
Science of Computer Programming 45 (2002) 193–243
www.elsevier.com/locate/scico

Restructuring of COBOL=CICS legacy systems

Alex Sellinka , Harry Sneedb , Chris Verhoefc;∗
aQuack.com, 1252 Borregas Ave, Sunnyvale, CA 94089, USA

bSES Software-Engineering Service GmbH, Germany
cDepartment of Information Management and Software Engineering, Free University of Amsterdam,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Abstract

We provide a strategy to restructure transaction processing systems. Such systems are core
assets of most modern business operations, so their enhancement is crucial. Before large-scale
renovation of transaction processing systems can take place, they need to be restructured. We
argue that teleprocessing systems are unstructured by their nature. In this paper we approach the
problems from a technical viewpoint and we report on the methods and tools that are necessary
to bring structure in transaction systems. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: D.2.6; D.2.7

Keywords: Reengineering; System renovation; COBOL; CICS; Teleprocessing system; Transaction
processing system; Control-8ow normalization; Repartitioning; Remodularization

1. Introduction

Many organizations have interactive business-critical applications in use for which
it is important that they can be enhanced considerably. Change is not the exception
for these systems, it is the norm [35]. Typical changes are migration to client=server,
accessibility via Intranet=Internet, changed business needs, improving maintainability,
to mention a few. In order to give an idea of the signi=cance of this area: the majority
of the code maintained in the world is a part of a transaction system and this trend
will continue. Keeping such systems in good shape and allowing them to evolve is
extremely important for developed society [35]. Many such applications have been

∗ Corresponding author.
E-mail addresses: slinky@quack.com (A. Sellink), harry.sneed@t-online.de (H. Sneed), x@cs.vu.nl

(C. Verhoef).

0167-6423/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0167 -6423(02)00061 -8

194 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

implemented using COBOL, PL=I, or Assembly=370 for the batch part and customer
information control system (CICS) for the interactive part. In [10] it was pointed out
that in order to reengineer such systems, certain problematic CICS constructs should
be removed. In that paper a strategy was mentioned in order to automatically remove
them in favor of other constructions so that the above typical enhancements can be
made. Sneed implemented some of these ideas in his reengineering workbench [54].
In this paper we continue the treatment of restructuring COBOL=CICS systems. We
move the emphasis from CICS code to COBOL code, since the CICS parts have been
published already [10], but not the COBOL parts.

1.1. Unknown facts on the economics of restructuring

In general, it is cost-eEective to restructure applications. The return on investment
of every dollar spend to restructuring tools is good: $2.50 after 1 year, $5.00 after
2 years, $6.00 after 3, and $8.00 after 4 years [30]. The =ndings of Jones [30] are
con=rmed by several studies. We epitomize on some of them, since the subject is of
utter importance for the area of reengineering but quantitative data is unknown by
many.

Restructuring of legacy code eases maintenance signi=cantly. In a 1987 study on
COBOL, sponsored by the Federal Software Management Support Center of the US
General Services Administration [16] we can read:

the report provides convincing evidence to support the contention that restruc-
tured programs are less expensive to maintain than are unrestructured programs.
It clearly indicates that the amount of time associated with the analysis and test
of maintenance changes can be reduced signi=cantly through prudent implementa-
tion of a restructuring strategy using tools and appropriate support methodologies
designed for that purpose.

The following (expensive) experiment was carried out in [16]: for a set of programs
two versions were created upon which the same maintenance tasks were performed by
two separate teams. One team used the original programs and the other team used the
restructured programs. The programs were automatically restructured using a tool called
Recoder developed by Language Technology of Salem, Massachusetts. The product is
called VISION:Recode and owned by Sterling Software at the time of writing this pa-
per. The recoded versions demonstrated a 44 percent reduction in maintenance and test
time [16]. On the negative side there were severe parsing problems and the implemented
algorithms were not always giving output that satis=ed the involved programmers: style,
structure, and names of identi=ers were criticized. Maybe these problems were due to
the algorithms that were used during the restructuring. We stress that in spite of these
negative reactions, the productivity improved signi=cantly.

For people who do not have access to [16], there is a two page summary of the
61 page report in ComputerWorld [3]. In 1991, Language Technology Inc. carried
out another experiment con=rming the above numbers: the eEort for making the same
change was 40 percent less when the change was made to a well-structured base system

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 195

(cyclomatic complexity ¡ 5) as when made to the same system in a poorly structured
(cyclomatic complexity ¿ 20) form [28].

A series of 26 interviews by Capers Jones in the 1970s with IBM systems pro-
grammers in California (13 were =xing bugs; 13 were adding enhancements) reached
a similar conclusion: working with well-structured base code was between one-fourth
to twice as fast as with poorly structured for any given update. Also the bad =x
rate was asserted to be lower than 50 percent [28], a clear sign of improved main-
tainability. For, the bad =x rate for even one-line maintenance changes can be con-
siderably high: in [18] a research at a software maintenance organization pointed
out that 55 percent of one-line changes were in error before code reviews were
introduced.

Another example that con=rms the results of the 1987 study [16] is reported on
in [35]. In one project the time required for a new maintainer to learn the code had
dropped from about 18 months prior to restructuring to approximately 6 months af-
terwards. On this system the maintenance staE before restructuring consisted of three
senior maintainers and three junior maintainers. After restructuring, the system is main-
tained by three to four junior maintainers [35]. The authors of [35] consider the results,
although indicative, not generalizable to other organizations and systems, since they
looked at one system. A large-scale example is below.

A good example of a company that adopted restructuring before enhancing is Hart-
ford Insurance. They have been exploring maintenance costs for more than 15 years,
and have published that their maintenance assignment scope has tripled and their annual
maintenance budget is below 19 percent and dropping [28]. Compare this with the fre-
quently heard phrase that 70 percent of the annual budget is spent on maintenance and
adjustments to new requirements and new operating environments. These cost distribu-
tions are con=rmed in many studies [39,44,4,29,43]. McConnell [40] gives a summary
of these =ndings. The decreases at Hartford Insurance were not caused by a decrease
in the volume or amount of changes. Rather, the decreases were attributable to their
program of restructuring and remodularizing their legacy systems prior to carrying out
extensive updates [28]. So there is enough evidence that restructuring signi=cantly im-
proves maintenance and signi=cant enhancements. One can say that major restructuring
is a prerequisite to large-scale renovation.

1.2. Restructuring and mixed language applications

In this paper we address the restructuring of programs written in mixed languages:
COBOL interspersed with CICS commands. We note that it is far from trivial to deal
with mixed languages. An indication of the problems is given by Jones [30]: 30 percent
of the US software applications contain at least two languages. Jones [30] moreover
states that most Year 2000 search engines come to a halt when multiple programming
languages are used. So mixed languages are not uncommon and tool support is not easy
to develop, since parser technology normally does not deal with mixed languages. For
an elaborate discussion on how to deal with mixed languages and reengineering=reverse
engineering we refer to [11]. We refer to [9] for a method to obtain a reengineering
grammar by hand and we refer to [49,50,38] to obtain such grammars using extensive

196 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

tool support. The tools that the authors constructed and applied can deal with mixed
languages (see [11] for details).

In addition to the parsing problems, what else comes into play when restructuring
COBOL=CICS systems? A major problem is the exception handling mechanism of
CICS: the so-called CICS HANDLE commands. In [22] a formal speci=cation in Z
[57,58] of the HANDLE CONDITION revealed counter-intuitive behavior of this construct.
Hayes (the author of [22]) mentions that the exception handling mechanism is so
complex that most readers of either the manual [23] or the Z speci=cation [22] do not
discover the subtle behavior that was revealed during the formalization process. Hayes
advises in 1985 revision of exception handling to be more intuitive. In 1987 Goldstein
[19] also addresses the problems with the CICS HANDLE commands. CICS programs
are very dependent upon the HANDLE CONDITION and HANDLE AID commands for error
detection and special key use determination [19]. Goldstein advices to restrict the use to
a single HANDLE ABEND to avoid unpredictable results from the program. In a reaction
on Goldstein’s paper, Jatich [26] states that all HANDLE commands should be eschewed
entirely. Also in his comprehensive textbook on CICS command level programming
[27], Jatich discourages the use of HANDLE commands, because of the unstructured
logic.

Despite the many warnings reported in the literature, the use of HANDLE commands
is still omnipresent in modern and legacy COBOL=CICS systems. When we wish to
improve maintainability, or when we wish to migrate COBOL=CICS systems, we must
remove the HANDLE commands. Note that this is in accordance with the successful
Hartford Insurance strategy: their =rst step towards major enhancements is extensive
restructuring.

In [31] CICS is characterized as being stable, mature and feature-rich. This richness
turns into mean complexity when reengineering comes into play. The expressiveness of
CICS does not always translate easily to new environments, leading to sleepless nights
wondering how to implement replacement functionality [31]. Apparently, the problem
is so intricate that [31] proposes to use a dedicated processor (the Personal=370 adapter
card), in order to run mainframe applications without a change on PCs. In this way
oE-loading is fast and thus cost-eEective [31]. On the other hand, the authors of [56]
indicate that oE-loading is a very diOcult problem. Jones reports that the assignment
scope of migration to new platform is 1800 LOC per month [29,56, p. 600], which
is another indication that the problems are huge and that extensive tool support is of
economic relevance. Needless to say that reengineering CICS applications is a diOcult
problem.

This paper deals with the intricate problem of restructuring COBOL=CICS systems.
We automatically eliminated the exception handling by CICS, we constructed tools
to automatically structure the processing logic, the code is automatically repartitioned
so that maintainability improves and enhancements (manual, tool supported, or fully
automatic) become feasible. Our tools make the coordination of candidate business logic
transparent. As soon as this is the case, we can modify the coordination. Moreover, we
can insert new code, modify old code, and delete code without aEecting the control-
8ow. This means that the programs have become modular, change-enabled, and in a
sense componentized since only part of the functionality can be invoked at wish.

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 197

1.3. Related work

In [16] restructuring of COBOL is used to study whether restructuring improves pro-
ductivity. CICS is not mentioned in this study. In [21] transformations to restructure
and reengineer COBOL programs are discussed. Again, CICS is not incorporated. In
[35] the reengineering of on-line transaction systems is discussed from a more organi-
zational view that can be used as complement to the technical view presented by us.
In the United States Patent [15] an algorithm is discussed to restructure pure COBOL
programs by coalescing paragraphs, procedure chunking, and the creation of a so-called
super-procedure. To do this, jump instructions have to be removed. The goal of their
work is to bring COBOL programs more in line with the idiom of C, C++, or For-
tran programs so that compiler optimization technology that is geared towards these
languages can be used fruitfully for COBOL as well. In our paper, we also restructure
towards the creation of a simulated main procedure, and a set of subroutines that can
be accessed by the super-procedure. In our approach the goal is not to optimize the
code, but to enable it for change. This implies that understandability is a crucial aspect
of our contribution. Therefore, the code does not look like a large procedure from
which all code in the subroutines is accessed. We believe that our design attributes do
not necessarily apply to the work reported in [15], for it deals with compiler optimiza-
tion issues. Also, the second author has implemented the idea of a super-procedure
in his commercial reengineering workbench [54], and knows from personal experience
that many programmers hate this kind of restructuring. In [10] COBOL=CICS legacy
systems are restructured. In that paper, solutions are proposed for the CICS HANDLE
ABEND and HANDLE CONDITION commands. Sneed implemented these ideas and ad-
ditionally a solution for the CICS HANDLE AID command in his reengineering work-
bench [54].

1.4. Organization of the paper

In Section 2, we will provide a rationale for restructuring. In Section 3, some back-
ground information on teleprocessing is included. Furthermore, the control-8ow of
CICS is explained in detail. In Section 4, the original code is =rst treated with the
reengineering workbench of Sneed [54]. During a =rst restructuring phase, the code
is freed from HANDLE commands. The ubiquitous GO TO and GO TO DEPENDING ON
logic is eliminated in Sections 5 and 6 using a COBOL=CICS software renovation
factory, designed and implemented to solve this particular problem. The architecture of
this factory has been described in several papers [12,48,47,7]. The code is transformed
using a complex assembly line developed to incrementally eliminate all GO TO logic.
We discuss this algorithm by example in Section 6. Then the GO TO free code is again
processed by tools from Sneed in Section 7. It is repartitioned so that subroutines from
the original source can be extracted. This results in programs where the transaction
processing logic is separated from the business logic. Then we are in a position to
convert the programs to a stateless version so that we can use them as components.
We discuss this in Section 8. Finally, we conclude in Section 9.

198 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

2. A rationale for restructuring

It is highly unlikely that users will =nance a restructuring project solely for the
purpose of improving the internal quality of a product, i.e., its maintainability, even
if case studies such as the ones we mentioned in the introduction demonstrate the
long-term bene=ts. For the typical IT shop, the bene=ts of improving maintainability
are still too low compared to the costs and risks involved [53]. It has always been an
illusion of the academic community that users are really interested in quality, whereas,
as a fact, they are mainly interested in functionality and only partially in quality.
Even then, quality is perceived as the quality of the external behavior of a system
and not in its internal construction. For this reason, there has never been a signi=cant
market for restructuring projects and products, as such. Another reason is that any
code modi=cation bears the risk of failures. What happens if the restructured code has
diEerent semantic behavior than the original code? We note that restructuring often
reveals erroneous and dangerous code, so that it is tempting to repair that. Or sometimes
it is automatically repaired, due to the used restructuring algorithms. Such corrections
can, in turn, trigger errors to occur that due to the original errors, laid dormant in the
application. This is a risk that the owners of the systems do often not want to take
only for improvement of internal quality.

Migration is another issue. Users are often compelled to move from one environment
to another or, moreover, they need to reuse old programs in a new context. The latter
objective has become very important in connection with component-based software
development [14,1,60]. Then restructuring is accepted as a part of the migration process
since the programs have to be altered anyway. However, the main objective is to get
the old system to work in the new environment and not necessarily to make it better.
Existing programs can be reused as components of a newly developed system provided
they meet certain conditions. They must =t into the new architecture, that is, their
external interface must be remotely accessible via various calling mechanisms such as
remote procedure calls, object request broker connections, or Java’s remote method
invocations [20]. Besides that they must be made independent of their environment,
i.e, made self-contained, their behavior must be predictable and they should produce
no side-eEects. This is where restructuring comes into play. Restructuring of legacy
programs is done to

• provide remotely accessible interfaces,
• insulate the program from its environment,
• isolate individual functions from one another, and
• prevent undesired side-eEects.

To provide remotely accessible interfaces, the existing interfaces must be modi=ed.
In the case of batch programs these are the read and write operations performed on
transaction =les managed by the operating system. In the case of on-line programs these
are the send and receive operations performed on the maps managed by the telepro-
cessing monitor. The latter is particularly diOcult because of the many interactions
between the application program and the transaction monitor. The application program

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 199

is essentially reduced to a subprogram of the transaction monitor which is reacting to
events triggered by the transaction monitor. For the sake of wrapping this is a suitable
solution, but the interactions have to be altered to =t the wrapper. Therefore, interface
reengineering is one of the targets we deal with in this paper.

To insulate the program from its environment, all references to services provided by
that environment must be redirected. In the case of CICS many services are provided
by the transaction processing monitor including memory allocation, error handling and
program to program linkage. If the user program is to be taken out of the CICS
environment, then these service requests have to be redirected to the wrapper, i.e.,
converted to CALLs to user-provided or standard routines which perform the same
services as provided by CICS. This entails converting all service requests, another
objective of the work presented here.

To isolate functions of the program from one another, all direct interconnections
between functions must be capped. That means removing all jump instructions. Func-
tions or subroutines in COBOL are packed in paragraphs or sections. A GO TO from
one paragraph to another joins the functions of those paragraphs. If programs are to
be reused as components, we should be able to invoke their functions independently
of one another. The paragraphs or, at least, the sections of a COBOL program should
resemble methods in order to provide discrete functionality to potential clients. The
program needs to be modularized, that is, partitioned into reusable parts. To achieve
this, it has to be restructured. Then, the sections of the program are no longer em-
bedded in a hard wired control structure imposed by that particular application, but
are independent functions which may be invoked in any order. This gives the 8exibil-
ity required in a modern component-based environment. To this end restructuring is a
necessary prerequisite to wrapping.

Finally, there is the goal of eliminating side-eEects. In CICS most side-eEects stem
from the use of a common global data area. Addressing errors can create havoc, as
one program overwrites the data of another. To prevent this, one program should
not be able to directly access the data of another. All data should be passed as
a parameter by value. To achieve this, parameter lists must be generated for all
global data used by the program. The program itself becomes stateless. It has no
own memory, but only processes data passed to it as a message. The capping of
global data references is the last stage of the transformation process described in this
paper.

3. The IBM solution to on-line transaction processing

In order to realize on-line transactions on the mainframe, IBM users had the choice
between the teleprocessing monitors CICS [23] and IMS-DC [24]. Both teleprocessing
monitors were originally developed in the late 1960s and have gone through several
revisions since then. Throughout the 1970s and 1980s these two teleprocessing moni-
tors dominated the industry. In [22] we can read that there is a large number of CICS
systems around the world. Twelve years later, Kozaczynski and Wilde [35] report that
the majority of code to be maintained in the world is part of a transaction system.

200 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

So, many on-line applications developed on a mainframe were developed with the help
of CICS.

The role of a teleprocessing monitor is essential to on-line transactions. The telepro-
cessing monitor is itself a complex program which ful=lls all of the necessary func-
tions required to run a user program in on-line mode. It provides most of the standard
functions required by application programs for communication with remote and local
terminals and subsystems. It establishes the connection to a user terminal, queues the
user messages, allocates memory space, copies the next user message into the program
input buEer, picks up the output messages from the program output buEer, processes
=le or database accesses, takes the user program in and out of a waiting state, in-
tercepts all service requests by the programs, handles error exceptions, and establishes
connections between programs. It takes care of the control for concurrently running user
application programs serving many on-line users. In eEect, the teleprocessing monitor
is an operating system within an operating system. Only the system calls are of a
higher level since they also provide security checking, logging and error recovery and
such [17,27].

Besides this, teleprocessing monitors have their own interface between application
programs and terminal devices. IMS-DC uses Map Format Service (MFS) and CICS
oEers Basic Mapping Support (BMS). The screen handling facility displays the maps
which are speci=ed with an Assembler-type macro language, extracts the variable =eld
contents, creates an input data stream from these contents, inserts the variable =eld
contents from the output data stream and manipulates the appearance of the map based
on the attributes of the =elds [23]. The screen services are the old solution to customiz-
ing the user interface. Originally, the user programs requested the services provided
by the teleprocessing monitor by means of CALL commands. This had the advantage
that inclusion of teleprocessing code did not introduce mixed languages in the source:
COBOL remained COBOL, PL=I was still PL=I, and Assembler remained Assembler,
which made it compliant with all tool support available for these languages. The prob-
lem at that time was to recognize by means of the parameters used what kind of
function was being invoked. In the end, this CALL interface solution turned out to
be very clumsy for users to write and was a continuous source of errors since bad
parameters could only be detected at run time. So IBM decided to design two domain
speci=c languages dealing with on-line transactions, replacing the standard CALL in-
terfaces with macros which could be processed by a preprocessor. In Section 3.1 we
will see some code plus the output of such a preprocessor. The embedded code is =rst
preprocessed and then turned into the host language, and then compiled. So in Section
3.1 we will see translations of CICS to COBOL code. You cannot =rst preprocess
embedded CICS code, and then start reengineering: the mixed language code is the
source code for a reengineering tool. So we have to deal with COBOL with embedded
CICS as source code. This phenomenon makes parsing for reengineering a challenge
for the compiler construction community [6].

For IMS-DC the domain-speci=c language is called DL=I (Data Language=I), for
CICS it is the CICS command mode language. All of the operations required from
the teleprocessing monitor are addressed by means of CICS or DL=I constructions em-
bedded in the host language. Thus, COBOL programs were no longer really COBOL

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 201

programs. They still had a basic COBOL frame and included many COBOL state-
ments, but the average on-line program was made up by 30–50 percent of CICS or
DL=I commands.

It would have been easier if both teleprocessing monitors had been implemented in a
similar fashion; however, there is a diEerent concept to each one. IMS is implemented
as a set of subroutines similar to a class library. The user program directs the 8ow
of control. If there is a loop or a selection to be made, it is implemented in the host
language. Therefore, in the case of IMS-DC, the teleprocessing monitor operations can
be handled as function invocations.

CICS is implemented as a main program similar to a framework in an object-oriented
environment. It is event driven. The user does something with the keyboard and the
system reacts to it. This leads to an inversion of the program: the user program itself
is only a set of functions which are waiting to be invoked by CICS.

3.1. CICS and the =ow of control

The main 8ow of control is outside of the program. Therefore, if there is a sequence
of user functions to be executed, it must be driven by the teleprocessing monitor. For
this purpose IBM introduced an exception handling mechanism by means of which the
user could communicate to CICS where to go next. This resulted in a pure GO TO
driven 8ow of control, which makes CICS programs unstructured (as also stated in
[19]).

In fact, the exception handling mechanism contains implicit jump instructions. In
order to make this visible we show the output of a preprocessor used to translate the
CICS code into COBOL code in Fig. 1. We note that such code is not for human
inspection (it may contain unprintable characters, for instance). In the generated code
of the exception handlers GO TO DEPENDING ON logic is generated. Since this cannot
be seen in the unexpanded code, we call this CICS code an implicit jump instruc-
tion. The problematic CICS commands are HANDLE ABEND, HANDLE AID, and HANDLE
CONDITION. We depict from these statements their result after preprocessing them with
the CICS preprocessor (module DFHECP1$). We removed unprintable characters so that
we can conveniently display the code. The preprocessor turns the original CICS code
into comments using the comment marker *. Note the GO TO DEPENDING ON logic
that pops up in the preprocessed code.

It is not important what the CICS statements in Fig. 1 exactly mean, or what the
equivalent preprocessed code means. Important is that the code contains implicit jumps.
As a consequence, the scope of the control-8ow of HANDLE statements is global. This
implies that once a HANDLE command has been given, all the subsequent CICS state-
ments can in8uence the control 8ow and suddenly jump to the speci=ed paragraphs
(A, B, C in the above examples), depending on their exit status. We note that the exit
status of CICS commands is stored in a record called DFHEIGDI, that is why the GO
TO DEPENDING ON logic is looking for that variable.

When the programmer forgets about an active HANDLE command given somewhere
else in the code (or in an included =le), the exception handling may lead to unwanted
looping behavior [27,19, p. 143]. In order to show how complex such code can be, we

202 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 1. Expanded CICS code reveals intricate jump instructions.

give an example. In [10] a 100 KLOC COBOL=CICS system is mentioned with over
600 HANDLE commands, and some of them are in an include =le that is in 9 percent of
the =les the =rst statement of a program. This indicates that implicit jump instructions
are endemic in this system and are a frequent source of errors during maintenance and
enhancements.

A solution to avoid the use of HANDLE commands, is to make use of the return
codes that are used by CICS to deal with the exception handling. In 1987 it was
still necessary to write a conversion routine to convert the return codes from hex-
adecimal to display characters [19]. Later IBM included after preprocessing the return
codes in the WORKING-STORAGE SECTION (we did not depict this in the prepro-
cessed code of Fig. 1). The return code tells the user program what event has been
invoked and allows it to make a decision as to what to do next. This is, of course,
much more in time with structured programming because it allows the user program
to invoke subroutines rather than jumping into speci=ed labels with no automatic
return.

Unfortunately, the majority of old CICS programs were already implemented by
means of the HANDLE commands long before the new return code was introduced
(newer systems also use HANDLE commands). As a consequence most of the legacy
CICS programs are unstructured. If they are to be made more maintainable or to be
reused as objects in a distributed environment or even converted to another language
such as Object-COBOL or Java, they must =rst be restructured [59]. That means the
HANDLE commands must be removed [10,55].

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 203

4. Removing HANDLE commands

The method proposed here is a two-step source transformation. We explain the pro-
cess with an example containing a HANDLE AID and a HANDLE CONDITION command.
In the =rst step both HANDLE operations are commented out from the code and the
decision as to what to do after each receive message is made immediately after the
message is received. This is implemented by means of a COBOL EVALUATE state-
ment which checks the states of the function keys and passes control to the labels
which were contained in the original HANDLE commands. In the code fragment be-
low, the labels are the expressions in brackets, e.g., VV-860 or VV-710. The =rst
executable statement is that the RECEIVEN SECTION is to be executed. The HANDLE
commands are commented out using the comment marker * by Sneed’s reengineering
workbench.

VV-700.
**** HANDLE AID UND CONDITION
*
* EXEC CICS HANDLE CONDITION MAPFAIL (VV-860)
* END-EXEC.
*
**** HANDLE AID 1. TEIL
*
* EXEC CICS HANDLE AID PF1 (VV-710)
* PF2 (VV-720)
* PF3 (VV-730)
* PF10 (VV-800)
* PF11 (VV-810)
* PF12 (VV-820)
* CLEAR (VV-840)
* ANYKEY (VV-850)
* END-EXEC.
**** R E C E I V E

PERFORM RECEIVEN.
**** ENTER-TASTE

MOVE 13 TO SWPF.
GO TO VV-999.

In order to be able to use the EVALUATE it is necessary to introduce some new state
variables or conditional values to denote the function keys. These conditional values
are declared in a copy data structure which is included in the WORKING-STORAGE
SECTION. Thus, the external events, e.g., the use of function keys, are treated by the
new program as a return code.

In the code fragment below, the RECEIVEN SECTION is depicted. Of course, this
section depended on the HANDLE commands that are now commented out, so some-
thing must be done to preserve the behavior of the program. The exception code

204 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

that was expressed with HANDLE commands is now being added directly below the
CICS code. It is an EVALUATE that uses explicitly the COBOL programming GO
TO logic. It jumps exactly to the labels that were present in the HANDLE
commands.

RECEIVEN SECTION.
RE-000.
*

MOVE LOW-VALUES TO DBRIM8DI.
IF CA-SPR = 2

GO TO RE-100.
* EXEC CICS RECEIVE MAP (’DBRIM8D’)
* MAPSET (’DBRIS8’)
* INTO (DBRIM8DI)
* END-EXEC.

MOVE ’RC’ TO X-CICS-FUNCTION
MOVE DBRIM8DI TO X-CICS-MAP
EXEC CICS LINK PROGRAM (’XTPINP’)

COMMAREA (X-CICS-PARAM)
LENGTH (X-CICS-PARAM-LNG)

END-EXEC.
MOVE X-CICS-RETCODE TO EIBRESP
EVALUATE TRUE
WHEN X-MAPFAIL
GO TO VV-860

WHEN X-PF1
GO TO VV-710

WHEN X-PF2
GO TO VV-720

WHEN X-PF3
GO TO VV-730

WHEN X-PF10
GO TO VV-800

WHEN X-PF11
GO TO VV-810

WHEN X-PF12
GO TO VV-820

WHEN X-CLEAR
GO TO VV-840

WHEN X-ANYKEY
GO TO VV-850

END-EVALUATE.
GO TO RE-999.

We note that, if there are more HANDLE commands that reuse labels, the above
approach should be modi=ed. The solution becomes then a bit more complex, but the

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 205

ideas behind it are the same. This concludes the =rst step of removing the HANDLE
commands.

Obviously, after this =rst step the HANDLE commands have been removed, but the
program is still unstructured since the GO TO branches remain. After all, we only made
the implicit CICS jump instructions explicit in the COBOL programming logic. To
remove them requires a second step. In this second step the 8ow of control going
out of an EVALUATE is converted to a sequence of subroutine calls (PERFORMs in the
COBOL syntax), which execute all statements on the path from the point where a
message is received (the entry point) to the point where the control is passed back to
the teleprocessing monitor (the exit point). This entry-to-exit path is equivalent to a
control 8ow slice. The slices of a CICS program are both initiated and terminated by a
CICS I=O operation. In principle it is possible to use binary trees to depict all possible
paths leading out of an input operation. In practice it may be better to use an interactive
approach in which the reengineer guides the replacement of the GO TO branches by
selection and repetition structures. This second step is carried out in the next code
fragment. Important to note is that the GO TOs are removed from the EVALUATE and
that the relevant subroutines are listed.

RECEIVEN SECTION.
RE-000.
*

MOVE LOW-VALUES TO DBRIM8DI.
IF CA-SPR = 2

GO TO RE-100.
* EXEC CICS RECEIVE MAP (’DBRIM8D’)
* MAPSET (’DBRIS8’)
* INTO (DBRIM8DI)
* END-EXEC.

MOVE ’RC’ TO X-CICS-FUNCTION
MOVE DBRIM8DI TO X-CICS-MAP
EXEC CICS LINK PROGRAM (’XTPINP’)

COMMAREA (X-CICS-PARAM)
LENGTH (X-CICS-PARAM-LNG)

END-EXEC.
MOVE X-CICS-RETCODE TO EIBRESP
EVALUATE TRUE
WHEN X-MAPFAIL
PERFORM VV-860
PERFORM HAUPTVERARB
PERFORM FEHLMELD
PERFORM SENDFEHL

WHEN X-PF1
PERFORM VV-710
PERFORM HAUPTVERARB
PERFORM SENDEN

206 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

WHEN X-PF2
PERFORM VV-720
PERFORM HAUPTVERARB
PERFORM SENDEN

WHEN X-PF3
PERFORM VV-730
PERFORM HAUPTVERARB
PERFORM SENDEN

WHEN X-PF10
PERFORM VV-800
PERFORM HAUPTVERARB
PERFORM SENDEN

WHEN X-PF11
PERFORM VV-810
PERFORM HAUPTVERARB
PERFORM SENDEN

WHEN X-PF12
PERFORM VV-820
PERFORM HAUPTVERARB
PERFORM SENDEN

WHEN X-CLEAR
PERFORM VV-840
PERFORM HAUPTVERARB
PERFORM SENDEN

WHEN X-ANYKEY
PERFORM VV-850
PERFORM HAUPTVERARB
PERFORM SENDEN

END-EVALUATE.
* GO TO RE-999.

EXEC CICS RETURN TRANSID (CA-TRANS)
COMMAREA (COMMAREA)
LENGTH (CA-LENGTH)

END-EXEC.

5. Components for extensive restructuring

In the previous section we have seen that the =rst two steps took care of removal of
the HANDLE commands and that the implicit GO TO logic was removed. Indeed in the
above code fragment, the GO TOs are gone, however, they were jump instructions due
to elimination of CICS code. The next step is to remove the explicit jump instructions
that were already in the code. Moreover, we remove redundant code.

Fig. 2 illustrates two issues: an indication of the problematic structure of the code
and an assembly line that we developed for dealing with it. The code that we see,

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 207

Fig. 2. Restructuring assembly lines containing an original code fragment.

is the start of the main program (HAUPTVERARB SECTION in German). We see three
normal GO TOs and one DEPENDING ON jump instruction. In fact, the latter is shorthand
for 16 GO TOs. So we see 19 jump instructions in this short fragment. This fragment
is not exceptional for this system. Before we show the restructured code we discuss
the assembly line.

In Section 5.1 we discuss the components. We like to stress that the components
have a complex coordination. This coordination is in fact the algorithm to remove
all the GO TOs. Finally, we compare in Section 5.2 the input with the output of the
algorithm. The rather complex coordination of the components is subject to discussion
in Section 6.

5.1. The components

The assembly lines took 4 days of eEort from development to implementation. Some
pre- and postprocessing components were reused, moreover, we extended a GO TO
elimination component that we discussed in [10]. Of course, all reuse speeded up
development. We brie8y discuss each component of our algorithm implemented in our
renovation factory. In fact, each button of Fig. 2 represents a component.

208 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

CountGo. A useful tool is a counter that measures the number of jump instructions
present in the code. For interactive restructuring this tool is convenient since it gives
the user an idea of the eEect of the followed restructuring strategy. We use this tool
also as a tester for other components: sometimes it is useful to measure whether some
parts of the code are already free of jump instructions. We use it, e.g., in the MovePar
component (we discuss it below).
PrettyPrint. This is a basic component that we reused. We generate pretty printers
using technology discussed in [13]. The only thing that needs to be done by hand is
to adapt the formatting to company-speci=c output.
AddEndIf. We reused this preprocessing component. It has been discussed in detail
in [12]. In short, it is a component that adds the explicit scope terminator END-IF
to IF statements. This makes the code more structured. We use this kind of prepro-
cessing also to minimize the number of patterns that we need in order to carry out
certain transformations. If, for instance, sometimes a construction is implemented with
explicit scope terminators and sometimes not, this imposes extra work. Therefore, we
uniformize the syntax.
RemDots. This is a useful component both for preprocessing and for postprocessing.
It is a component that removes separator periods between statements. In COBOL there
is a lot of syntactic freedom to implement exactly the same functionality. Many state-
ments in COBOL can be optionally separated by periods. We remove all unnecessary
ones, so that the code is syntactically more uniform. As a consequence, there is no
inconsistent use of separator periods. Also this has the advantage that it makes the
patterns that we have to construct simpler than if we can expect dots on arbitrary
locations. During processing code it can be the case that we introduce unnecessary
separator periods (this is caused by moving code around). Such components invoke
RemDots as a postprocessing step, so that the next application of a component still can
rely on the fact that there is no inconsistent use of separator periods. So this component
is used internally in other components as well.
FlowOpt. This useful preprocessing component optimizes the control-8ow of IF state-
ments. This is a typical evolutionary restructuring component: during maintenance, the
control-8ow becomes less and less optimal. This component checks for unnecessary
complicated control-8ow and repairs it. We note that in [48] a special purpose control-
8ow optimizer is discussed that restructures COBOL=SQL systems for the same reason:
change over time degraded the control-8ow.
ElimDeadCode. Dead code is source code that is in a program but that is never exe-
cuted. This is a useful component that is like RemDots both useful for preprocessing as
for postprocessing. Also when it is likely that other components will expose obviously
dead code, we call this component internally to clean that up. It removes statements
that can never be executed, due to a preceding unconditional (explicit) jump instruc-
tion. We will see examples of this later on. We like to stress that this tool does not
necessarily remove all dead code. Since the algorithm that we developed makes use of
moving code from one place to another, dead code becomes apparent due to the code
restructuring.
AddBarSec. This is a special-purpose component. It adds a new COBOL BAR SECTION
with a special COBOL paragraph in it that contains a STOP RUN command. Such

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 209

a SECTION is not accessible via fall through, since then the STOP RUN will =nish
the program. We use this SECTION as a place to store paragraphs that are in fact
subroutines (for each SECTION we create a corresponding SUBROUTINES SECTION). In
the restructured program they are accessed via PERFORMs—the COBOL way to invoke
a subroutine. We note that this component is only necessary to add SUBROUTINES
SECTIONs if the code is essentially unstructured. This means that the GO TOs are not
simulating conditionals or loops. We note that the PARAGRAPHs in the SUBROUTINES
SECTIONs can be put in any order. This makes further restructuring, remodularization,
or repartitioning more convenient.
ElimGoDep. This is a component that eliminates the GO TO DEPENDING logic in two
steps like in the previous section was done with the HANDLE commands. This is
not a surprise since the HANDLE commands contain GO TO DEPENDING ON logic (see
examples later on in Section 3.1). First, the GO TO DEPENDING ON is turned into an
EVALUATE statement containing for every label in the GO TO DEPENDING ON, a WHEN
clause in the EVALUATE. Then, the GO TOs are removed. We will see examples in
Sections 5.2 and 6.
ElimGo. This component removes a number of GO TOs that are easy: simulated struc-
tured constructs. We mention the use of jump instructions to simulate while loops and
we mention the use of jump instructions to implement conditional code. We extended
the assembly line that was discussed in [10]. We say that a GO TO is almost structured
if the GO TO logic is, in fact, simulated structured logic (like a while, an if, en else,
branch and so on). Note that the example program discussed in this paper is far from
being almost structured. However, removal of almost structured GO TOs simpli=es the
complexity of other GO TOs, i.e., enables the creation of new almost structured GO
TOs. Thus, we can actually replace essentially unstructured code by structured code by
properly coordinating our components. We recall that this coordination is explained in
full in Section 6.
MovePar. This component moves paragraphs that are free of jump instructions to the
corresponding SUBROUTINES SECTION. It uses CountGo to test this. Since it is not
possible to just move code, this component also takes care of inserting a PERFORM
at the location where the paragraph was located. Moreover, it will replace all jump
instructions to this paragraph by PERFORMs and an additional GO TO to not disturb the
control 8ow. We call this GO TO shifting. Although it may seem senseless to turn one
GO TO into another GO TO, it is not. The label of the introduced GO TO is usually
more near the paragraph than the former GO TO due to the fact that we remove a
paragraph. Then the ElimGo component can remove new simple jump instructions that
we introduced by moving code around. We apply ElimGo and MovePar alternatingly
to remove all GO TOs (we discuss this in detail in Section 6).
SwitchPars. This component is a variation of MovePar. This tool is used when a
paragraph is not free of jump instructions and the GO TOs are not simple. Think of
a GO TO to a distant place back in the code. Such diOcult paragraphs can be freely
switched with other paragraphs that end in a jump instruction themselves. This step
turns a jump to a label far away sooner or later in a jump that is more close to the
label. This leads to more structured code and eventually the ElimGo component, that
attacks simple GO TOs will eliminate such jumps.

210 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Distribute. This component optimizes EVALUATE statements. It distributes common
statements that occur in all the WHEN clauses outside the EVALUATE. It is a special-
purpose component that beauti=es the code. We use it as a typical postprocess-
ing operation. In Sections 5.2 and 6 we will see examples of optimized
EVALUATEs.
Cluster. This component clusters WHEN clauses of evaluates when the cases are equal.
During maintenance of systems with many GO TOs, it is diOcult to keep track on the
exact number of cases, so apparently, maintainers start copying paragraphs and treat
them as a new case (using GO TO logic). After the GO TOs have been eliminated it
becomes clear that some distinct cases appeared to be equal. Cluster takes care of
these clones.
ElimCont. This is a component that eliminates CONTINUE statements. We reused this
component (discussed in detail in [10]). The CONTINUE statement does not have se-
mantic meaning. Other components will now and then introduce CONTINUE statements
in order to make the components themselves as simple as possible. In the =nal phase
of the GO TO elimination we eliminate all introduced CONTINUE statements in one fell
swoop.
NormCond. This is also a postprocessing component. We reused it (discussed in detail
in [10]). It optimizes the Boolean expressions in the COBOL source. Other compo-
nents sometimes introduce a NOT in a condition, or they combine certain conditional
expressions. In the end, we turn such conditions into their most natural form. Natural
means here as prescribed by the local company standard.

The above components are used to eliminate the GO TO logic from COBOL with
embedded CICS. After this is done, it becomes feasible to remove redundant code.
This can be dead code or indirect code. We discuss six such components.

RemComments. This is a tool that is used by other components. It simply removes all
comments. We note that comments are part of our reengineering grammar [9]. We use
this component to test whether or not code fragments are equal modulo their comments.
Of course, we do not remove comments in the actual system.
ReplacePar. This component recognizes pieces of code that are equal in the
SUBROUTINES SECTIONs. We restrict ourselves to the SUBROUTINES SECTIONs since
there are no jump instructions to the paragraphs in those locations. As soon as this com-
ponent locates PARAGRAPHs that are equal, it replaces all references to both PARAGRAPHs
to one of them. We say that two diEerent paragraphs are equal if they are syntactically
identical after removal of comment and layout characters. Of course their access labels
diEer. We use the RemComments to analyze this.
RemDoubles. This component looks for PARAGRAPHs that have the same label and
the same contents. It removes the doubles but it copies the comments to the re-
maining one, so that comments are not thrown away. We note that we can only
remove such double paragraphs in the SUBROUTINES section since there we have
abolished fall-through, that is, when the paragraph occurs twice it will not be
executed twice. With fall-through execution we cannot just remove identical
copies.

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 211

We give a simple example. Here are two paragraphs that should be considered equal.

HV-84.
**** PF4-TASTE

PERFORM HV-95.
HV-85.
**** PF5-TASTE

PERFORM HV-95.

This code is converted to the following lines of code with the ReplacePar compo-
nent. Of course, all occurrences of HV-84 are replaced by references to HV-95 by this
component.

HV-85.
**** PF4-TASTE

PERFORM HV-95.
HV-85.
**** PF5-TASTE

PERFORM HV-95.

The resulting code is subsequently changed into the following code by the RemDoubles
component.

HV-85.
**** PF4-TASTE
**** PF5-TASTE
PERFORM HV-95.

ReplacePar =nds the PARAGRAPHs and makes their labels equal (and all references
in the rest of the program). RemDoubles then removes the duplicate code and merges
the comments into the remaining code.
UnfoldPar. This component makes the code more direct. As can be seen in the above
example, a PERFORM HV-85 actually is a PERFORM HV-95. The UnfoldPar unfolds
indirect calls into direct calls.
RemExitPar. This component removes super8uent EXIT paragraphs. Since the control-
8ow is diOcult to understand using GO TO logic, COBOL provides statements that have
no semantics, but are used to give the reader an idea of the status of the control-8ow.
The EXIT statement is comment with the intention to mean that when the control is at
the EXIT statement, it will leave the current SECTION. Note that putting an EXIT inside
a program will not cause it to exit, the EXIT statement is only there to emphasize that
at this location the program 8ow should exit a SECTION. Since we removed all the GO
TO logic, there are no jumps to such paragraphs anymore so we remove them.
RemEmptySec. This component removes empty SUBROUTINES SECTIONs that were
made by the AddBarSec component, but appeared not to be necessary. In such, usu-
ally small SECTIONs, the code is almost structured, so that application of the ElimGo
component cleans the code. In the Internet program we constructed 16 SUBROUTINES
SECTIONs and we needed 8.

212 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

5.2. Comparing input and output

The code changes dramatically when we apply our algorithm to the example program.
So before we discuss the actual coordination of the components we give an impression
of the eEect the algorithm has on the code. We will discuss a few pieces of code that
can be traced back to the original code that we displayed in Fig. 2.

In the original code (Fig. 2) we see that if CA-SCHRITT equals ZERO the control
goes to HV-500. If the condition fails we will continue with paragraph HV-050 via
fall-through. In the restructured code, the HAUPTVERARB SECTION has become very
small: it only contains the statement that either HV-500 or HV-050 is PERFORMed.
In our situation, HV-500 is a subroutine that is in the HAUPTVERARB-SUBROUTINES
SECTION. Below we depicted the complete main SECTION of the restructured
program.

HAUPTVERARB SECTION.
HV-000.
IF CA-SCHRITT = ZERO
PERFORM HV-500

ELSE
PERFORM HV-050

END-IF.

In the full program (see [52]) the HAUPTVERARB SECTION contained 206 lines of
code and restructuring it contains only 7 lines of code. Paragraph HV-050 is performed
in the HAUPTVERARB SECTION (see above). It originally contained one large GO TO
DEPENDING ON. This paragraph is changed into an EVALUATE statement. We depicted
the code in Fig. 3.

As can be seen, there was a lot of code duplication in the old code: many labels
in the original GO TO DEPENDING ON statement have disappeared. We turned 16 cases
into 7 in this example program, e.g., the cases 4 THRU 9 happened to be one case.
Paragraph HV-81 (see Fig. 2) is gone after restructuring, since it only jumped to HV-95.
This indirect code is replaced by the (partially restructured) code in Fig. 4.

In paragraph HV-82 of Fig. 2, we see embedded CICS code followed by a GO TO
HV-999. In the restructured program, this code is the same, except that the GO TO
has disappeared. The reason that this is possible, is as follows. In the original code
we can jump to HV-82 via the GO TO DEPENDING ON logic. Then we jump HV-999
(an EXIT paragraph). In the restructured code we use only PERFORMs. They turn back
to the place where they were invoked, so after the PERFORM HV-82 is executed the
control-8ow is returned to the EVALUATE statement. Then, the PERFORM HV-050 is
=nished and the control-8ow is back in the IF of the HAUPTVERARB SECTION. Via
fall-through, the control-8ow goes to the next SECTION. Of course, this control 8ow
comparison of a small fragment of the code is not a proof that the algorithm we
developed and implemented is correct. This is just to give an indication of the dramatic
impact the relatively simple components can have on the input when applied many
times in a complex coordination. In the next section we show in detail how this impact
is achieved.

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 213

Fig. 3. The recovered EVALUATE statement.

Fig. 4. The partially restructured code.

6. Systolic structuring in steps

In this section we will discuss the coordination of the components that we introduced
in Section 5. Recall that we introduced some 20 small and simple components, each
with a very speci=c but clear task. The crux of the algorithm is that by using the
components over and over again in a complex coordination we evolve a program

214 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

from an essentially unstructured one to a well-structured program that is suited for
componentization.

The algorithm resembles the architecture of so-called systolic arrays: the behavior of
identical components in the small used many times resembles the same behavior but
then in the large. In our case, we have several simple components, only capable of
solving the most elementary form of a problem. But due to the reiterated application of
such simple components together, we are able to solve the problems on a larger scale.
Such an approach is also known as a systolic algorithm. There is no formal de=nition
of systolic algorithms [41], but characteristics of it are the use of many similar cells
which rhythmically compute and pass data through a system [36,37].

As an illustration, we provide a typical nonVLSI example of a systolic algorithm:
palindrome recognition. A palindrome is a word or phrase that reads the same backward
or forward, like sexes. By connecting a lot of simple palindrome recognizers that can
only deal with length 2 palindromes, it is possible to create a palindrome recognizer
that can handle palindromes of arbitrary length [34].

Our approach is also systolic in the above sense: we have components that can
remove obviously dead code, or eliminate very easy jump instructions in favor of
other more natural constructions of the language. The power of connecting those simple
components and applying them over and over again leads to the removal of dead code
that is much harder to detect and the elimination of GO TOs that cannot be removed
straightforwardly by introducing IFs or WHILE constructs.

To illustrate the working of the algorithm we apply it on a small but representative
example program. This program is derived from a more involved program that is
published on the Internet [52]. On that location, an entire production program that we
restructured is present with all 70 intermediate steps and a summary of the diEerences
between each step as generated by the Unix utility diff. Of course, we cannot include
5000 LOC =les into a research paper. So to keep the paper fully self-contained, we
derived from the large program a small sample that shows the working of the algorithm.
Now and then we will make comparisons to the full program to give the reader an
idea of how the work scales for larger programs.

6.1. A detailed example

In Fig. 5 we depicted a very small example containing a snippet of the real program
that we published on the Internet [52]. Of course, the code snippet in Fig. 5 is not a
complete program, but perfectly =t to illustrate the systolic structuring algorithm. For
example, it does contain a limited version of the GO TO DEPENDING ON as we depicted
earlier in Fig. 2. How many GO TOs could you remove yourself at =rst glance? We
think that the code fragment contains several jump instructions that are not trivial to
remove so we guess that you found only a few jump instructions that can be easily
removed.

The algorithm starts with preprocessing the code such that it is in good shape for
the systolic part. The =rst step is to introduce a subroutine section for every section in
the program. In Fig. 6 this is illustrated. We can see that indeed not much is changed
in the code, except that we precooked it to be able to contain subroutines that we

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 215

Fig. 5. The original fragment.

extract later on. We added a section with a name derived from the original section.
It is suited to store subroutines in it. We put a =rst paragraph in it with a STOP
RUN, to prevent execution of the subroutines via fall-through. Notice that the program
transformation that we carried out did not introduce any semantical diEerence with the
original program code.

In the next step we eliminate the GO TO DEPENDING ON logic. Since this statement
is in fact nothing more than a case statement with as only possible cases GO TO state-
ments, this is merely a syntax swap. The logic is not improved, it is only represented
in a diEerent manner. We have now 8 jump instructions in total in Fig. 7. Note again
that the semantics of the new program did not change.

The code is now massaged in such a manner that we can start to remove jump
instructions. In theory, pressing the ElimGo button once, could remove all jump in-
structions. This only happens, however, if the use of GO TOs is restricted to simulation
of conditional and iterative constructs. In practice, this is hardly ever the case. To give
you an idea, in the code published on the Internet [52] the maximum number of GO
TOs is 102 and after pressing the =rst time the ElimGo we still have 63 GO TOs left.
This means that about 40 jump instructions were rather easy. In fact, we think that the

216 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 6. Addition of a simulated subroutine location.

average reader found only a few GO TOs in the code snippet that could be naturally
removed. The rest is not so easy.

Since our ElimGo component is simple, it indeed only removes a single GO TO. The
result is presented in Fig. 8. This diEerence between the former and this code is that
a jump instruction has been eliminated in favor of a conditional statement (in HV-95).

Now we have to do something smart so that we can reuse the simple GO TO elimina-
tor once more. What we do is we move paragraphs that do not contain jump instructions
to the subroutine location. Of course we cannot just move such code around without
destroying the control-8ow. Therefore, we preserve the control-8ow by modifying calls
to this piece of code. We note that this task is not entirely trivial. In order for the reader
to appreciate this, we will discuss the control-8ow mechanisms of COBOL brie8y. The
labels introducing a paragraph in a COBOL program serve a dual purpose: =rst of all
they are the entry-points for jump instructions. Second, they serve as scope-terminators
for the previous paragraph when it is called by a subroutine call. In a way, paragraphs
thus serve as subroutines. However, there is no natural mechanism like in C or Pascal
where we can store subroutines and then invoke them from a main program. In COBOL,
all “subroutines” are executed in the order they appear in the code. Although some of
the readers may think that this is strange, it re8ects one of the original design goals

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 217

Fig. 7. Elimination of the GO TO DEPENDING ON.

of COBOL, namely that it should be as close as possible to English (more informa-
tion on the design goals of COBOL and maintenance problems is provided in [45]).
Paragraphs in this text also 8ow from top to bottom. We all know that in order to
edit a text, we can write little signs in the text and put remarks in the margins. Then
we have to rewrite the text and also repair the 8ow when modi=cations are not local.
The same thing happens with COBOL programs, only the signs in the code are GO
TOs, and since there are no margins, the remarks become new paragraphs. Since the
old version is not cleaned up as an English text, a COBOL program will contain the
entire edit history of all the modi=cations of the previous versions. We believe that this
patch mechanism is a possible cause for entangled programs: it encourages the use of
jump instructions and inclusion of dead code. Where to put a new subroutine without
destroying the current control-8ow is not at all a trivial task. So, when we start to
move code around in an automated fashion we have to take care of this idiosyncratic
control-8ow mechanism of COBOL, too.

We proceed looking at our example. In Fig. 9 we see that two paragraphs were
transported to the subroutine section. They are HV-84 and HV-95. We discuss the eEects
on HV-95 since they are visible in Fig. 9. ElimGoDep converted the GO TO HV-95 in
the EVALUATE statement of Fig. 8 to a PERFORM HV-95 statement followed by a GO

218 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 8. First round of easy GO TO removal.

TO HV-999. MovePar uses this so-called GO TO-shifting, so that the paragraphs in the
SUBROUTINES SECTION are not accessible via jumps. Thus simulating a real subroutine
area comparable to other programming languages. The GO TO-shifting was necessary
since after the original jump instruction the control-8ow would not jump back to the
case statement, but continue via fall-through to the EXIT paragraph. MovePar did this
on all other locations and for other labels like HV-84. Moreover, the locations that
formerly contained the code of the moved paragraphs are now represented by mere
PERFORM statements. See the two PERFORM statements in paragraph HV-83 (Fig. 9).

The application of the MovePar component, introduced THEN statement connectors,
to ease automated code transformations. We built a tool to remove this. In Fig. 10
we depicted the result of removing the THEN statement connectors using RemThen. In
fact, this tool could be seen as a language dependent trick. What we actually wanted
to do in the former step is to turn a single statement into two statements. For, one
GO TO became a PERFORM plus another GO TO. When dealing with tools that work
on the underlying tree structure of a program, the result should be a correct tree
again. So a next component that is based on the grammar can deal with the tree as
well. If we convert one statement into two, the resulting underlying tree of the code
does not need to comply with the grammar residing in the next tool. In fact, for any

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 219

Fig. 9. First round of subroutine moving.

conversion step where the number of statements is not an invariant (of which there
are many) we would then have to write some special code to still have a correct tree.
Instead, we split this problem into two smaller problems: =rst we use some grammar
glue to keep the number of statements invariant, and only in a second step we apply
a general-purpose tool that removes the glue so that we can break up any number
of glued statements into their natural parts. In this way, the number of statements
stays invariant during a program transformation. In the case of COBOL the glue is na-
tively available by means of the THEN statement connector. The language dependence
in this solution is, therefore, the use of the THEN. Is it possible to generate for any
context-free grammar glue support so that also in case there is no native gluing mech-
anism available in the language we can still use it to simplify program transformation
tasks. For more details on grammar transformations and their use we refer to [51,38].
In those papers tools and technology are discussed that enables grammar extensions
such that gluing support can be made available in a completely automated fashion.
The usefulness of grammar glue has =rst been recognized by us in COBOL and the
THEN statement connector materialized as a =rst-order approximation of a solution.
Later on we generalized on the problem and recognized that structural language
independent glue support is crucial if we want to make a serious case of automated

220 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 10. Removal of THEN statement connectors.

code transformations. That is why we need the tool to remove the THENs. Now we
apply the next step.

In Fig. 11 we applied the ElimDeadCode component. This component is just like
the simple ElimGo component a basic one. It will not remove code that appears to be
dead in a very contrived way, but only removes code of which there is no doubt that
it is dead. For instance, the last two lines of paragraph HV-83 are directly preceded
by a non-conditional GO TO HV-999 (in Fig. 10). Obviously the two lines of code
are dead and can be removed. Typically, the ElimDeadCode component will operate
on code fragments that are created by other components participating in the systolic
algorithm. However, the presence of dead code in the output of components means that
there actually was dead code in the original program, although not easily seen (see
paragraph HV-84). Step-by-step restructuring in this manner always led to exposition
of dead code so that it was easily removable using the simple dead code eliminator.

This answers the question that some readers might have at this point: why is that
dead code over there in the program? It is so obviously dead, how can someone do
this? Note that although those pieces of code will never be executed via fall-through
at that particular location, the code itself is not dead: it is executed from a possibly
distant GO TO in the program, and happens to be located at a location where it cannot

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 221

Fig. 11. Removal of obviously dead code.

interfere with earlier written code. In fact, this is an example of an ad hoc subroutine:
it is preceded by an unconditional GO TO so there is no fall-through. We converted
this ad hoc solution to a more structural solution.

Now that we have removed the obviously dead code, we have massaged the code in
such a manner that again a very simple GO TO has emerged that is a perfect candidate
for our simplistic ElimGo tool. The jump instruction that we refer to is the GO HV-999
which is the last line of paragraph HV-83. Since HV-999 is the adjacent paragraph, the
GO TO statement is in fact totally super8uous. This is the type of GO TO that ElimGo
can handle. So after pressing the button ElimGo we end up with the code as we
depicted it in Fig. 12.

But now ElimGo created a new opportunity to move a paragraph that does not
contain jump instructions to the subroutine section. It is the HV-83 paragraph. In Fig. 13
we show the result of using MovePar again: indeed, the paragraph is now in the
subroutine section and on all locations where the paragraph was called Move Par
modi=ed the code with a PERFORM and a GO TO.

We remove the THEN statement connectors again and we remove the obviously dead
code. This results in the code that is depicted in Fig. 14. The tools have now massaged
the code again such that trivial jump instruction emerged. It is the GO HV-999 in

222 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 12. Second round of easy GO TO removal.

paragraph HV-82. We note that it is not a coincidence that we end up with removing
these trivial jumps each time. For, the original COBOL coders were not programming
in an unstructured manner: they were deliberately coding to reach the single EXIT of a
section. After numerous stages of maintenance, it took many intermediate steps to get
there, and the more maintenance had been done on such code, the more intricate the
jumping behavior tended to become. To add new code, you have to put it somewhere.
This often implies that it is put on some arbitrary hopefully safe location and that
with the use of jump instructions the original control-8ow is maintained. What the
tools do, is to roll back the coding history and saving the cleansed paragraphs in a
subroutine section and thus simulating a programming language that has native support
for subroutines. As soon as the tools place the subroutines in a logical place where
ordering does not matter since the code cannot be accessed via fall-through, we are
on our way to solve the code location problem. Moreover, by unraveling the code in
such a way, more and more structured code will emerge, and the simple GO TOs will
emerge, one at a time. And those can be removed in a trivial way using ElimGo.

All in all, the MovePar tool transports the next piece of structured code to a safe
haven. Again the RemThen tool removes the THENs and ElimDeadCode scraps the obvi-
ously dead code. The components that can introduce dots, like the MovePar component,

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 223

Fig. 13. Second round of subroutine moving.

internally call the RemDots component to clean up the small things like separator pe-
riods. We did not mention this before since we want to show the heartbeat of the
algorithm and not focus on the smallest details simultaneously.

The result is visible in Fig. 15. As we can see in this display, we have again a
simple jump instruction that we can just remove with the ElimGo button. The result
is displayed in Fig. 16.

Again, we can fruitfully apply the MovePar button to move paragraph HV-81 to the
subroutine section. This is shown in Fig. 17.

At this moment we cannot just continue with the systolic algorithm and remove
more jump instructions: there are no more easy GO TOs in the code. As we can see
in Fig. 17 the only jumps that are left all reside inside the EVALUATE statement. In
Fig. 17 the paragraph moving operations revealed that the distinct jump instructions
in the GO TO DEPENDING ON that we originally started with, are all reduced to GO TO
HV-999. The intermediate steps that were put in the program, are now represented by
PERFORM statements. In the case of this small example program for each case there is
one PERFORM statement.

Next we distribute the GO HV-999 out of the case statement: after all, in all cases
this statement will be applied. We press the Distribute button. The eEect is that the

224 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 14. Second round of THEN and dead code removal.

clauses of the EVALUATE are all combined, and adjacent to the case statement an IF is
plugged in containing the common GO TO statement. The result of the transformation
is shown in Fig. 18. Of course we have to remove THEN statement connectors and
the obviously dead code (if any), before we can continue with the GO TO removal as
usual.

In Fig. 19 we have depicted the result of pressing the ElimGo button again. As can
be seen from the code: the very =rst GO TO that was eliminated in this example had
exactly the same pattern as the one we removed here. So at this point we have removed
all GO TO statements. In the case of the program that we put on the Internet [52], we
needed about 60–70 steps to come to the point where all GO TOs were gone.

Of course, our ultimate goal was not to just remove jump instructions (as indicated
in Section 2), but to massage the code in such a way that we can reuse it in a
component-based context. We have seen that the control-8ow of the code was not at
all optimal. Of course, this has not been fully solved by our systolic algorithm. In
fact, the code suEers still from a lot of indirect jumping, albeit that it is no longer
expressed by GO TOs. Consider, for example, in the original program (see Fig. 5)
paragraph HV-82. In that paragraph we only jump to HV-95 which we could have

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 225

Fig. 15. Third round of THEN and dead code removal.

done that more directly, by jumping to that paragraph from the start. We did not solve
that issue in the beginning since we wanted to focus on one problem at a time. But
now the time has come. We implemented a simple tool called UnfoldPar that removes
such indirect code and replaces it with more direct code. The tool was relatively simple
to implement since we do not need to take the possibility of weird jumps into account.
The resulting output of this tool is presented in Fig. 20. As can be seen, from the
four cases in the EVALUATE there are only two left: HV-81 and HV-95. In the large
program we put on the Internet [52] we went from 16 cases to 7 (see Fig. 3). Also
note that in the subroutine section there are just two paragraphs left (see Fig. 20 again).
Both paragraphs contain something real, one could call such paragraphs candidates for
business logic. In the simulated main section the coordination of the business logic
resides. In fact, our algorithm is a prerequisite to detect business logic in source code
without going to a higher abstraction level. We make the coordination of candidate
business logic transparent. Then we can inspect all the paragraphs one by one. We can
modify the coordination. Moreover, we can insert new subroutines, modify old ones,
and delete subroutines without aEecting the control-8ow. This means that the programs
have become modular, change-enabled, and in a sense componentized since only part
of the functionality can be invoked at wish.

226 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 16. Fourth round of easy GO TO removal.

A special-purpose transformation, called Cluster, cleans up the EVALUATE statement
and eliminates case clones by combining the WHEN clauses. The result is displayed in
Fig. 21.

We postprocess the code and shape it up as much as possible. The ElimCont tool
removes all CONTINUE statements that were introduced during the other program trans-
formations. The result is visible in Fig. 22.

Of course, ElimCont aEected conditionals, and also earlier program transformations
made changes to the conditionals, just think of the WHEN clause clustering. We shape
up these logically challenged conditionals. The result of pressing the NormCond button
is depicted in Fig. 23. For instance, WHEN 4 OR 3 OR 2 was converted to 2 THRU 4,
and NOT (SWFEHL > ZERO) normalized to SWFEHL <= ZERO, and so on.

Finally, we can get rid of the EXIT paragraph. We recall that the EXIT has no
semantic meaning. It is introduced as a type of comment so that programmers could
keep track where to jump to in the end so that each section would have one exit loca-
tion. We have converted to a completely diEerent paradigm for control-8ow; namely,
in the HAUPTVERARB section we only have coordination code and in the subroutines
section we have calculations. So the control-structure is entirely diEerent. The EXIT
paragraph has no role anymore, and since it has no semantics as well, we can just

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 227

Fig. 17. Fourth round of subroutine moving.

remove it. We do this with the RemExitPar button; the resulting code is depicted
in Fig. 24.

6.2. The coordination of the components

Until now the coordination of the components was discussed in an implicit manner.
We discuss here the full picture. Of course, we do not want to interactively restructure
all the programs, so we take the automation of the restructuring a step further by
giving the coordination of the components for the general case. It will turn out that the
coordination is so regular that it can be automated. The coordination of the components
has three main phases: preprocessing, main processing and postprocessing. We discuss
them below.
preprocessing. In this phase we do all the work to shape up the code as much as
possible prior to start the real work. To enable the systolic 8ow in the algorithm we
need to run the following tools in the order below:

• PrettyPrint
• AddEndIf

228 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 18. Distribution of GO TO over EVALUATE.

• RemDots
• FlowOpt
• ElimDeadCode
• AddBarSec
• ElimGoDep

Once we ran all these tools, we have removed a lot of irregularities so that the main
processing can commence.
main processing. In this phase, the components do still have relatively clear tasks, but
their implementation can be more involved. For instance our simple ElimGo component
does recognize over 30 GO TO removal patterns. This is due to the many variations
that we found in source code. Therefore, the preprocessing phase is not a luxury issue
of beautifying the code: without such a phase the number of diEerent patterns would
explode. For instance, the use of a separator dot is often to the discretion of the
programmer. We remove all unnecessary ones, so that we do not have to implement
for one pattern all its variations with and without all combinations of dots. In this way
we cap the exponential growth of the number of patterns in the preprocessing phase.
We have already seen that the coordination of the main processing components is not a

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 229

Fig. 19. Fifth round of easy GO TO removal.

simple pipeline, but resembles a systolic algorithm. But let us =rst list the components
that are part of the main processing phase:

• ElimGo
• MovePar
• SwitchPars
• RemThen
• RemDots
• ElimDeadCode
• Distribute

In the production version of these components, we combine certain pre- and post-
processing tools into more involved components, i.e., we already know that the MovePar
will probably reveal dead code, so we have built-in this postprocessing component
ElimDeadCode in the production version of the MovePar. In general, the more com-
plex components are themselves small assembly lines: they start with preprocessing,
then they do their main operation, and then things are cleaned up in a small postpro-
cessing step. If we in the sequel talk about components like ElimGo or MovePar we talk
about the production versions used in a fully automated software renovation factory.

230 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 20. Removal of indirect code.

First of all, we alternately run ElimGo and MovePar until the code does not change
anymore. Usually, this does not imply that all the GO TOs are gone: it just means
that the easy ones are gone. Then we break out of the loop and try the Distribute if
there was a GO TO DEPENDING ON in the original program, which probably moves a
common GO TO out of its body. Also the Distribute component is in the production
environment enriched with pre- and postprocessing components. Then we continue
with the ElimGo, MovePar array. If we are again stuck and not ready, and there is no
common jump instruction to be extracted from case statements, we use the SwitchPars
tool. In some cases, there is a simple automated check that ensures we can move
paragraphs to other locations. To get the idea: think of pieces of code that are entirely
separated by unconditional jump instructions at the end. In fact, we use these ultra bad
parts of the code to move a paragraph with a jump back to a distant location nearer
to its entry-point label. Often we turn it into a GO TO to a location below the label
to jump to, so that the ElimGo component can probably deal with it. So when all
else fails and there are still GO TO statements, invoking SwitchPars will switch code
around in the hope that we can reenter the ElimGo, MovePar loop. Note that we are
not at all claiming that this systolic algorithm will remove all jump instructions from all
programs. We only claim that for all the practical cases that we encountered we could

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 231

Fig. 21. Clustering of case clones in EVALUATE.

remove them using this algorithm. For code we could not handle, we always had the
following process to adapt the algorithm: we had to add an extra pattern to the ElimGo
tool to add yet another variation of the use of GO TOs in an almost structured way. To
get back to the algorithm, as soon as the GOs are gone, we can start to postprocess the
code.
postprocessing. In this phase, life is getting a lot easier for us. In the main processing
phase we got rid of control-8ow problems that are hardly controllable. But now we
have a rudimentary structure that already resembles bad C or Pascal programs: there
is a “main” for each section, and we have a subroutine section for all of them. The
code is now change enabled, and depending on the =nal application you had in mind
it is now possible to either by hand or automatically further process the code. In our
case study it was massaging the code so that it could be further componentized. We
list the components that we applied to the code in the end:

• Cluster
• ElimCont
• NormCond

232 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 22. Elimination of CONTINUE statements.

• FlowOpt
• RemComments
• ReplacePar
• RemDoubles
• ReplacePar
• UnfoldPar
• RemExitPar
• RemEmptySec

Just like the preprocessing components, these postprocessing tools are also applied
one by one.

In Fig. 25 the application of the components is at the vertical axis, and the con-
secutive steps are on the horizontal axis. The curve represents the heartbeat of the
systolic structuring algorithm. We call such diagrams “cardiograms”. The three main
phases can readily be detected from the form of the curve. The irregularities during
the repetitive part are clearly visible in the graph. We note that the cardiogram of
the full program published on the Internet resembles the curve of Fig. 25 (it is only
shorter).

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 233

Fig. 23. Normalization of Boolean conditions.

So using the explained coordination of the components we can automate the in-
teractive session that we discussed in this section. We implemented this function-
ality in the ApplyAll button. We used the coordination language SEAL [32,33]
for that.

7. Repartitioning the structured code

Once the CICS code has been restructured to be driven by return codes rather than
by branching to given labels it is possible to repartition it. Repartitioning involves the
extraction of subroutines on the SECTION level from the original source text where
they are performed in-line and their replacement by subprograms which are called
dynamically at run time. This repartitioning has the advantage of making the CICS
programs much smaller, more 8exible, more testable and more easy to maintain [56].

A repartitioned program is of course much smaller because only the CICS com-
mands and the control logic are left in the main program. The processing routines
are removed to separate modules. Such programs are more 8exible because it is now
possible to change the transaction control without aEecting the processing logic. They

234 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

Fig. 24. Elimination of EXIT paragraphs.

Fig. 25. Cardiogram of the program DBRIP08.COB.

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 235

are more testable because each processing routine, i.e. each sliced segment, can be
tested separately. By stubbing out subprogram calls it is also possible to test the trans-
action control logic separately without the processing. Finally, the program is eas-
ier to maintain because the interfaces have been clearly speci=ed and the processing
units have been isolated from the transaction control. In eEect, repartitioning aims
at a complete separation of coordination and computation. In [5] such strategies are
considered being core technologies for system renovation. Note that in Sections 5
and 6 coordination and computation were separated which enables 8exible (re)use of
components.

The repartitioning process is accomplished in three passes. In the =rst pass a data
8ow analysis is performed to determine which variables are used in what way in
each subroutine, that is, performed PARAGRAPH or SECTION. These variables are stored
in a data reference table for each subroutine. In the second pass the subroutines are
cut out of the original source code and placed in the procedural part of a module
framework. The variables they use are de=ned as parameters in the LINKAGE SECTION
and are listed in the entry command. In this way each subroutine becomes a separate
subprogram. In the third pass the main program is processed again to convert all
PERFORMs to subroutines into CALL USING commands. The CALL is made to a variable
name which is assigned before the name of the subroutine. This type of dynamic
linking is better supported by CICS as it avoids having to run a static link job. The
parameters of the CALL statement are =lled with the variables used by that particular
subroutine. We give the shortest example that was available in the code (see below).
We see that the VERARB SECTION that was performed is now put in a subprogram. In
that subprogram a paragraph dbrip002 is called that uses all the data that was found
during the data 8ow analysis in the =rst step.

* PERFORM VERARB
CALL "dbrip002" USING
COMMAREA,
RECHENFELDER,
ARBEITSDATEN,
DFHBMBRY,
DBRIM8DI,
XM181-P,
SWITCHES,
P-XM314,
KONSTANTEN,
P-XM200,
P-P008L.

The result of the repartitioning process is a modular CICS program consisting of a
main control module with the transaction processing logic and processing submodules
which implement the business logic. A next step could be to separate out the access
logic, but that topic deserves a separate paper.

In order to repartition for migration to other platforms, it is important to remove all
CICS commands. Therefore, the normal CICS commands are substituted by CALLs like

236 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

the preprocessor as discussed in Section 3.1. We give an example of a CICS statement
that can be equally well expressed using standard COBOL.

* EXEC CICS LINK
* PROGRAM (’D154’)
* END-EXEC.

CALL ’D154’.

The CICS statement is commented out (using the comment marker *) and a standard
COBOL CALL is replacing the CICS. This kind of CICS elimination makes the program
more portable to other environments. Of course, CICS is available on many platforms,
so this step is not always necessary.

8. Creating stateless programs

CICS programs communicate with one another via a global data area referred to
as the communication area—in COBOL syntax the COMMAREA. Here data may be
deposited by one program and picked up by another one. This kind of global coupling
is dangerous and may produce undesired side-eEects, particularly if pointers are being
used. To access the communication area CICS programs are passed a pointer as a
parameter. All references to data within that area are subsequently made by computing
the displacement from that start address. User programs usually include a COPY data
structure describing the entire communication area even though the program only uses
a few variables. Not only has the size of the program exploded, but the program is
given access to data which it should not see. This is a blatant violation of the principle
of information hiding and a frequent cause of undesirable side-eEects [42]. The user
can easily overwrite data that does not belong to him or her. The error will only be
recognized later in some successor program.

Such addressing techniques must be eliminated if CICS programs are to be reused
in another environment. For this reason, all of the data referenced within a module
should be placed in an explicit parameter list, even if this list becomes long. It is
the lesser of two evils. Either one has to create a similar global data area in the new
environment or one creates parameter lists. The solution selected here is to generate a
list of parameters, one for each structure and elementary data type referred to by the
module. These parameters can then be set by any client program calling the module in
question.

By placing all of the data used by a module in its linkage section, the module
becomes stateless, that is, it has no own memory. In this way reentrancy is assured
and the module is detached from its data [56]. The data may reside somewhere in a
buEer within the wrapper. From there it should be passed by value, meaning that only
a copy of the values are provided to the module called and only those values which it
really processes. This greatly reduces the risk of side-eEects and makes the repartioned
CICS program much more 8exible. Later modules of this type can be readily converted
to methods as prescribed in the new Object COBOL standard [2,25]. In the code below
we give an impression of what this looks like. We show the long LINKAGE SECTION

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 237

on purpose so that the realities of paradigm shifts become apparent, and note that this
is the lesser of two evils.

**
* VERARBEITUNG
**
*
METHOD-ID. "dbrip002".
DATA DIVISION.
LINKAGE SECTION.
01 RECHENFELDER.

05 R-ADRSW PIC 9(3) VALUE ZERO.
05 R-LEERZ PIC 9(3) VALUE ZERO.
05 R-RNW PIC S9(5)V99 VALUE ZERO.
05 R-RATE PIC S9(7)V99 VALUE ZERO COMP-3.
05 R-REST PIC S9(5)V9999 VALUE ZERO.

01 ARBEITSDATEN.
02 M8CANA PIC X.
02 M8XJUMPA PIC X(8).

01 DFHBMBRY PIC X(8).
01 DBRIM8DI.

02 FILLER PIC X(40).
02 M8PRIDI PIC X(8).
02 M8PRIDL PIC 99.
02 M8PRIDF PIC X.
02 M8CANI PIC X(8).
02 M8CANL PIC 99.
02 M8CANF PIC X.
02 M8ABS1I PIC X(8).
02 M8ABS1L PIC 99.
02 M8ABS1F PIC X.
02 M8ABS2I PIC X.
02 M8ABS2L PIC 99.
02 M8ABS2F PIC X.
02 M8ABS3I PIC X.
02 M8ABS3L PIC 99.
02 M8ABS3F PIC X.
02 M8ABS4I PIC X.
02 M8ABS4L PIC 99.
02 M8ABS4F PIC X.
02 M8ADRZ1I PIC X.
02 M8ADRZ1L PIC 99.
02 M8ADRZ1F PIC X.
02 M8ADRZ2I PIC X.
02 M8ADRZ2L PIC 99.

238 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

02 M8ADRZ2F PIC X.
02 M8ADRZ3I PIC X.
02 M8ADRZ3L PIC 99.
02 M8ADRZ3F PIC X.
02 M8ADRZ4I PIC X.
02 M8ADRZ4L PIC 99.
02 M8ADRZ4F PIC X.
02 M8ADRZ5I PIC X.
02 M8ADRZ5L PIC 99.
02 M8ADRZ5F PIC X.
02 M8ADSW1I PIC X.
02 M8ADSW1L PIC 99.
02 M8ADSW1F PIC X.
02 M8ADSW2I PIC X.
02 M8ADSW2L PIC 99.
02 M8ADSW2F PIC X.
02 M8ADSW3I PIC X.
02 M8ADSW3L PIC 99.
02 M8ADSW3F PIC X.
02 M8ADSW4I PIC X.
02 M8ADSW4L PIC 99.
02 M8ADSW4F PIC X.
02 M8SACHTI PIC X.
02 M8SACHTL PIC 99.
02 M8SACHTF PIC X.
02 M8SACH1I PIC X.
02 M8SACH1L PIC 99.
02 M8SACH1F PIC X.
02 M8SACH2I PIC X.
02 M8SACH2L PIC 99.
02 M8SACH2F PIC X.
02 M8ANREDI PIC X.
02 M8ANREDL PIC 99.
02 M8ANREDF PIC X.
02 M8ERDATI PIC XXXXXX.
02 M8ERDATL PIC 99.
02 M8ERDATF PIC X.
02 M8MENDZI PIC XXXXXX.
02 M8MENDZL PIC 99.
02 M8MENDZF PIC X.
02 M8MENDVI PIC XXXXXX.
02 M8MENDVL PIC 99.
02 M8MENDVF PIC X.
02 M8OBJI PIC XXXX.
02 M8OBJL PIC 99.

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 239

02 M8OBJF PIC X.
02 M8UEBETI PIC X.
02 M8UEBETL PIC 99.
02 M8UEBETF PIC X.
02 M8KAUTII PIC X.
02 M8KAUTIL PIC 99.
02 M8KAUTIF PIC X.
02 M8ZGUTI PIC X.
02 M8ZGUTL PIC 99.
02 M8ZGUTF PIC X.
02 M8ANZRAI PIC X.
02 M8ANZRAL PIC 99.
02 M8ANZRAF PIC X.
02 M8RATEI PIC X.
02 M8RATEL PIC 99.
02 M8RATEF PIC X.
02 M8FZ1I PIC X.
02 M8FZ1L PIC 99.
02 M8FZ1F PIC X.
02 M8FZ2I PIC X.
02 M8FZ2L PIC 99.
02 M8FZ2F PIC X.
02 M8FZ3I PIC X.
02 M8FZ3L PIC 99.
02 M8FZ3F PIC X.
02 M8XJUMPI PIC X.
02 M8XJUMPL PIC 99.
02 M8FJUMPF PIC X.

01 XM181-P.
05 XM181-1.
10 FEHL-NR PIC 9999 VALUE 0.
10 FEHL-SPR PIC 9.
05 XM181-2.
10 XM181-PROG PIC X(8).
05 XM181-3.
10 FEHL-MELD PIC X(79).
05 XM181-4.
10 FEHL-VAR1 PIC X(20).
05 XM181-5.
10 FEHL-VAR2 PIC X(20).
05 XM181-6.
10 FEHL-VAR3 PIC X(20).
05 XM181-7.
10 FEHL-VAR4 PIC X(20).
05 XM181-8.

240 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

10 FEHL-VAR5 PIC X(20).
05 XM181-9.
10 FEHL-VAR6 PIC X(20).

01 P-XM314.
05 P1-XM314.
10 P1-XM314-EL OCCURS 5.
15 P1-XM314-ADRSW PIC X.
15 P1-XM314-ADRZ PIC X(30).
05 P2-XM314.
10 P2-XM314-1 PIC X.
10 P2-XM314-2 PIC X.
10 P2-XM314-3 PIC 9(4) COMP.
10 P2-XM314-4 PIC 9(4) COMP.
10 P2-XM314-5 PIC X(8).

01 P-XM200.
05 P200-1 PIC X(8).

01 P-P008L PIC S9(4) COMP.
01 P-P008.

05 P008-1 PIC S9(8) COMP.
PROCEDURE DIVISION USING
INOUT RECHENFELDER,
OUTPUT ARBEITSDATEN,
INPUT DFHBMBRY,
OUTPUT DBRIM8DI,
OUTPUT XM181-P,
OUTPUT P-XM314,
OUTPUT P-XM200,
INOUT P-P008L,
INOUT P-P008.

9. Conclusion

Embedded CICS on-line programs have a unique event-driven structure irrespective
of what host language they use. The CICS commands are normally scattered through-
out the source for controlling the interaction with the user as well as for the data
access. The host code in which the CICS commands are embedded only serves to
describe the data structures and to process them when they are made available by
CICS. As a rule this processing logic is unstructured. If the processing logic is to be
separated from the presentation and the access logic as is required by modern software
methods, then the CICS commands which return control from the user to speci=ed
code locations must be removed and replaced by a return value. In addition, the user
code must be restructured to perform subroutines based on this return value rather than
by branching directly to given labels. Only when this is done, will it be possible to migrate
or wrap CICS on-line programs. So we implemented tools that replace CICS commands
by CALLs to a wrapper. In this way, the programs can be executed in any environment

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 241

provided the wrapper is able to ful=ll the requests. Moreover, the user interface can be
implemented totally independent of the old program, for instance in Java. The wrapper
could be implemented in C++. Everything can be connected with an object request
broker using OMA’s Interface De=nition Language to de=ne the interfaces.

Second, we removed all GO TO logic. We have argued in the introduction that this
makes the system easier to maintain and test, irrespective of what environment it is
running in. Another bene=t is that the code decreases in size.

Then we can inspect all the paragraphs one by one. We can modify the coordination.
Moreover, we can insert new subroutines, modify old ones, and delete subroutines
without aEecting the control-8ow. This means that the programs have become modular,
change-enabled, and in a sense componentized since only part of the functionality can
be invoked at wish.

We stress that the problem with old COBOL programs is that any one section of
code will address data elements scattered throughout the DATA DIVISION, that is, they
use global data. This results in long parameter lists when we are going to remodularize.
There is nothing that can be done to prevent this. If we would pass individual data
elements instead of structures, the lists are even longer. This is the problem of deal-
ing with real programs instead of models of programs created for research purposes.
Thus, we create complex interfaces for the subprograms, which may be seen as more
problematic than in-line solutions. The =rst two steps are certainly cost-bene=cial, as
argued in the introduction. But not implemented on a large scale by companies for the
reasons mentioned in Section 2. Our last step is not necessarily improving maintain-
ability, since the advantage of subprograms might be annihilated by the creation of the
complex interfaces of which we showed a short one above. However, if we have to
access COBOL/CICS legacy applications in a modular way from the outside we have
little choice but to use the complex interfaces.

The research described in this paper is intended to solve the problem of restructuring
CICS programs in order to make them more maintainable and to facilitate the migration
into diEerent environments such as to a client/server platform.

References

[1] P. Allen, S. Frost, Component-Based Development for Enterprise Systems, Cambridge University Press,
Cambridge, 1998.

[2] E. Arranga, D. Coyle, Object-Oriented COBOL, SIGS Books, 1996.
[3] C. Babcock, Restructuring eases maintenance, Computerworld, 1987, pp. 19–22.
[4] B. Boehm, Software Engineering Economics, Prentice-Hall, Englewood CliEs, NJ, 1981.
[5] M.G.J. van den Brand, P. Klint, C. Verhoef, Core technologies for system renovation, in: K.G. JeEery, J. KrUal,

M. BartoVsek (Eds.), SOFSEM’96: Theory and Practice of Informatics, Lecture Notes in Computer Science,
Vol. 1175, Springer, Berlin, 1996, pp. 235–255. Available at http://www.cs.vu.nl/˜x/sofsem/sofsem.html.

[6] M.G.J. van den Brand, P. Klint, C. Verhoef, Re-engineering needs generic programming language
technology, ACM SIGPLAN Notices 32 (2) (1997) 54–61.

[7] M.G.J. van den Brand, P. Klint, C. Verhoef, Term rewriting for sale, in: C. Kirchner, H. Kirchner (Eds.),
Second Internat. Workshop on Rewriting Logic and its Applications, Electronic Notes in Theoretical
Computer Science, Springer, Berlin, 1998. Available at: http://www.cs.vu.nl/˜x/sale/sale.html.

[8] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Generation of components for software renovation
factories from context-free grammars, in: I.D. Baxter, A. Quilici, C. Verhoef (Eds.), Proc. Fourth Working
Conf. on Reverse Engineering, 1997, pp. 144–153. Available at http://www.cs.vu.nl/˜x/trans/trans.html.

http://www.cs.vu.nl/~x/sofsem/sofsem.html
http://www.cs.vu.nl/~x/sale/sale.html
http://www.cs.vu.nl/~x/trans/trans.html

242 A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243

[9] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Obtaining a COBOL grammar from legacy code
for reengineering purposes, in: M.P.A. Sellink (Ed.), Proc. Second Internat. Workshop on the Theory
and Practice of Algebraic Speci=cations, Electronic Workshops in Computing, Springer, Berlin, 1997.
Available at http://www.cs.vu.nl/˜x/coboldef/coboldef.html.

[10] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Control 8ow normalization for COBOL=CICS
legacy systems, in: P. Nesi, F. Lehner (Eds.), Proc. Second Euromicro Conf. on Maintenance and
Reengineering, 1998, pp. 11–19. Available at http://www.cs.vu.nl/˜x/cfn/cfn.html.

[11] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Current parsing techniques in software renovation
considered harmful, in: S. Tilley, G. Visaggio (Eds.), Proc. Sixth Internat. Workshop on Program
Comprehension, 1998, pp. 108–117. Available at http://www.cs.vu.nl/˜x/ref/ref.html.

[12] M.G.J. van den Brand, M.P.A. Sellink, C. Verhoef, Generation of components for software renovation
factories from context-free grammars, Sci. Comput. Program. 36(2–3) (2000) 209–266. (Available at
http://www.cs.vu.nl/˜x/scp/scp.html. An extended abstract with the same title appeared earlier: [8].)

[13] M.G.J. van den Brand, E. Visser, Generation of formatters for context-free languages, ACM Trans.
Software Eng. Methodol. 5 (1996) 1–41.

[14] A.W. Brown (Ed.), Component-Based Software Engineering, IEEE Computer Society Press, Los
Alamitos, CA, 1996.

[15] J.B. Caldwell, H.C. Muttart, D.H. Gross, Automatic compiler restructuring of COBOL programs into a
proc per paragraph model, U.S. Patent No. 5,778,232, July 7, 1998.

[16] M.A. Colter (Ed.), Parallel test and productivity evaluation of a commercially supplied COBOL
restructuring tool, Technical Report, OOce of Software Development and Information Technology, Falls
Church, VA, USA, 1987.

[17] B. Crownhart, IBM’s Workstation CICS, McGraw-Hill, New York, 1992.
[18] D.P. Freedman, G.M. Weinberg, Handbook of Walkthroughs, Inspections and Technical Reviews, Pro-

vidence Location, Dorset House, 3rd Edition, 1990. Originally published by Little, Brown & Company, 1982.
[19] L. Goldstein, An alternative to CICS HANDLE commands, CICS Update, July 1987.
[20] P. Gossam, Accessing legacy systems, Object Expert 5 (3) (1997) 58–60.
[21] T. Harmer, P. McParland, J. Boyle, Transformations to restructure and re-engineer COBOL programs,

J. Aut. Software Eng. 5 (1998) 321–345.
[22] I.J. Hayes, Applying formal speci=cation to software development in industry, IEEE Trans. Software

Eng. SE-11 (2) (1985) 169–178.
[23] IBM, Mechanicsburg, Pennsylvania, USA. CICS=ESA Application Programming Reference, 1992.
[24] IBM, Kingston, New York, USA. AOC=MVS IMS Automation Programmer’s Reference and Installation

Guide, 1.3 Edition, 1994.
[25] ISO=IEC=NCITS. Programming Language COBOL, 1.8 Edition, 2000. Available at http://www.ncits.org/

tc home/j4htm/cd18all.pdf.
[26] A.M. Jatich, CICS HANDLE commands versus RESP=RESP2, CICS Update, November, 1987.
[27] A.M. Jatich, CICS Command Level Programming, Wiley Professional Computing, New York, 1991.
[28] C. Jones, Assessment and Control of Software Risks, Prentice-Hall, Englewood CliEs, NJ, 1994.
[29] C. Jones, Estimating Software Costs, McGraw-Hill, New York, 1998.
[30] C. Jones, The Year 2000 Software Problem—Quantifying the Costs and Assessing the Consequences,

Addison-Wesley, Reading, MA, 1998.
[31] S.H. King, Mainframe application migration using P=370 technology, Enterprise Systems Journal, May 1995.
[32] J.W.C. Koorn, Connecting semantic tools to a syntax-directed user-interface, in: H.A. WijshoE (Ed.),

Computing Science in the Netherlands (CSN93), SION, Utrecht, 1993, pp. 217–228.
[33] J.W.C. Koorn, Generating uniform user-interfaces for interactive programming environments, Ph.D.

Thesis, University of Amsterdam, 1994.
[34] L. Kossen, W.P. Weijland, Correctness proofs for systolic algorithms: palindromes and sorting, in: J.C.M.

Baeten (Ed.), Applications of Process Algebra, Cambridge Tracts in Theoretical Computer Science,
Vol. 17, Cambridge University Press, Cambridge, 1990, pp. 89–125.

[35] W. Kozaczynski, N. Wilde, On the re-engineering of transaction systems, J. Software Maintenance 4
(3) (1992) 143–162.

[36] H.T. Kung, C.E. Leierson, Systolic arrays (for VLSI), in: I.S. DuE, G.W. Stewart (Eds.), Sparse Matrix
Proceedings 1978, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1979, pp. 256–282.

http://www.cs.vu.nl/~x/coboldef/coboldef.html
http://www.cs.vu.nl/~x/cfn/cfn.html
http://www.cs.vu.nl/~x/ref/ref.html
http://www.cs.vu.nl/~x/scp/scp.html
http://www.ncits.org/tc_home/j4htm/cd18all.pdf

A. Sellink et al. / Science of Computer Programming 45 (2002) 193–243 243

[37] H.T. Kung, C.E. Leierson, Systolic array apparatuses for matrix computations, U.S. Patent No. 4,493,048,
January 8, 1985.

[38] R. LYammel, C. Verhoef, semi-automatic grammar recovery, Technical Report P2000, University of
Amsterdam, Programming Research Group, 2000. Available at: http://www.cs.vu.nl/˜x/ge/ge.html.

[39] B.P. Lientz, E.B. Swanson, Software Maintenance Management—A Study of the Maintenance of Computer
Application Software in 487 Data Processing Organizations, Addison-Wesley, Reading, MA, 1980.

[40] S. McConnell, Rapid Development, Microsoft Press, Redmond, WA, 1996.
[41] J.H. Moreno, T. Lang, Matrix Computations on Systolic-Type Arrays, Kluwer Academic Publishers,

Dordrecht, 1992.
[42] D.L. Parnas, The criteria to be used in decomposing systems into modules, Commun. ACM 15 (12) (1972)

1053–1058.
[43] L.H. Putnam, W. Myers, Measures for Excellence—Reliable Software on Time, Within Budget, Yourdon

Press Computing Series, Prentice-Hall, Upper Saddle River, NJ, 1992.
[44] J. Reutter, Maintenance is a management problem and a programmer’s opportunity, in: A. Orden, M.

Evens (Eds.), 1981 National Computer Conference, AFIPS Conference Proceedings, Vol. 50, AFIPS Press,
Arlington, VA, 1981, pp. 343–347.

[45] M.P.A. Sellink, C. Verhoef, Re8ections on the evolution of COBOL. Technical Report P9721, University
of Amsterdam, 1997. Available at http://www.cs.vu.nl/˜x/lib/lib.html.

[46] M.P.A.Sellink,C.Verhoef,Development, assessment, and reengineeringof languagedescriptions—extended
abstract, in: B. Nuseibeh, D. Redmiles, A. Quilici (Eds.), Proc. 13th Internat. Aut. Software Eng. Conf., 1998,
pp. 314–317. (For a full version see [50].) Available at: http://www.cs.vu.nl/˜x/ase98/ase98.html.

[47] M.P.A. Sellink, C. Verhoef, Native patterns, in: M. Blaha, A. Quilici, C. Verhoef (Eds.), Proc. Fifth
Working Conference on Reverse Engineering, IEEE Computer Society Press, Los Alamitos, CA, 1998,
pp. 89–103. Available at http://www.cs.vu.nl/˜x/npl/npl.html.

[48] M.P.A. Sellink, C. Verhoef, An architecture for automated software maintenance, in: D. Smith, S.G.
Woods (Ed.), Proc. Seventh Internat. Workshop on Program Comprehension, IEEE Computer Society
Press, Los Alamitos, CA, 1998, pp. 38–48. Available at http://www.cs.vu.nl/˜x/asm/asm.html.

[49] M.P.A. Sellink, C. Verhoef, Generation of software renovation factories from compilers, in: H. Yang,
L. White (Ed.), Proc. Internat. Conf. on Software Maintenance, IEEE Computer Society Press, Los
Alamitos, CA, 1999, pp. 245–255. Available via http://www.cs.vu.nl/˜x/com/com.html.

[50] M.P.A. Sellink, C. Verhoef, Development, assessment, and reengineering of language descriptions, in:
J. Ebert, C. Verhoef (Eds.), Proc. Fourth European Conf. on Software Maintenance and Reengineering,
IEEE Computer Society Press, Los Alamitos, CA, 2000, pp. 151–160. (Full version of [46]). Available at:
http://www.cs.vu.nl/˜x/cale/cale.html.

[51] M.P.A. Sellink, C. Verhoef, ScaEolding for software renovation, in: J. Ebert, C. Verhoef (Eds.), Proc.
Fourth European Conf. on Software Maintenance and Reengineering, IEEE Computer Society Press,
Los Alamitos, CA, 2000, pp. 161–172. Available via http://www.cs.vu.nl/˜x/scaf/scaf.html.

[52] M.P.A. Sellink, H.M. Sneed, C. Verhoef, Systolic structuring algorithm in steps, 1998. Available at
http://www.cs.vu.nl/˜x/systolic/systolic.html.

[53] H.M. Sneed, Economics of software reengineering, J. Software Maintenance 3 (3) (1991) 163–182.
[54] H.M. Sneed, Architecture and functions of a commercial software reengineering workbench, in: P. Nesi,

F. Lehner (Eds.), Proc. Second Euromicro Conf. on Maintenance and Reengineering, IEEE Computer
Society Press, Los Alamitos, CA, 1998, pp. 2–10.

[55] H.M. Sneed, Object-oriented Software Migration, Addison-Wesley, Reading, MA, 1998.
[56] H.M. Sneed, E. Nyary, Downsizing large application programs, J. Software Maintenance 6 (5) (1994)

235–247.
[57] J.M. Spivey, Understanding Z: A Speci=cation Language and its Formal Semantics, Cambridge Tracts in

Theoretical Computer Science, Vol. 3, Cambridge University Press, Cambridge, 1988.
[58] J.M. Spivey, The Z Notation: A Reference Manual, Prentice-Hall, Englewood CliEs, NJ, 1992.
[59] A.A. Terekhov, C. Verhoef, The realities of language conversions, IEEE Software 17 (6) (2000)

111–124. Available at http://www.cs.vu.nl/˜x/cnv/S6.pdf.
[60] A.C. Wills, D.F. D’Souza, Objects, Components, and Frameworks With UML—The Catalysis Approach,

Object Technology Series, Addison-Wesley, Reading, MA, 1998.

http://www.cs.vu.nl/~x/ge/ge.html
http://www.cs.vu.nl/~x/lib/lib.html
http://www.cs.vu.nl/~x/ase98/ase98.html
http://www.cs.vu.nl/~x/npl/npl.html
http://www.cs.vu.nl/~x/asm/asm.html
http://www.cs.vu.nl/~x/com/com.html
http://www.cs.vu.nl/~x/cale/cale.html
http://www.cs.vu.nl/~x/scaf/scaf.html
http://www.cs.vu.nl/~x/systolic/systolic.html
http://www.cs.vu.nl/~x/cnv/56.pdf

	Restructuring of COBOL/CICS legacy systems
	Introduction
	Unknown facts on the economics of restructuring
	Restructuring and mixed language applications
	Related work
	Organization of the paper

	A rationale for restructuring
	The IBM solution to on-line transaction processing
	CICS and the flow of control

	Removing HANDLE commands
	Components for extensive restructuring
	The components
	Comparing input and output

	Systolic structuring in steps
	A detailed example
	The coordination of the components

	Repartitioning the structured code
	Creating stateless programs
	Conclusion
	References

