Negotiation and Conflict Resolution
within a Community of Cooper ative Agents

Eugeénio Oliveira, Fernando Mouta & Ana Paula Rocha

Faculdade de Engenharia da Universidade do Porto
Rua dos Bragas, 4099 Porto Codex, Portugal
{eco, mouta, arocha}@fe.up.pt

Abstract

UPShell, a tool for building up coarse grain, semi-
autonomous cooperating agents (which are expert
systems) is here presented.

Negotiation and conflict resolution protocols have
been integrated into the agents whose architecture is also
presented. Moreover, several basic functionalities dealing
with task scheduling as well as cooperation policies, are
briefly specified.

A realistic scenario, on a sophisticated electricity
distribution network management application is also
presented to illustrate the referred concepts and tool
features

Key words:
Cooperation, Multi-Agents,
Negotiation

Conflict Resolution,

1. Introduction

An environmentto generateand exploit a community
of cooperative knowledge based systems, UPShell
(University of Porto Shell), has been developedat our
group, in the framework of an Esprit Project (Arch’an)

The UPShell[1] maybe usedeitherby domainexperts
in order to generate specific Intelligent Systems ¢iSin
a consultation mode, to solve complex applicationghén
first case different 1ISs may be generatedand, if needed,
the Shell can be instructedto build up a cooperative
systemconsistingof severalof theseexpertsystems.n

1 Esprit Il project ARCHON, ARchitecturefor Cooperative
Heterogeneou®©N-line systems(P-2256),aims to constructa
generalpurposemulti-agent systemarchitecturefor industrial
applications.

order to make this possible,special modulesincluding
additional knowledgehave to be automaticallyderived
for the useof the cooperativecommunity.By addingthis
new knowledgeas well as new functionalities, ISs are
transformedinto cooperativeagents.In the consultation
mode, the shell providesthe meansfor userinteraction
with eithera separatedS or a setof agentspursuingan
overall goal.

UPShellgenerateglifferent Agentswhich run asa set
of separatedJnix processeghat can be distributed by
different machines.UPShell is implementedin Prolog
under Unix and also encompassegapabilitiesto use
Xwindows and Unix inter-process communication
facilities.

This paper is concernedwith the enhancemenbf
cooperativecapabilitiesof UPShell(for a descriptionof
its basicfunctionalitiessee[1]). Methodologiedor multi-
agentnegotiationas well as for conflict resolution are
here described.

While in section2, agentsarchitectureis presented,
section3 enunciatesand describesmportantcapabilities
we are usingfor the sakeof sophisticatedooperationA
tentative classification of all different kinds of
cooperativeand conflict caseswe may find on coarse
grain semi-autonomousnulti-agent applicationsis also
presented in section 4. In section 5 the basic
functionalitieson which cooperativecapabilitiesrely, are
specified. The paper ends with a realistic application
example and conclusions.

2. An architecturefor cooperative agents

In this sectionwe describe,in broadterms,the main
architecture of each agent.

The basicarchitectureof the agentd2] consistsof two
conceptually separated subsystems:

» An upper layer for cooperationand coordination of
agent activity (Cooperation Layer - CL);

» The underlying Intelligent Systemthat hasthe domain
specific problem solver capabilities (1S).

It is the responsibility of the cooperationlayer to
coordinateinter and intra agentactivities. This layer is
further divided into:

» a communicatiomodulefor informationexchangewith
other agents;
* a Decision Making Module (DMM) for:
- choosingcooperatiompoliciesaccordingto the agent
workload and overall community situation, and
- controlling the communication module;
* a control module (monitor) for schedulinglS problem
solving activities.

For thesepurposes(namely to make decisionsafter
situation assessment) the DMM uses:

» a Modelof Acquaintancedgents(AAM) whererelevant
information about other agents knowledge and
workload situation is stored,;

* a Self Model (SM) with information about several
aspects of the underlying IS skills and workload;

» setsof rulesincluding knowledgeon cooperationand
local control;

e an internal
(DBB/GBB).

The IS structure is similar to a rule+frafasedexpert
system. Some sophisticationswere made in the rule
interpreterin order to be able to attendthe upperlayer
control directives and maintain several tasks
simultaneoushby meansof indexingschemefor the task
environments.

UPShell may be used either by domain expertsin
orderto generatespecificintelligent systemspr by other
usersin a consultationmode. In the first casethe Shell
automaticallybuild up the self model (a model of the IS
skills). In consultatioomodethe Shellcanbeinstructedto
build up a cooperativesystemout of thosedifferent ISs.
In orderto do this, specificknowledge(andcode)haveto
be automatically produced concerning the skills and
capabilitiesof eachlS which may be importantfor the
other ones in the same community (the model of
acquaintances)ln this case, ISs are transformedinto
Cooperativentelligent SystemgCISs) or agentsthrough
the additionof an uppercooperativdayer on their top. In
the consultationmode the Shell providesthe meansto
give eitherto a separateds or to a setof CISsanoverall

goal to be pursued (if necessary under time constrains).

Data-BlackBoard/Goal-BlackBoard

3. Capabilities of cooper ative agents
3.1 Local task scheduling

The monitor is the cooperationlayer's module that
controlsandmonitorsthe underlyinglS. The aim of local
task schedulingis to guaranteethe accomplishmenbf
every task in the agendaaccording to its deadline.
Therefore, priorities are computedfor eachtask taking
into account dynamic information reflecting agents
computatiooad aswell aswaiting timesfor taskinputs.
However, requestsneedto be formulated with specific
temporaldeadlinesattachedand not priorities, letting to
the receiving agent the job of computing the more
appropriatepriority value (for task schedulingpurposes)
according to its own commitments.

If, for example,an urgent requestarrives or if a
requestedaskis approachinghe deadlinewithout being
executedthe schedulingprocessof tasksin the agenda
shouldbe redonein orderto accomplishthis specifictask
within the time limits.

The schedulingwill takeinto accountthe capabilities
of the underlying IS among the following:

Task switching capabilities

The monitor is able to control IS task executionin

threedifferentways:taskswappingtaskredoingand

task restarting.

The IS, during the executionof a task is able to

suspendthe current execution and to switch to

executea new task. When the new task has been
executed,the IS is able to continue the previous
execution from the breakpoint.

To do task swappingit is necessaryto suspendhe

IS's executionof a task so that it can be restarted
later.

To executeatask,the monitor accessethe goal-plan
in the self model,to find thelist of Basic Processing
Elements (BPESs) that form the plan of that task.
Then, it sendsto IS, all the needednput to thattask
aswell asthefirst BPE.WhenlS finishesthe BPE, it

will send a message'context(Task,BPE)" to the

cooperatiorlayer with the answerto this BPE. If the

monitoris instructedto continuethe executionof this

task, the following BPE of this task will be sentto

the IS.

It may happerhoweverthat DMM hasinstructedthe

monitorto redo,restartor swapto a specifictaskand
that precisemoment(betweenBPESs)is theright one

to control the underlying IS appropriately.

Multi-task execution

ThelS is ableto do severaltaskssimultaneouslyand
the monitoris capableof monitoringthe executionof
several tasks at the same time.

3.2 Detecting the need for cooperation

When an Agent detectsthe needfor help (unableto
executea task),it will checkin its acquaintancenodelsif
thereareagentsableto doit. If thereareoneor more,the
first stepis to start a negotiation process.Let us call
"organizer" the agentthat initiates the negotiationand
"respondents”the agentsthat receive the requestfor
negotiation. The goal of negotiationis to have one or
morerespondentsommittedto executea taskto helpthe
organizer.

The two main cooperation forms for distributed
problem solving are task-sharingand result-sharing[3].
Task-sharings a kind of cooperatiorin which individual
problem solving nodesassisteach other by sharingthe
computationaload for the executionof sub-tasksof the
overall problem. Result-sharingis a mechanism of
cooperation through which results producedalmpdeare
sent to other nodes that may benefit from these results.

Next, we list the situationswhen an agentdecidesto
initiate some form of cooperation:

* Task-sharing:

As organizer:
Whendecomposing task,if somesub-taskannot
be dealt with locally, or if someinputsto this task
can not be gathered locally.
Also, the IS of an Agent, during the executionof a

this is the case, results are sent to them.

As respondent:
An agentreceivesincomingdatavolunteeredby any
agent (not answer to a previous query or protocol).
If the received data is part of the input to an
executingor executedtaskand if it is more reliable
thanthe previousone,thenthe correspondingaskis
restarted or redone.
If the receiveddata, eventuallytogetherwith data
alreadyexisting,completesall the necessarynput to
a certain task, the state of this task is changedto
“ready" in order to be executed.

3.3 Negotiation

Cooperation,mainly task-sharing,may lead to the
need of negotiation among several agents.

Onceanagentwantsto formulatea requestjn orderto
get an answerfrom other agents,it needsto establisha
protocol with the possiblerespondentdor that specific
request. This protocol will permit the exchange of
information betweenthe agentinterestedin the answer
(organizer) and the possible respondentsDuring this
protocol, the organizerinforms other agentsabout the
constraintsassociatedo its request(mainly a deadline)
and the potential contracted agents will respond
informing aboutthe expectedime neededor havingthat
taskexecutecandthe expectedjuality of the answer(bid
message) [3].

It is up to the organizerto evaluatethe bid messages
and to contract one (or possibly more) respondent.

3.4 Conflict resolution

Conflicts are always possible to happen in a
cooperativemulti-Agent community [4]. Conflicts may
appear either during task sharing or result sharing
operations, and may also be classified eitsgrositiveor

task may need some data that it does not own. Then itnegative. Therefore we may recognize :

will ask for it, through the monitor, to the
cooperatioriayer. If the datais not availablehere, it
has to be requested to another agent.

As respondent:
An agentreceivesa "task-announcementmessage
and tries to answer accordingto one of several
different protocols.

* Result-sharing:

As organizer:
The cooperation layer, after receiving a result
producedby the IS, consultsthe AAM to seewether
the other agentsmay benefit from theseresults. If

* Positive conflict in task sharing:
Wheneverseveralagentsare able to executea task
requested by the same organizer. Hiigationhasto
be tackled down by means of negotiation
functionalities.

* Negative conflict in task sharing:

Wheneverthere are no agentswilling (or able) to
executea task, requestedby the organizer,in due
time. This situationrequiresa new planto be issued
by the organizer'amonitorin orderto find a newand
feasible plan for that specific task execution.

* Positive conflict in result sharing:
Wheneverseveralagentswhich aretrying to execute
the sametask, producedifferent but complementary

resultsfor the samerequest(or similar resultswith
different credibilities associated).

* Negative conflict in result sharing:
When severalagents,who are performingthe same
task, produce either inconsistent or antagonistic
results. Here we are referring, in the later case,to
different alternative answersto the same request
(they can also be seenas different valuesfor the
same receiver'stask input), or, in the former, to
inconsistencies detected between different (but
somewhatrelated)informationswhich are inputs to
thattask. The capabilityto dealwith thesesituations
and resolving the conflicts rely mostly on the
availability of a functionality for measuremenf the
information quality as well as domain dependent
knowledge.

4. A classification of cooperative and conflict
situations

The studyof differenttypesof situationswhereagents
may needcooperationpossiblyto solve conflicts among
them, has lead us to a broader Classification of
Cooperation and Conflicts Cases (CCCs). This
classificationhas guided us in suggestingappropriated
policies - as much as possible, application domain
independent to deal with such cooperativesituations.
Someof thesesituationswill requiredifferentdegrees.of
negotiation while others will need conflict resolution
techniquesto be applied. Cooperationis neededwhen
there are different forms for agentsof sharingconcerns
(either tasks or results).

Let us usethe symbolsN <---> M to representthe
relationship "number of organizers"<---> "number of
respondents”.

CCC1 - One agentrequestsanotherspecific agent for
help andthe latter is idle. This is a task sharingtype of
cooperation where a client/server protocol may be
established. Itis a 1<--->1 relationship.

CCC2 - One agentrequestsfor help an agentwhich
already has some tasks in its agenda.A negotiation
regardingtask priorities should be establishedbetween
both. This task sharing situation still is a 1<--->1
relationship.

CCC3 - One agentrequestssome service from several

otheragents Herewe haveseveralpotentialrespondents
to one organizer (a 1<--->M relationship) and a

negotiation through contract net can take place.

CCC4 - Several agents having the role of organitrgr®
negotiatethe executionof taskswith one single agent
having the role of respondent. This task sharing
cooperativesituationis of N<--->1type. But here,we still
can discriminate some different possibilities for the
interaction taking place :
4.1 - The respondent is being asked to
simultaneously execute several different tasks.
4.2 - The respondentis being requestedby the
different organizers to execute the same task.
4.3- In bothformer casesit canhappenthatthereis
only onerespondenbeingrequestedy eachone of
the organizers.This may be seenas a N*(1<--->1)
relationship.
4.4 - Also it canhappenthatall interactionsbetween
the organizersandthat particularrespondentre just
one part of a global negotiation taking place
simultaneously This meansthat the organizersmay
also be trying to negotiate with other different
respondentsHencethis is a relationshipof the type
N<--->M (from the point of view of a respondenis
a relationship of the type N<--->1, and from fint
of view of the organizerit is a relationshipof type
1<--->M).

CCC5 - Several responses,which happen to be
coincidentcomingfrom differentagentsarrive at another
one. This leadsto a result sharingtype of cooperative
situation.
5.1 - If they are available at the same timbeedaken
into consideration together, the information
credibility is augmented.
5.2- If theyarrivein different pointsin time andthe
first one has beenalreadyused,the othersmay be
either ignored or just kept with the time tag updated.

CCC6- Severalresults(answersto previousrequestsor
information that has been volunteered) coming from
different agentsare different. Again this result sharing
cooperative situation may be further decomposed into:
6.1 - Resultsarein conflict andthey are completely
antagonistic.A choice of one alternative must be
madeaccordingto some heuristic (eg. respondents'
credibility regarding that particular information).
6.2 - Resultsare in conflict becausethey contain
somesort of inconsistencyA negotiationmay take
place between agents involving exchange of
constraintsand redoing of somesub-taskby at least
one of them.
6.3 - Results though different can be seen as
complementaryand,therefore may be mergedinto a
single one.

CCC7- An agentdid not get an expectedinput (from
anotheragentin responseo a previousrequest)in due
time. The organizer must overcomethis situation (eg.
choosing another plan).

CCC8-An agentis no longerinterestedn aninformation
it previously requestedto others. This new situation
should be communicatedo those agentsthat had been
contracted for the task.

CCC9- An agent deducesit can not accomplish a
requestedaskin duetime (accordingto somedeadline-

temporal or other - the organizer had attachedto its

request).This information must be sentto the organizer
sothatit canlook for a possiblealternativesolutionto its

current problem.

CCC10- Detectionof a kind of deadlock(may be dueto
the fact of incorrect task decomposition).

CCC11- Cooperationtakesplace as a consequencef
data volunteered by some agents. These messages,
wheneverreceived, may either trigger a new task or
enhancethroughresultsharing,availableinformation. It
also may imply an action of receiving agentto redo
(restart) an already executed (under execution) task.

This Classification while being application
independentvill be useful for the sakeof conflicts and
cooperativesituationsidentificationwithin differenttypes
of applications.

5. Functionalities for negotiation and conflict
resolution

Capabilitiesmentionedin Section3 basicallyrely on
the following functionalities,which are integratedin the
agents cooperation layer:

« Computation of local task priorities

» Generation of task deadlines

* Switching priorities facility

» Generation of bid messages for negotiation

« Evaluation of bid messages for negotiation

« Conflict resolutionon the samekind of input for a
specific task

« Conflict resolutionon differentinputsfor a specific
task

These functionalities, also rely on information

structuresthat are maintainedin the agentsknowledge
bases (self model and agent acquaintance model).
Moreover, the cooperation layer is provided with

knowledge sources with appropriate knowledge to
recognize when and how to use the described
functionalitiesin orderto decideon either cooperativeor
local activities..

These functionalities mainly involve generic
knowledgewhich canbe sharedby all different kinds of
application agents. Nevertheless,when dealing with
specific conflicts, agentssocial activity has also to be
knowledgeableboutthe domainin orderto be effective
on finding compromises.

5.1 Functionalities for task scheduling

Wheneveranagentreceivesa requesto executea task
(Tsk), it hasto computea priority (Pri) to attachto the
taskon the agendaThe agendacontainsa list of tasksto
be executed by the IS by decreasing order of priority.

The priority dependson the actualmissingtime (Mis)
to the task deadline, an estimation of the average
executiontime (AvrExe) for that task (known at self
model), and the time already consumed by that spé€ific
task execution (Exe) process.

The actual missing time to the deadline (Dea)
associated with the task, is Mis = Dg&ur - Arr), where
Cur is the absolutecurrenttime at someinstant,and Arr
is the absolute arriving time of the task request.

The value of Exeis 0 if the IS hasnot yet startedto
executethe task, and (Cur - Lau) if its stateis running,
where Lau is the absolute task launching time.

The Maximum Waiting time (MaxWai) until a task
beginsto be executedn orderto enablethe agentto meet
the task deadline, is calculated as follows:

MaxWai = Mis - (AvrExe - Exe)

The priority of the task (Pri) will be an ordinal
number,suchthat, the loweris MaxWai, the higheris Pri.
Pri should be recalculatedfor all tasks of an agent
(contained on the agenda)whenever a new task is
arriving to the agent.

Tasksto be executeckitherby the agentlS itself or to
be requestedor executionto otheragentsshouldhavea
deadline associated Wheneveran agent has deadline
Deal to executea task and it has to calculate new
deadlines(Dea?2),either for sub-tasksto be executedor
for inputsto be receivedfrom others,thesenewdeadlines
are calculated by the formula:

Dea2 = Deal - (AvrExe At)
where At is a quantumof tolerancetime (e.g. 10% of
AvrExe for communications and other possible
operations).

In order to be sensitive to specific urgenciesand
constraintsasit may be the casefor requestsmadeunder
a client/serverprotocol, it may be useful if the agentis
ableto switch priorities betweera newincomingtaskand
anothertask alreadyin the agenda.This functionality is
usedwhenataskrequestedindera client/servermrotocol
would haveto be rejectedeither becausehe calculated
expected time to have the task executed is grézdethe
deadlineissued,or becausats inclusioninto the agenda
would delay other tasks beyond their deadlines.

Whenevera taskrequests received to be acceptedr
rejected depends on the following computations:

First, according to current agent agertti@,priority

the expected time needed for having the task executed.

As we have seenbefore, the priority this task could
haveis calculated, and then, consideringit includedin
the correctpositionin the agendathe expectedtime for
this task executionas well as for the otherswith lower
priorities thanthis specific one are checkedagainsttheir
deadlines.

A bid messagewill be issuedwith information about
the possibility to acceptthe task, the expectedtime
necessaryto executeit, and the expectedquality of the
results (known at self model).

The agentthat receivesthe bid messagegpossible
from differentrespondentsyvill evaluatethemaccording

that task could have in the case of a future acceptanceo the following rule belongingto the correspondent

is calculated.

Then, consideringincluded the new task in the
agendafor eachtaskin the agendathat haspriority
lower than the new one andalso for this new one,

their new values of expected time necessary for being

executedare computed.If any of thesevaluesis

greaterthanthe correspondingnissingtime, the new

task can not be accepted.

The newexpectedime (Expj) hecessaryo complete

a task (TsRwill be:

EXpi = 2k (AvrExex - Ex&)/N + AvrExg

wherek refersto taskswith priorities Prik > Prij, and

N is the level of that Agent (IS) multi-tasking

capability.
The switching priorities functionality will try, in these
circumstancedp find out anothertaskin the agendawith
greaterpriority, thatis alreadybeing executedor canbe
executedoy anotheragentmeetingits deadline.If thisis
the casefor the task Tsk, it will recalculatethe new
expected times if positions asaitchedbetweenTsk and
Tskj. If the new expectedtimes of the task under
considerationTsk andthe oneswith lesserpriority are

admissible according to their missing times (dependent on

their deadlines), then the priorities are switched.
5.2 Functionalitiesfor negotiation

On receiving a requestfor negotiation (messageof
typez: “task_announcement(ask, Agenj, Deadline)"
or "slave(Task, Agen§, Deadline)" the cooperation
layer of an agentwill producea bid messagexpressing

2 There are two kinds of requests for
"task_announcement" and "slave".

The first kind of request is used by arganizerthatfindsin
its acquaintancenodels,more than one agentable to execute
that task. If the organizer only finds one acquaintancentigtit
execute the task, it will send it a "slave" request for negotiation.

negotiation:

knowledge source:
» From all bids whose expectedexecutiontime is
lesser than the deadline, choose the agent that
produces better quality of results.

5.3 Functionalitiesfor conflict resolution

For eachtask that can be executedby more thanone
agent,it should exist at least one agentAg., able to
analyzeall availableresults(answers)or that task. This
agent,experton resolvingconflicts for that specifictask,
is the onein chargeof sendingthe final agreedresultto
the organizer (the agent which had made the request).

An agentis ableto sense(by consultingthe dynamic
part of its acquaintancenodel) that anotheragentis also
working to answerthe samerequest(either becausdhey
have beerboth contractedor they are voluntarily willing
to help). Whenthis happenstheresultshaveto be sentto
Ag,- This agentwill consultin its own self model the
appropriateslot with the procedureo dealwith thatkind
of conflict, which may be basedon domain dependent
knowledge.

AgentAg, will betheresponsibldor issuinga result,
meetingtask deadlinecalculatedfrom the value of the
missing time received.

A different kind of conflict also occurswheneverthe
organizer gets different inputs to the task it wants to
executeandthesedifferentinputs(which areall needed)
arein someway inconsistentThis inconsistencynay be
due to the fact thanhterrelatednputsdo not belongto the
samecontext, what can be detected.In more complex
situations the conflict detection should be of the
Intelligent System responsibility.

6. Example

In this section,we presentan exampleof cooperation,
including conflict resolution,in a realisticscenariowhich
have beenproposedby Iberdrola, a Spanishcompany
which is responsible for the managementof large
networks for distribution of electrical energy. This
scenariorelateswith a situation involving mainly two
differentagents AAA (Alarm Analysis Agent) and BRS
(Breakersand RelaysSupervisor) when executinga task
("HypothesisGenerationTask") for generatinga list of
possible faulty elements in the network.

Agents AAA and BRS are both able to perform,
differently, the sametasks.Their main taskis to find out
the elementof the networkat fault. Theyreceive,from a
third agent, CSI (Control System Interface), blocks of
alarms with indication of a disturbance.BRS also
receiveschronologicalinformation about the alarms, if
available.If BRS hasthe completeinformationaboutthe
chronologicalalarms,its diagnosisof the faulty elements
is morereliable thanthe one madeby AAA, althoughit
takes longer.

But when CSI does not get all of the alarms with
chronologicalinformationthey will be sentwithout time
stamps.BRS is able to detect missing chronological
alarms because they are replaced by the non-
chronological messages. If there are missing
chronologicalalarms,the quality of the resultsproduced
by BRS decreases.

Also it is possiblethatthe alarmstakelongerto arrive
to BRS than to AAA, becausethere is more data to
transfer. Typically both agentswill not complete the
Hypothesis Generation Task at the same time.

To diagnosewhere the disturbancetook place, both
AAA and BRS generate a list of elements possibfaalt
(HypothesisGenerationTask) and then analyzeone by
one each hypothesis for validati@itypothesisvalidation
Task). This last taskis very time consumingand would
benefitif it is possibleto shortenthe list of hypothesis.
Anotheragent,BAIl (Black out Arealdentifier) calculates
the initial black out area(Initial Black out Area Task)
basedon the first setof alarmsit receivesfrom the CSI
whenthereis a disturbancelf this informationarrivesto
AAA or BRS, before or during their Hypothesis
Validation Task, these agents may filter the list of
hypothesisgeneratedgliminating any elementthat does
not belong to the initial black out area (Hypothesis
Refinement Task) hence reducing the length of the
hypothesidist. HypothesisValidation Task may needto
be restarted but then, it will execute faster.

Severaldifferent interactionsare possibleto happen,
that lead to conflict situations,but we will considerthe

following one:

Both BRS and AAA will calculatea list of possible
faulty elementswith a certaintyfactor attachedo every
element. These certainty factors are computedby the
rules throughwhich they were deducedand they reflect
not only the relative reliability of the diagnosisof each
agentbut alsothe reliability of the receivedinformation
(inputs for the task), such as the percentageof non-
chronological information received by the BRS.

CSl
\
alar alarms
AAA BRS
\\ Final result
[|
DMM ! \ DMM
Conflict Res
>
IS IS
> Hyp.Gem d |
> Hyp.val > Hyp.Gen-
—>» Hyp.Val.

Fig.: Conflict resolution on the Iberdrola scenario

The output of this task will be:
For BRS:[E1lbrs-CF1brs, E2brs-CF2brs, ...]
For AAA:[Elaaa-CFlaaa, E2aaa-CF2aaa, ...]

Let us supposethat Agent BRS is in charge of
resolvingthe conflicts associatedvith the resultsof this
task. AAA and BRS would sensethat both were running
thesametask.Thiswill causethatinsteadof directingthe
resultsof thesetasksto the agentsthatrequestedhemor
volunteering them to any agent, they will send their
resultsto the agentappointedto resolveconflicts for this
specific task (BRS).

These messages have the following syntax:

my_answer(AgSender, Task, Result,
AgDestination, MissingTime)

Theagentwhich is in chargeof solving conflicts for a
specific task being handled, will be always the
responsibleto issue a result meeting task deadlines
(deduced from the missing time received).

In this case, BRS will wait for two messagesf
"my_answer" type (from AAA and itself) while the
deadlineis not reached.Once one messagehas been

received,if a secondmessagedoes not arrive in the
deadlinetime specifiedby the receivedone, the received
message will be forward to the destination agent.

If both messagesdid arrive in due time, the
"conflict_resolution" procedure for this task will be
invoked to produce a unique result.

The "conflict_resolution" procedure is situation
dependenand,for this particularcase createsa list with
all the elementscontainedin any "Result" list from all
"my_answer" messages.

The elementsthat belong to both "Result" lists see
their certainty factor increased| CF=CF1+(1-CF1)*CF2
), while the elementscontainedonly in one "Result" list
keep their certainty factors. The new "Result" list will
have the samesyntaxand will be sortedby decreasing
order of the computed certainty factors.

This newlist will be now consideredasthefinal result
of this task and will be sent to the destination agent.

7. Conclusion

We have here presentedwhat we believe to be the
basic knowledge for enabling coarse grain, semi-
autonomousexpert systems,to behaveas cooperative
agents in a multi-agent community.

UPShell is intendedto be used for very different
applications like electrical distribution network
management or a flexible robotic manufacturing cell.

We briefly presented tool for generatingcooperative
expert systemswhich include facilities for local task
schedulingnegotiation taskandresultsharing,aswell as
conflict resolution.Suchhigh level featuresalsorely on
more basicfunctionalitieslike managemenof deadlines
and priorities.

A tentative classificationof cooperativeand conflict

References

[1] - Eugénio Oliveira, Rui Camacho
"A Tool For Cooperating Expert Systems"
Proceedingof the 1st Expert SystemsWorld Congress,
Pergamon Press, 1991

[2] - Thies Wittig (Editor)
"ARCHON: Architecture for Cooperative Multi-Agent
Systems”
Ellis Horwood 1992

[3] - R. Smith; R. Davis
"Frameworks for Cooperationin Distributed Problem
Solving" in Readings in Distributed A.l.
Edited by Alan H. Bond and Les Gasser
Morgan Kaufmann Publishers, 1988

[4] - M. Klein & A. Baskin
"A Computational Model for Conflict Resolution in
Cooperative Design" in Cooperating KBS
Springer-Verlag, 1990

cases whenever multiple agents interact is also presented.

Acknowledgements

This work has beendevelopedunder the support of
Esprit projectP2256:Archon. We thankall other Archon
partners: Atlas Elektronik GMBH, Amber, CERN,
CNRG-NTUA Athens, EA Technology, Framentec-
Cognitec, FWI University of Amsterdam, Iberdrola,
Iridia-ULB, JRC ISPRA, Labein, Volmac, QueenMary
and Westfield College.

We give specialthanksto our colleagueRui Camacho
Ferreira da Silva for his valuable contribution to the
initial development of UPShell.

