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Abstract. Existing hyperspectral imaging systems produce low spa-
tial resolution images due to hardware constraints. We propose a sparse
representation based approach for hyperspectral image super-resolution.
The proposed approach first extracts distinct reflectance spectra of the
scene from the available hyperspectral image. Then, the signal sparsity,
non-negativity and the spatial structure in the scene are exploited to ex-
plain a high-spatial but low-spectral resolution image of the same scene
in terms of the extracted spectra. This is done by learning a sparse code
with an algorithm G-SOMP+. Finally, the learned sparse code is used
with the extracted scene spectra to estimate the super-resolution hyper-
spectral image. Comparison of the proposed approach with the state-of-
the-art methods on both ground-based and remotely-sensed public hy-
perspectral image databases shows that the presented method achieves
the lowest error rate on all test images in the three datasets.

Keywords: Hyperspectral, super-resolution, spatio-spectral, sparse rep-
resentation.

1 Introduction

Hyperspectral imaging acquires a faithful representation of the scene radiance
by integrating it against several basis functions that are well localized in the
spectral domain. The spectral characteristics of the resulting representation have
proven critical in numerous applications, ranging from remote sensing [1], [2] to
medical imaging [3]. They have also been reported to improve the performance
in computer vision tasks, such as, tracking [4], segmentation [5], recognition [6]
and document analysis [7]. However, contemporary hyperspectral imaging lacks
severely in terms of spatial resolution [3], [8]. The problem stems from the fact
that each spectral image acquired by a hyperspectral system corresponds to
a very narrow spectral window. Thus, the system must use long exposures to
collect enough photons to maintain a good signal-to-noise ratio of the spectral
images. This results in low spatial resolution of the hyperspectral images.

Normally, spatial resolution can be improved with high resolution sensors.
However, this solution is not too effective for hyperspectral imaging, as it further
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2 Naveed Akhtar, Faisal Shafait and Ajmal Mian

reduces the density of the photons reaching the sensor. Keeping in view the
hardware limitations, it is highly desirable to develop software based techniques
to enhance the spatial resolution of hyperspectral images. In comparison to the
hyperspectral systems, the low spectral resolution imaging systems (e.g. RGB
cameras) perform a gross quantization of the scene radiance - loosing most of
the spectral information. However, these systems are able to preserve much finer
spatial information of the scenes. Intuitively, images acquired by these systems
can help in improving the spatial resolution of the hyperspectral images.

This work develops a sparse representation [9] based approach for hyperspec-
tral image super-resolution, using a high-spatial but low-spectral resolution im-
age (henceforth, only called the high spatial resolution image) of the same scene.
The proposed approach uses the hyperspectral image to extract the reflectance
spectra related to the scene. This is done by solving a constrained sparse repre-
sentation problem using the hyperspectral image as the input. The basis formed
by these spectra is transformed according to the spectral quantization of the high
spatial resolution image. Then, the said image and the transformed basis are fed
to a simultaneous sparse approximation algorithm G-SOMP+. Our algorithm is
a generalization of Simultaneous Orthogonal Matching Pursuit (SOMP) [10] that
additionally imposes a non-negativity constraint over its solution space. Taking
advantage of the spatial structure in the scene, G-SOMP+ efficiently learns a
sparse code. This sparse code is used with the reflectance spectra of the scene to
estimate the super-resolution hyperspectral image. We test our approach using
the hyperspectral images of objects, real-world indoor and outdoor scenes and
remotely sensed hyperspectral image. Results of the experiments show that the
proposed approach consistently performs better than the existing methods on
all the data sets.

This paper is organized as follows. Section 2 reviews the previous literature
related to the proposed approach. We formalize our problem in Section 3. The
proposed solution is described in Section 4 of the paper. In Section 5, we give the
results of the experiments that have been performed to evaluate the approach.
We dedicate Section 6 for the discussion on the results and the parameter set-
tings. The paper concludes with a brief summary in Section 7.

2 Related work

Hardware limitations have lead to a notable amount of research in software
based techniques for high spatial resolution hyperspectral imaging. The soft-
ware based approaches that use image fusion [11] as a tool, are particularly
relevant to our work. Most of these approaches have originated in the remote
sensing literature because of the early introduction of hyperspectral imaging in
the airborne/spaceborne observatory systems. In order to enhance the spatial
resolution of the hyperspectral images, these approaches usually fuse a hyper-
spectral image with a high spatial resolution pan-chromatic image. This process
is known as pan-sharpening [12]. A popular technique ([13], [14], [15], [16]) uses
a linear transformation of the color coordinates to improve the spatial resolution
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Sparse Spatio-spectral Representation for HSI Super-Resolution 3

of hyperspectral images. Exploiting the fact that human vision is more sensitive
to luminance, this technique fuses the luminance component of a high resolu-
tion image with the hyperspectral image. Generally, this improves the spatial
resolution of the hyperspectral image, however the resulting image is sometimes
spectrally distorted [17].

In spatio-spectral image fusion, one class of methods exploits spatial unmix-
ing ([18], [19]) for improving the spatial resolution of the hyperspectral images.
These methods only perform well for the cases when the spectral resolutions of
the two images are not very different. Furthermore, their performance is com-
promised in highly mixed scenarios [8]. Zurita-Milla et al. [20] employed a sliding
window strategy to mitigate this issue. Image filtering is also used for interpo-
lating the spectral images to improve the spatial resolution [21]. In this case,
the implicit assumption of smooth spatial patterns in the scenes often produces
overly smooth images.

More recently, matrix factorization has played an important role in enhancing
the spatial resolution of the ground based and the remote sensing hyperspectral
imaging systems ([3], [8], [22], [23]). Kawakami et al. [3] have proposed to fuse a
high spatial resolution RGB image with a hyperspectral image by decomposing
each of the two images into two factors and constructing the desired image from
the complementary factors of the two decompositions. A very similar technique
has been used by Huang et al. [8] for remote sensing data. The main difference
between [3] and [8] is that the latter uses a spatially down-sampled version of
the high spatial resolution image in the matrix factorization process. Wycoff et
al. [22] have proposed an algorithm based on Alternating Direction Method of
Multipliers (ADMM) [24] for the factorization of the matrices and later using
it to fuse the hyperspectral image with an RGB image. Yokoya et al. [23] have
proposed a coupled matrix factorization approach to fuse multi-spectral and
hyperspectral remote sensing images to improve the spatial resolution of the
hyperspectral images.

The matrix factorization based methods are closely related to our approach.
However, our approach has major differences with each one of them. Contrary
to these methods, we exploit the spatial structure in the high spatial resolution
image for the improved performance. The proposed approach also takes special
care of the physical significance of the signals and the processes related to the
problem. This makes our formalization of the problem and its solution unique.
We make use of the non-negativity of the signals, whereas [3] and [8] do not
consider this notion at all. In [22] and [23] the authors do consider the non-
negativity of the signals, however their approaches require a priori knowledge of
the spatial transform between the input hyperspectral image and the input high
spatial resolution image. This requirement compromises the practicality of these
approaches. Our approach does not does not impose any such requirement.

3 Problem formulation

We seek estimation of a super-resolution hyperspectral image S ∈ RM×N×L,
where M and N denote the spatial dimensions and L represents the spectral
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dimension, from an acquired hyperspectral image Yh ∈ Rm×n×L and a cor-
responding high spatial (but low spectral) resolution image of the same scene
Y ∈ RM×N×l. For our problem, m � M,n � N and l � L, which makes the
problem severely ill-posed. We consider both of the available images to be linear
mappings of the target image:

Y = Ψ(S), Yh = Ψh(S) (1)

where, Ψ : RM×N×L → RM×N×l and Ψh : RM×N×L → Rm×n×L.
A typical scene of the ground based imagery as well as the space-borne/air-

borne imagery contains only a small number of distinct materials [3], [25]. If the
scene contains q materials, the linear mixing model (LMM) [26] can be used to
approximate a pixel yh ∈ RL of Yh as

yh ≈
c∑

ω=1

ϕωαω , c ≤ q (2)

where, ϕω ∈ RL denotes the reflectance of the ω-th distinct material in the scene
and αω is the fractional abundance (i.e. proportion) of that material in the area
corresponding to the pixel. We rewrite (2) in the following matrix form:

yh ≈ Φα (3)

In (3), the columns of Φ ∈ RL×c represent the reflectance vectors of the under-
lying materials and α ∈ Rc is the coefficient vector. Notice that, when the scene
represented by a pixel yh also includes the area corresponding to a pixel y ∈ Rl
of Y, we can approximate y as

y ≈ (TΦ)β (4)

where, T ∈ Rl×L is a transformation matrix and β ∈ Rc is the coefficient vector.
In (4), T is a highly rank deficient rectangular matrix that relates the spectral
quantization of the hyperspectral imaging system to the high spatial resolution
imaging system. Using the associativity between the matrices:

y ≈ T(Φβ) ≈ Ts (5)

where, s ∈ RL denotes the pixel in the target image S. Equation (5) suggests,
if Φ is known, the super-resolution hyperspectral image can be estimated using
an appropriate coefficient matrix, without the need of inverting the highly rank
deficient matrix T.

4 Proposed solution

Let D be a finite collection of unit-norm vectors in RL. In our settings, D is the
dictionary whose elements (i.e. the atoms) are denoted by ϕω, where ω ranges
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Sparse Spatio-spectral Representation for HSI Super-Resolution 5

over an index set Ω. More precisely, D def= {ϕω : ω ∈ Ω} ⊂ RL. Considering
(3)-(5), we are interested in forming the matrix Φ from D, such that

Ȳh ≈ ΦA (6)

where, Ȳh ∈ RL×mn is the matrix formed by concatenating the pixels of the hy-
perspectral image Yh and A is the coefficient matrix with αi as its ith column.
We propose to draw Φ from RL×k, such that k > q; see (2). This is because,
the LMM in (2) approximates a pixel assuming linear mixing of the material
reflectances. In the real world, phenomena like multiple light scattering and exis-
tence of intimate material mixtures also cause non-linear mixing of the spectral
signatures [26]. This usually alters the reflectance spectrum of a material or re-
sults in multiple distinct reflectance spectra of the same material in the scene.
The matrix Φ must also account for these spectra. Henceforth, we use the term
dictionary for the matrix Φ1.

According to the model in (6), each column of Ȳh is constructed using a very
small number of dictionary atoms. Furthermore, the atoms of the dictionary are
non-negative vectors as they correspond to reflectance spectra. Therefore, we
propose to solve the following constrained sparse representation problem to learn
the proposed dictionary Φ:

min
Φ,A
||A||1 s.t. ||Ȳh −ΦA||F ≤ η, ϕω ≥ 0, ∀ω ∈ {1, ..., k} (7)

where, ||.||1 and ||.||F denote the l1 and the Forbenious norms of the matrices
respectively, and η represents the modeling error. To solve (7) we use the online
dictionary learning approach proposed by Mairal et al. [29] with an additional
non-negativtiy constraint on the dictionary atoms - we refer the reader to the
original work for details.

Once Φ is known, we must compute an appropriate coefficient matrix B ∈
Rk×MN ; as suggested by (5), to estimate the target image S. This matrix is com-
puted using the learned dictionary and the image Y along with two important
pieces of prior information. a) In the high spatial resolution image, nearby pixels
are likely to represent the same materials in the scene. Hence, they should be
well approximated by a small group of the same dictionary atoms. b) The ele-
ments of B must be non-negative quantities because they represent the fractional
abundances of the spectral signal sources in the scene. It is worth mentioning
that we could also use (b) for A in (7), however, there we were interested only
in Φ. Therefore, a non-negativity constraint over A was unnecessary. Neglecting
this constraint in (7) additionally provides computational advantages in solving
the optimization problem.

Considering (a), we process the image Y in terms of small disjoint spa-
tial patches for computing the coefficient matrix. We denote each of the im-
age patch by P ∈ RMP×NP×l and estimate its corresponding coefficient matrix
1 Formally, Φ is the dictionary synthesis matrix [10]. However, we follow the conven-

tion of the previous literature in dictionary learning (e.g. [27], [28]), which rarely
distinguishes the synthesis matrix from the dictionary.
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BP ∈ Rk×MPNP by solving the following constrained simultaneous sparse ap-
proximation problem:

min
BP
||BP ||row 0 s.t. ||P̄− Φ̃BP ||F ≤ ε, βpi ≥ 0 ∀i ∈ {1, ...,MPNP } (8)

where, P̄ ∈ Rl×MpNp is formed by concatenating the pixels in P, Φ̃ ∈ Rl×k
is the transformed dictionary i.e. Φ̃ = TΦ; see (4), and β

pi denotes the ith

column of the matrix Bp. In the above objective function, ||.||row 0 denotes the
row-l0 quasi-norm [10] of the matrix, which represents the cardinality of its row-
support2. Formally,

||Bp||row 0
def=
∣∣∣MpNp⋃
i=1

supp(β
pi)

∣∣∣
where, supp(.) indicates the support of a vector and |.| denotes the cardinality
of a set. Tropp [28] has argued that (8) is an NP-hard problem without the non-
negativity constraint. The combinatorial complexity of the problem does not
change with the non-negativity constraint over the coefficient matrix. There-
fore, the problem must either be relaxed [28] or solved by the greedy pursuit
strategy [10]. We prefer the latter because of its computational advantages [30]
and propose a simultaneous greedy pursuit algorithm, called G-SOMP+, for
solving (8). The proposed algorithm is a generalization of a popular greedy pur-
suit algorithm Simultaneous Orthogonal Matching Pursuit (SOMP) [10], which
additionally constrains the solution space to non-negative matrices. Hence, we
denote it as G-SOMP+. Here, the notion of ‘generalization’ is similar to the one
used in [31] that allows selection of multiple dictionary atoms in each iteration
of Orthogonal Matching Pursuit (OMP) [32] to generalize OMP.

G-SOMP+ is given below as Algorithm 1. The algorithm seeks an approx-
imation of the input matrix P̄ - henceforth, called the patch - by selecting the
dictionary atoms ϕ̃ξ indexed in a set Ξ ⊂ Ω, such that, |Ξ| � |Ω| and every
ϕ̃ξ contributes to the approximation of the whole patch. In its ith iteration, the
algorithm first computes the cumulative correlation of each dictionary atom with
the residue of its current approximation of the patch (line 5 in Algorithm 1) -
the patch itself is considered as the residue for initialization. Then, it identifies L
(an algorithm parameter) dictionary atoms with the highest cumulative correla-
tions. These atoms are added to a subspace indexed in a set Ξi, which is empty
at initialization. The aforementioned subspace is then used for a non-negative
least squares approximation of the patch (line 8 in Algorithm 1) and the residue
is updated. The algorithm stops if the updated residue is more than a fraction
γ of the residue in the previous iteration. Note that, the elements of the set
Ξ in G-SOMP+ also denote the row-support of the coefficient matrix. This is
because, a dictionary atom can only participate in the patch approximation if
the corresponding row of the coefficient matrix has some non-zero element in it.

2 Set of indices for the non-zero rows of the matrix.
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Sparse Spatio-spectral Representation for HSI Super-Resolution 7

Algorithm 1 G-SOMP+
Initializaiton:
1: Iteration: i = 0
2: Initial solution: B0 = 0
3: Initial residue: R0 = P̄− eΦB0 = P̄
4: Initial index set: Ξ0 = ∅ = row-supp{B0}, row-supp{B} = {1 ≤ t ≤ k : βt 6= 0},

where βt is the tth row of B.
Main Iteration: Update iteration: i = i+ 1

5: Compute bj =
MPNPP
τ=1

eΦTj Ri−1
τ

||Ri−1
τ ||22

, ∀j ∈ {1, ..., k}, where, Xz denotes the zth

column of the matrix X.
6: N = {indices of eΦ’s atoms corresponding to the L largest bj}
7: Ξi = Ξi−1 ∪N
8: Bi = min ||eΦB− P̄||2F s.t. row-supp{B} = Ξi, βt ≥ 0, ∀t
9: Ri = P̄− eΦBi

10: If ||Ri||F > γ||Ri−1||F stop, otherwise iterate again.

G-SOMP+ has three major differences from SOMP. 1) Instead of integrating
the absolute correlations, it sums the correlations between a dictionary atom
and the residue vectors (line 5 of Algorithm 1). 2) It approximates the patch in
each iteration with the non-negative least squares method, instead of using the
standard least squares approximation. 3) It selects L dictionary atoms in each
iteration instead of a single dictionary atom. In the above mentioned difference,
(1) and (2) impose the non-negativety constraint over the desired coefficient
matrix. On the other hand, (3) primarily aims at improving the computation
time of the algorithm. G-SOMP+ also uses a different stopping criterion than
SOMP, that is controlled by γ - the residual decay parameter. We defer further
discussion on (3) and the stopping criterion to Section 6. G-SOMP+ has been
proposed specifically to solve the constrained simultaneous sparse approximation
problem in (8). Therefore, it is able to approximate a patch better than a generic
greedy pursuit algorithm (e.g. SOMP).

Solving (8) for each image patch results in the desired coefficient matrix
B that is used with Φ to compute ˆ̄S ∈ RL×MN , which is the estimate of the
super-resolution hyperspectral image S̄ ∈ RL×MN (in matrix form).

ˆ̄S = ΦB (9)

Fig. 1 pictorially summarizes the proposed approach.

5 Experimental results

We have evaluated our approach using ground based hyperspectral images as
well as remotely sensed data. For the ground based images, we have conducted
experiments with two different public databases. The first database [33], called
the CAVE database, consists of 32 hyperspectral images of everyday objects. The
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8 Naveed Akhtar, Faisal Shafait and Ajmal Mian

Fig. 1: Schematic of the proposed approach: The low spatial resolution hyper-
spectral (HS) image is used for learning a dictionary whose atoms represent re-
flectance spectra. This dictionary is transformed and used with the high-spatial
but low-spectral resolution image to learn a sparse code by solving a constrained
simultaneous sparse approximation problem. The sparse code is used with the
original dictionary to estimate the super-resolution HS image.

512× 512 spectral images of the scenes are acquired at a wavelength interval of
10 nm in the range 400−700 nm. The second is the Harvard database [34], which
consists of hyperspectral images of 50 real-world indoor and outdoor scenes. The
1392 × 1040 spectral images are sampled at every 10 nm from 420 to 720 nm.
Hyperspectral images of the databases are considered as the ground truth for the
super-resolution hyperspectral images. We down-sample a ground truth image
by averaging over 32 × 32 disjoint spatial blocks to simulate the low spatial
resolution hyperspectral image Yh. From the Harvard database, we have only
used 1024×1024 image patches to match the down-sampling strategy. Following
[22], a high spatial (but low spectral) resolution image Y is created by integrating
a ground truth image over the spectral dimension, using the Nikon D700 spectral
response3 - which makes Y a simulated RGB image of the same scene. Here, we
present the results on eight representative images from each database, shown in
Fig. 2. We have selected these images based on the variety of the scenes. Results
on further images are provided in the supplementary material of the paper.

3 https://www.maxmax.com/spectral_response.htm

https://www.maxmax.com/spectral_response.htm
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Fig. 2: RGB images from the databases. First row: Images from the CAVE
database [33]. Second row: Images from the Harvard database [34].

Fig. 3 shows the results of using our approach for estimating the super-
resolution hyperspectral images of ‘Painting’ and ‘Peppers’ (see Fig. 2). The top
row shows the input 16× 16 hyperspectral images at 460, 540 and 620 nm. The
ground truth images at these wavelengths are shown in the second row, which
are clearly well approximated in the estimated images shown in the third row.
The fourth row of the figure shows the difference between the ground truth im-
ages and the estimated images. The results demonstrate a successful estimation
of the super-resolution spectral images. Following the protocol of [3] and [22],
we have used Root Mean Square Error (RMSE) as the metric for further quanti-
tative evaluation of the proposed approach and its comparison with the existing
methods.

RMSE =

√
||S̄− ˆ̄S||2F
LMN

(10)

where, S̄ and ˆ̄S respectively denote the ground truth image and the estimated
image as matrices in RL×MN . Table 1 shows the RMSE values of the proposed
approach and the existing methods for the images of the CAVE database [33].
Among the existing approaches we have chosen the Matrix Factorization method
(MF) in [3], the Spatial and Spectral Fusion Model (SASFM) [8], the ADMM
based method [22] and the Coupled Matrix Factorization method (CMF) [23]
for the comparison. Most of these matrix factorization based approaches have
been shown to outperform the other techniques discussed in Section 2. To show
the difference in the performance, Table 1 also includes some results from the
Component Substitution Method (CSM) [14] - taken directly from [3]. We have
used our own implementations of MF and SASFM because of unavailability of
the public codes from the authors. To ensure an un-biased comparison, we take
special care that the results achieved by our implementations are either the same
or better than the results reported originally by the authors on the same images.
Needless to mention, we follow the same experimental protocol as the previous
works. The results of CSM and ADMM are taken directly form [22]. Note that,
these algorithms also require a priori knowledge of the spatial transform between
the hyperspectral image and the high resolution image, because of which they



405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

ECCV

#601
ECCV

#601

10 Naveed Akhtar, Faisal Shafait and Ajmal Mian

Fig. 3: Spectral images for Painting (Left) and Peppers (Right) at 460, 540 and
620 nm. Top row: 16 × 16 low spatial resolution hyperspectral (HS) images.
Second row: 512×512 ground truth images. Third row: Estimated 512×512 HS
images. Fourth row: Corresponding error images, where the scale is in the range
of 8 bit images.

are highlighted in red in the table. The proposed approach has been able to
outperform these methods without requiring this knowledge.

For the proposed approach, we have used 75 atoms in the dictionary and let
L = 20 for each iteration of G-SOMP+, which processes 8×8 image patches. We
have chosen η = 10−5 in (7) and the residual decay parameter of G-SOMP+,
γ = 0.99. We have optimized these parameter values, and the parameter settings
of MF and SASFM, using a separate training set of 30 images. The training set
comprises 15 images selected at random from each of the used databases. We
have used the same parameter settings for all the results reported here and in
the supplementary material. We defer further discussion on the parameter value
selection for the proposed approach to Section 6.

Results on the images from the Harvard database [34] are shown in Table 2. In
this table, we have compared the results of the proposed approach only with MF
and SASFM because, like our approach, only these two approaches do not require
the knowledge of the spatial transform between the input images. The table
shows that the proposed approach consistently performs better than others. We
have also experimented with the hyperspectral data that is remotely sensed by
the NASA’s Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) [35].
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Table 1: Comparison of the approaches using [33]. The reported RMSE values are
in the range of 8 bit images. The best results are shown in bold. The approaches
highlighted in red also require the knowledge of spatial transform between the
input images, which restrict their practical applicability.

CAVE database [33]
Method Beads Sponges Spools Painting Pepper Photos Cloth Statue

CSM [14] 28.5 19.9 - 12.2 13.7 13.1 - -
MF [3] 8.2 3.7 8.4 4.4 4.6 3.3 6.1 2.7
SASFM [8] 9.2 5.3 6.1 4.3 6.3 3.7 10.2 3.3
ADMM [22] 6.1 2.0 5.3 6.7 2.1 3.4 9.5 4.3
CMF [23] 6.6 4.0 15.0 26.0 5.5 11.0 20.0 16.0
Proposed 3.7 1.5 3.8 1.3 1.3 1.8 2.4 0.6

Table 2: Comparison of the approaches using [34]. The reported RMSE values
are in the range of 8 bit images. The best results are shown in bold.

Harvard database [34]
Method Img 1 Img b5 Img b8 Img d4 Img d7 Img h2 Img h3 Img f2

MF [3] 3.9 2.8 6.9 3.6 3.9 3.7 2.1 3.1
SASFM [8] 4.3 2.6 7.6 4.0 4.0 4.1 2.3 2.9
Proposed 1.2 0.9 2.8 0.8 1.2 1.6 0.5 0.9

AVIRIS samples the scene reflectance in the wavelength range 400 - 2500 nm
at a nominal interval of 10 nm. We have used a hyperspectral image taken over
the Cuprite mines, Nevada4. The image has dimensions 512× 512× 224, where
224 represents the number of spectral bands in the image. Following [26], we
have removed the bands 1-2, 105-115, 150-170 and 223-224 of the image because
of extremely low SNR and water absorptions in those bands. We perform the
down-sampling on the image as before and construct Y by directly selecting the
512 × 512 spectral images from the ground truth image, corresponding to the
wavelengths 480, 560, 660, 830, 1650 and 2220 nm. These wavelengths correspond
to the visible and mid-infrared range spectral channels of USGS/NASA Landsat
7 satellite5. We adopt this strategy of constructing Y from Huang et al. [8].
Fig. 4 shows the results of our approach for the estimation of the super-resolution
hyperspectral image at 460, 540, 620 and 1300 nm. For this data set, the RMSE
values for the proposed approach, MF [3] and SASFM [8] are 1.12, 3.06 and 3.11,
respectively.

4 Available at http://aviris.jpl.nasa.gov/data/free_data.html.
5 http://www.satimagingcorp.com/satellite-sensors/landsat.html.

http://aviris.jpl.nasa.gov/data/free_data.html
http://www.satimagingcorp.com/satellite-sensors/landsat.html
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Fig. 4: Spectral images for AVIRIS data at 460, 540, 620 and 1300 nm. Top row:
16× 16 low spatial resolution hyperspectral (HS) image. Second row: 512× 512
ground truth image. Third row: Estimated 512 × 512 HS image. Fourth row:
Corresponding error image, with the scale is in the range of 8 bit images.

6 Discussion

G-SOMP+ uses two parameters. L: the number of dictionary atoms selected in
each iteration, and γ: the residual decay parameter. By selecting more dictionary
atoms in each iteration, G-SOMP+ computes the solution more quickly. The
processing time of G-SOMP+ as a function of L, is shown in Fig. 5a. Each curve
in Fig. 5 represents the mean values computed over a separate training data set
of 15 images randomly selected from the database, whereas the dictionary used
by G-SOMP+ contained 75 atoms. Fig. 5a shows the timings on an Intel Core
i7-2600 CPU at 3.4 GHz with 8 GB RAM. Fig. 5b shows the RMSE values on
the training data set as a function of L. Although, the error is fairly small over
the complete range of L, the values are particularly low for L ∈ {15, ..., 25},
for both of the databases. Therefore, we have chosen L = 20 for all the test
images in our experiments. Incidentally, the number of distinct spectral sources
in a typical remote sensing hyperspectral image is also considered to be close to
20 [25]. Therefore, we have used the same value of the parameter for the remote
sensing test image.
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(a) (b)

Fig. 5: Selection of the G-SOMP+ parameter L: The values are the means com-
puted over 15 separate training images for each database: a) Processing time
of G-SOMP+ in seconds as a function of L. The values are computed on an
Intel Core i7-2600 CPU at 3.4 GHz with 8 GB RAM. b) RMSE of the estimated
images by G-SOMP+ as a function of L.

Generally, it is hard to know a priori the exact number of iterations required
by a greedy pursuit algorithm to converge. Similarly, if the residual error (i.e.
||Ri||F in Algorithm 1) is used as the stopping criterion, it is often difficult to
select a single best value of this parameter for all the images. Fig. 5b shows
that the RMSE curves rise for the higher values of L after touching a minimum
value. In other words, more than the required number of dictionary atoms ad-
versely affect the signal approximation. We use this observation to decide on the
stopping criterion of G-SOMP+. Since the algorithm selects a constant number
of atoms in each iteration, it stops if the approximation residual in its current
iteration is more than a fraction γ of the residual in the previous iteration. As
the approximation residual generally decreases rapidly before increasing (or be-
coming constant in some cases), we found that the performance of G-SOMP+
on the training images was mainly insensitive for γ ∈ [0.75, 1]. From this range,
we have selected γ = 0.99 for the test images in our experiments.

Our approach uses the online-dictionary learning technique [29] to solve (7).
This technique needs to know the total number of dictionary atoms to be learned
a priori. In Section 4, we have argued to use more dictionary atoms than the
number of distinct materials in the scene. This results in a better separation
of the spectral signal sources in the scene. Fig. 6 illustrates this notion. The
figure shows an RGB image of ‘Sponges’ on the left. To extract the reflectance
spectra, we learn two different dictionaries with 10 and 50 atoms, respectively,
using the 16 × 16 hyperspectral image of the scene. We cluster the atoms of
these dictionaries based on their correlation and show the arranged dictionaries
in Fig. 6. From the figure, we can see that the dictionary with 10 atoms is not
able to clearly distinguish between the reflectance spectra of the blue (C1) and
the green (C2) sponge, whereas 10 seems to be a reasonable number representing
the distinct materials in the scene. On the other hand, the dictionary with 50
atoms has learned two separate clusters for the two sponges.



585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

ECCV
#601

ECCV
#601

14 Naveed Akhtar, Faisal Shafait and Ajmal Mian

Fig. 6: Selecting the number of dictionary atoms: RGB image of ‘Sponges’, con-
taining roughly 7 − 10 distinct colors (materials), is shown on the left. Two
dictionaries, with 10 and 50 atoms, are learned for the scene. After clustering
the spectra (i.e. the dictionary atoms) into seven clusters (C1 - C7), it is visible
that the dictionary with 50 atoms learns distinct clusters for the blue (C1) and
the green (C2) sponges, whereas the dictionary with 10 atoms is not able to
clearly distinguish between these sponges.

The results reported in Fig. 5 are relatively insensitive to the number of
dictionary atoms in the range of 50 to 80. In all our experiments, the proposed
approach has learned a dictionary with 75 atoms. We choose a larger number to
further incorporate the spectral variability of highly mixed scenes.

7 Conclusion

We have proposed a sparse representation based approach for hyperspectral im-
age super-resoltuion. The proposed approach fuses a high spatial (but low spec-
tral) resolution image with the hyperspectral image of the same scene. It uses
the input low resolution hyperspectral image to learn a dictionary by solving a
constrained sparse optimization problem. The atoms of the learned dictionary
represent the reflectance spectra related to the scene. The learned dictionary is
transformed according to the spectral quantization of the input high resolution
image. This image and the transformed dictionary are later employed by an algo-
rithm G-SOMP+. The proposed algorithm efficiently solves a constrained simul-
taneous sparse approximation problem to learn a sparse code. This sparse code
is used with the originally learned dictionary to estimate the super-resolution
hyperspectral image of the scene. We have tested our approach using the hyper-
spectral images of objects, real-world indoor and outdoor scenes and a remotely
sensed hyeprspectral image. Results of the experiments demonstrate that by tak-
ing advantage of the signal sparsity, non-negativity and the spatial structure in
the scene, the proposed approach is able to consistently perform better than the
existing state of the art methods on all the data sets.
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