
Negotiation and Conflict Resolution
within a Community of Cooperative Agents

Eugénio Oliveira, Fernando Mouta & Ana Paula Rocha

Faculdade de Engenharia da Universidade do Porto
Rua dos Bragas, 4099 Porto Codex, Portugal

{eco, mouta, arocha}@fe.up.pt

Abstract order to make this possible, special modules including
additional knowledge have to be automatically derived
for the use of the cooperative community. By adding this
new knowledge as well as new functionalities, ISs are
transformed into cooperative agents. In the consultation
mode, the shell provides the means for user interaction
with either a separated IS or a set of agents pursuing an
overall goal.

UPShell, a tool for building up coarse grain, semi-
autonomous cooperating agents (which are expert
systems) is here presented.

Negotiation and conflict resolution protocols have
been integrated into the agents whose architecture is also
presented. Moreover, several basic functionalities dealing
with task scheduling as well as cooperation policies, are
briefly specified.

UPShell generates different Agents which run as a set
of separated Unix processes that can be distributed by
different machines. UPShell is implemented in Prolog
under Unix and also encompasses capabilities to use
Xwindows and Unix inter-process communication
facilities.

A realistic scenario, on a sophisticated electricity
distribution network management application is also
presented to illustrate the referred concepts and tool
features

This paper is concerned with the enhancement of
cooperative capabilities of UPShell (for a description of
its basic functionalities see [1]). Methodologies for multi-
agent negotiation as well as for conflict resolution are
here described.

Key words:
Cooperation, Multi-Agents, Conflict Resolution,

Negotiation

While in section 2, agents architecture is presented,
section 3 enunciates and describes important capabilities
we are using for the sake of sophisticated cooperation. A
tentative classification of all different kinds of
cooperative and conflict cases we may find on coarse
grain semi-autonomous multi-agent applications is also
presented in section 4. In section 5 the basic
functionalities on which cooperative capabilities rely, are
specified. The paper ends with a realistic application
example and conclusions.

1. Introduction

An environment to generate and exploit a community
of cooperative knowledge based systems, UPShell
(University of Porto Shell), has been developed at our
group, in the framework of an Esprit Project (Archon)1.

The UPShell [1] may be used either by domain experts
in order to generate specific Intelligent Systems (IS) or, in
a consultation mode, to solve complex applications. In the
first case, different ISs may be generated and, if needed,
the Shell can be instructed to build up a cooperative
system consisting of several of these expert systems. In 2. An architecture for cooperative agents

In this section we describe, in broad terms, the main
architecture of each agent.

1 Esprit II project ARCHON, ARchitecture for Cooperative
Heterogeneous ON-line systems (P-2256), aims to construct a
general purpose multi-agent system architecture for industrial
applications.

The basic architecture of the agents [2] consists of two
conceptually separated subsystems:

• An upper layer for cooperation and coordination of
agent activity (Cooperation Layer - CL); 3. Capabilities of cooperative agents

• The underlying Intelligent System that has the domain
specific problem solver capabilities (IS). 3.1 Local task scheduling

It is the responsibility of the cooperation layer to
coordinate inter and intra agent activities. This layer is
further divided into:

The monitor is the cooperation layer's module that
controls and monitors the underlying IS. The aim of local
task scheduling is to guarantee the accomplishment of
every task in the agenda according to its deadline.
Therefore, priorities are computed for each task taking
into account dynamic information reflecting agents
computation load as well as waiting times for task inputs.
However, requests need to be formulated with specific
temporal deadlines attached, and not priorities, letting to
the receiving agent the job of computing the more
appropriate priority value (for task scheduling purposes)
according to its own commitments.

• a communication module for information exchange with
other agents;

• a Decision Making Module (DMM) for:
- choosing cooperation policies according to the agent

workload and overall community situation, and
- controlling the communication module;

• a control module (monitor) for scheduling IS problem
solving activities.

If, for example, an urgent request arrives or if a
requested task is approaching the deadline without being
executed, the scheduling process of tasks in the agenda
should be redone in order to accomplish this specific task
within the time limits.

For these purposes (namely to make decisions after
situation assessment) the DMM uses:
• a Model of Acquaintance Agents (AAM) where relevant

information about other agents knowledge and
workload situation is stored;

• a Self Model (SM) with information about several
aspects of the underlying IS skills and workload;

The scheduling will take into account the capabilities
of the underlying IS among the following:

• sets of rules including knowledge on cooperation and
local control; Task switching capabilities:

• an internal Data-BlackBoard/Goal-BlackBoard
(DBB/GBB). The monitor is able to control IS task execution in

three different ways: task swapping, task redoing and
task restarting.The IS structure is similar to a rule+frame based expert

system. Some sophistications were made in the rule
interpreter in order to be able to attend the upper layer
control directives and maintain several tasks
simultaneously by means of indexing scheme for the task
environments.

The IS, during the execution of a task is able to
suspend the current execution and to switch to
execute a new task. When the new task has been
executed, the IS is able to continue the previous
execution from the breakpoint.

UPShell may be used either by domain experts in
order to generate specific intelligent systems, or by other
users in a consultation mode. In the first case the Shell
automatically build up the self model (a model of the IS
skills). In consultation mode the Shell can be instructed to
build up a cooperative system out of those different ISs.
In order to do this, specific knowledge (and code) have to
be automatically produced concerning the skills and
capabilities of each IS which may be important for the
other ones in the same community (the model of
acquaintances). In this case, ISs are transformed into
Cooperative Intelligent Systems (CISs) or agents through
the addition of an upper cooperative layer on their top. In
the consultation mode the Shell provides the means to
give either to a separated IS or to a set of CISs an overall
goal to be pursued (if necessary under time constrains).

To do task swapping it is necessary to suspend the
IS's execution of a task so that it can be restarted
later.
To execute a task, the monitor accesses the goal-plan
in the self model, to find the list of Basic Processing
Elements (BPEs) that form the plan of that task.
Then, it sends to IS, all the needed input to that task
as well as the first BPE. When IS finishes the BPE, it
will send a message "context(Task, BPE)" to the
cooperation layer with the answer to this BPE. If the
monitor is instructed to continue the execution of this
task, the following BPE of this task will be sent to
the IS.
It may happen however that DMM has instructed the
monitor to redo, restart or swap to a specific task and
that precise moment (between BPEs) is the right one

to control the underlying IS appropriately. this is the case, results are sent to them.
As respondent:

Multi-task execution: An agent receives incoming data volunteered by any
agent (not answer to a previous query or protocol).

The IS is able to do several tasks simultaneously, and
the monitor is capable of monitoring the execution of
several tasks at the same time.

If the received data is part of the input to an
executing or executed task and if it is more reliable
than the previous one, then the corresponding task is
restarted or redone.

3.2 Detecting the need for cooperation If the received data, eventually together with data
already existing, completes all the necessary input to
a certain task, the state of this task is changed to
"ready" in order to be executed.

When an Agent detects the need for help (unable to
execute a task), it will check in its acquaintance models if
there are agents able to do it. If there are one or more, the
first step is to start a negotiation process. Let us call
"organizer" the agent that initiates the negotiation and
"respondents" the agents that receive the request for
negotiation. The goal of negotiation is to have one or
more respondents committed to execute a task to help the
organizer.

3.3 Negotiation

Cooperation, mainly task-sharing, may lead to the
need of negotiation among several agents.

Once an agent wants to formulate a request, in order to
get an answer from other agents, it needs to establish a
protocol with the possible respondents for that specific
request. This protocol will permit the exchange of
information between the agent interested in the answer
(organizer) and the possible respondents. During this
protocol, the organizer informs other agents about the
constraints associated to its request (mainly a deadline)
and the potential contracted agents will respond
informing about the expected time needed for having that
task executed and the expected quality of the answer (bid
message) [3].

The two main cooperation forms for distributed
problem solving are task-sharing and result-sharing [3].
Task-sharing is a kind of cooperation in which individual
problem solving nodes assist each other by sharing the
computational load for the execution of sub-tasks of the
overall problem. Result-sharing is a mechanism of
cooperation through which results produced by a node are
sent to other nodes that may benefit from these results.

Next, we list the situations when an agent decides to
initiate some form of cooperation: It is up to the organizer to evaluate the bid messages

and to contract one (or possibly more) respondent.
• Task-sharing:

3.4 Conflict resolution
As organizer:

When decomposing a task, if some sub-tasks can not
be dealt with locally, or if some inputs to this task
can not be gathered locally.

Conflicts are always possible to happen in a
cooperative multi-Agent community [4]. Conflicts may
appear either during task sharing or result sharing
operations, and may also be classified either as positive or
negative. Therefore we may recognize :

Also, the IS of an Agent, during the execution of a
task may need some data that it does not own. Then it
will ask for it, through the monitor, to the
cooperation layer. If the data is not available here, it
has to be requested to another agent.

• Positive conflict in task sharing:
Whenever several agents are able to execute a task
requested by the same organizer. This situation has to
be tackled down by means of negotiation
functionalities.

As respondent:
An agent receives a "task-announcement" message
and tries to answer according to one of several
different protocols.

• Negative conflict in task sharing:
Whenever there are no agents willing (or able) to
execute a task, requested by the organizer, in due
time. This situation requires a new plan to be issued
by the organizer's monitor in order to find a new and
feasible plan for that specific task execution.

• Result-sharing:

As organizer:
The cooperation layer, after receiving a result
produced by the IS, consults the AAM to see wether
the other agents may benefit from these results. If

• Positive conflict in result sharing:
Whenever several agents, which are trying to execute
the same task, produce different but complementary

results for the same request (or similar results with
different credibilities associated). CCC4 - Several agents having the role of organizers try to

negotiate the execution of tasks with one single agent
having the role of respondent. This task sharing
cooperative situation is of N<--->1 type. But here, we still
can discriminate some different possibilities for the
interaction taking place :

• Negative conflict in result sharing:
When several agents, who are performing the same
task, produce either inconsistent or antagonistic
results. Here we are referring, in the later case, to
different alternative answers to the same request
(they can also be seen as different values for the
same receiver's task input), or, in the former, to
inconsistencies detected between different (but
somewhat related) informations which are inputs to
that task. The capability to deal with these situations
and resolving the conflicts rely mostly on the
availability of a functionality for measurement of the
information quality as well as domain dependent
knowledge.

4.1 - The respondent is being asked to
simultaneously execute several different tasks.
4.2 - The respondent is being requested by the
different organizers to execute the same task.
4.3 - In both former cases, it can happen that there is
only one respondent being requested by each one of
the organizers. This may be seen as a N*(1<--->1)
relationship.
4.4 - Also it can happen that all interactions between
the organizers and that particular respondent are just
one part of a global negotiation taking place
simultaneously. This means that the organizers may
also be trying to negotiate with other different
respondents. Hence this is a relationship of the type
N<--->M (from the point of view of a respondent it is
a relationship of the type N<--->1, and from the point
of view of the organizer it is a relationship of type
1<--->M).

4. A classification of cooperative and conflict
situations

The study of different types of situations where agents
may need cooperation, possibly to solve conflicts among
them, has lead us to a broader Classification of
Cooperation and Conflicts Cases (CCCs). This
classification has guided us in suggesting appropriated
policies - as much as possible, application domain
independent - to deal with such cooperative situations.
Some of these situations will require different degrees.of
negotiation while others will need conflict resolution
techniques to be applied. Cooperation is needed when
there are different forms for agents of sharing concerns
(either tasks or results).

CCC5 - Several responses, which happen to be
coincident, coming from different agents arrive at another
one. This leads to a result sharing type of cooperative
situation.

5.1 - If they are available at the same time to be taken
into consideration together, the information
credibility is augmented.
5.2 - If they arrive in different points in time and the
first one has been already used, the others may be
either ignored or just kept with the time tag updated.

Let us use the symbols N <---> M to represent the
relationship "number of organizers" <---> "number of
respondents".

CCC6 - Several results (answers to previous requests or
information that has been volunteered) coming from
different agents are different. Again this result sharing
cooperative situation may be further decomposed into:

CCC1 - One agent requests another specific agent for
help and the latter is idle. This is a task sharing type of
cooperation where a client/server protocol may be
established. It is a 1<--->1 relationship.

6.1 - Results are in conflict and they are completely
antagonistic. A choice of one alternative must be
made according to some heuristic (eg. respondents'
credibility regarding that particular information).

CCC2 - One agent requests for help an agent which
already has some tasks in its agenda. A negotiation
regarding task priorities should be established between
both. This task sharing situation still is a 1<--->1
relationship.

6.2 - Results are in conflict because they contain
some sort of inconsistency. A negotiation may take
place between agents involving exchange of
constraints and redoing of some sub-task by at least
one of them.

CCC3 - One agent requests some service from several
other agents. Here we have several potential respondents
to one organizer (a 1<--->M relationship) and a
negotiation through contract net can take place.

6.3 - Results though different can be seen as
complementary and, therefore, may be merged into a
single one.

structures that are maintained in the agents knowledge
bases (self model and agent acquaintance model).
Moreover, the cooperation layer is provided with
knowledge sources with appropriate knowledge to
recognize when and how to use the described
functionalities in order to decide on either cooperative or
local activities..

CCC7 - An agent did not get an expected input (from
another agent in response to a previous request) in due
time. The organizer must overcome this situation (eg.
choosing another plan).

CCC8- An agent is no longer interested in an information
it previously requested to others. This new situation
should be communicated to those agents that had been
contracted for the task.

These functionalities mainly involve generic
knowledge which can be shared by all different kinds of
application agents. Nevertheless, when dealing with
specific conflicts, agents social activity has also to be
knowledgeable about the domain in order to be effective
on finding compromises.

CCC9- An agent deduces it can not accomplish a
requested task in due time (according to some deadline -
temporal or other - the organizer had attached to its
request). This information must be sent to the organizer
so that it can look for a possible alternative solution to its
current problem.

5.1 Functionalities for task scheduling

Whenever an agent receives a request to execute a task
(Tsk), it has to compute a priority (Pri) to attach to the
task on the agenda. The agenda contains a list of tasks to
be executed by the IS by decreasing order of priority.

CCC10 - Detection of a kind of deadlock (may be due to
the fact of incorrect task decomposition).

The priority depends on the actual missing time (Mis)
to the task deadline, an estimation of the average
execution time (AvrExe) for that task (known at self
model), and the time already consumed by that specific IS
task execution (Exe) process.

CCC11 - Cooperation takes place as a consequence of
data volunteered by some agents. These messages,
whenever received, may either trigger a new task or
enhance, through result sharing, available information. It
also may imply an action of receiving agent to redo
(restart) an already executed (under execution) task.

The actual missing time to the deadline (Dea)
associated with the task, is Mis = Dea - (Cur - Arr), where
Cur is the absolute current time at some instant, and Arr
is the absolute arriving time of the task request.This Classification while being application

independent will be useful for the sake of conflicts and
cooperative situations identification within different types
of applications.

The value of Exe is 0 if the IS has not yet started to
execute the task, and (Cur - Lau) if its state is running,
where Lau is the absolute task launching time.

The Maximum Waiting time (MaxWai) until a task
begins to be executed in order to enable the agent to meet
the task deadline, is calculated as follows:5. Functionalities for negotiation and conflict

resolution MaxWai = Mis - (AvrExe - Exe)
The priority of the task (Pri) will be an ordinal

number, such that, the lower is MaxWai, the higher is Pri.
Pri should be recalculated for all tasks of an agent
(contained on the agenda) whenever a new task is
arriving to the agent.

Capabilities mentioned in Section 3 basically rely on
the following functionalities, which are integrated in the
agents cooperation layer:

• Computation of local task priorities
Tasks to be executed either by the agent IS itself or to

be requested for execution to other agents, should have a
deadline associated. Whenever an agent has deadline
Dea1 to execute a task and it has to calculate new
deadlines (Dea2), either for sub-tasks to be executed or
for inputs to be received from others, these new deadlines
are calculated by the formula:

• Generation of task deadlines
• Switching priorities facility
• Generation of bid messages for negotiation
• Evaluation of bid messages for negotiation
• Conflict resolution on the same kind of input for a

specific task
• Conflict resolution on different inputs for a specific

task Dea2 = Dea1 - (AvrExe + ∆t)
where ∆t is a quantum of tolerance time (e.g. 10% of
AvrExe for communications and other possible
operations).

These functionalities, also rely on information

the expected time needed for having the task executed.
In order to be sensitive to specific urgencies and

constraints, as it may be the case for requests made under
a client/server protocol, it may be useful if the agent is
able to switch priorities between a new incoming task and
another task already in the agenda. This functionality is
used when a task requested under a client/server protocol
would have to be rejected either because the calculated
expected time to have the task executed is greater than the
deadline issued, or because its inclusion into the agenda
would delay other tasks beyond their deadlines.

As we have seen before, the priority this task could
have is calculated , and then, considering it included in
the correct position in the agenda, the expected time for
this task execution as well as for the others with lower
priorities than this specific one are checked against their
deadlines.

A bid message will be issued with information about
the possibility to accept the task, the expected time
necessary to execute it, and the expected quality of the
results (known at self model).

Whenever a task request is received, to be accepted or
rejected depends on the following computations: The agent that receives the bid messages (possible

from different respondents) will evaluate them according
to the following rule belonging to the correspondent
knowledge source:

First, according to current agent agenda, the priority
that task could have in the case of a future acceptance
is calculated.

Then, considering included the new task in the
agenda, for each task in the agenda, that has priority
lower than the new one and also for this new one,
their new values of expected time necessary for being
executed are computed. If any of these values is
greater than the corresponding missing time, the new
task can not be accepted.

• From all bids whose expected execution time is
lesser than the deadline, choose the agent that
produces better quality of results.

5.3 Functionalities for conflict resolution

For each task that can be executed by more than one
agent, it should exist at least one agent Agcr able to
analyze all available results (answers) for that task. This
agent, expert on resolving conflicts for that specific task,
is the one in charge of sending the final agreed result to
the organizer (the agent which had made the request).

The new expected time (Expi) necessary to complete
a task (Tski)will be:

Expi = Σk (AvrExek - Exek)/N + AvrExei
where k refers to tasks with priorities Prik > Prii, and
N is the level of that Agent (IS) multi-tasking
capability. An agent is able to sense (by consulting the dynamic

part of its acquaintance model) that another agent is also
working to answer the same request (either because they
have been both contracted or they are voluntarily willing
to help). When this happens, the results have to be sent to
Agcr. This agent will consult in its own self model the
appropriate slot with the procedure to deal with that kind
of conflict, which may be based on domain dependent
knowledge.

The switching priorities functionality will try, in these
circumstances, to find out another task in the agenda with
greater priority, that is already being executed or can be
executed by another agent meeting its deadline. If this is
the case for the task Tskj, it will recalculate the new
expected times if positions are switched between Tskj and
Tski. If the new expected times of the task under
consideration Tski, and the ones with lesser priority are
admissible according to their missing times (dependent on
their deadlines), then the priorities are switched.

Agent Agcr will be the responsible for issuing a result,
meeting task deadline calculated from the value of the
missing time received.

5.2 Functionalities for negotiation
A different kind of conflict also occurs whenever the

organizer gets different inputs to the task it wants to
execute, and these different inputs (which are all needed)
are in some way inconsistent. This inconsistency may be
due to the fact that interrelated inputs do not belong to the
same context, what can be detected. In more complex
situations the conflict detection should be of the
Intelligent System responsibility.

On receiving a request for negotiation (message of
type2: "task_announcement(Taskj, Agenti, Deadline)"
or "slave(Taskj, Agenti, Deadline)" the cooperation
layer of an agent will produce a bid message expressing

2 There are two kinds of requests for negotiation:
"task_announcement" and "slave".

The first kind of request is used by an organizer, that finds in
its acquaintance models, more than one agent able to execute
that task. If the organizer only finds one acquaintance that might
execute the task, it will send it a "slave" request for negotiation.

6. Example

In this section, we present an example of cooperation,
including conflict resolution, in a realistic scenario which
have been proposed by Iberdrola, a Spanish company
which is responsible for the management of large
networks for distribution of electrical energy. This
scenario relates with a situation involving mainly two
different agents, AAA (Alarm Analysis Agent) and BRS
(Breakers and Relays Supervisor), when executing a task
("Hypothesis Generation Task") for generating a list of
possible faulty elements in the network.

following one:

Both BRS and AAA will calculate a list of possible
faulty elements, with a certainty factor attached to every
element. These certainty factors are computed by the
rules through which they were deduced and they reflect
not only the relative reliability of the diagnosis of each
agent but also the reliability of the received information
(inputs for the task), such as the percentage of non-
chronological information received by the BRS.

Hyp.Gen.

DMM

CSI

Hyp.Gen.

Hyp.Val.
Hyp.Val.

AAA BRS

DMM

ISIS

alarms alarms

Conflict Res.

Final result

Agents AAA and BRS are both able to perform,
differently, the same tasks. Their main task is to find out
the elements of the network at fault. They receive, from a
third agent, CSI (Control System Interface), blocks of
alarms with indication of a disturbance. BRS also
receives chronological information about the alarms, if
available. If BRS has the complete information about the
chronological alarms, its diagnosis of the faulty elements
is more reliable than the one made by AAA, although it
takes longer.

But when CSI does not get all of the alarms with
chronological information they will be sent without time
stamps. BRS is able to detect missing chronological
alarms because they are replaced by the non-
chronological messages. If there are missing
chronological alarms, the quality of the results produced
by BRS decreases.

Also it is possible that the alarms take longer to arrive
to BRS than to AAA, because there is more data to
transfer. Typically both agents will not complete the
Hypothesis Generation Task at the same time.

Fig.: Conflict resolution on the Iberdrola scenario

The output of this task will be:
For BRS:[E1brs-CF1brs, E2brs-CF2brs, ...]To diagnose where the disturbance took place, both

AAA and BRS generate a list of elements possibly at fault
(Hypothesis Generation Task) and then analyze one by
one each hypothesis for validation (Hypothesis Validation
Task). This last task is very time consuming and would
benefit if it is possible to shorten the list of hypothesis.
Another agent, BAI (Black out Area Identifier) calculates
the initial black out area (Initial Black out Area Task)
based on the first set of alarms it receives from the CSI
when there is a disturbance. If this information arrives to
AAA or BRS, before or during their Hypothesis
Validation Task, these agents may filter the list of
hypothesis generated, eliminating any element that does
not belong to the initial black out area (Hypothesis
Refinement Task) hence reducing the length of the
hypothesis list. Hypothesis Validation Task may need to
be restarted but then, it will execute faster.

For AAA: [E1aaa-CF1aaa, E2aaa-CF2aaa, ...]
Let us suppose that Agent BRS is in charge of

resolving the conflicts associated with the results of this
task. AAA and BRS would sense that both were running
the same task. This will cause that instead of directing the
results of these tasks to the agents that requested them or
volunteering them to any agent, they will send their
results to the agent appointed to resolve conflicts for this
specific task (BRS).

These messages have the following syntax:
my_answer(AgSender, Task, Result,

 AgDestination, MissingTime)
The agent which is in charge of solving conflicts for a

specific task being handled, will be always the
responsible to issue a result meeting task deadlines
(deduced from the missing time received).

In this case, BRS will wait for two messages of
"my_answer" type (from AAA and itself) while the
deadline is not reached. Once one message has been

Several different interactions are possible to happen,
that lead to conflict situations, but we will consider the

received, if a second message does not arrive in the
deadline time specified by the received one, the received
message will be forward to the destination agent.

References

If both messages did arrive in due time, the
"conflict_resolution" procedure for this task will be
invoked to produce a unique result.

[1] - Eugénio Oliveira, Rui Camacho
"A Tool For Cooperating Expert Systems"
Proceedings of the 1st Expert Systems World Congress,
Pergamon Press, 1991The "conflict_resolution" procedure is situation

dependent and, for this particular case, creates a list with
all the elements contained in any "Result" list from all
"my_answer" messages.

[2] - Thies Wittig (Editor)
"ARCHON: Architecture for Cooperative Multi-Agent
Systems"
Ellis Horwood 1992

The elements that belong to both "Result" lists see
their certainty factor increased (CF=CF1+(1-CF1)*CF2
), while the elements contained only in one "Result" list
keep their certainty factors. The new "Result" list will
have the same syntax and will be sorted by decreasing
order of the computed certainty factors.

[3] - R. Smith; R. Davis
"Frameworks for Cooperation in Distributed Problem
Solving" in Readings in Distributed A.I.
Edited by Alan H. Bond and Les Gasser
Morgan Kaufmann Publishers, 1988

[4] - M. Klein & A. Baskin
This new list will be now considered as the final result

of this task and will be sent to the destination agent.
"A Computational Model for Conflict Resolution in
Cooperative Design" in Cooperating KBS
Springer-Verlag, 1990

7. Conclusion

We have here presented what we believe to be the
basic knowledge for enabling coarse grain, semi-
autonomous expert systems, to behave as cooperative
agents in a multi-agent community.

UPShell is intended to be used for very different
applications like electrical distribution network
management or a flexible robotic manufacturing cell.

We briefly presented a tool for generating cooperative
expert systems which include facilities for local task
scheduling, negotiation, task and result sharing, as well as
conflict resolution. Such high level features also rely on
more basic functionalities like management of deadlines
and priorities.

A tentative classification of cooperative and conflict
cases whenever multiple agents interact is also presented.

Acknowledgements

This work has been developed under the support of
Esprit project P2256: Archon. We thank all other Archon
partners: Atlas Elektronik GMBH, Amber, CERN,
CNRG-NTUA Athens, EA Technology, Framentec-
Cognitec, FWI University of Amsterdam, Iberdrola,
Iridia-ULB, JRC ISPRA, Labein, Volmac, Queen Mary
and Westfield College.

We give special thanks to our colleague Rui Camacho
Ferreira da Silva for his valuable contribution to the
initial development of UPShell.

