monitoring
monolingual corpus and improvement in its abil-
ities are of great benefit.

Text-to-speech or voice synthesis tools that make
textual materials audible as well as speech recogni-
tion or speech-to-text tools will be more practical
with some significant improvements in word recog-
nition and correction. Machine translation and
computer-aided language learning are other tech-
nologies; their performance will inevitably be

Table 5 Different classes of word found in the test corpus

of real data

Word class Detected

(%)

Correct

decision

(%)

Example

Proper nouns 89.8% 98%

Foreign words 100% 100%

Neologisms 98% 88.7%

Technical terms 100% 100%

Loan words 100% 81%

Regular words 97.6% 78.5%

Table 6 Relationship between erroneous word length and

system output

Word

length

Detected

(%)

Correct

decision

(%)

Example

N¼ 2 100% 33.3%

N¼ 3 100% 44.5%

N¼ 4 100% 50%

N¼ 5 100% 78.2%

N¼ 6 100% 82.7%

N¼ 7 78.7% 88.6%

N¼ 8 68% 88.9%

N > 8 65% 34.1%
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affected by enrichment of such monolingual cor-
pora. In fact, these applications need to be per-
formed fully automatic with real-time capacity of
word recognition and error correction.

OCR device is another technology making use of
monolingual dictionaries to convert images of
handwritten, typewritten, or printed text into
machine-editable text. When a large monolingual
corpus along with an n-gram matrix come to
create the database behind an OCR device, its per-
formance will inevitably be improved. English OCR
devices have recently been developed with a high
degree of accuracy. However, although Persian
OCR devices have been developed a few years ago,
they cannot practically cope with the problem of
recognizing Persian characters in any sense
(Salmani Jelodar et al., 2005).

8 Conclusion and Further
Development

In this study, it has been tried to introduce a novel
system for checking misspelled words in Persian
texts. The approach presented here is completely
language-independent, and can be applied to any
language that has a large monolingual corpus to
create a language model.

The system of Persian spell-checker introduced
by this study has some advantages against other

similar systems designed for this language. In the
following lines, it has been tried to compare our
system with some others.

Sepanta Institute introduced a Persian spell-
checker named ‘Vira’, in which a database of
100,000 entries of stemmed words along with
>600 Persian root were used. According to its de-
signers, it has the ability of detecting >1 million
derivational words using stemming machine. Also,
it is able to detect and correct spelling errors under
Web using an additional Web service interface.
Although this system has a proper speed in detect-
ing and correcting errors, it does not have a proper
support for Persian morphology and covers only the
errors with edit distance of one. So, its outputs con-
tain many false-positives dealing with compounds
(SRRF, Vira, available at: http://www.spellchecker.
ir/).

‘Virastyar’3 is another spell-checker working as
an additional feature to Microsoft Word for
Persian users. Among its capabilities are detecting
and correcting spelling errors, editorial mistakes,
and punctuations, as well as Persian texts standard-
ization. It has high efficiency with proper speed.
However, it cannot work outside the Microsoft
Word environment. Moreover, it seems that its
database can be updated through user interaction
and not automatically.

‘Vafa’4 is a spell-checker software product pre-
sented by the researchers of the ‘Information and

Fig. 3 The effect of word length on the system output.
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Communication Technology Research Institute’ of
Iran. It has the ability of detecting and correcting
spelling errors, grammatical errors (to some extent),
as well as semantic ones. ‘Vafa’ system uses two
Persian dictionaries (Dehkhoda and Moin) to deal
with spelling errors, some grammatical rules to deal
with grammatical errors, and statistical metrics such
as Mutual Information and Confusion Sets dealing
with semantic errors. Like ‘Virastyar’, it works only
on Microsoft Word environment and does not have
the ability to work as a separate module. One of the
advantages of the proposed system in this study is
its ability to use a database extracted from a large
monolingual corpus of Persian, which is frequently
updated through connecting to the Web. This way,
even the most recent words and expressions may
not be unregarded in its lexicon. Moreover, the
system can work without any need to be installed
to Microsoft Word. It acts as an isolated module
working on any environment.

In FarsiSpell, the three steps common in most
spell-checking systems, namely, detection of errors
or misspelled words, during which the lexical ana-
lyzer detects the misspelled word in the input string;
making suggestions for detected misspelled words,
during which the system creates a set of possible
candidates as potential replacement for the given
erroneous word; and ranking candidates, during
which these candidates are sorted out from the
most likely replacements to the least likely ones,
are all treated as a separate process and performed
in sequence. However, the output of this step in our
system is not precise and is subject to some modi-
fications. With some improvements in tokenization
of the system as well as taking the context into ac-
count in near future, we hope to increase automatic
correction ability to a high degree. Given the context
of every two adjacent words in the corpus, we can
develop a context-sensitive method for spell-check-
ing task, and the system will be able to go through
the third step more accurately.

Making use of context in which every word may
or may not occur in as well as calculating the
Association Score (As) of every two words with a
predefined window (Mosavi Miangah, 2008) along
with a kind of shallow parsing throughout our
monolingual corpus will certainly improve the

performance of the present spell-checking system,
enabling it to tackle errors resulting in valid words
too. To perform accurate correction for such errors,
both syntactic and semantic information from the
surrounding context is to be incorporated to the
system. Moreover, focusing on OCR-generated
errors, we intend to develop a robust OCR device
for Persian texts using facilities provided for the
present experiment.
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