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in conjunction with the processors, rather than beingtreated as a distinct resource. However, this does notpreclude a shared address space model of computa-tion, and indeed many recent systems provide hard-ware support for di�erent levels of memory sharing.There are a growing number of high performancecomputing facilities that support large diverse work-loads of parallel jobs on multicomputers that havetens to thousands of processors. The typical way thatthey are currently used is that:1. The system is divided into \partitions" consist-ing of di�erent numbers of processors. Mostprocessors are allocated to partitions devoted toserving parallel jobs. One partition is typicallyset aside for support of interactive work throughtime-slicing of its processors. Another may bedevoted to service tasks, such as running a par-allel �le system. The con�guration of partitionsmay be changed on a regular basis (for example,by providing larger partitions for parallel jobs atnight or over weekends, at the expense of theinteractive partition).2. A (large) number of queues are established, eachone corresponding to a speci�c combination ofjob characteristics. (For example, one queuemight correspond to jobs that require as many as32 processors, and are expected to run no longerthan 15 minutes.) Some queues are served athigher priority than others, so the user tends tosubmit a job to the highest priority queue forwhich the job quali�es based on its expected re-source requirements.3. Each partition is associated with one or morequeues, and its processors serve as a pool forthose queues. Whenever some processors arefree, the associated queues are searched in or-der of priority for one that is non-empty. The1



�rst job in that non-empty queue is then acti-vated in the partition, and it runs until it com-pletes, provided the number of free processors issu�cient. Within each queue jobs are processedstrictly in �rst-come-�rst-served order. (If thejobs in a single queue have highly variable exe-cution times, then short jobs will commonly bedelayed by long jobs preceding them; this pit-fall is avoided by having a number of queues,and placing jobs among them based on their ex-pected execution times, and then giving higherpriority to the queues containing the jobs withsmaller execution times.) A relatively recent in-novation in some production systems is the useof a scheduler that allows non-FCFS processingin a queue. (For example, the EASY schedulerdoes \back-�lling", which amounts to allowingsmaller jobs to jump ahead of larger ones undercertain conditions [50].)Thus:� the number of processors assigned to a job is�xed by the user;� once initiated the job runs to completion.While there exist some innovations that have beenintroduced into production systems, such as non-FCFS service and support for swapping, the generaltrend is to retain the same framework, and moreover,to cast it into a standard. This exposes the problemsof the divergence between theory and practice [26].In fact, there is considerable theoretical work latelythat tries to be more directly relevant to practice, butfalls outside of the above framework. For example,theoretical analysis underscores the e�ectiveness ofpreemption in achieving low average response times,and also shows that considerable bene�ts are possibleif the scheduler is allowed to tailor the partition sizesin accordance with the current system load. Notably,much of this work is based on workload models thatare derived from measurements at supercomputer in-stallations.We survey the theoretical background in Section 2,and the speci�c recommendations that are made inSection 3. The standardization e�ort based on prac-tical work at large installations is reviewed in Section4. Finally, we discuss this state of a�airs and presentour conclusions in Section 5.

2 Survey of Theoretical ResultsVarious kinds of scheduling or sequencing problemshave been addressed since the �fties by theoreticalresearchers from the areas of computer science, oper-ations research, and discrete mathematics. The chal-lenge of e�cient job management on computers hasfrequently been named as a key reason to addressthis kind of problems. This is especially true for jobscheduling on parallel systems with a large numberof processors or nodes. Hence a direct use of manyof these theoretical results in real applications wouldseem to be natural. However, in reality these the-oretical results are rarely cited in more applicationoriented work and almost never used in commercialsystems.By reviewing some of the results in theoretical jobscheduling we therefore want to address the ques-tions:� What kind of help can designers of commercialscheduling systems expect to obtain from the so-lution of theoretical problems?� Is it useful for researchers and developers target-ing the design of new scheduling systems for realmachines to spend their time studying theoreti-cal papers as well?� If yes, which of those papers are most likely toprove really helpful?� Is there any purpose to generate abstract modelsof real machines and real scheduling problemswhich may be interesting for theoreticians?2.1 Classi�cation of TheoreticalResultsA substantial divergence has already been noted be-tween practical approaches and theoretical conceptsin general. But in addition there is also a large diver-sity among theoretical methods. Therefore, it maynot be appropriate to talk about theoretical work inthis area as a uniform block. Hence, in order to ad-dress some of the above mentioned questions we �rstwish to provide a rough classi�cation of di�erent the-oretical models and results. Also, we want to es-tablish a connection between the various theoreticalenvironments and situations arising in real multipro-cessors.2



2.1.1 Cost metricFor the discussion of the various cost metrics we usethe following notations:ti completion time of job i in ascheduledi deadline of job isi release time of job iwi weight of job iHere, the completion time ti is the time when thecomputer system has �nally completed work on thisjob. Note that no information is provided on whetherthe job has been successfully completed or whetherit has been removed from the system for other rea-sons. Next, the release time si is the earliest time thecomputer system can start working on job i. Usually,the release time of a job is identical with its submis-sion time or arrival time, that is the time a computersystem becomes aware of the new job for the �rsttime. However, in some studies it is assumed thatthe scheduling system is already aware of all jobs attime 0, but job i cannot be started before some timesi � 0. The meaning of the deadline di is not de�nedin a unique way: Not meeting the deadline for a spe-ci�c job, i.e. ti > di, may either cause the job to failor may only result in additional costs. The weight wiof a job is a way to prioritize one job over another.Obviously, scheduling problems arise if di�erentjobs compete with each other over the allocation ofsystem resources. The assignment of those resourcesto a speci�c job will result in some costs for this job.In many theoretical papers the cost of a schedule issimply the sum of the individual job costs for all jobs.This cost function serves as basis to compare andevaluate di�erent schedules. Assuming a job system� the following metrics are commonly used:Makespan (throughput) maxi2� tiDeadline misses jfi 2 � jti > digjWeighted completion time Xi2� witiWeighted ow (response)time Xi2� wi(ti � si)Weighted tardiness Xi2� wimaxf0; ti � dig

Note that response time and ow time usually havethe same meaning. The origin of these criteria of-ten goes back to the �fties. For instance Smith [83]showed in 1956 that the sum of the weighted com-pletion times for a system of jobs on a single pro-cessor can be minimized if the tasks are scheduledby increasing execution time to weight ratio, the socalled Smith ratio. If all jobs have unit weight thisalgorithm becomes the well known shortest-job �rstmethod.These metrics allow a relatively simple evaluationof algorithms which may be one reason they havebeen frequently used in theoretical scheduling up tonow. Also, some of the metrics are closely related toeach other.Example 1 A schedule with optimal weighted com-pletion time also has the optimal weighted ow time,provided both schedules obey the same model con-straints. However, it is much easier to �nd a schedulewhich deviates a constant factor from the optimum incase of the weighted completion time metric than forthe weighted ow time metric, as shown by Kellereret al. [43] and by Leonardi and Raz [48].Looking at the problem from another perspectivewe can state that in a business environment onewould expect an optimal job scheduler to simplyachieve two goals:1. Satisfy the users.2. Maximize the pro�t.Undoubtedly, there is a strong qualitative relationbetween the abovementioned theory criteria and thecommercial goals. For instance, a reduction of thejob response time will most likely improve user sat-isfaction. But to our knowledge a quantitative linkbetween the two types of criteria has never been es-tablished.Example 2 Assume that a job i needs approximately3 hours of computation time. If the user submits thejob in the morning (9am) he may expect to receive theresults after lunch. It probably does not matter to himwhether the job is started immediately or delayed foran hour as long as it is done by 1pm. Any delay be-yond 1pm may cause annoyance and thus reduce usersatisfaction, i.e. increase costs. This corresponds totardiness scheduling. However, if the job is not com-pleted before 5pm it may be su�cient if the user gets3



his results early next morning. Moreover, he may beable to deal with the situation easily if he is informedat the time of submission that execution of the job by5pm cannot be expected. Also, if the user is chargedfor the use of system resources, he may be willing topostpone execution of his job until nighttime when thecharge is reduced.The use of metrics such as throughput and responsetime in many commercial installations may be due tothe simplicity of the evaluation, or it may be a signof some non-obvious inuence from theory. On theother hand, a good management policy for a com-mercial system may require that di�erent metrics areused during di�erent times of the day: During day-time many users will actually wait for the completionof their submitted jobs. Thus a response time metricis appropriate. However, during the night it is bestto maximize the throughput of jobs.Example 3 Fig. 1 shows the load of a multiproces-sor over the course of a day. For reasons of simplicityeach job is described as a rectangle. Black rectanglesdenote idle processors due to fragmentation. How-ever, note that multiprocessors do not necessarily re-quire a linear one-dimensional processor space. Butthis way it is easier to visualize jobs. As shown in the�gure, during periods of high user activity small jobsare given preference even if some processors remainidle due to fragmentation of the processor space. Jobsare allocated resources such that the shortest responsetime is achieved. On the other hand during periodsof low user activity large batch jobs are started. Alsomoldable jobs are run in a way to increase e�ciency,i.e. using less processors but requiring more executiontime.Therefore, recent studies, e.g. Charkrabarti etal. [8], explicitly address the problem of bicriteriascheduling where scheduling methods are introducedwhich generate good schedules with respect to themakespan and the weighted completion time metric.2.1.2 The ModelA large variety of di�erent machine and schedulingmodels have been used in studies of scheduling prob-lems. The constraints incorporated into these modelsdirectly a�ect operations of the scheduler. They areat least partly inspired by the way real systems aremanaged and how parallel applications are written.

In the following we roughly classify these models ac-cording to �ve criteria:1. Partition Speci�cationEach parallel job is executed in a partition that con-sists of a number of processors. The size of such apartition may depend on the multiprocessor, the ap-plication, and the load of multiprocessor [26]. More-over, the size of the partition of a speci�c job maychange during the lifetime of this job in some mod-els:1. Fixed. The partition size is de�ned by the sys-tem administrator and can be modi�ed only byreboot.2. Variable. The partition size is determined atsubmission time of the job based on user request.3. Adaptive. The partition size is determined bythe scheduler at the time the job is initiated,based on the system load, and taking the userrequest into account.4. Dynamic. The partition size may change dur-ing the execution of a job, to reect changingrequirements and system load.Feldmann et al. [27] have considered �xed parti-tions generated by di�erent architectures such as hy-percubes, trees, or meshes. Many other authors usethe variable partitioning paradigm, in which each jobrequires a speci�c number of processors but can bescheduled on any subset of processors of the system.An example of a theoretical study based on the adap-tive approach is the work of Turek et al. [89]. Here,the application does not require a speci�c number ofprocessors, but can use di�erent numbers. However,once a partition for a job has been selected its sizecannot change anymore. Finally, in dynamic parti-tioning the size of a partition may change at run time.This model has, for instance, been used by Deng etal. [12].2. Job FlexibilityAs already mentioned advanced partitioningmethodsmust not only be supported by the multiprocessorsystem but by the application as well. Therefore,Feitelson and Rudolph [26] characterize applicationsas follows:4
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Figure 1: Workload of a parallel computer over the course of a day.1. Rigid jobs. The number of processors assignedto a job is speci�ed external to the scheduler, andprecisely that number of processors are dedicatedto the job throughout its execution.2. Moldable jobs. The number of processors as-signed to a job is determined by the systemscheduler within certain constraints when the jobis �rst activated, and it uses that many proces-sors throughout its execution.3. Evolving jobs. The job goes through di�erentphases that require di�erent numbers of proces-sors, so the number of processors allocated maychange during the job's execution in response tothe job requesting more processors or relinquish-ing some. Each job is allocated at least the num-ber of processors it requires at each point in itsexecution (but it may be allocated more to avoidthe overheads of reallocation at each phase).4. Malleable jobs. The number of processors as-signed to a job may change during the job's ex-ecution, as a result of the system giving it addi-
tional processors or requiring that the job releasesome.The manner in which an application is written de-termines which of the four types is used1. The moree�ort devoted to writing the application with theintention of promoting it to one of the later types,the better a good scheduler can perform with respectto both the particular job, and the whole workload.Generally, a scheduler can start a job sooner if thejob is moldable or even malleable than if it is rigid[88].If jobs are moldable, then processor allocations canbe selected in accordance with the current systemload, which delays the onset of saturation as systemload increases [26]. It is generally not di�cult to writean application so that it is moldable, and is able toexecute with processor allocations over some range(e.g., any power of two from four to 256). Evolv-ing jobs arise when applications go through distinctphases, and their natural parallelism is di�erent in1Some theoretical studies use di�erent terminology. Forexample, Ludwig and Tiwari [51] speak about \malleable" jobswhich are equivalent to moldable jobs in our terminology.5



di�erent phases. For such jobs, system calls are in-serted at the appropriate points in the applicationcode to indicate where parallelism changes [95].Certain parallel applications, such as those basedon the \work crew" model2, can be modi�ed to bemalleable relatively easily. An increased processor al-location allows more processors to take work from thequeue, while a reduction means that some processorscease picking up work and are deallocated [68]. Inmost cases, however, it is more di�cult to supportmalleability in the way an application is written. Oneway of attaining a limited form of malleability is bycreating as many threads in a job as the largest num-ber of processors that would ever be used, and thenusing multiplexing (or folding [52, 39]) to have thejob execute on a lesser number of processors. Alter-natively, a job can be made malleable by insertingapplication speci�c code at particular synchroniza-tion points to repartition the data in response to anychange in processor allocation. The latter approachis somewhat more e�ective, but it requires more ef-fort from the application writer, as well as signi�-cantly more system support. Much of the requiredmechanisms for supporting malleable job schedulingis present in facilities for checkpointing parallel jobs[67]. Hence, a combined bene�t can be derived ifprocessor allocations are changed only at times whencheckpoints are taken.For stable applications that are widely and fre-quently used by many users, the e�ort required tomake them malleable may be well justi�ed. Other-wise, it is probably not worthwhile to write applica-tions so that they are malleable.3. Level of Preemption SupportedAnother issue is the extent to which individualthreads or entire jobs can be preempted and poten-tially relocated during the execution of a job:1. No Preemption. Once a job is initiated it runsto completion while holding all its assigned pro-cessors throughout its execution.2. Local Preemption. Threads of a job may bepreempted, but each thread can only be resumedlater on the same processor. This kind of pre-emption does not require any data movementbetween processors.2In the \work crew" model, processors pick up relativelysmall and independent units of computation from a centralqueue.

3. Migratable Preemption. Threads of a jobmay be suspended on one processor and subse-quently resumed on another.4. Gang Scheduling. All active threads of ajob are suspended and resumed simultaneously.Gang scheduling may be implemented with orwithout migration.While many theoretical scheduling studies only usea model without preemption, more recently preemp-tion has also been taken into account. Schwiegels-hohn [72] uses a gang scheduling model without mi-gration. The work of Deng et al. [12] is based uponmigratable preemption.In a real system the preemption of a job requiresthat all the job's threads be stopped in a consistentstate (i.e., without any messages being lost), and thefull state of each thread must be preserved. Thememory contents associated with the job may be ei-ther explicitly written out of memory, or may be im-plicitly removed over time by a process such as pagereplacement. Whether or not the data of a job is re-moved from memory when the job is preempted de-pends in part on the memory requirements of the pre-empting job and the total amount of memory avail-able.In addition migratable preemption needs the mech-anism of moving a thread from one processor to an-other, while preserving all existing communicationpaths to other threads. Also, when a thread is mi-grated, its associated data must follow. In messagepassing systems, this requires that the data be copiedfrom one processor to another. In shared memorysystems, the data can be transferred a cache lineor page at a time as it is referenced. Preemptionmay have great bene�t in leading to improved per-formance, even if it it used infrequently and on onlya small fraction of all jobs.Preemption in real machines has an overhead costwhich is ignored in some theoretical studies. Motwaniet al. [56] address the overhead by minimizing thenumber of preemptions. In order to compare a pre-emptive schedule with non-preemptive ones Schwie-gelshohn [72] included in his model a time penaltyfor each preemption which increases the cost of theschedule.4. Amount of Job and Workload Knowledge AvailableSystems di�er in the type, quantity, and accuracy ofinformation available to and used by the scheduler.6



Characteristics of individual jobs that are useful inscheduling include (i) the total processing require-ment, and (ii) the speedup characteristics of the job.Full knowledge of the latter requires knowing the ex-ecution time of the job for each number of processorson which it might be executed. Partial knowledgeis provided by characteristics such as average paral-lelism (the average number of processors busy whenthe job is allocated ample processors), and maximumparallelism (the largest number of processors that ajob can make use of at any point in its execution).Workload information is also useful in choosing ascheduling policy. For example, workload measure-ments at a number of high-performance computingfacilities have indicated that the variability in pro-cessing requirements among jobs is extreme, withmost jobs having execution times of a few seconds,but a small number having execution times of manyhours. The coe�cient of variation3, or CV, of theservice times of jobs has been observed to be in thefour to seventy range at several centers [9, 65, 22].This implies that a mechanism to prevent short jobsfrom being delayed by long jobs is mandatory.The knowledge available to the scheduler may beat one of the following levels:1. None. No prior knowledge is available or usedin scheduling, so all jobs are treated the sameupon submission.2. Workload. Knowledge of the overall distribu-tion of service times in the workload is available,but no speci�c knowledge about individual jobs.Again, jobs are treated the same, but policy at-tributes and parameters can be tuned to �t theworkload.3. Class. Each submitted job is associated with a\class", and some key characteristics of jobs inthe class are known, including, for example, esti-mates of processing requirement, maximumpar-allelism, average parallelism, and possibly moredetailed speedup characteristics.4. Job. The execution time of the job on any givennumber of processors is known exactly.Job knowledge, which is de�ned to be exact, is un-realistic in practice. However, assuming omniscience3The coe�cient of variation of a distribution is its standarddeviation divided by its mean.

in modeling studies makes it possible to obtain an op-timistic bound on performance that is not attainablein practice. Presuming job knowledge in modelingstudies sets a standard in performance against whichpractically realizable scheduling algorithms, whichuse class knowledge at most, can be compared.While in many theoretical studies of schedulingproblems all job information is assumed to be avail-able, there are a few papers which explicitly addressthe so called \non-clairvoyant scheduling", see e.g.Motwani et al. [56]. Also, on-line scheduling has beenaddressed more frequently in recent years. For in-stance Shmoys et al. [79] discussed makespan schedul-ing if the job characteristics are not known until therelease time and the execution time requirements ofthe job are also not available before the job has beenexecuted to completion.Many systems make no e�ort at all to use informa-tion that accompanies a job submission to estimatethe resource requirements of the job. However, small-est demand type disciplines (e.g., \Least Work First"(LWF)) can be used to yield low average responsetimes if the resource demand of each job is known(precisely or approximately). For example, in manycurrent systems jobs are submitted to one of a largenumber of queues, and the queue selected indicatessuch information as the number of processors needed,a limit on the execution time, and other parame-ters. Thus, each queue corresponds to a job class. Inthese systems, this information can be used implic-itly through the way queues are assigned to (�xed)partitions, and the relative priorities assigned to thequeues.Any information provided by the user relating tojob resource requirements must be used carefully bothbecause it is prohibitively di�cult for the user to con-sistently provide information with high accuracy, andalso because the user may be motivated to deceive thescheduler intentionally. Thus, sources from which togain knowledge about job resource requirements mustbe broadened to include:� consider user provided information (while recog-nizing that it is historically quite unreliable, inpart because users aren't careful about makinggood estimates);� measure e�ciency during execution [60], and in-crease processor allocations only for jobs that areusing their currently allocated processors e�ec-tively;7



� keep track of execution time and speedup knowl-edge from past executions on a class by class ba-sis, and use that information.All identifying characteristics associated with thesubmission of a job can potentially be used to deter-mine its class. These characteristics include the userid, the �le to be executed, the memory size speci�ed,and possibly others. An estimate of the executiontime of a job being scheduled can be obtained fromretained statistics on the actual resource usage of jobsfrom the same (or a similar) class that have beenpreviously submitted and executed. Recent work hasdemonstrated the feasibility and potential bene�t ofthis approach [32]. A small database can be keptto record resource consumption of jobs on a class byclass basis. This is very useful particularly for largejobs that are executed repeatedly.5. Memory AllocationIn some systems, memory as well as processors maybe a limiting resource on performance. This is par-ticularly true in shared-memory systems, where theallocation of memory is relatively decoupled from theallocation of processors. Thus there are two types ofmemory to consider:1. Distributed Memory. Typically each proces-sor and its associated memory is allocated as aunit, since a thread must use message passingto access data not in the local memory of theprocessor on which it is running.2. Shared Memory. Data stored remotely froma processor can be accessed directly (albeit athigher cost than for locally stored data), so thereare situations where the ideal resource allocationdoes not distribute memory among applicationsin the same proportions as processors.It is commonly assumed that the memory require-ments of a job are known precisely at the time thejob is initiated possibly because the user is requiredto indicate the (maximum) memory requirement ofthe job. Only recently has memory in addition toprocessors been taken into account in scheduling al-gorithms [66, 74, 63, 62].2.1.3 Algorithmic MethodsA large number of theoretical papers deal with theissue of intractability for many scheduling problems

[29]. In the area of parallel job scheduling the mostimportant contributions are made by Du and Leung[14] for preemptive and non-preemptive gang schedul-ing using makespan as criterion, and by Bruno, Co�-man, and Sethi [7] and McNaughton [54] for preemp-tive and non-preemptive weighted completion timescheduling on a parallel computer.Except for the fact that there is no hope for a sim-ple optimal algorithm little help can be expected fromthis work for practical scheduling systems. Further-more, most real systems must deal with a signi�cantnumber of additional constraints, like unknown pa-rameters of jobs. Therefore even for polynomial prob-lems, it is unlikely that an optimal schedule can beachieved. Moreover, a typical scheduler is subject toreal time conditions that do not allow the use of highorder polynomial algorithms. Hence, approaches to�nd optimal solutions for scheduling problems, e.g.with branch and bound algorithms [5], are only usedunder special circumstances. This is especially truefor problems involving a large number of jobs. In ad-dition, those algorithms often produce only a smallimprovement due to the good results of many heuris-tics.With the intractability of many scheduling prob-lems being established, many theoretical researchersturned their attention towards the design of polyno-mial algorithms which guarantee a small deviationfrom the optimal schedule for any job system. Whilein some cases this deviation from the optimum isminimized regardless of the algorithmic complexity[71], other work analyzes the performance of partic-ular simple algorithms, like list scheduling methods[42, 94]. The latter group promises to be of the great-est help for the selection of scheduling methods in realsystems. Therefore, we will look more closely at thisgroup in the following. Moreover, these algorithmicmethods are also used for determining the cost de-viation from the optimum in the on-line case or ifsome job properties, e.g. the execution time, are un-known. This is called competitive analysis introducedby Sleator and Tarjan [81]. It is especially noteworthythat the area of approximation algorithms is consid-ered to be one of the most ourishing areas of theo-retical computer science in recent years.Although many of the approximation algorithmshave a low computational complexity and produceschedules that are close to the optimum, they areusually not the method of choice in commercial in-stallations. Apart from lack of knowledge about these8



algorithms there are two principal reasons for this:1. Worst Case Analysis. The worst case ap-proximation factor is usually of little relevanceto a practical problem since a schedule that ap-proaches the worst case is often unacceptable fora production schedule. For instance, the make-span approximation factor for list schedules ofnon-preemptive parallel job schedules is 2. Inother words, up to 50% of the nodes of a mul-tiprocessor system may be left idle. However,these high costs are only encountered for a fewjob systems which may never be part of realworkloads.Example 4 Turek et al. [90] proposed socalled SMART schedules for the o�-line non-preemptive completion time scheduling of paralleljobs. They proved an approximation factor of 8[73] and gave a worst case example with a devia-tion of 4.5. However, applying the algorithm onjob systems obtained from the traces of the IntelParagon at the San Diego Supercomputing Cen-ter gave an average deviation from the optimumby 2.0. This result was further improved to thefactor 1.4 by using the job order of the SMARTschedule as input for a list schedule [34].2. Model Limitations. Some theoretical meth-ods are based on restricted models which devi-ate signi�cantly from real life situations. For in-stance the above mentioned SMART algorithmgenerates non-preemptive o�-line schedules andrequires the knowledge of the execution time ofall jobs. On the other hand, the considerationof more complex constraints may make any gen-eral approximationalgorithm impossible [43, 48].Moreover, there may be additional user demandswith little inuence on the cost function whichcannot be easily incorporated into these algo-rithms.Example 5 In many computing centers it wasnoted that a non-negligible number of parallelbatch jobs failed to run more than a minute dueto reasons such as an incorrectly speci�ed data�le. Therefore, some users request that their jobshould be started immediately after submission,then interrupted after 1 minute and �nally re-sumed and completed at a later time.

Nevertheless, the theoretical analysis of algorithmscan be of invaluable help even for practical purposes.The evaluation of any schedule can be either done bycomparing this schedule against the optimal sched-ule or against schedules generated by other methods.But only the deviation from the optimal schedule candetermine whether there is enough room for improve-ment to motivate further algorithmic research. Un-fortunately, the optimal schedule cannot be obtainedeasily. But many theory papers dealing with approxi-mation algorithms also use lower bounds for the opti-mal schedule to determine the approximation factor,e.g. the squashed area bound introduced by Turek etal. [90]. The same bounds can also be applied for theevaluation of a heuristic schedule for a real workloadprovided the same cost metric is used.Moreover, the theoretical analysis may be able topinpoint the conditions which may lead to a badschedule. These methods can also be applied toany practical approach and help to determine crit-ical workloads. If the evaluation of real traces revealsthat such critical workloads rarely or even never occurthen they can either be ignored or the approach canbe enhanced with a procedure to speci�cally handlethose situations.Example 6 For instance Kawaguchi and Kyan'sLRF schedule [42] can be easily extended to paralleljobs. As long as no parallel job requires more than50% of the processors, this will only increase the ap-proximation factor from 1.21 to 2 [88]. However, ifjobs requiring more processors are allowed in addi-tion, no constant approximation factor can be guar-anteed.Finally, as already mentioned the costs of theschedules generated by theoretical approximationmethods are usually very low for the average work-load. Even if they do not comply directly with allconstraints of a real scheduling environment, they canbe used as building blocks of a practical scheme. Forinstance an o�-line algorithm can be applied to a sub-set of jobs whenever a new job arrives.2.2 Some Speci�c Studies2.2.1 Workload CharacterizationSeveral workload characterization studies of produc-tion high-performance computing facilities have beencarried out. They reveal characteristics of actualworkloads that can be exploited in scheduling.9



Feitelson and Nitzberg noted that repeated runs ofthe same application occurred frequently, and laterruns tended to have similar resource consumptionpatterns as the corresponding earlier ones [22]. Ho-tovy studied a quite di�erent system, yet found manyof the same observations to hold [38]. Gibbons alsoanalyzed workload data from the Cornell site in addi-tion to two sites where parallel applications are exe-cuted on a network of workstations [31]. He foundthat, in all three systems, classifying the jobs byuser, program executed, and requested degree of par-allelism led to classes of jobs in which execution timevariability is much lower than in the overall workload.Feitelson studied the memory requirements of par-allel jobs in a CM-5 environment. He found thatmemory is a signi�cant resource in high-performancecomputing, although he observed that users typicallyrequest more processors than naturally correspond totheir memory requirements [18]. Jann et al. have pro-duced a workload model based on measurements ofthe workload on the Cornell Theory Center SP2 ma-chine [40]. This model is intended to be used by otherresearchers, leading to easier and more meaningfulcomparison of results. Nguyen at al. have measuredthe speedup characteristics of a variety of applica-tions [59].2.2.2 Scheduling in practiceSeveral groups have modi�ed NQS implementationsto allow queue reordering in order to achieve betterpacking. Lifka et al. have developed a scheduler ontop of LoadLeveler with the feature that the strictFCFS order of activating jobs is relaxed [50, 80]. Inthis scheduler, known as \EASY", jobs are scheduledin a FCFS order to run at the earliest time that asu�cient number of processors are available for them.However, this can mean that smaller jobs may be ex-ecuted before bigger jobs that arrived earlier, when-ever they can do so without delaying the previouslyscheduled jobs. It was found that user satisfactionwas greatly increased since smaller jobs tended to getthrough faster, because they could bypass the verybig ones, yet the users still have the predictability ofknowing just after submission when they can expectthat their job will complete.Henderson describes the Portable Batch System(PBS), another system in which performance gainsare achieved by moving away from strict FCFSscheduling [36]. Wan et al. developed a scheduler

that uses a variation of a 2-D buddy system to doprocessor allocation for the Intel Paragon[91].2.2.3 Thread-oriented schedulingNelson, Towsley, and Tantawi compared four casesin which parallel jobs were scheduled in either a cen-tralized or de-centralized fashion, and the threads of ajob were either spread across all processors or were allexecuted on one processor [58]. They found that bestperformance resulted from centralized scheduling andspreading the threads across processors. Among theother options, decentralized scheduling of split tasksbeat centralized scheduling with no splitting underlight load, but the reverse is true under heavy load.2.2.4 Load-based schedulingBecause the e�ciency of parallel jobs generally de-creases as their processor allocation increases, it isnecessary to decrease processor allocations to mold-able jobs as the overall system load increases in or-der to avoid system saturation [78]. Zahorjan andMcCann found that allocating processors to evolvingjobs according to their dynamic needs led to muchbetter performance than either run-to-completionwith a rigid allocation or round-robin [96]. For theoverhead parameters they chose, round-robin beatrun-to-completion only at quite low system loads.Ghosal et al. propose several processor allocationschemes based on the processor working set (PWS),which is the number of allocated processors for whichthe ratio of execution time to e�ciency is minimized[30]. (The PWS di�ers from the average parallelismof the job by at most a factor of two [17].) The best ofthe variants of PWS gives jobs at most their processorworking set, but under heavy load gives fewer andfewer processors to each job, thus increasing e�ciencyand therefore system capacity.Setia, Squillante, and Tripathi use a queuing the-oretic model to investigate how parallel processingoverheads cause e�ciency to decrease with larger pro-cessor allocations [75]. In a later study, they go on toshow that dynamic partitioning of the system beatsstatic partitioning at moderate and heavy loads [76].Naik, Setia and Squillante show that dynamic par-titioning allows much better performance than �xedpartitioning, but that much of the di�erence in per-formance can be obtained by using knowledge of jobcharacteristics, and assigning non-preemptive priori-10



ties to certain job classes for admission to �xed par-titions [57].McCann and Zahorjan found that \e�ciency-preserving" scheduling using folding allowed perfor-mance to remain much better than with equiparti-tioning (EQUI) as load increases [52]. Padhye andDowdy compare the e�ectiveness of treating jobs asmoldable to that of exploiting their malleability byfolding [61]. They �nd that the former approach suf-�ces unless jobs are irregular (i.e., evolving) in theirpattern of resource consumption. Similarly, in thecontext of quantum-based allocation of processing in-tervals, Chiang et al. showed that static processorallocations (for which jobs need only be moldable)led to performance nearly as good as that obtainedby dynamic processor allocation (which requires thatjobs be malleable) [10].2.2.5 Non-work-conserving schedulingDowney has studied the problem of scheduling in anenvironment where moldable jobs are activated froman FCFS queue, and run to completion [13]. He sug-gests how to use predictions of the expected queuingtime for awaiting the availability of di�erent numbersof processors in order to decide when a particular jobshould be activated. The tradeo� is between startinga job sooner with fewer processors and delaying itsstart (causing processors to be left idle) until a largernumber of processors is available. Algorithms thatleave processors idle in anticipation of future arrivalswere also investigated by Rosti et al. [70] and Smirniet al. [82].2.2.6 Time-slicing and space-slicingschedulingMany variations of scheduling algorithms based ontime-slicing and space-slicing have been proposed andevaluated. Time-slicing is motivated by the highvariability and imperfect knowledge of service times,while space-slicing is motivated by the goal of havingprocessors used with high e�ciency.Gang scheduling is compared to local schedulingand is found to be superior by Feitelson and Rudolph[25]. Squillante et al. and Wang et al. have analyzeda variation of gang scheduling that involves providingservice cyclically among a set of �xed partition con�g-urations, each having a number of partitions equal tosome power of two [86, 93]. They �nd that long jobsbene�t substantially from this approach, but only at

the cost of longer response times for short jobs. Fei-telson and Rudolph and Hori et al. analyze a moreexible policy in which there is time slicing amongmultiple active sets of partitions [24, 37].Lee et al. have studied the interaction of gangscheduling and I/O, and found that many jobs maytolerate the perturbations caused by I/O [46]. Feit-elson and Jette have demonstrated that the preemp-tions inherent in time-slicing allow the system to es-cape from bad processor allocation decisions, boost-ing utilization over space-slicing for rigid jobs, andavoiding the need for non-work conserving algorithms[21].Several studies have revealed that EQUI does verywell, even when some moderate charge for the over-head of frequent preemptions is made [87, 49]. Squil-lante has provided an analysis of the performance ofdynamic partitioning [85]. Dussa et al. comparedspace-slicing against no partitioning, and found thatspace-partitioning pays o� [15]. On the other hand,coscheduling is compared to local scheduling and isfound to be superior by Dusseau, Arpaci, and Culler[16].2.2.7 Knowledge-based schedulingMajumdar, Eager and Bunt showed that, under highvariability service time distributions, round-robin(RR) was far better than FCFS, but that policiesbased on knowledge of the processing requirement(such as least work �rst) were still better. Knowledgeof the average parallelism of a job makes it possible toallocate each job an appropriate number of processorsto make it operate at a near-optimal ratio of execu-tion time to e�ciency [17]. With the knowledge ofhow many processors each job uses, policies for pack-ing the jobs into frames for gang scheduling are inves-tigated by Feitelson [19]. Sobalvarro and Weihl de-scribe a discipline in which processor pairs that com-municate frequently are identi�ed, and it is assuredthat the corresponding threads are all activated at thesame time [84]. A similar scheme for shared memorywas described by Feitelson and Rudolph [23].Taking system load and minimum and maximumparallelism of each job into account as well, stillhigher throughputs can be sustained [78]. Chianget al. show that use of knowledge of some job char-acteristics plus permission to use a single preemptionper job allows run-to-completion policies to approachideal (i.e., no overhead) EQUI [9], and Anastasiadiset al. show that, by setting the processor allocation11



of moldable jobs based on some known job character-istics, disciplines with little or no preemption can donearly as well as EQUI [3].2.2.8 Other factors in schedulingMcCann and Zahorjan studied the scheduling prob-lem where each job has a minimum processor allo-cation due to its memory requirement [53]. They�nd that a discipline based on allocation by a buddysystem consistently does well. Alverson et al. de-scribe the scheduling policy for the Tera MTA, whichincludes consideration of memory requirements [2].Brecht has carried out an experimental evaluation ofscheduling in systems where processors are identi�edwith clusters or pools, and intracluster memory accessis faster than intercluster access [6]. A surprising re-sult is that worst-�t scheduling, where each job isallocated to the pool with the most available proces-sors, beats best-�t scheduling, where jobs are placedwhere they come closest to �lling out a pool. Thisis a result of using a model of evolving jobs, whereit is best to leave these jobs space to grow. Yue de-scribes the creation of evolving jobs by selecting (inthe compiler) at the top of each loop what degree ofparallelism should be used for that loop [95].2.2.9 Experiments with parallel schedulingMany of the results of the modeling studies describedabove have been corroborated by experimental stud-ies in which various policies were implemented in realsystems.Gibbons has experimented with a number ofscheduling disciplines for scheduling rigid jobs in anetwork of workstations environment. His conclu-sions include:� Activating jobs in Least Expected Work First(LEWF) order rather than FCFS reduces the re-sulting average response time by factors from twoto six in various circumstances.� If service times are unknown or if only estimatesare available, then \back-�lling" (as in EASY)reduces average response times by a factor of twoor more. (If service times are known exactly,then back-�lling has less relative bene�t.)� Whether back-�lling is used or not, knowledgeof service times is very helpful (particularly if

preemption is supported). Having job knowl-edge and using it leads to response times thatare a factor of three to six smaller than for thecase of no knowledge. When the knowledge is re-stricted to class knowledge based on the a smalldatabase that records execution characteristicsof jobs, the average response times are roughlyhalf those with no knowledge.� If some knowledge (class or job) is available, thenpreemption is much less valuable than in the casewhere no knowledge is available and bad deci-sions are made (which can only be corrected bypreemption).Parsons has experimented with a broader class ofdisciplines, most of which exploit moldable and mal-leable jobs. His positive observations include:� If migratable preemption is supported at lowcost, then very good performance can beachieved, even if no service time knowledge isavailable. (Also, malleability is not of much ad-ditional bene�t.)� If only local preemption is supported, then classknowledge of service times is needed in order todo well by using LEWF order for activation.� When preemption is not supported, class knowl-edge and LEWF order are helpful (roughly halv-ing average response times), but not as much aswith local preemption supported.� In (typical) environments where the distributionof service times has very high variance, LERWFdoes very well when some service time knowledgeis available; otherwise, if malleability doesn'tlead to excessive overhead, then a simple rulelike EQUI does well.Some additional observations on the negative sideare:� The value of local preemption is restricted by thefragmentation that occurs because jobs must berestarted on the same set of processors on whichthey previously ran. (In this case, either cleverpacking strategies or even �xed partitioning arebene�cial, because the dependencies among jobsare then limited [26].)� Even with moldable jobs, performance is poorunless preemption is supported, because if in-appropriate allocations are occasionally made to12



very long jobs, then only preemption can remedythe situation.3 Recommendations andFuture DirectionsThe current state-of-the-art regarding scheduling onlarge-scale parallel machines is to use simple and in-exible mechanisms. In essence, the number of pro-cessors used for each job is chosen by the user, somesu�ciently large partition acquired, and the job isrun to completion. A few recent systems supportpreemption, so that a parallel job can be interruptedand possibly swapped out of memory, but many in-stallations choose not to use this option due to highassociated overheads and lack of adequate I/O facil-ities.3.1 Recommendations based onmodeling studiesIn this section, we present and justify �ve recommen-dations for how the current state-of-the-art can beimproved through the use of some approaches andtechniques that have been investigated in modelingstudies that use either analysis or simulation.After the modeling studies described in Section 2.2,as well as numerous others, a great deal has beenlearned about how \in theory" multiprogrammedmultiprocessor scheduling should be done. As inmany other �elds of study, putting the theoretical re-sults into practice in production environments raisesnumerous issues that must be resolved. However,based on an aggregation of the results from the mod-eling studies, the recommendations below emerge.(Note that all the suggested approaches have beendemonstrated to be feasible through prototype im-plementations and experimentation.)Recommendation 1: Provide system support for par-allel job preemption and migration.It has been seen that preemption is crucial to obtain-ing the best performance, and that local preemptionalone does not su�ce, due to the limitation of not be-ing able to change the set of jobs on which to execute.Supporting the ability to change the number of pro-cessors assigned to a job is desirable to best handleevolving and malleable jobs, but the marginal gain inperformance is not substantial. Hence it is justi�ed

only if it can be provided with little additional e�ort(as a part of checkpointing procedures, for example).Recommendation 2: Write applications to be at leastmoldable, and evolving, if it is natural to do so.Since system loads vary with time, and users gener-ally do not know when they submit a job what theload conditions will be at the time the job is activated,it is desirable that jobs be moldable rather than rigid,so that available processors can be fully exploited atlight load, but still e�cient use of processors can beassured at heavy load.If jobs are naturally evolving (such as a cyclic forkjoin structure, with relatively long sequential peri-ods), then writing the job as evolving (with annota-tions or commands to dynamically acquire and re-lease processors) makes it possible to greatly increasethe e�ciency with which the job utilizes the proces-sors assigned to it.Writing jobs to be malleable is much more work,and this is typically justi�ed only for applicationsthat consume a signi�cant portion of a system's ca-pacity, because they are either very large or invokedvery frequently.Recommendation 3: Base processor allocations onboth job characteristics and the current load on thesystem.Jobs make more e�cient use of their assigned proces-sors when they have fewer than when they have more[17, 78]. Hence, as the workload volume increases, itis necessary to reduce the number of processors as-signed on average to each job. At light load, processoravailability is not an issue, so each job can be given asmany processors as it can use, even if they are not be-ing used at high e�ciency. This leads to low averageresponse times. At heavy load, the multiprocessingoverhead merely detracts from the overall system ca-pacity, so giving jobs a small number of processors(even one in the limit as long as memory require-ments don't preclude this extreme possibility) is themost appropriate action. By doing this, the through-put capacity of the system can be maximized.When speci�c processor allocations are selected byusers, they tend to be overly aggressive or optimistic.The numbers selected by users are typically suitablefor light load conditions, but they lead to unaccept-ably low processor e�ciency at heavy load. Considera case where there are N statistically identical jobs13



to run on P processors. Assuming the jobs are mold-able, the scheduler has the options to either (1) runthem one at a time with all P processors, or (2) runthem in pairs with half the processors each. Boththe mean and the variance of the response times arelower with the latter approach unless [77]:S(P ) > �2� 2N + 2� � S(P=2)This condition seldom holds when either the num-ber of processors or the number of jobs is moderatelylarge.Since users cannot practically know the load on thesystem at the time they submit a job, it is best if theyidentify a range of acceptable processor allocations,and then leave the choice within that range to thescheduler. The current workload volume can be takeninto account either by just observing the occupancyof the queues in which jobs await initiation, or bytracking some prediction of overall load as it variesin daily or weekly cycles.Recommendation 4: To improve average responsetimes, move away from FCFS and run-to-completionscheduling, and instead schedule �rst jobs that aremost likely to complete soon, using preemption whennecessary.In uniprocessor scheduling, it is known that RRscheduling protects against highly variable servicetime distributions by making average response timeindependent of the service time distribution (assum-ing preemption overhead is negligible). Further, ifthe service time distribution is know to have highvariability, then feedback (FB) disciplines can exploitthis, and yield lower average response times as thevariability of the service time distribution grows [11].When no knowledge of service times is availableand malleability can be exploited, the ideal EQUIdiscipline, which attempts to assign an equal num-ber of processors to each job available for executionis optimal. EQUI is analogous to RR in a uniproces-sor context in its ability to schedule relatively welleven with no service time knowledge. If malleabil-ity is impractical due to lack of system support orjobs aren't written to exploit it, then some form ofpreemptive scheduling based on time-slicing, such asgang-scheduling should be used [21, 92, 65].In current practice, if queues for jobs with smallerexecution times tend to have higher priority, then this

is consistent with the idea of using available servicetime knowledge to favor the jobs that are expected tocomplete most promptly. If better knowledge of jobservice times than queue identities is available, thenit is best to try to activate the jobs in order of in-creasing expected remaining service time [64]. If theservice times are known to be highly variable, but theservice times of individual jobs cannot be predictedin advance, then the discipline that executes the jobwith least acquired service �rst is best because it em-ulates the behavior of least expected remaining work�rst.Recommendation 5: Make use of information aboutjob characteristics that is either provided directly, ormeasured, or remembered.Users already provide information about the execu-tion characteristics of their jobs, in the encoded formof a queue identi�er. User supplied estimates cannotbe directly believed, but the information is generallypositively correlated with truth, and that is su�cientto make better scheduling possible. (A good schedul-ing policy will penalize users who intentionally mis-estimate the characteristics of the jobs they submit.)In addition to information available before the jobis initiated, it has been demonstrated that it is feasi-ble to measure some job characteristics (such as e�-ciency) while the job is executing [60]. Then, assum-ing the job is malleable, the system can take appro-priate action with respect to giving additional pro-cessors, or taking some away from the job. Finally, ifsome historical information is retained, then observedbehavior of previous jobs with certain characteristicscan be used to predict (approximately) the behaviorof new jobs with similar characteristics.3.2 Future Directions3.2.1 Future theoretical workAlgorithmic approaches and results from theoreticalscheduling studies have inuenced how scheduling isdone in practice. However, the time delay for thisinuence to be felt has been relatively long.Some recent work has been intended to bridgethe gap between theory and practice. This work,ideally involving collaboration between theoreticiansand practitioners, may prove fruitful for both sides.Such work may include some of the following aspects:14



1. Model De�nition. New abstract models canbe de�ned based on real machines. These modelsmay include such new aspects as:(a) di�erent preemption penalty costs associ-ated with local preemption and job migra-tion,(b) a relation between execution time and al-located processors for moldable, evolving,and malleable jobs,(c) prevention of job starvation by guarantee-ing a completion time for each job at thesubmission time of job,(d) pricing policies that are based on some com-bination of resource consumption by thejob, and job characteristics that may ormay not be known at the time the job issubmitted,(e) cyclic load patterns that motivate delayingsome large jobs to time periods of loweroverall demand (e.g., \o� hours").2. Workload Knowledge. Recently, a large num-ber of studies addressed the issue of workloadson commercial multiprocessors [22, 38, 18]. Al-though it may be di�cult to integrate this typeof knowledge into the theoretical analysis of al-gorithms directly, it should be possible to gener-ate benchmarks for the evaluation of algorithms.This would allow a fair comparison among vari-ous scheduling algorithms and provide an alter-native method to worst case analysis.3. Analysis of Heuristics. The analytical meth-ods provided by theoreticians should also be usedfor the evaluation of practical approaches. Thismay yield new knowledge about potential weak-nesses of these heuristics.3.2.2 Future practical workScheduling algorithms consistent with the recommen-dations in Section 3.1 have been developed and imple-mented in prototype form. The experimental resultsbased on the prototype implementation indicate thatpreemption with migration can lead to substantiallyreduced average response times.Relative to common current practice for paralleljob scheduling, the analytic modeling work (backedup by some prototype implementations) indicates

the possibility of substantial improvements is severalways:� Rather than using run-to-completion disciplines,preemption with migration can be very helpful,possibly in conjunction with malleability.� Rather than FCFS activation of jobs, averageresponse times can be reduced by instead acti-vating �rst jobs that are expected to �nish mostquickly.� Rather than having the user specify the numberof processors on which the job should be exe-cuted, instead allow the system to bind the pro-cessor allocation at initiation time, taking intoaccount the current load on the system.As approaches to specify parallel job schedulingacross a variety of systems begin to converge, it isvery important that the process retain su�cient ex-ibility that these improvements in scheduling, thatare apparent from the analytic studies and will beincorporated into practice in the next few years, canbe accommodated and promoted.4 The PSCHED StandardProposalTheoretical research like that described in Section 2tends to focus on algorithmics and easily measurablemetrics, while abstracting away from the details. Sys-tem administrators, on the other hand, cannot ab-stract away from real-life concerns. They are alsofaced with unmeasurable costs and constraints, suchas interoperability (will machines work together?)and software lifetime (how soon will parts of the sys-tem need to be replaced?). Moreover, achieving thematurity and stability required of production soft-ware is much harder than building a prototyope. Fi-nally, they need to cater to users and administratorswith many di�erent needs, leading to the creation ofrather elaborate systems [4, 45].As a result of such concerns, there is much in-terest in standardizing various software components.In recent years, message passing libraries were stan-dardized through the MPI e�ort. Similarly, thePSCHED proposal aims at standardizing the interac-tions among various components involved in paralleljob scheduling.15



4.1 BackgroundDeferred processing of work under the control of ascheduler has been a feature of most proprietary op-erating systems from the earliest days of multi-usersystems in order to maximize utilization of the com-puter.The arrival of the UNIX system proved to be adilemma to many hardware providers and users be-cause it did not include the sophisticated batch facili-ties o�ered by the proprietary systems. This omissionwas recti�ed in 1986 by NASA Ames Research Centerwho developed the Network Queuing System (NQS)as a portable Unix application that allows the rout-ing and processing of batch \jobs" in a network. Toencourage its usage, the product was later put intothe public domain.The supercomputing technical committee began asa \Birds Of a Feather" (BOF) at the January 1987Usenix meeting. There was enough general interest toform a supercomputing attachment to the /usr/groupworking groups. The /usr/group working groupslater turned into the IEEE POSIX standard e�ort.Due to the strong hardware provider and customeracceptance of NQS, it was decided to use NQS asthe basis for the POSIX Batch Environment amend-ment in 1987. Other batch systems considered at thetime included CTSS, MDQS, and PROD. None werethought be have both the functionality and accept-ability of NQS. This e�ort was �nally approved asa formal standard on December 13, 1994 as IEEEPOSIX 1003.2d. The standard committee decidedto postpone addressing issues such as programmaticinterface and resource control. The supercomputingworking group has since been inactive.PBS was developed at NASA Ames Research Cen-ter as a second generation batch queue system thatconforms to the IEEE Std. 1003.2d-1994. Theproject started in June 1993, and was �rst releasedin June 1994 [36].However, both NQS and PBS were designed toschedule serial jobs, and have no understanding ofthe needs of parallel jobs. The only support forparallelism is regarding \processors" as another re-source during allocation, on the same standing astime, memory, or software licenses. To run e�ciently,all parts of a parallel job needed to be scheduled torun at the same time. Without support from thebatch queue system, most of the large installation ofMPP systems had reverted to space slicing and an\all jobs run to completion" policy.

4.2 Outline of PschedThe idea of creating a metacenter is the force behindthe PSCHED project at NASA Ames Research Cen-ter. A metacenter is a computing resource where jobscan be scheduled and run on a variety of machinesphysically located in di�erent facilities [35]. This con-cept ran into several road blocks:� Some schedulers are tightly integrated with themessage passing library: Condor and PVM.� Almost all schedulers are tightly integrated withthe batch queue system.� Lack of support for parallel jobs.The Numerical Aerospace Simulation facility(NAS), as part of a Cooperative Research Agree-ment involving several NASA centers, IBM, Prattand Whitney, Platform Computing and others, hasformed an informal group with the goal of devel-oping a set of \standard" API calls relating to joband resource management systems. The goal of thePSCHED API is to allow a site to write a schedulerthat could schedule a variety of parallel jobs: MPI-2,PVM, and SMP multi-tasking jobs to run on a col-lection of di�erent machines.To achieve this goal, we intend to standardize theinterfaces between the di�erent modules: messagepassing libraries, task manager, resource manager,and scheduler (see Fig. 2). The speci�c roles of thesecomponents areTask Manager: An entity that provides task man-agement services such as: spawn a task on anode, local or remote; deliver a signal from onetask to another task within the same parallelapplication; and interface with a resource man-agement function to provide information aboutnodes assigned to the set of tasks which makeup a parallel application, to obtain additionalresources (nodes), to free resources (nodes) nolonger required, and to notify tasks of the needto checkpoint, suspend, and/or migrate.Resource Manager: An entity that provides re-source management services such as: monitorthe resources available in the system, reserve orallocate resources for tasks, and release or deal-locate resources no longer needed by tasks.Scheduler: An entity that schedules jobs. Thescheduler is responsible for determining which16
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Job managementFigure 2: Components of the PSCHED environment.task should be run on the system according tosome site speci�c policy and the resources avail-able in the system.The PSCHED API is not an e�ort to standardizehow any of these modules should be implemented.It is an e�ort to identify the minimal functionalityneeded from each module and then standardize itsinterface. For example, the scheduler is a user ofthe interfaces provided by the task manager and theresource manager. The scheduler waits for schedulingevents from the task manager.The PSCHED API is divided into two areas:� A set of calls for use by parallel processing jobs tospawn, control, monitor, and signal tasks underthe control or management of the job/resourcemanagement system. This set of calls shouldmeet the needs of MPI-II, PVM, and other mes-sage passing implementations.� A set of calls to be used by batch job schedulers.These calls will allow the development of con-sistent job/resource schedulers independent of

the job/resource management system used. Thecalls are intended to provide a standard means ofobtaining information about the resources avail-able in the processing environment and aboutthe supply of jobs and their requirements.Let us take a look at an example of how a paralleljob would spawn a sub-task, adding more nodes tothe running job. The job will call the message pass-ing library, for example MPI Spawn in MPI-II. Themessage passing library will interface with the taskmanager to spawn the new task to add more nodesto the existing task. The task manager will informthe scheduler of the request. The scheduler will makea decision based on its scheduling policy. If the policyallows the job to expand, the scheduler will requestadditional resources from the resource manager, theninform the task manager to start the new sub-taskand allow the job to proceed.4.3 Implication on the Programmingand Scheduling of Parallel JobsObvious bene�ts of a standard like PSCHED include:17



main(){ tm_handle handle[3];/* connect to 3 different machines */tm_connect(server_1, NULL, &handle[0]);tm_connect(server_2, NULL, &handle[1]);tm_connect(server_3, NULL, &handle[2]);while (1) {/* wait for events from any of the servers */tm_get_event(handle, 3, &which_handle, &event, &job_id, &args);ack = process_event(handle[which_handle], event, job_id, args);/* acknowledge the event */tm_ack_event(handle[which_handle], event, job_id, ack);}}process_event(handle, tm_event, job_id, ...){ switch (tm_event) {PSCHED_EVENT_JOB_ARRIVED:/* call policy routine */scheduler_policy(job_id, &run_this_job, resource_needed);/* if decided to run job, reserve the resource* and run job */if (run_this_job) {rm_reserve(resource_list, &resource);tm_run_job(handle, job_id, resource);}break;PSCHED_EVENT_JOB_EXITED:/* release the reource*/if (resource != PSCHED_RESOURCE_NULL)rm_release(resource);/* pick a new job to run */break;PSCHED_EVENT_YIELD:/* job is ready to yield some resource, determine* whether we want to shrink or expand the job.* call the task manager if any action is taken. */break;PSCHED_EVENT_CHECKPOINT:/* a good time to migrate the job if we wanted to */break;PSCHED_EVENT_REQUEUED:/* pick a new job to run */break; Figure 3: Example skeleton of PSCHED code components.18



PSCHED_EVENT_ADD_RESOURCE:/* run policy routines */scheduler_policy(job_id, &run_this_job, additional_resource);if (run_this_job) {rm_reserve(resource_list, &resource);tm_add_resource(handle, job_id, resource);} else {/* tell server we can't fulfill the request* or suspend the run and wait for the resource */}break;PSCHED_EVENT_RELEASE_RESOURCE:rm_release(rm_handle, resource);break;default:return UNKNOWN_EVENT;}return SUCCESS;}scheduler_policy(...){ /* this is what the scheduler writters will concentrate on */} Figure 3: (cont.)� real traces can be used in simulations to developbetter algorithms� new algorithms could be directly applied to run-ning systems� modularity of very complex pieces of softwareallows a mix and match of:{ batch / task management system{ scheduler{ communication library (e.g., MPI, PVM){ scheduling simulatorsThe PSCHED API will be exible enough to ad-dress some of the problems identi�ed in Section 3 suchas shrinking and expanding jobs, checkpointing andmigrating jobs.Hopefully this set of \standard" interfaces will freeresearchers from the need to port their work to di�er-ent systems and let them concentrate on innovativescheduling algorithm and scheduler design. This will
also make production machines more readily avail-able for researchers. An example of such a scheduleris given in Fig. 3. Once written it should be veryeasily ported to another environment. The tm andrm calls are interfaces to the task manager and theresource manager respectively.Areas that need standardization but are not cur-rently addressed by PSCHED include:� Moving jobs from one batch queue system to an-other.� The accounting information kept by the batchqueue system.5 Discussion and ConclusionsThe relationship between theory and practice is aninteresting one. Sometimes theory is ahead of prac-tice, and suggests novel approaches and solutions thatgreatly enhance the state of the art. Sometimestheory straggles behind, and only provides belatedjusti�cation for well known practices. It is not yet19



clear what role it will play in the �eld of parallel jobscheduling.The question of how much theory contributes topractice also depends on the metrics used to measureperformance and quality. In the �eld of job schedul-ing, the three most common metrics are throughput,utilization, and response time. Throughput and uti-lization are actually related to each other: if we as-sume that the statistics of the workload are essen-tially static, then executing more jobs per unit timeon average also leads to a higher utilization. This cango on until the system saturates. If users are satis�edwith the system, and the system does not saturate,more jobs will be submitted, leading to higher uti-lization and throughput. The role of the scheduler istherefore to delay the onset of saturation, by reducingfragmentation and assuring e�cient usage of proces-sors [26]. Also, good support for batch jobs can movesome of the load to o� hours, further increasing theoverall utilization.In practice utilization is a very commonly usedmetric, as it is easy to measure and reects directlyon the degree to which large investments in paral-lel hardware are used e�ciently. Throughput �guresare hardly ever used. Reported utilization �guresvary from 50% for the NASA Ames iPSC/860 hy-percube [22], through around 70% for the CTC SP2[38], 74% for the SDSC Paragon [91] and 80% for theTouchstone Delta [55], up to more than 90% for theLLNL Cray T3D [21]. Utilization �gures in the 80{90% range are now becoming more common, due tothe use of more elaborate batch queueing mechanisms[50, 80, 91] and gang scheduling [21]. These �guresseem to leave only little room for improvement.However, it should be noted that these �gures onlyreect one factor contributing to utilization. The realutilization of the hardware is the product of two fac-tors: the fraction of PEs allocated to users, and thee�ciency with which these PEs are used. The �guresabove relate to the �rst factor, and depend directly onthe scheduling policies; they show that current sys-tems can allocate nearly all the resources, with littleloss to fragmentation. But the e�ciency with whichthe allocated resources are used depends more on theapplication being run, and can be quite low. How-ever, the system can still have an e�ect, because inmost applications the e�ciency trails o� as proces-sors are added. Thus allocating less processors underhigh loads should improve the second factor, and leadto higher overall utilization [44, 69, 52]. This is pos-

sible with moldable or malleable jobs, but not withrigid ones.The case of the response time metric is more com-plex, because little direct evidence exists. Theorysuggests that preemption be used to ensure goodresponse times for small jobs [65], especially sinceworkloads have a high variability in computationalrequirements [22]. This comes close on the heels ofactual systems that implement gang scheduling forjust this reason [47, 33, 28, 21].Actually two metrics may be used to gauge the re-sponsiveness of a system: the actual response time(or turnaround time, i.e. the time from submittal totermination), or the slowdown (the ratio of the re-sponse time on a loaded system to the response timeon a dedicated system). Using actual response timesplaces more weight on long jobs, and \doesn't care"if a short job waits a few minutes, so it may not re-ect the users' notion of responsiveness. Slowdownreects the rather reasonable notion that responsive-ness should be measured against requirements, mean-ing that users should expect their jobs to take timethat is proportional to the computation performed.However, for very short jobs, the denominator be-comes very small, leading to a large slowdown, eventhough the actual response time may be quite short,well within the interactive range. It may therefore bebest to combine the two metrics. Let T represent theresponse time on the loaded system, Td the responsetime on a dedicated system, and Th the threshold ofinteractivity (i.e. the time users are willing to wait).The combined metric for responsiveness as percievedby users would then beR = � T=Td if Td > ThT=Th if Td < ThFor long jobs, this is the normal slowdown. For shortjobs, this is the slowdown relative to the interactiv-ity threshold, rather than relative to the very shortruntime on a dedicated system. If we use Th as theunit of time, then for short jobs the expression de-generates to the response time. We suggest the name\bounded slowdown" for this metric, as it is similarto the slowdown metric, but bounded away from highvalues for very short jobs.Two possible roles for theory, that have relativelyfew parallels in practice, are how to use knowledgeabout speci�c jobs [77], and how to tune algorithmicparameters [92]. In practice, knowledge about jobsis limited to that supplied by the users, typically in20



the form of choosing a queue with a certain combina-tion of resource limits. This approach has two maindrawbacks: �rst, it leads to a combinatorical explo-sion of queues, that are hard to deal with. Second,even with very many queues, the resolution in whichrequirements are expressed is necessarily very coarse,and user estimates are notoriously inaccurate any-way. Recent more theoretical work shows how datacan be acquired automatically by the system, ratherthan relying on the users [60, 32, 13].At the same time that theoretical work is focus-ing, at least to some degree, on practical concerns,practice in the �eld seems to be rather obliviousof this development. One reason is that the largerand more advanced installations have been devel-oping rather elaborate scheduling facilities, whichachieve reasonable results, so the pressure for search-ing for additional improvements outside is dimin-ished. Another reason is the overwhelming concernfor backwards compatability, portability, and interop-erability, which leads to standards based on commonpractices and discourages innovations. It should behoped, however, that the developed standards will beexible enough to allow unanticipated advances to beincorporated in the future.References[1] I. Ahmad, \Editorial: resource managementof parallel and distributed systems with staticscheduling: challenges, solutions, and new prob-lems". Concurrency | Pract. & Exp. 7(5),pp. 339{347, Aug 1995.[2] G. Alverson, S. Kahan, R. Korry, C. McCann,and B. Smith, \Scheduling on the Tera MTA".In Job Scheduling Strategies for Parallel Pro-cessing, D. G. Feitelson and L. Rudolph (eds.),pp. 19{44, Springer-Verlag, 1995. Lecture Notesin Computer Science Vol. 949.[3] S. V. Anastiadis and K. C. Sevcik, \Parallelapplication scheduling on networks of worksta-tions". J. Parallel & Distributed Comput., Jun1997. (to appear).[4] J. M. Barton and N. Bitar, \A scalable multi-discipline, multiple-processor scheduling frame-work for IRIX". In Job Scheduling Strate-gies for Parallel Processing, D. G. Feitelsonand L. Rudolph (eds.), pp. 45{69, Springer-Verlag, 1995. Lecture Notes in Computer Sci-ence Vol. 949.
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