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Abstract

Parallel job scheduling has gained increasing recogni-
tion wn recent years as a distinct area of study. How-
ever, there is concern about the divergence of the-
ory and practice in the field. We review theoreti-
cal research in this area, and recommendations based
on recent results. This is contrasted with a proposal
for standard interfaces among the components of a
scheduling system, that has grown from requirements

wmn the field.

1 Introduction

There has been considerable interest in parallel job
scheduling in recent years [41], and it has gained
recognition as a distinct research topic that is largely
unrelated to the better known problem of DAG
scheduling [1]. Very many approaches have been pro-
posed and implemented [20]. The differences lie in
the targetted systems, the assumptions made, and
the mechanisms used.

We shall concentrate on distributed memory mas-
sively parallel processors (MPPs), which currently
dominate the supercomputing arena. By this we
mean machines in which physical memory is pack-
aged with the processors, forming so-called “process-
ing elements” (PEs), as opposed to machines in which
memory is global and independent of the processors.
The implication is that memory is typically allocated
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in conjunction with the processors, rather than being
treated as a distinct resource. However, this does not
preclude a shared address space model of computa-
tion, and indeed many recent systems provide hard-
ware support for different levels of memory sharing.

There are a growing number of high performance
computing facilities that support large diverse work-
loads of parallel jobs on multicomputers that have
tens to thousands of processors. The typical way that
they are currently used is that:

1. The system 1s divided into “partitions” consist-
ing of different numbers of processors. Most
processors are allocated to partitions devoted to
serving parallel jobs. One partition is typically
set aside for support of interactive work through
time-slicing of its processors. Another may be
devoted to service tasks, such as running a par-
allel file system. The configuration of partitions
may be changed on a regular basis (for example,
by providing larger partitions for parallel jobs at
night or over weekends, at the expense of the
interactive partition).

2. A (large) number of queues are established, each
one corresponding to a specific combination of
job characteristics. (For example, one queue
might correspond to jobs that require as many as
32 processors, and are expected to run no longer
than 15 minutes.) Some queues are served at
higher priority than others, so the user tends to
submit a job to the highest priority queue for
which the job qualifies based on its expected re-
source requirements.

3. Each partition is associated with one or more
queues, and its processors serve as a pool for
those queues. Whenever some processors are
free, the associated queues are searched in or-
der of priority for one that is non-empty. The



first job in that non-empty queue is then acti-
vated in the partition, and it runs until it com-
pletes, provided the number of free processors is
sufficient. Within each queue jobs are processed
strictly in first-come-first-served order. (If the
jobs in a single queue have highly variable exe-
cution times, then short jobs will commonly be
delayed by long jobs preceding them; this pit-
fall is avoided by having a number of queues,
and placing jobs among them based on their ex-
pected execution times, and then giving higher
priority to the queues containing the jobs with
smaller execution times.) A relatively recent in-
novation in some production systems is the use
of a scheduler that allows non-FCFS processing
in a queue. (For example, the EASY scheduler
does “back-filling”, which amounts to allowing
smaller jobs to jump ahead of larger ones under
certain conditions [50].)

Thus:

e the number of processors assigned to a job is
fixed by the user;

e once initiated the job runs to completion.

While there exist some innovations that have been
introduced into production systems, such as non-
FCFS service and support for swapping, the general
trend is to retain the same framework, and moreover,
to cast it into a standard. This exposes the problems
of the divergence between theory and practice [26].
In fact, there is considerable theoretical work lately
that tries to be more directly relevant to practice, but
falls outside of the above framework. For example,
theoretical analysis underscores the effectiveness of
preemption in achieving low average response times,
and also shows that considerable benefits are possible
if the scheduler is allowed to tailor the partition sizes
in accordance with the current system load. Notably,
much of this work is based on workload models that
are derived from measurements at supercomputer in-
stallations.

We survey the theoretical background in Section 2,
and the specific recommendations that are made in
Section 3. The standardization effort based on prac-
tical work at large installations is reviewed in Section
4. Finally, we discuss this state of affairs and present
our conclusions in Section 5.

2 Survey of Theoretical Results

Various kinds of scheduling or sequencing problems
have been addressed since the fifties by theoretical
researchers from the areas of computer science, oper-
ations research, and discrete mathematics. The chal-
lenge of efficient job management on computers has
frequently been named as a key reason to address
this kind of problems. This is especially true for job
scheduling on parallel systems with a large number
of processors or nodes. Hence a direct use of many
of these theoretical results in real applications would
seem to be natural. However, in reality these the-
oretical results are rarely cited in more application
oriented work and almost never used in commercial
systems.

By reviewing some of the results in theoretical job
scheduling we therefore want to address the ques-
tions:

e What kind of help can designers of commercial
scheduling systems expect to obtain from the so-
lution of theoretical problems?

e Is it useful for researchers and developers target-
ing the design of new scheduling systems for real
machines to spend their time studying theoreti-
cal papers as well?

e If yes, which of those papers are most likely to
prove really helpful?

e Is there any purpose to generate abstract models
of real machines and real scheduling problems
which may be interesting for theoreticians?

2.1 Classification of Theoretical

Results

A substantial divergence has already been noted be-
tween practical approaches and theoretical concepts
in general. But in addition there is also a large diver-
sity among theoretical methods. Therefore, it may
not be appropriate to talk about theoretical work in
this area as a uniform block. Hence, in order to ad-
dress some of the above mentioned questions we first
wish to provide a rough classification of different the-
Also, we want to es-
tablish a connection between the various theoretical

oretical models and results.

environments and situations arising in real multipro-
Cessors.



2.1.1 Cost metric

For the discussion of the various cost metrics we use
the following notations:

t; | completion time of job 7 in a
schedule

d; | deadline of job 7

s; | release time of job ¢

w; | weight of job ¢

Here, the completion time ¢; is the time when the
computer system has finally completed work on this
job. Note that no information is provided on whether
the job has been successfully completed or whether
it has been removed from the system for other rea-
sons. Next, the release time s; is the earliest time the
computer system can start working on job ¢. Usually,
the release time of a job is identical with its submis-
sion time or arrival time, that is the time a computer
system becomes aware of the new job for the first
time. However, in some studies it is assumed that
the scheduling system is already aware of all jobs at
time 0, but job ¢ cannot be started before some time
s; > 0. The meaning of the deadline d; is not defined
in a unique way: Not meeting the deadline for a spe-
cific job, 1.e. t; > d;, may either cause the job to fail
or may only result in additional costs. The weight w;
of a job 1s a way to prioritize one job over another.

Obviously, scheduling problems arise if different
jobs compete with each other over the allocation of
system resources. The assignment of those resources
to a specific job will result in some costs for this job.
In many theoretical papers the cost of a schedule is
simply the sum of the individual job costs for all jobs.
This cost function serves as basis to compare and
evaluate different schedules. Assuming a job system
7 the following metrics are commonly used:

Makespan (throughput) maxt;

1ET

Deadline misses |{i € r|t; > d; }|

Z witi

Weighted completion time
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Weighted flow (response)
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1ET

Note that response time and flow time usually have
the same meaning. The origin of these criteria of-
ten goes back to the fifties. For instance Smith [83]
showed in 1956 that the sum of the weighted com-
pletion times for a system of jobs on a single pro-
cessor can be minimized if the tasks are scheduled
by increasing execution time to weight ratio, the so
called Smith ratio. If all jobs have unit weight this
algorithm becomes the well known shortest-job first
method.

These metrics allow a relatively simple evaluation
of algorithms which may be one reason they have
been frequently used in theoretical scheduling up to
now. Also, some of the metrics are closely related to
each other.

Example 1 A schedule with optimal weighted com-
pletion time also has the optimal weighted flow time,
provided both schedules obey the same model con-
straints. However, it is much easier to find a schedule
which deviates a constant factor from the opttmum n
case of the weighted completion time metric than for
the weighted flow time metric, as shown by Kellerer

et al. [43] and by Leonardi and Raz [18].

Looking at the problem from another perspective
we can state that in a business environment one
would expect an optimal job scheduler to simply
achieve two goals:

1. Satisfy the users.
2. Maximize the profit.

Undoubtedly, there is a strong qualitative relation
between the abovementioned theory criteria and the
commercial goals. For instance, a reduction of the
job response time will most likely improve user sat-
isfaction. But to our knowledge a quantitative link
between the two types of criteria has never been es-

tablished.

Example 2 Assume that a job i needs approzimately
3 hours of computation time. If the user submits the
job in the morning (9am) he may expect to receive the
results after lunch. It probably does not matter to him
whether the job 1s started immediately or delayed for
an hour as long as it is done by Ipm. Any delay be-
yond Ipm may cause annoyance and thus reduce user
satisfaction, i.e. increase costs. This corresponds to
tardiness scheduling. However, if the job is not com-
pleted before 5pm it may be sufficient if the user gets



his results early next morning. Moreover, he may be
able to deal with the situation eastly if he ts informed
at the time of submission that execution of the job by
dpm cannot be expected. Also, if the user s charged
for the use of system resources, he may be willing to
postpone execution of his job until nighttime when the
charge is reduced.

The use of metrics such as throughput and response
time in many commercial installations may be due to
the simplicity of the evaluation, or it may be a sign
of some non-obvious influence from theory. On the
other hand, a good management policy for a com-
mercial system may require that different metrics are
used during different times of the day: During day-
time many users will actually wait for the completion
of their submitted jobs. Thus a response time metric
is appropriate. However, during the night it is best
to maximize the throughput of jobs.

Example 3 Fig. 1 shows the load of a multiproces-
sor over the course of a day. For reasons of simplicity
each job is described as a rectangle. Black rectangles
denote idle processors due to fragmentation. How-
ever, note that multiprocessors do not necessarily re-
quire a linear one-dimenstonal processor space. But
this way it is easter to visualize jobs. As shown in the
figure, during periods of high user activity small jobs
are given preference even if some processors remain
tdle due to fragmentation of the processor space. Jobs
are allocated resources such that the shortest response
time 1s achieved. On the other hand during periods
of low user actwity large batch jobs are started. Also
moldable jobs are run in a way to increase efficiency,
1.e. using less processors but requiring more execution
time.

Therefore, recent studies, e.g. Charkrabarti et
al. [8], explicitly address the problem of bicriteria
scheduling where scheduling methods are introduced
which generate good schedules with respect to the
makespan and the weighted completion time metric.

2.1.2 The Model

A large variety of different machine and scheduling
models have been used in studies of scheduling prob-
lems. The constraints incorporated into these models
directly affect operations of the scheduler. They are
at least partly inspired by the way real systems are
managed and how parallel applications are written.

In the following we roughly classify these models ac-
cording to five criteria:

1. Partition Specification

Each parallel job is executed in a partition that con-
sists of a number of processors. The size of such a
partition may depend on the multiprocessor, the ap-
plication, and the load of multiprocessor [26]. More-
over, the size of the partition of a specific job may
change during the lifetime of this job in some mod-
els:

1. Fixed. The partition size is defined by the sys-
tem administrator and can be modified only by
reboot.

2. Variable. The partition size is determined at
submission time of the job based on user request.

3. Adaptive. The partition size is determined by
the scheduler at the time the job is initiated,
based on the system load, and taking the user
request into account.

4. Dynamic. The partition size may change dur-
ing the execution of a job, to reflect changing
requirements and system load.

Feldmann et al. [27] have considered fixed parti-
tions generated by different architectures such as hy-
percubes, trees, or meshes. Many other authors use
the variable partitioning paradigm, in which each job
requires a specific number of processors but can be
scheduled on any subset of processors of the system.
An example of a theoretical study based on the adap-
tive approach is the work of Turek et al. [89]. Here,
the application does not require a specific number of
processors, but can use different numbers. However,
once a partition for a job has been selected its size
cannot change anymore. Finally, in dynamic parti-
tioning the size of a partition may change at run time.
This model has, for instance, been used by Deng et

al. [12].

2. Job Flexibility

As already mentioned advanced partitioning methods
must not only be supported by the multiprocessor
system but by the application as well. Therefore,
Feitelson and Rudolph [26] characterize applications
as follows:
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Figure 1: Workload of a parallel computer over the course of a day.

1. Rigid jobs. The number of processors assigned
to a job is specified external to the scheduler, and
precisely that number of processors are dedicated
to the job throughout its execution.

2. Moldable jobs. The number of processors as-
signed to a job is determined by the system
scheduler within certain constraints when the job
is first activated, and it uses that many proces-
sors throughout its execution.

3. Evolving jobs. The job goes through different
phases that require different numbers of proces-
sors, so the number of processors allocated may
change during the job’s execution in response to
the job requesting more processors or relinquish-
ing some. Each job is allocated at least the num-
ber of processors it requires at each point in its
execution (but it may be allocated more to avoid
the overheads of reallocation at each phase).

4. Malleable jobs. The number of processors as-
signed to a job may change during the job’s ex-
ecution, as a result of the system giving it addi-

tional processors or requiring that the job release
some.

The manner in which an application is written de-
termines which of the four types is used!. The more
effort devoted to writing the application with the
intention of promoting it to one of the later types,
the better a good scheduler can perform with respect
to both the particular job, and the whole workload.
Generally, a scheduler can start a job sooner if the
job is moldable or even malleable than if i1t is rigid
[88].

If jobs are moldable, then processor allocations can
be selected in accordance with the current system
load, which delays the onset of saturation as system
load increases [26]. Tt is generally not difficult to write
an application so that it is moldable, and is able to
execute with processor allocations over some range
(e.g., any power of two from four to 256). Fwvolv-
ing jobs arise when applications go through distinct
phases, and their natural parallelism is different in

1Some theoretical studies use different terminology. For
example, Ludwig and Tiwari [51] speak about “malleable” jobs
which are equivalent to moldable jobs in our terminology.



different phases. For such jobs, system calls are in-
serted at the appropriate points in the application
code to indicate where parallelism changes [95].

Certain parallel applications, such as those based
on the “work crew” model?, can be modified to be
malleable relatively easily. An increased processor al-
location allows more processors to take work from the
queue, while a reduction means that some processors
cease picking up work and are deallocated [68]. In
most cases, however, 1t is more difficult to support
malleability in the way an application is written. One
way of attaining a limited form of malleability is by
creating as many threads in a job as the largest num-
ber of processors that would ever be used, and then
using multiplexing (or folding [52, 39]) to have the
job execute on a lesser number of processors. Alter-
natively, a job can be made malleable by inserting
application specific code at particular synchroniza-
tion points to repartition the data in response to any
change in processor allocation. The latter approach
is somewhat more effective, but it requires more ef-
fort from the application writer, as well as signifi-
cantly more system support. Much of the required
mechanisms for supporting malleable job scheduling
is present in facilities for checkpointing parallel jobs
[67]. Hence, a combined benefit can be derived if
processor allocations are changed only at times when
checkpoints are taken.

For stable applications that are widely and fre-
quently used by many users, the effort required to
make them malleable may be well justified. Other-
wise, it is probably not worthwhile to write applica-
tions so that they are malleable.

3. Level of Preemption Supported

Another issue is the extent to which individual
threads or entire jobs can be preempted and poten-
tially relocated during the execution of a job:

1. No Preemption. Once a job is initiated it runs
to completion while holding all its assigned pro-
cessors throughout its execution.

2. Local Preemption. Threads of a job may be
preempted, but each thread can only be resumed
later on the same processor. This kind of pre-
emption does not require any data movement
between processors.

2In the “work crew” model, processors pick up relatively
small and independent units of computation from a central
queue.

3. Migratable Preemption. Threads of a job
may be suspended on one processor and subse-
quently resumed on another.

4. Gang Scheduling. All active threads of a
job are suspended and resumed simultaneously.
Gang scheduling may be implemented with or
without migration.

While many theoretical scheduling studies only use
a model without preemption, more recently preemp-
tion has also been taken into account. Schwiegels-
hohn [72] uses a gang scheduling model without mi-
gration. The work of Deng et al. [12] is based upon
migratable preemption.

In a real system the preemption of a job requires
that all the job’s threads be stopped in a consistent
state (i.e., without any messages being lost), and the
full state of each thread must be preserved. The
memory contents associated with the job may be ei-
ther explicitly written out of memory, or may be im-
plicitly removed over time by a process such as page
replacement. Whether or not the data of a job is re-
moved from memory when the job is preempted de-
pends in part on the memory requirements of the pre-
empting job and the total amount of memory avail-
able.

In addition migratable preemption needs the mech-
anism of moving a thread from one processor to an-
other, while preserving all existing communication
paths to other threads. Also, when a thread is mi-
grated, 1ts associated data must follow. In message
passing systems, this requires that the data be copied
from one processor to another. In shared memory
systems, the data can be transferred a cache line
or page at a time as 1t is referenced. Preemption
may have great benefit in leading to improved per-
formance, even if it it used infrequently and on only
a small fraction of all jobs.

Preemption in real machines has an overhead cost
which isignored in some theoretical studies. Motwani
et al. [56] address the overhead by minimizing the
number of preemptions. In order to compare a pre-
emptive schedule with non-preemptive ones Schwie-
gelshohn [72] included in his model a time penalty
for each preemption which increases the cost of the
schedule.

4. Amount of Job and Workload Knowledge Available

Systems differ in the type, quantity, and accuracy of
information available to and used by the scheduler.



Characteristics of individual jobs that are useful in
scheduling include (i) the total processing require-
ment, and (ii) the speedup characteristics of the job.
Full knowledge of the latter requires knowing the ex-
ecution time of the job for each number of processors
on which it might be executed. Partial knowledge
is provided by characteristics such as average paral-
lelism (the average number of processors busy when
the job is allocated ample processors), and maximum
parallelism (the largest number of processors that a
job can make use of at any point in its execution).

Workload information is also useful in choosing a
scheduling policy. For example, workload measure-
ments at a number of high-performance computing
facilities have indicated that the variability in pro-
cessing requirements among jobs is extreme, with
most jobs having execution times of a few seconds,
but a small number having execution times of many
hours. The coefficient of variation®, or CV, of the
service times of jobs has been observed to be in the
four to seventy range at several centers [9, 65, 22].
This implies that a mechanism to prevent short jobs
from being delayed by long jobs is mandatory.

The knowledge available to the scheduler may be
at one of the following levels:

1. None. No prior knowledge is available or used
in scheduling, so all jobs are treated the same
upon submission.

2. Workload. Knowledge of the overall distribu-
tion of service times in the workload is available,
but no specific knowledge about individual jobs.
Again, jobs are treated the same, but policy at-
tributes and parameters can be tuned to fit the
workload.

3. Class. Each submitted job is associated with a
“class”, and some key characteristics of jobs in
the class are known, including, for example, esti-
mates of processing requirement, maximum par-
allelism, average parallelism, and possibly more
detailed speedup characteristics.

4. Job. The execution time of the job on any given
number of processors is known exactly.

Job knowledge, which is defined to be exact, is un-
realistic in practice. However, assuming omniscience

3The coefficient of variation of a distribution is its standard
deviation divided by its mean.

in modeling studies makes it possible to obtain an op-
timistic bound on performance that is not attainable
in practice. Presuming job knowledge in modeling
studies sets a standard in performance against which
practically realizable scheduling algorithms, which
use class knowledge at most, can be compared.

While in many theoretical studies of scheduling
problems all job information is assumed to be avail-
able, there are a few papers which explicitly address
the so called “non-clairvoyant scheduling”, see e.g.
Motwani et al. [56]. Also, on-line scheduling has been
addressed more frequently in recent years. For in-
stance Shmoys et al. [79] discussed makespan schedul-
ing if the job characteristics are not known until the
release time and the execution time requirements of
the job are also not available before the job has been
executed to completion.

Many systems make no effort at all to use informa-
tion that accompanies a job submission to estimate
the resource requirements of the job. However, small-
est demand type disciplines (e.g., “Least Work First”
(LWF)) can be used to yield low average response
times if the resource demand of each job i1s known
(precisely or approximately). For example, in many
current systems jobs are submitted to one of a large
number of queues, and the queue selected indicates
such information as the number of processors needed,
a limit on the execution time, and other parame-
ters. Thus, each queue corresponds to a job class. In
these systems, this information can be used implic-
itly through the way queues are assigned to (fixed)
partitions, and the relative priorities assigned to the
queues.

Any information provided by the user relating to
job resource requirements must be used carefully both
because it is prohibitively difficult for the user to con-
sistently provide information with high accuracy, and
also because the user may be motivated to deceive the
scheduler intentionally. Thus, sources from which to
gain knowledge about job resource requirements must
be broadened to include:

e consider user provided information (while recog-
nizing that 1t is historically quite unreliable, in
part because users aren’t careful about making
good estimates);

o measure efficiency during execution [60], and in-
crease processor allocations only for jobs that are
using their currently allocated processors effec-
tively;



e keep track of execution time and speedup knowl-
edge from past executions on a class by class ba-
sis, and use that information.

All identifying characteristics associated with the
submission of a job can potentially be used to deter-
mine its class. These characteristics include the user
id, the file to be executed, the memory size specified,
and possibly others. An estimate of the execution
time of a job being scheduled can be obtained from
retained statistics on the actual resource usage of jobs
from the same (or a similar) class that have been
previously submitted and executed. Recent work has
demonstrated the feasibility and potential benefit of
this approach [32]. A small database can be kept
to record resource consumption of jobs on a class by
class basis. This is very useful particularly for large
jobs that are executed repeatedly.

5. Memory Allocation

In some systems, memory as well as processors may
be a limiting resource on performance. This is par-
ticularly true in shared-memory systems, where the
allocation of memory is relatively decoupled from the
allocation of processors. Thus there are two types of
memory to consider:

1. Distributed Memory. Typically each proces-
sor and 1ts associated memory is allocated as a
unit, since a thread must use message passing
to access data not in the local memory of the
processor on which it is running.

2. Shared Memory. Data stored remotely from
a processor can be accessed directly (albeit at
higher cost than for locally stored data), so there
are situations where the ideal resource allocation
does not distribute memory among applications
in the same proportions as processors.

It is commonly assumed that the memory require-
ments of a job are known precisely at the time the
job is initiated possibly because the user is required
to indicate the (maximum) memory requirement of
the job. Only recently has memory in addition to
processors been taken into account in scheduling al-

gorithms [66, 74, 63, 62].

2.1.3 Algorithmic Methods

A large number of theoretical papers deal with the
issue of intractability for many scheduling problems

[29]. In the area of parallel job scheduling the most
important contributions are made by Du and Leung
[14] for preemptive and non-preemptive gang schedul-
ing using makespan as criterion, and by Bruno, Coff-
man, and Sethi [7] and McNaughton [54] for preemp-
tive and non-preemptive weighted completion time
scheduling on a parallel computer.

Except for the fact that there is no hope for a sim-
ple optimal algorithm little help can be expected from
this work for practical scheduling systems. Further-
more, most real systems must deal with a significant
number of additional constraints, like unknown pa-
rameters of jobs. Therefore even for polynomial prob-
lems, it is unlikely that an optimal schedule can be
achieved. Moreover, a typical scheduler 1s subject to
real time conditions that do not allow the use of high
order polynomial algorithms. Hence, approaches to
find optimal solutions for scheduling problems, e.g.
with branch and bound algorithms [5], are only used
under special circumstances. This is especially true
for problems involving a large number of jobs. In ad-
dition, those algorithms often produce only a small
improvement due to the good results of many heuris-
tics.

With the intractability of many scheduling prob-
lems being established, many theoretical researchers
turned their attention towards the design of polyno-
mial algorithms which guarantee a small deviation
from the optimal schedule for any job system. While
in some cases this deviation from the optimum is
minimized regardless of the algorithmic complexity
[71], other work analyzes the performance of partic-
ular simple algorithms, like list scheduling methods
[42, 94]. The latter group promises to be of the great-
est help for the selection of scheduling methods in real
systems. Therefore, we will look more closely at this
group in the following. Moreover, these algorithmic
methods are also used for determining the cost de-
viation from the optimum in the on-line case or if
some job properties, e.g. the execution time, are un-
known. This is called competitive analysis introduced
by Sleator and Tarjan [81]. Tt is especially noteworthy
that the area of approximation algorithms is consid-
ered to be one of the most flourishing areas of theo-
retical computer science in recent years.

Although many of the approximation algorithms
have a low computational complexity and produce
schedules that are close to the optimum, they are
usually not the method of choice in commercial in-
stallations. Apart from lack of knowledge about these



algorithms there are two principal reasons for this:

1. Worst Case Analysis. The worst case ap-
proximation factor is usually of little relevance
to a practical problem since a schedule that ap-
proaches the worst case is often unacceptable for
a production schedule. For instance, the make-
span approximation factor for list schedules of
non-preemptive parallel job schedules 1s 2. In
other words, up to 50% of the nodes of a mul-
tiprocessor system may be left idle. However,
these high costs are only encountered for a few
job systems which may never be part of real
workloads.

Example 4 Turck el al. [90] proposed so
called SMART schedules for the off-line non-
preemptive completion time scheduling of parallel
jobs. They proved an approzimation factor of 8
[78] and gave a worst case example with a devia-
tion of 4.5. However, applying the algorithm on
job systems obtained from the traces of the Intel
Paragon at the San Diego Supercomputing Cen-
ter gave an average deviation from the optimum
by 2.0. This result was further improved to the
factor 1.4 by using the job order of the SMART
schedule as input for a list schedule [34].

2. Model Limitations. Some theoretical meth-
ods are based on restricted models which devi-
ate significantly from real life situations. For in-
stance the above mentioned SMART algorithm
generates non-preemptive off-line schedules and
requires the knowledge of the execution time of
all jobs. On the other hand, the consideration
of more complex constraints may make any gen-
eral approximation algorithm impossible [43, 48].
Moreover, there may be additional user demands
with little influence on the cost function which
cannot be easily incorporated into these algo-
rithms.

Example 5 In many computing centers it was
noted that a non-negligible number of parallel
batch jobs failed to run more than a minute due
to reasons such as an incorrectly specified data
file. Therefore, some users request that their job
should be started tmmediately after submission,
then interrupted after 1 minute and finally re-
sumed and completed at a later time.

Nevertheless, the theoretical analysis of algorithms
can be of invaluable help even for practical purposes.
The evaluation of any schedule can be either done by
comparing this schedule against the optimal sched-
ule or against schedules generated by other methods.
But only the deviation from the optimal schedule can
determine whether there is enough room for improve-
ment to motivate further algorithmic research. Un-
fortunately, the optimal schedule cannot be obtained
easily. But many theory papers dealing with approxi-
mation algorithms also use lower bounds for the opti-
mal schedule to determine the approximation factor,
e.g. the squashed area bound introduced by Turek et
al. [90]. The same bounds can also be applied for the
evaluation of a heuristic schedule for a real workload
provided the same cost metric is used.

Moreover, the theoretical analysis may be able to
pinpoint the conditions which may lead to a bad
schedule. These methods can also be applied to
any practical approach and help to determine crit-
ical workloads. If the evaluation of real traces reveals
that such critical workloads rarely or even never occur
then they can either be ignored or the approach can
be enhanced with a procedure to specifically handle
those situations.

Example 6 For instance Kawaguchi and Kyan’s
LRF schedule [12] can be easily extended to parallel
jobs. As long as no parallel job requires more than
50% of the processors, this will only increase the ap-
prozimation factor from 1.21 to 2 [88]. However, if
jobs requiring more processors are allowed in addi-
tion, no constant approzimation factor can be guar-
anteed.

Finally, as already mentioned the costs of the
schedules generated by theoretical approximation
methods are usually very low for the average work-
load. Even if they do not comply directly with all
constraints of a real scheduling environment, they can
be used as building blocks of a practical scheme. For
instance an off-line algorithm can be applied to a sub-
set of jobs whenever a new job arrives.

2.2 Some Specific Studies
2.2.1 Workload Characterization

Several workload characterization studies of produc-
tion high-performance computing facilities have been
carried out. They reveal characteristics of actual
workloads that can be exploited in scheduling.



Feitelson and Nitzberg noted that repeated runs of
the same application occurred frequently, and later
runs tended to have similar resource consumption
patterns as the corresponding earlier ones [22]. Ho-
tovy studied a quite different system, yet found many
of the same observations to hold [38]. Gibbons also
analyzed workload data from the Cornell site in addi-
tion to two sites where parallel applications are exe-
cuted on a network of workstations [31]. He found
that, in all three systems, classifying the jobs by
user, program executed, and requested degree of par-
allelism led to classes of jobs in which execution time
variability is much lower than in the overall workload.

Feitelson studied the memory requirements of par-
allel jobs in a CM-5 environment. He found that
memory is a significant resource in high-performance
computing, although he observed that users typically
request more processors than naturally correspond to
their memory requirements [18]. Jann et al. have pro-
duced a workload model based on measurements of
the workload on the Cornell Theory Center SP2 ma-
chine [40]. This model is intended to be used by other
researchers, leading to easier and more meaningful
comparison of results. Nguyen at al. have measured
the speedup characteristics of a variety of applica-

tions [59)].

2.2.2 Scheduling in practice

Several groups have modified NQS implementations
to allow queue reordering in order to achieve better
packing. Lifka et al. have developed a scheduler on
top of LoadLeveler with the feature that the strict
FCFS order of activating jobs is relaxed [50, 80]. In
this scheduler, known as “EASY”, jobs are scheduled
in a FCFS order to run at the earliest time that a
sufficient number of processors are available for them.
However, this can mean that smaller jobs may be ex-
ecuted before bigger jobs that arrived earlier, when-
ever they can do so without delaying the previously
scheduled jobs. It was found that user satisfaction
was greatly increased since smaller jobs tended to get
through faster, because they could bypass the very
big ones, yet the users still have the predictability of
knowing just after submission when they can expect
that their job will complete.

Henderson describes the Portable Batch System
(PBS), another system in which performance gains
are achieved by moving away from strict FCFS
scheduling [36]. Wan et al. developed a scheduler

that uses a variation of a 2-D buddy system to do
processor allocation for the Intel Paragon[91].

2.2.3 Thread-oriented scheduling

Nelson, Towsley, and Tantawi compared four cases
in which parallel jobs were scheduled in either a cen-
tralized or de-centralized fashion, and the threads of a
job were either spread across all processors or were all
executed on one processor [58]. They found that best
performance resulted from centralized scheduling and
spreading the threads across processors. Among the
other options, decentralized scheduling of split tasks
beat centralized scheduling with no splitting under
light load, but the reverse is true under heavy load.

2.2.4 Load-based scheduling

Because the efficiency of parallel jobs generally de-
creases as their processor allocation increases, it 1s
necessary to decrease processor allocations to mold-
able jobs as the overall system load increases in or-
der to avoid system saturation [78]. Zahorjan and
McCann found that allocating processors to evolving
jobs according to their dynamic needs led to much
better performance than either run-to-completion
with a rigid allocation or round-robin [96]. For the
overhead parameters they chose, round-robin beat
run-to-completion only at quite low system loads.

Ghosal et al. propose several processor allocation
schemes based on the processor working set (PWS),
which is the number of allocated processors for which
the ratio of execution time to efficiency is minimized
[30]. (The PWS differs from the average parallelism
of the job by at most a factor of two [17].) The best of
the variants of PWS gives jobs at most their processor
working set, but under heavy load gives fewer and
fewer processors to each job, thus increasing efficiency
and therefore system capacity.

Setia, Squillante, and Tripathi use a queuing the-
oretic model to investigate how parallel processing
overheads cause efficiency to decrease with larger pro-
cessor allocations [75]. In a later study, they go on to
show that dynamic partitioning of the system beats
static partitioning at moderate and heavy loads [76].
Naik, Setia and Squillante show that dynamic par-
titioning allows much better performance than fixed
partitioning, but that much of the difference in per-
formance can be obtained by using knowledge of job
characteristics, and assigning non-preemptive priori-
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ties to certain job classes for admission to fixed par-
titions [57].

McCann and Zahorjan found that “efficiency-
preserving” scheduling using folding allowed perfor-
mance to remain much better than with equiparti-
tioning (EQUI) as load increases [52]. Padhye and
Dowdy compare the effectiveness of treating jobs as
moldable to that of exploiting their malleability by
folding [61]. They find that the former approach suf-
fices unless jobs are irregular (i.e., evolving) in their
pattern of resource consumption. Similarly, in the
context of quantum-based allocation of processing in-
tervals, Chiang et al. showed that static processor
allocations (for which jobs need only be moldable)
led to performance nearly as good as that obtained
by dynamic processor allocation (which requires that

jobs be malleable) [10].

2.2.5 Non-work-conserving scheduling

Downey has studied the problem of scheduling in an
environment where moldable jobs are activated from
an FCFS queue, and run to completion [13]. He sug-
gests how to use predictions of the expected queuing
time for awaiting the availability of different numbers
of processors in order to decide when a particular job
should be activated. The tradeoff is between starting
a job sooner with fewer processors and delaying its
start (causing processors to be left idle) until a larger
number of processors is available. Algorithms that
leave processors idle in anticipation of future arrivals
were also investigated by Rosti et al. [70] and Smirni

et al. [82].

2.2.6 Time-slicing and space-slicing
scheduling

Many variations of scheduling algorithms based on
time-slicing and space-slicing have been proposed and
evaluated. Time-slicing 1s motivated by the high
variability and imperfect knowledge of service times,
while space-slicing is motivated by the goal of having
processors used with high efficiency.

Gang scheduling is compared to local scheduling
and 1is found to be superior by Feitelson and Rudolph
[25]. Squillante et al. and Wang et al. have analyzed
a variation of gang scheduling that involves providing
service cyclically among a set of fixed partition config-
urations, each having a number of partitions equal to
some power of two [86, 93]. They find that long jobs
benefit substantially from this approach, but only at
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the cost of longer response times for short jobs. Fei-
telson and Rudolph and Hori et al. analyze a more
flexible policy in which there is time slicing among
multiple active sets of partitions [24, 37].

Lee et al. have studied the interaction of gang
scheduling and I/0O, and found that many jobs may
tolerate the perturbations caused by I1/0 [46]. Feit-
elson and Jette have demonstrated that the preemp-
tions inherent in time-slicing allow the system to es-
cape from bad processor allocation decisions, boost-
ing utilization over space-slicing for rigid jobs, and
avoiding the need for non-work conserving algorithms
[21].

Several studies have revealed that EQUI does very
well, even when some moderate charge for the over-
head of frequent preemptions is made [87, 49]. Squil-
lante has provided an analysis of the performance of
dynamic partitioning [85]. Dussa et al. compared
space-slicing against no partitioning, and found that
space-partitioning pays off [15]. On the other hand,
coscheduling is compared to local scheduling and is
found to be superior by Dusseau, Arpaci, and Culler

[16].

2.2.7 Knowledge-based scheduling

Majumdar, Eager and Bunt showed that, under high
variability service time distributions, round-robin
(RR) was far better than FCFS, but that policies
based on knowledge of the processing requirement
(such as least work first) were still better. Knowledge
of the average parallelism of a job makes it possible to
allocate each job an appropriate number of processors
to make it operate at a near-optimal ratio of execu-
tion time to efficiency [17]. With the knowledge of
how many processors each job uses, policies for pack-
ing the jobs into frames for gang scheduling are inves-
tigated by Feitelson [19]. Sobalvarro and Weihl de-
scribe a discipline in which processor pairs that com-
municate frequently are identified, and it 1s assured
that the corresponding threads are all activated at the
same time [84]. A similar scheme for shared memory
was described by Feitelson and Rudolph [23].
Taking system load and minimum and maximum
parallelism of each job into account as well, still
higher throughputs can be sustained [78]. Chiang
et al. show that use of knowledge of some job char-
acteristics plus permission to use a single preemption
per job allows run-to-completion policies to approach
ideal (i.e., no overhead) EQUI [9], and Anastasiadis

et al. show that, by setting the processor allocation



of moldable jobs based on some known job character-
istics, disciplines with little or no preemption can do
nearly as well as EQUT [3].

2.2.8 Other factors in scheduling

McCann and Zahorjan studied the scheduling prob-
lem where each job has a minimum processor allo-
cation due to its memory requirement [53]. They
find that a discipline based on allocation by a buddy
system consistently does well. Alverson et al. de-
scribe the scheduling policy for the Tera MTA | which
includes consideration of memory requirements [2].
Brecht has carried out an experimental evaluation of
scheduling in systems where processors are identified
with clusters or pools, and intracluster memory access
is faster than intercluster access [6]. A surprising re-
sult 1s that worst-fit scheduling, where each job is
allocated to the pool with the most available proces-
sors, beats best-fit scheduling, where jobs are placed
where they come closest to filling out a pool. This
is a result of using a model of evolving jobs, where
it is best to leave these jobs space to grow. Yue de-
scribes the creation of evolving jobs by selecting (in
the compiler) at the top of each loop what degree of
parallelism should be used for that loop [95].

2.2.9 Experiments with parallel scheduling

Many of the results of the modeling studies described
above have been corroborated by experimental stud-
ies in which various policies were implemented in real
systems.

Gibbons has experimented with a number of
scheduling disciplines for scheduling rigid jobs in a
network of workstations environment. His conclu-
sions include:

e Activating jobs in Least Expected Work First
(LEWF) order rather than FCFS reduces the re-
sulting average response time by factors from two
to six in various circumstances.

If service times are unknown or if only estimates
are available, then “back-filling” (as in EASY)
reduces average response times by a factor of two
or more. (If service times are known exactly,
then back-filling has less relative benefit.)

Whether back-filling is used or not, knowledge
of service times is very helpful (particularly if
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preemption is supported). Having job knowl-
edge and using it leads to response times that
are a factor of three to six smaller than for the
case of no knowledge. When the knowledge is re-
stricted to class knowledge based on the a small
database that records execution characteristics
of jobs, the average response times are roughly
half those with no knowledge.

If some knowledge (class or job) is available, then
preemption is much less valuable than in the case
where no knowledge is available and bad deci-
sions are made (which can only be corrected by
preemption).

Parsons has experimented with a broader class of
disciplines, most of which exploit moldable and mal-
leable jobs. His positive observations include:

e If migratable preemption is supported at low
cost, then very good performance can be
achieved, even if no service time knowledge is
available. (Also, malleability is not of much ad-
ditional benefit.)

If only local preemption is supported, then class
knowledge of service times is needed in order to
do well by using LEWF order for activation.

When preemption is not supported, class knowl-
edge and LEWTF order are helpful (roughly halv-
ing average response times), but not as much as
with local preemption supported.

In (typical) environments where the distribution
of service times has very high variance, LERWF
does very well when some service time knowledge
is available; otherwise, if malleability doesn’t
lead to excessive overhead, then a simple rule

like EQUT does well.

Some additional observations on the negative side
are:

e The value of local preemption is restricted by the
fragmentation that occurs because jobs must be
restarted on the same set of processors on which
they previously ran. (In this case, either clever
packing strategies or even fixed partitioning are
beneficial, because the dependencies among jobs
are then limited [26].)

Even with moldable jobs, performance is poor
unless preemption is supported, because if in-
appropriate allocations are occasionally made to



very long jobs, then only preemption can remedy
the situation.

3 Recommendations and
Future Directions

The current state-of-the-art regarding scheduling on
large-scale parallel machines is to use simple and in-
flexible mechanisms. In essence, the number of pro-
cessors used for each job is chosen by the user, some
sufficiently large partition acquired, and the job is
run to completion. A few recent systems support
preemption, so that a parallel job can be interrupted
and possibly swapped out of memory, but many in-
stallations choose not to use this option due to high
associated overheads and lack of adequate 1/0 facil-
ities.

3.1 Recommendations based on

modeling studies

In this section, we present and justify five recommen-
dations for how the current state-of-the-art can be
improved through the use of some approaches and
techniques that have been investigated in modeling
studies that use either analysis or simulation.

After the modeling studies described in Section 2.2,
as well as numerous others, a great deal has been
learned about how “in theory” multiprogrammed
multiprocessor scheduling should be done. As in
many other fields of study, putting the theoretical re-
sults into practice in production environments raises
numerous issues that must be resolved. However,
based on an aggregation of the results from the mod-
eling studies, the recommendations below emerge.
(Note that all the suggested approaches have been
demonstrated to be feasible through prototype im-
plementations and experimentation.)

Recommendation 1: Provide system support for par-
allel job preemption and migration.

It has been seen that preemption is crucial to obtain-
ing the best performance, and that local preemption
alone does not suffice, due to the limitation of not be-
ing able to change the set of jobs on which to execute.
Supporting the ability to change the number of pro-
cessors assigned to a job is desirable to best handle
evolving and malleable jobs, but the marginal gain in
performance is not substantial. Hence it is justified
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only if it can be provided with little additional effort
(as a part of checkpointing procedures, for example).

Recommendation 2: Write applications to be at least
moldable, and evolving, if it is natural to do so.

Since system loads vary with time, and users gener-
ally do not know when they submit a job what the
load conditions will be at the time the job is activated,
it is desirable that jobs be moldable rather than rigid,
so that available processors can be fully exploited at
light load, but still efficient use of processors can be
assured at heavy load.

If jobs are naturally evolving (such as a cyclic fork
join structure, with relatively long sequential peri-
ods), then writing the job as evolving (with annota-
tions or commands to dynamically acquire and re-
lease processors) makes it possible to greatly increase
the efficiency with which the job utilizes the proces-
sors assigned to it.

Writing jobs to be malleable is much more work,
and this i1s typically justified only for applications
that consume a significant portion of a system’s ca-
pacity, because they are either very large or invoked
very frequently.

Recommendation 3: Base processor allocations on
both job characteristics and the current load on the
system.

Jobs make more efficient use of their assigned proces-
sors when they have fewer than when they have more
[17, 78]. Hence, as the workload volume increases, it
1s necessary to reduce the number of processors as-
signed on average to each job. At light load, processor
availability is not an issue, so each job can be given as
many processors as it can use, even if they are not be-
ing used at high efficiency. This leads to low average
response times. At heavy load, the multiprocessing
overhead merely detracts from the overall system ca-
pacity, so giving jobs a small number of processors
(even one in the limit as long as memory require-
ments don’t preclude this extreme possibility) is the
most appropriate action. By doing this, the through-
put capacity of the system can be maximized.
When specific processor allocations are selected by
users, they tend to be overly aggressive or optimistic.
The numbers selected by users are typically suitable
for light load conditions, but they lead to unaccept-
ably low processor efficiency at heavy load. Consider
a case where there are N statistically identical jobs



to run on P processors. Assuming the jobs are mold-
able, the scheduler has the options to either (1) run
them one at a time with all P processors, or (2) run
them in pairs with half the processors each. Both
the mean and the variance of the response times are
lower with the latter approach unless [77]:

2
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S(P)>[ N1

] - S(P/2)

This condition seldom holds when either the num-
ber of processors or the number of jobs 1s moderately
large.

Since users cannot practically know the load on the
system at the time they submit a job, it is best if they
identify a range of acceptable processor allocations,
and then leave the choice within that range to the
scheduler. The current workload volume can be taken
into account either by just observing the occupancy
of the queues in which jobs await initiation, or by
tracking some prediction of overall load as it varies
in daily or weekly cycles.

Recommendation 4: To wmprove average response
times, move away from FCFS and run-to-completion
scheduling, and instead schedule first jobs that are
most likely to complete soon, using preemption when
necessary.

In uniprocessor scheduling, it is known that RR
scheduling protects against highly variable service
time distributions by making average response time
independent of the service time distribution (assum-
ing preemption overhead is negligible). Further, if
the service time distribution is know to have high
variability, then feedback (FB) disciplines can exploit
this, and yield lower average response times as the
variability of the service time distribution grows [11].

When no knowledge of service times is available
and malleability can be exploited, the ideal EQUI
discipline, which attempts to assign an equal num-
ber of processors to each job available for execution
is optimal. EQUT is analogous to RR in a uniproces-
sor context in its ability to schedule relatively well
even with no service time knowledge. If malleabil-
ity is impractical due to lack of system support or
jobs aren’t written to exploit it, then some form of
preemptive scheduling based on time-slicing, such as
gang-scheduling should be used [21, 92, 65].

In current practice, if queues for jobs with smaller
execution times tend to have higher priority, then this
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is consistent with the idea of using available service
time knowledge to favor the jobs that are expected to
complete most promptly. If better knowledge of job
service times than queue identities is available, then
it is best to try to activate the jobs in order of in-
creasing expected remaining service time [64]. If the
service times are known to be highly variable, but the
service times of individual jobs cannot be predicted
in advance, then the discipline that executes the job
with least acquired service first is best because it em-
ulates the behavior of least expected remaining work
first.

Recommendation 5: Make use of information about
job characteristics that is either provided directly, or
measured, or remembered.

Users already provide information about the execu-
tion characteristics of their jobs, in the encoded form
of a queue identifier. User supplied estimates cannot
be directly believed, but the information is generally
positively correlated with truth, and that is sufficient
to make better scheduling possible. (A good schedul-
ing policy will penalize users who intentionally mis-
estimate the characteristics of the jobs they submit.)

In addition to information available before the job
is initiated, it has been demonstrated that it is feasi-
ble to measure some job characteristics (such as effi-
ciency) while the job is executing [60]. Then, assum-
ing the job is malleable, the system can take appro-
priate action with respect to giving additional pro-
cessors, or taking some away from the job. Finally, if
some historical information is retained, then observed
behavior of previous jobs with certain characteristics
can be used to predict (approximately) the behavior
of new jobs with similar characteristics.

3.2 Future Directions

3.2.1 Future theoretical work

Algorithmic approaches and results from theoretical
scheduling studies have influenced how scheduling is
done in practice. However, the time delay for this
influence to be felt has been relatively long.

Some recent work has been intended to bridge
the gap between theory and practice. This work,
ideally involving collaboration between theoreticians
and practitioners, may prove fruitful for both sides.
Such work may include some of the following aspects:



1. Model Definition. New abstract models can
be defined based on real machines. These models
may include such new aspects as:

(a) different preemption penalty costs associ-
ated with local preemption and job migra-
tion,

a relation between execution time and al-
located processors for moldable; evolving,
and malleable jobs,

(b)

prevention of job starvation by guarantee-
ing a completion time for each job at the
submission time of job,

pricing policies that are based on some com-
bination of resource consumption by the
job, and job characteristics that may or
may not be known at the time the job is
submitted,

(e) cyclic load patterns that motivate delaying
some large jobs to time periods of lower

overall demand (e.g., “off hours”).

2. Workload Knowledge. Recently, a large num-
ber of studies addressed the issue of workloads
on commercial multiprocessors [22, 38, 18]. Al-
though it may be difficult to integrate this type
of knowledge into the theoretical analysis of al-
gorithms directly, it should be possible to gener-
ate benchmarks for the evaluation of algorithms.
This would allow a fair comparison among vari-
ous scheduling algorithms and provide an alter-
native method to worst case analysis.

Analysis of Heuristics. The analytical meth-
ods provided by theoreticians should also be used
for the evaluation of practical approaches. This
may yield new knowledge about potential weak-
nesses of these heuristics.

3.2.2 Future practical work

Scheduling algorithms consistent with the recommen-
dations in Section 3.1 have been developed and imple-
mented in prototype form. The experimental results
based on the prototype implementation indicate that
preemption with migration can lead to substantially
reduced average response times.

Relative to common current practice for parallel
job scheduling, the analytic modeling work (backed
up by some prototype implementations) indicates

the possibility of substantial improvements is several
ways:

e Rather than using run-to-completion disciplines,
preemption with migration can be very helpful,
possibly in conjunction with malleability.

Rather than FCFS activation of jobs, average
response times can be reduced by instead acti-
vating first jobs that are expected to finish most
quickly.

Rather than having the user specify the number
of processors on which the job should be exe-
cuted, instead allow the system to bind the pro-
cessor allocation at initiation time, taking into
account the current load on the system.

As approaches to specify parallel job scheduling
across a variety of systems begin to converge, it is
very important that the process retain sufficient flex-
ibility that these improvements in scheduling, that
are apparent from the analytic studies and will be
incorporated into practice in the next few years, can
be accommodated and promoted.

4 The PSCHED Standard
Proposal

Theoretical research like that described in Section 2
tends to focus on algorithmics and easily measurable
metrics, while abstracting away from the details. Sys-
tem administrators, on the other hand, cannot ab-
stract away from real-life concerns. They are also
faced with unmeasurable costs and constraints, such
as interoperability (will machines work together?)
and software lifetime (how soon will parts of the sys-
tem need to be replaced?). Moreover, achieving the
maturity and stability required of production soft-
ware 18 much harder than building a prototyope. Fi-
nally, they need to cater to users and administrators
with many different needs, leading to the creation of
rather elaborate systems [4, 45].

As a result of such concerns, there is much in-
terest in standardizing various software components.
In recent years, message passing libraries were stan-
dardized through the MPI effort. Similarly, the
PSCHED proposal aims at standardizing the interac-
tions among various components involved in parallel
job scheduling.
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4.1 Background

Deferred processing of work under the control of a
scheduler has been a feature of most proprietary op-
erating systems from the earliest days of multi-user
systems in order to maximize utilization of the com-
puter.

The arrival of the UNIX system proved to be a
dilemma to many hardware providers and users be-
cause 1t did not include the sophisticated batch facili-
ties offered by the proprietary systems. This omission
was rectified in 1986 by NASA Ames Research Center
who developed the Network Queuing System (NQS)
as a portable Unix application that allows the rout-
ing and processing of batch “jobs” in a network. To
encourage its usage, the product was later put into
the public domain.

The supercomputing technical committee began as
a “Birds Of a Feather” (BOF) at the January 1987
Usenix meeting. There was enough general interest to
form a supercomputing attachment to the /usr/group
working groups. The /usr/group working groups
later turned into the IEEE POSIX standard effort.

Due to the strong hardware provider and customer
acceptance of NQS, it was decided to use NQS as
the basis for the POSIX Batch Environment amend-
ment in 1987. Other batch systems considered at the
time included CTSS, MDQS, and PROD. None were
thought be have both the functionality and accept-
ability of NQS. This effort was finally approved as
a formal standard on December 13, 1994 as IEEE
POSIX 1003.2d. The standard committee decided
to postpone addressing issues such as programmatic
interface and resource control. The supercomputing
working group has since been inactive.

PBS was developed at NASA Ames Research Cen-
ter as a second generation batch queue system that
conforms to the IEEE Std. 1003.2d-1994. The
project started in June 1993, and was first released
in June 1994 [36].

However, both NQS and PBS were designed to
schedule serial jobs, and have no understanding of
the needs of parallel jobs. The only support for
parallelism is regarding “processors” as another re-
source during allocation, on the same standing as
time, memory, or software licenses. To run efficiently,
all parts of a parallel job needed to be scheduled to
run at the same time. Without support from the
batch queue system, most of the large installation of
MPP systems had reverted to space slicing and an
“all jobs run to completion” policy.
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4.2 Outline of Psched

The idea of creating a metacenter is the force behind
the PSCHED project at NASA Ames Research Cen-
ter. A metacenter is a computing resource where jobs
can be scheduled and run on a variety of machines
physically located in different facilities [35]. This con-
cept ran into several road blocks:

e Some schedulers are tightly integrated with the
message passing library: Condor and PVM.

e Almost all schedulers are tightly integrated with
the batch queue system.

e Lack of support for parallel jobs.

The Numerical Aerospace Simulation facility
(NAS), as part of a Cooperative Research Agree-
ment involving several NASA centers, IBM, Pratt
and Whitney, Platform Computing and others, has
formed an informal group with the goal of devel-
oping a set of “standard” API calls relating to job
and resource management systems. The goal of the
PSCHED API is to allow a site to write a scheduler
that could schedule a variety of parallel jobs: MPI-2,
PVM, and SMP multi-tasking jobs to run on a col-
lection of different machines.

To achieve this goal, we intend to standardize the
interfaces between the different modules: message
passing libraries, task manager, resource manager,
and scheduler (see Fig. 2). The specific roles of these
components are

Task Manager: An entity that provides task man-
agement services such as: spawn a task on a
node, local or remote; deliver a signal from one
task to another task within the same parallel
application; and interface with a resource man-
agement function to provide information about
nodes assigned to the set of tasks which make
up a parallel application, to obtain additional
resources (nodes), to free resources (nodes) no
longer required, and to notify tasks of the need
to checkpoint, suspend, and/or migrate.

Resource Manager: An entity that provides re-
source management services such as: monitor
the resources available in the system, reserve or
allocate resources for tasks, and release or deal-
locate resources no longer needed by tasks.

Scheduler: An entity that schedules jobs. The
scheduler is responsible for determining which
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Figure 2: Components of the PSCHED environment.

task should be run on the system according to
some site specific policy and the resources avail-
able in the system.

The PSCHED API is not an effort to standardize
how any of these modules should be implemented.
It is an effort to identify the minimal functionality
needed from each module and then standardize its
interface. For example, the scheduler is a user of
the interfaces provided by the task manager and the
resource manager. The scheduler waits for scheduling
events from the task manager.

The PSCHED API is divided into two areas:

e A set of calls for use by parallel processing jobs to
spawn, control, monitor, and signal tasks under
the control or management of the job/resource
management system. This set of calls should
meet the needs of MPI-II, PVM, and other mes-
sage passing implementations.

e A set of calls to be used by batch job schedulers.
These calls will allow the development of con-
sistent job/resource schedulers independent of

the job/resource management system used. The
calls are intended to provide a standard means of
obtaining information about the resources avail-
able in the processing environment and about
the supply of jobs and their requirements.

Let us take a look at an example of how a parallel
job would spawn a sub-task, adding more nodes to
the running job. The job will call the message pass-
ing library, for example MPI Spawn in MPI-II. The
message passing library will interface with the task
manager to spawn the new task to add more nodes
to the existing task. The task manager will inform
the scheduler of the request. The scheduler will make
a decision based on its scheduling policy. If the policy
allows the job to expand, the scheduler will request
additional resources from the resource manager, then
inform the task manager to start the new sub-task
and allow the job to proceed.

4.3 Implication on the Programming
and Scheduling of Parallel Jobs

Obvious benefits of a standard like PSCHED include:
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main()

{
tm_handle handle[3];

/* connect to 3 different machines */

tm_connect(server_1, NULL, &handlel[0]);
tm_connect(server_2, NULL, &handlel[1]);
tm_connect(server_3, NULL, &handlel[2]);

while (1) {
/* wait for events from any of the servers */
tm_get_event(handle, 3, &which_handle, &event, &job_id, &args);
ack = process_event(handle[which_handle], event, job_id, args);
/* acknowledge the event */
tm_ack_event (handle[which_handle], event, job_id, ack);

}

process_event (handle, tm_event, job_id, ...)
{
switch (tm_event) {
PSCHED_EVENT_JOB_ARRIVED:
/* call policy routine */
scheduler_policy(job_id, &run_this_job, resource_needed);
/* if decided to run job, reserve the resource
* and run job */
if (run_this_job) {
rm_reserve(resource_list, &resource);
tm_run_job(handle, job_id, resource);
}
break;
PSCHED_EVENT_JOB_EXITED:
/* release the reource*/
if (resource != PSCHED_RESOURCE_NULL)
rm_release(resource);
/* pick a new job to run */
break;
PSCHED_EVENT_YIELD:
/* job is ready to yield some resource, determine
* whether we want to shrink or expand the job.
* call the task manager if any action is taken. */
break;
PSCHED_EVENT_CHECKPOINT:
/* a good time to migrate the job if we wanted to */
break;
PSCHED_EVENT_REQUEUED:
/* pick a new job to run */
break;

Figure 3: Example skeleton of PSCHED code components.
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PSCHED_EVENT_ADD_RESOURCE:
/* run policy routines */

scheduler_policy(job_id, &run_this_job, additional_resource);

if (run_this_job) {
rm_reserve(resource_list,

&resource);

tm_add_resource(handle, job_id, resource);

} else {

/* tell server we can’t fulfill the request
* or suspend the run and wait for the resource */

}

break;
PSCHED_EVENT_RELEASE_RESOURCE:
rm_release(rm_handle, resource);

break;
default:
return UNKNOWN_EVENT;
¥
return SUCCESS;
¥
scheduler_policy(...)
{
/* this is what the scheduler writters will concentrate on */
¥

Figure 3:
e real traces can be used in simulations to develop
better algorithms

e new algorithms could be directly applied to run-
ning systems

e modularity of very complex pieces of software
allows a mix and match of:

batch / task management system

scheduler

communication library (e.g., MPI, PVM)

scheduling simulators

The PSCHED API will be flexible enough to ad-
dress some of the problems identified in Section 3 such
as shrinking and expanding jobs, checkpointing and
migrating jobs.

Hopefully this set of “standard” interfaces will free
researchers from the need to port their work to differ-
ent systems and let them concentrate on innovative
scheduling algorithm and scheduler design. This will

(cont.)

also make production machines more readily avail-
able for researchers. An example of such a scheduler
is given in Fig. 3. Once written it should be very
easily ported to another environment. The tm_ and
rm_ calls are interfaces to the task manager and the
resource manager respectively.

Areas that need standardization but are not cur-
rently addressed by PSCHED include:

e Moving jobs from one batch queue system to an-
other.

e The accounting information kept by the batch
queue system.

5 Discussion and Conclusions

The relationship between theory and practice is an
interesting one. Sometimes theory is ahead of prac-
tice, and suggests novel approaches and solutions that
greatly enhance the state of the art. Sometimes
theory straggles behind, and only provides belated
justification for well known practices. It is not yet
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clear what role it will play in the field of parallel job
scheduling.

The question of how much theory contributes to
practice also depends on the metrics used to measure
performance and quality. In the field of job schedul-
ing, the three most common metrics are throughput,
utilization, and response time. Throughput and uti-
lization are actually related to each other: if we as-
sume that the statistics of the workload are essen-
tially static, then executing more jobs per unit time
on average also leads to a higher utilization. This can
go on until the system saturates. If users are satisfied
with the system, and the system does not saturate,
more jobs will be submitted, leading to higher uti-
lization and throughput. The role of the scheduler is
therefore to delay the onset of saturation, by reducing
fragmentation and assuring efficient usage of proces-
sors [26]. Also, good support for batch jobs can move
some of the load to off hours, further increasing the
overall utilization.

In practice utilization is a very commonly used
metric, as it is easy to measure and reflects directly
on the degree to which large investments in paral-
lel hardware are used efficiently. Throughput figures
are hardly ever used. Reported utilization figures
vary from 50% for the NASA Ames iPSC/860 hy-
percube [22], through around 70% for the CTC SP2
[38], 74% for the SDSC Paragon [91] and 80% for the
Touchstone Delta [55], up to more than 90% for the
LLNL Cray T3D [21]. Utilization figures in the 80—
90% range are now becoming more common, due to
the use of more elaborate batch queueing mechanisms
[50, 80, 91] and gang scheduling [21]. These figures

seem to leave only little room for improvement.

However, it should be noted that these figures only
reflect one factor contributing to utilization. The real
utilization of the hardware is the product of two fac-
tors: the fraction of PEs allocated to users, and the
efficiency with which these PEs are used. The figures
above relate to the first factor, and depend directly on
the scheduling policies; they show that current sys-
tems can allocate nearly all the resources, with little
loss to fragmentation. But the efficiency with which
the allocated resources are used depends more on the
application being run, and can be quite low. How-
ever, the system can still have an effect, because in
most applications the efficiency trails off as proces-
sors are added. Thus allocating less processors under
high loads should improve the second factor, and lead
to higher overall utilization [44, 69, 52]. This is pos-

sible with moldable or malleable jobs, but not with
rigid ones.

The case of the response time metric is more com-
plex, because little direct evidence exists. Theory
suggests that preemption be used to ensure good
response times for small jobs [65], especially since
workloads have a high variability in computational
requirements [22]. This comes close on the heels of
actual systems that implement gang scheduling for
just this reason [47, 33, 28, 21].

Actually two metrics may be used to gauge the re-
sponsiveness of a system: the actual response time
(or turnaround time, i.e. the time from submittal to
termination), or the slowdown (the ratio of the re-
sponse time on a loaded system to the response time
on a dedicated system). Using actual response times
places more weight on long jobs, and “doesn’t care”
if a short job waits a few minutes, so it may not re-
flect the users’ notion of responsiveness. Slowdown
reflects the rather reasonable notion that responsive-
ness should be measured against requirements, mean-
ing that users should expect their jobs to take time
that is proportional to the computation performed.
However, for very short jobs, the denominator be-
comes very small, leading to a large slowdown, even
though the actual response time may be quite short,
well within the interactive range. It may therefore be
best to combine the two metrics. Let T represent the
response time on the loaded system, Ty the response
time on a dedicated system, and T} the threshold of
interactivity (i.e. the time users are willing to wait).
The combined metric for responsiveness as percieved
by users would then be

oo

For long jobs, this is the normal slowdown. For short
jobs, this is the slowdown relative to the interactiv-
ity threshold, rather than relative to the very short
runtime on a dedicated system. If we use T} as the
unit of time, then for short jobs the expression de-
generates to the response time. We suggest the name
“bounded slowdown” for this metric, as it is similar
to the slowdown metric, but bounded away from high
values for very short jobs.

Two possible roles for theory, that have relatively
few parallels in practice, are how to use knowledge
about specific jobs [77], and how to tune algorithmic
parameters [92]. In practice, knowledge about jobs
is limited to that supplied by the users, typically in

T/Ty
T/T)

if Ty > Ty
if Ty < Ty

20



the form of choosing a queue with a certain combina-
tion of resource limits. This approach has two main
drawbacks: first, it leads to a combinatorical explo-
sion of queues, that are hard to deal with. Second,
even with very many queues, the resolution in which
requirements are expressed 1s necessarily very coarse,
and user estimates are notoriously inaccurate any-
way. Recent more theoretical work shows how data
can be acquired automatically by the system, rather
than relying on the users [60, 32, 13].

At the same time that theoretical work is focus-
ing, at least to some degree, on practical concerns,
practice in the field seems to be rather oblivious
of this development. One reason is that the larger
and more advanced installations have been devel-
oping rather elaborate scheduling facilities, which
achieve reasonable results, so the pressure for search-
ing for additional improvements outside is dimin-
ished. Another reason is the overwhelming concern
for backwards compatability, portability, and interop-
erability, which leads to standards based on common
practices and discourages innovations. It should be
hoped, however, that the developed standards will be
flexible enough to allow unanticipated advances to be
incorporated in the future.
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