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Abstract

Static dependent types are the basis of a new type system which allows
types and values to be packaged together in �rst-class modules, permitting

exible use of packaged types while retaining static decidability. Previous
type systems restrict the use of modules, restrict access to packaged types,
or fail to provide static type checking. The use of static e�ect information
guarantees type soundness in the presence of side e�ects. Experience with an
implementation of static dependent types in the FX programming language
demonstrates their power. In particular, static dependent types can be used
to implement types that are ordinarily built-in, and permit FX to be its own
linking language.
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Chapter 1

Introduction

Static dependent types are the basis of a new type system which allows
types and values to be packaged together in �rst-class modules, permitting

exible use of packaged types while retaining static decidability. Previous
type systems restrict the use of modules, restrict access to packaged types,
or fail to provide static type checking. The use of static e�ect information
guarantees type soundness in the presence of side e�ects. Experience with an
implementation of static dependent types in the FX programming language
[Gi�ord, et al. 87] demonstrates their power. In particular, static dependent
types can be used to implement types that are ordinarily built-in, and to
permit FX to be its own linking language.

1.1 Motivation

Programmers tackle the complexity of a problem by decomposing it into
smaller, more manageable subproblems. To support this process, program-
ming languages usually provide some means to decompose programs into
smaller, more easily understood, program modules. Programmers may de-
velop and test modules independently and then combine them into a com-
plete system. Moreover, useful modules may often be shared among several
programs, thus saving the e�ort of recoding solutions to solved problems.

Modules usually provide tools of related functionality. For example, a set
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of matrix manipulation subroutines, e.g. for matrix inversion, transposition,
gaussian elimination, might be grouped together in one module.

The values in a module may implement an abstract behavior like stacks,
process queues, or hash tables. In a typed language, the programmer would
like to de�ne a new data type which the module is said to implement. To
prevent users of the data type from violating internal invariants, the module
may hide the de�nition of the abstract type and prevent access to values of
that type except through the module. This allows module creation to be
more independent of module use.

The components of a module usually have names to provide easy access
to them. It is for this reason that modules are sometimes called environments

[MacQueen 84].

De�nition 1 A module is a collection of related named data types and/or
values.1

1.2 Background

A module system design represents a choice in the trade-o� between ex-
pressive power and complexity. Most previous systems restrict the use of
modules, usually requiring all modules to be de�ned at top-level at compile
time. The few systems which do allow �rst-class modules do not have side
e�ects and lack either 
exibility or decidability.

1.2.1 Most Module Systems are Second-Class

Languages like CLU [Liskov, et al. 81] and Ada [DoD 83] allow the pro-
grammer to package a data type and a set of operations together into a
module which may be compiled separately and then used by other programs.
However, they require that all references to modules be statically resolvable:
module references must be manifest constants.

1This is not the most general de�nition. There is no reason why modules may not also
contain macros, for example. However, a more general de�nition would only add confusion
arising from issues not relevant to the current project.
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Requiring module references to be manifest makes writing some programs
more di�cult. For example, there may be di�erent modules in a system
implementing the same behavior, or abstraction, optimized for di�erent cases.
For example, there may be two matrix implementations in a system, one for
sparse and one for dense matrices. A programmer may need to use the matrix
abstraction without knowing which implementation is more appropriate to
the data, which will not be available until run time. The most straight-
forward approach is to write the code once, relying only on the existence of
some matrix implementation, and choose the more e�cient one dynamically.
This code can be packaged in a subroutine:

P = (lambda (matrix-impl)

...create and manipulate matrices using the data...)

Then, the programmer can check the data and apply P to the appropriate
module dynamically.

(P (if (sparse? data) sparce-matrix-impl dense-matrix-impl))

In most systems, modules may not be passed to subroutines as arguments.
The result is that the code in the subroutine is duplicated for each case.

De�nition 2 A value is �rst-class if it can be named, passed to subroutines,
returned from subroutines, and stored in data structures.

Most programming languages do not support �rst-class modules.

Second-class modules have certain implementation advantages. Ada, for
example, uses the presence of static representation information to optimize
runtime representations of values, i.e., it unboxes them. However, this ne-
cessitates recompiling all users of a module when the module changes | a
violation of abstraction principles. Second-class modules also avoid the prob-
lem of maintaining type safety in the presence of side e�ects: it is easy for
the implementation to guarantee that there is no way to mutate a module
implementation.

Unfortunately, second-class modules increase the intellectual overhead of
programming because they require a separate linking language to combine
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modules together. All the tools the programmer uses to write programs, e.g.
subroutine abstraction, are unavailable for structuring large systems.2 ML
[MacQueen 84] makes an e�ort to ameliorate this problem by making the
linking language mesh fairly well with the rest of the language, but it still
has a separate linking language with separate rules governing its use.

1.2.2 Weak Existential Types are In
exible

Research in the area of data abstraction has bene�tted from work in logic.
In particular, investigators have imported the notions of type quanti�cation
from [Girard 72] and [Martin-L�of 73].

The SOL programming language [Mitchell and Plotkin 88] uses the no-
tion of existential quanti�cation for abstract data types and allows values of
existential type to be �rst-class.

De�nition 3 An existential type packages types and values together into a
single module value. The type names are bound in an existential type and are
accessible in the types of the component values.

For example, a module that implements stacks of integers would have the
type:

(9 (intstack) ((mkstack : () ! intstack)

(push : intstack � int ! intstack)

(pop : intstack ! int � intstack)))

Suppose intstackimpl is a module with the above type. In SOL, the
programmer may use the module in an abstype construct:

2[Burstall and Lampson 84] makes the observation that �rst-class modules allow uni-
form treatment of ordinary computation and module linking.
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abstype intstack with mkstack : () ! intstack,

push : intstack � int ! intstack

pop : intstack ! int � intstack

is intstackimpl

in

. . . code which uses stacks. . .
end

SOL does not allow the bound type variable of an abstype to appear free
in the type of the abstype return value. Consequently, there is no way to
refer to the type implemented by a module outside of an abstype.3

But, one might like to return a stack from such an expression. Or, since
modules are �rst-class, one may want to operate on any stack regardless of
which implementation created it. Consider the subroutine for reversing all
the elements of a stack:

reverse-stack = (lambda (stack-impl a-stack)

;; Make a new stack. Pop the elements

;; off the old stack and push them onto

;; the new one. Return the new stack.

)

SOL does not provide any way to write the type of such a subroutine
because the type of a-stack and the return type depend on stack-impl.

De�nition 4 A module type is generally available if it can be extracted from
a module anywhere in the program.4

De�nition 5 An existential type system is weak if its module types are not
generally available.

3SOL also does not allow the bound type variable of an abstype to appear free in the
types of any free variables in the abstype body. This restriction, however, has nothing
to do with the 
exibility of the module system: it is intended to prevent capture. Alpha-
renaming the program would eliminate the need for this restriction. See Section 3.1 for a
discussion of this issue.

4The author is grateful to Jonathan Rees for suggesting the name generally available.
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Languages with second-class module systems, like CLU and Ada, have an
advantage in this regard: They force the programmer to name all modules
and provide their de�nitions at top-level. This way, all the types implemented
by modules used by a program are available everywhere in the program.

1.2.3 Strong Existential Types are Undecidable

To allow module types to be generally available, type expressions must be
able to refer to values.

De�nition 6 A dependent type is one containing a value expression.

The Pebble programming language [Burstall and Lampson 84] provides
this facility by allowing types to be �rst-class values. This means that the
programmer may refer to a type in a module by selecting it out as if it were
a value.

De�nition 7 An existential type system is strong if it allows types to be
treated as �rst-class values.5

Because a type can be the result of arbitrary computation in a strong
existential type system, type checking may fail to terminate. In addition,
strong existential types are not truly abstract because the program enclosing
the module de�nition can select the representation type out of a module
explicitly. This is why Pebble uses a password mechanism in implementations
of abstract types. The implementation can check to see that values were
not manufactured elsewhere by checking the password. (See [Burstall and
Lampson 84, pp. 18{19].) This mechanism is ad hoc, and, in light of the
current proposal, unnecessary.

5Usually, the de�nition of strong existential type states that the carrier of a module is
a full-
edged type. The de�nition given here makes use of the result of [Hook and Howe
86] which shows that having strong existential types, in this sense, is equivalent to having
the type : type axiom. [Meyer and Reinhold 86] shows that the type : type axiom
implies that the type system is undecidable.
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1.3 Goals

The challenge is to design a language which simultaneously provides:

� Type safety.

� Data abstraction.

� Multiple (recursive) abstractions.

� Higher order abstractions.

� First-class module implementations.

� Safe interaction with side e�ects.

� General availability of module types.

� Static type checking.

Many languages meet some of these goals: ML has multiple, recursive ab-
stract types,6 simple type constructors, side e�ects, and static type checking.
SOL does not have side e�ects but allows �rst-class modules. Pebble meets
all the goals except static type checking (though data abstraction relies on
an ad hoc password scheme). Quest [Cardelli 89] has a complete system of
higher order abstractions but does not have dependent subroutines and does
not provide general availability.

The following table presents a survey comparing some current languages
with our system of static dependent types (SDT) according to these goals.
(All the given languages provide type safety and data abstraction.)

CLU Ada ML SOL Quest Pebble SDT
Mult. ADTs � � � �
Higher Order � � �
1st Class Mods � � � �
Side E�ects � � � � �
Gen. Avail. � �
Stat. Check. � � � � � �

6An implementation of trees which exports abstractions for both node and tree is an
example of the use of multiple recursive types.
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1.4 The Proposal

1.4.1 Static Dependent Types

De�nition 8 A static dependent type (SDT) system provides general avail-
ability of module types and preserves the separation of types and values.

To preserve static type checking, a static dependent type system will not
allow types to be the results of arbitrary computation and will not require
the full evaluation of values in dependent types. Instead, there will be a
single type which may directly contain a value expression. The expression
in a dependent type will not be evaluated; it will be statically compared
to expressions in other dependent types (in this case using simple textual
equality), and it will have variables replaced by their de�nitions whenever
the dependent type is exported out of the scope of some of its free variables.

Quest [Cardelli 89] attempted the same sort of trade-o�, but, because
Quest has no way of restricting side e�ects, it restricts dependent types so
that only variables may appear in them. This means that the substitutions
which allow dependent types to be meaningful when exported out of a scope
cannot take place.

1.4.2 FX is a Good Base Language

An e�ect system like the one in FX [Gi�ord, et al. 87], based on [Lucassen
87], provides a means of specifying and enforcing constraints which guarantee
type safety in the presence of �rst-class modules, dependent types, and side
e�ects. The design of the static dependent type system will contain e�ect
constraints enforced by the e�ect system.

Also, the FX kind system based on [McCracken 79] supports the notion
of a description. A description is a type, an e�ect, a region of the store, or a
function from descriptions to descriptions. Thus, FX provides higher order
descriptions. In fact, FX provides all the power of the second order typed
lambda calculus.
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1.5 Structure of the Thesis

The remainder of this thesis is organized as follows:

� Chapter 2 gives the design of a simple system built on top of the FX-87
kernel of Appendix A. The design is speci�ed as a grammar, static
semantics, and informal dynamic semantics with examples.

� Chapter 3 describes an implementation built into the FX-87 Interpreter
[Jouvelot and Gi�ord 88] to test the utility and practicality of the
module system design.

� Chapter 4 summarizes the results of the design and implementation
e�orts and describes directions for current and future research.
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Chapter 2

Static Dependent Types

The FX-87 kernel described in Appendix A may be extended to support �rst-
class modules and static dependent types (SDTs). The syntax description
given here shows only new or changed forms; other forms remain as given
in the appendix. Similarly, the static semantics provides only the new and
changed kinding and typing rules.

For readability, examples will often leave out projections of polymorphic
values onto type arguments. In all such cases, an implicit projection mecha-
nism like the one in FX-87 could supply the missing arguments automatically.
(In fact, the implementation described in Chapter 3 retains this mechanism.)

The design presented here is one in a series of static dependent type sys-
tems. The kernel idea, that there should be a static semantics for expressions
in dependent types is due to Mark Reinhold. He worked out a scheme in a
language without side e�ects and without higher order descriptions. The au-
thor generalized and implemented this system with higher order descriptions,
e�ects, and regions. Then, the author, with Reinhold, extended the design
to include multiple, mutually recursive abstractions and multiple, mutually
recursive values. The author implemented this system as well. We have also
created a design with transparent description bindings (descriptions whose
representations are deliberately exposed outside the module) for a new ver-
sion of FX. This extended design, however, has not yet been implemented.
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2.1 Syntax

2.1.1 Descriptions

If modules are �rst-class values, then they must have types. The modof

type gives the names and kinds of the abstractions exported by a module
as well as the names and types of the values exported by a module. The
types in a modof type are in the scope of the abstraction names. Dependent
subroutine types bind the names of the formal parameters of the subroutine.
Subsequent parameter types and the return type may refer to the preceding
formal names.

Texp = { Types
. . .
(modof ((id Kexp). . . ) ((id Texp). . . ))
(subr Eexp ((id Texp). . . ) Texp)

Dependent types (possibly higher order) arise from the presence of the
dselect form. The expression, Exp, in a dselect must denote a module.
The name, id, speci�es an abstraction name exported by the module.

GDesc = { Generic descriptions
. . .
(dselect Exp id)

2.1.2 Expressions

The new expressions allow one to construct modules (mod), to access the
values and descriptions exported by a module (with), and to read values
from a �le which must exist at compile time (input). The input expression
is the key to linking separately written modules.
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Exp = { Expressions
. . .
(mod ((id Kexp Dexp). . . ) ((id Texp Exp). . . ))
(with Exp Exp)
(input string-literal)

2.1.3 Syntactic Sugar

Dotted identi�ers provide a useful shorthand for referring to abstractions or
values in a module.

Dotted-id = { Dotted Identi�ers
id j Dotted-id.id

A dotted identi�er which is just an identi�er desugars to itself.

If a dotted identi�er appears where a description is expected, then the
following desugaring takes place:

Dotted-id:id) (dselect Dotted-id id)

If a dotted identi�er appears where an expression is expected, then the
following desugaring takes place:

Dotted-id:id) (with Dotted-id id)

Overloading the dot notation is not a problem: the parser always knows
whether it expects a description or an expression. Dotted identi�ers are
expanded accordingly.

The formal names in subroutine types are useful both for dependent sub-
routines and for documentation. However, sometimes the name of a formal
is really unimportant. For this reason, the old subroutine type syntax of
Appendix A may still be accepted. Such old subroutine types are equivalent
to new ones with automatically generated formal names. (The chosen formal
names must not capture any free variables in the formal and return types.)

18



2.2 Static Semantics

Each inference rule is given in a separate section together with motivation and
explanation. Each description ends with one or more programming examples.

2.2.1 Kind Inference Rules

Modof

A modof description, i.e., a module interface, is a type. Abstractions may
only be types or (possibly higher order) type constructors. The rational for
this restriction appears with the mod typing rule on page 26.

TK[ni=1idai :: �i] ` �j :: type (1 � j � m)
FinallyType(�i) (1 � i � n)

TK ` (modof ((ida1 �1) . . . (idan �n))
((idv1 �1) . . . (idvm �m))) :: type

FinallyType has the recursive de�nition:

FinallyType (type) = true

FinallyType ( (dfunc (�1 . . .) �) ) = FinallyType (�)

For example, pair-type might be the interface of a module implementing
mutable pairs:

19



pair-type �

(modof ((pairof (dfunc (type type region) type)))

((mk-pair (poly ((r region))

(poly ((t1 type) (t2 type))

(subr (alloc r) ((fst t1) (snd t2))

(pairof t1 t2 r)))))

(fst (poly ((r region))

(poly ((t1 type) (t2 type))

(subr (read r) ((p (pairof t1 t2 r))) t1))))

(snd (poly ((r region))

(poly ((t1 type) (t2 type))

(subr (read r) ((p (pairof t1 t2 r))) t2))))

(set-fst! (poly ((r region))

(poly ((t1 type) (t2 type))

(subr (write r) ((p (pairof t1 t2 r)) (x t1))

unit))))

(set-snd! (poly ((r region))

(poly ((t1 type) (t2 type))

(subr (write r) ((p (pairof t1 t2 r)) (x t2))

unit))))))

A module of this type must de�ne a type constructor (a description func-
tion mapping two types and a region to a type), as well as polymorphic
subroutines for pair creation, destructuring, and mutation.

Dselect

The dselect form is an example of what is often called a witness operator: it
allows the programmer to refer to an abstraction implemented by a module.
Because a dselect description contains an expression, it is a dependent

description.

TK ` e : (modof ((ida1 �1) . . .)
((idv1 �1) . . .))

! �
� v (maxeff (write �1) . . . (alloc �1) . . .) 8�i

TK ` (dselect e idai) :: �i

20



If the implementation of an abstraction used in a program could change
dynamically while the syntactic type of a value remained the same, then the
language would no longer be type-safe. An earlier proposal of this system
required that the module expression in a dselect be pure. But this is
too restrictive. If the module expression only allocates and writes, there is
no problem. Only if it reads mutable storage which another expression may
alter is it possible for an implementation to change dynamically.1 This looser
restriction is enforced in the preceding rule by the requirement that the e�ect
of the module expression consist of zero or more write and alloc e�ects.

Design Constraint 1 Value expressions occurring in descriptions must not
have read e�ects.

The ability to articulate and enforce this e�ect restriction allows this
system to do what other languages do not: to combine �rst-class modules,
dependent types, and side e�ects in a type-safe language. The inability
to express this property is what leads designers to restrict the use of, and
selection from, modules. (See the comparisons to other languages in Chapter
1.)

The kernel language of Appendix A has the property that, though the
type-checking rules often require kind deductions, the kind-checking rules
never require type deductions. The dselect kinding rule violates this prin-
ciple. Will some programs create in�nite chains of deductions? Expressions
written by programmers are always �nite and cannot contain themselves. As
long as type-checking the expression in a dselect does not require infor-
mation outside of the expression itself, the system will operate on smaller
and smaller expressions and eventually terminate. But what information
from outside of an expression is needed to type-check the expression? Only
the types of the free ordinary variables (in TK) are needed. Provided that
these types are already known and kind-checked, the deduction will be �nite.
Given the binding constructs of the kernel language, this is certainly true.
The design of each binding construct introduced here respects this principle:2

1Pierre Jouvelot �rst made this observation.
2The restrictions implied by this scheme may be overly conservative, but proofs of
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Design Constraint 2 Free ordinary variables in a description must already
have their types kind-checked and in TK. Equivalently, whenever an ordinary
variable is introduced, its type may not depend directly or indirectly on the
that variable.

If pair-impl were a variable bound to a module with the above modof

type, then one may use the dselect form to extract the abstraction:

(dselect pair-impl pairof) :: (dfunc type type region)

Calling mk-pair to create a pair of integers in the region @foo would
produce a result of type:

((dselect pair-impl pairof) int int @foo)

One may abbreviate this type using dotted identi�er notation:

(pair-impl.pairof int int @foo)

Subr

Dependent subroutine types are binding constructs. Each formal name is
available to the types of all later formals and to the return type. No formal
name is available to its own type, however.

TK ` � :: effect

TK[ji=1idi : �i] ` �j+1 :: type (0 � j � n)

TK ` (subr � ((id1 �1) . . . (idn �n)) �n+1) :: type

termination become much more complicated if the restrictions are relaxed. I have not
been able to write any programs which make use of more relaxed rules: The programs
that exceed the limitations always seem to be untypable.
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Dependent subroutines are useful for writing programs that take both an
implementation of an abstraction and an object of the abstract type:

(subr (read @foo) ((m pair-type)

(p ((dselect m pairof) int int @foo)))

((dselect m pairof) int char @foo))

Because of the parenthesized syntax of FX, such types are sometimes
di�cult to read. Using a more mathematical notation, this subroutine type
might be written:

m:pair-type � p:(m.pairof int int @foo)
�!

(read @foo) (m.pairof int char @foo)

Dependent subroutines are also useful for doing module linking. Chapter
3 provides a practical example of this.

2.2.2 Type and E�ect Inference Rules

Lambda

Dependent subroutines require a new typing rule for lambda expressions so
that any formal name may be used in the type expressions of any following
formals and in the return type. No formal name is available to its own
type, however. Since abstractions are restricted to be (possibly higher order)
type constructors, it does not matter whether or not the latent e�ect of the
subroutine is in the scope of the formals. There is no way to get a region or
e�ect out of a dselect.

TK[ji=1idi : �i] ` �j+1 :: type (0 � j � n)
TK[ni=1idi : �i] ` e : �n+1 ! �

TK ` (lambda ((id1 �1) . . . (idn �n)) e)
: (subr � ((id1 �1) . . . (idn �n)) �n+1)
! pure
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The subroutine pair-example is a dependent subroutine:

pair-example �

(lambda ((m pair-type) (p (m.pairof int int @foo)))

((proj m.mk-pair @foo) (m.fst p) (int->char (m.snd p))))

This subroutine takes a pair implementation and a pair created by that
implementation. It returns a new pair consisting of the same �rst element as
its argument pair and the character equivalent of the integer in the second
element of the argument pair.

Application

When a dependent subroutine is applied, the formal names appearing in the
return type must be replaced by the argument expressions.

TK ` e : (subr � ((id1 �1) . . . (idn �n)) �) ! �
TK ` ei : [i�1j=1ej=idj]�i ! �i (1 � i � n)

TK ` [ni=1ei=idi]� :: type

TK ` (e e1 . . .) : [
n
i=1ei=idi]� ! (maxeff � �1 . . .)

Verifying the kind of the result type after substitution is a compact way
to check that any expression actually substituted into the result type has
an e�ect commensurate with Design Constraint 1. If one does not, then the
resulting expression will not be well-kinded.

Suppose pair-impl has type pair-type. Then the application:

(pair-example pair-impl

((proj pair-impl.mk-pair @foo) 3 0))

has type (pair-impl.pairof int char @foo). Notice that pair-impl was
substituted for the formal parameter m in the type of pair-example.
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Let

The let rule must change in the same way as the application rule. The
bindings of a let expression are opaque: Even if two identi�ers are bound to
textually identical expressions, dselect descriptions from the two variables
are not interconvertible. This is a consequence of making the semantics of
let follow the semantics of lambda. One advantage of this arrangement is
that it allows a module-producing computation with read e�ects to be used
as long as the corresponding identi�er is not free in the type of the let body;
i.e. the system enforces the same constraints as weak existential types in the
presence of reads.

In accordance with Design Constraint 2 the types of the expressions bound
by the let expression cannot depend on the names it binds.

TK ` ei : �i ! �i (1 � i � n)
TK[ni=1idi : �i] ` e : � ! �
TK ` [ni=1ei=idi]� :: type

TK ` (let ((id1 e1) . . .) e) : [
n
i=1ei=idi]� ! (maxeff � �1 . . .)

Verifying the kind of the result type after substitution is a compact way
to check that any expression actually substituted into the result type has an
e�ect commensurate with Design Constraint 1.

Suppose that mk-pair-impl is a subroutine which takes a string describ-
ing which of several possible pair implementations the caller desires. Then
the following let expression chooses one called "lambda-based" and uses it
to call the pair-example subroutine de�ned above.

(let ((pair-impl (mk-pair-impl "lambda-based")))

(pair-example pair-impl

((proj pair-impl.mk-pair @foo) 0 0)))

The type of the above expression is:

((dselect (mk-pair-impl "lambda-based") pairof) int char @foo)
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Mod

To build a module, one speci�es a set of description bindings and a set of
value bindings:

� A description binding is an identi�er (the abstraction name), a kind,
and a description which is the abstraction's representation. The ab-
straction de�nitions are mutually recursive.

� A value binding is an identi�er (the �eld name), a type, and an expres-
sion which is the �eld de�nition. Field de�nitions are also mutually
recursive. In accordance with Design Constraint 2, the types of the
values are not in the scope of the �eld names.3

TK1 = TK[ni=1idai :: �i]
TK1 ` �i :: �i (1 � i � n)

Immutable(�) 8� 2 FRC(�i) (1 � i � n)
FinallyType (�i) (1 � i � n)

TK1 ` �i :: type (1 � i � m)
TK2 = TK1[

n
i=1up�idai : UpType(idai; �i; �i)]

TK3 = TK2[
n
i=1down�idai : DownType(idai; �i; �i)]

TK3[
m
i=1idvi : �i] ` ej : �j (1 � j � m)

TK ` (mod ((ida1 �1 �1) . . . (idan �n �n))
((idv1 �1 e1) . . . (idvm �m em)))

: (modof ((ida1 �1) . . . (idan �n))
((idv1 �1) . . . (idvm �m)))

! (maxeff �1 . . . �m)

The de�nitions of UpType and DownType are given below.

The mod typing rule embodies many important design decisions and is
the most complicate rule of the type system. It thus deserves a detailed
description.

3An implementation of a predecessor of this system failed to make this scope restriction
and could indeed be made to loop forever.
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The use of TK1 in kind checking the representations allows the represen-
tations to be mutually recursive. This recursion is di�erent from the recur-
sion in the dletrec or pletrec forms of FX-87: there, recursion produced
conceptually in�nite descriptions (though they can be �nitely represented).
The recursion here is opaque in the sense that recursive references in the
descriptions are not substituted away. This supports the use of abstractions
internally to the module by forcing the programmer to be aware of every
conversion between an abstract and concrete type.

The Immutable predicate is de�ned in Appendix A. In FX, the only
immutable region is @=. FRC is a function which computes the free region
constants of a description in the obvious way. Forbidding free mutable region
constants in representations forces programmers to parameterize their muta-
ble abstractions over any regions. This restriction is not intended merely to
enforce a particular programming style. Embedding mutable regions in rep-
resentations would hide the passage of mutable values through up and down

calls and would allow side e�ects on those values to be masked.4 This could
cause scheduling errors in parallel implementations [Hammel and Gi�ord 88]
or cause optimizations like memoization and stack allocation of short-lived
objects to be applied unsafely in sequential implementations [Lucassen 87].

Design Constraint 3 Abstraction boundaries must not hide side e�ects.

The following module, if allowed, would turn the usual reference type,
refof, with operations new, get, and set into an e�ect loophole. The sub-
routines all have latent e�ect pure because the region @foo does not appear
in the types of the free variables of the lambda bodies, nor does it appear in
the return types.

4For a de�nition of e�ect masking see page 57 of Appendix A.
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(mod ((t (refof int @foo)))

((anew (subr pure ((x int)) t)

(lambda ((x int))

(up-t ((proj new @foo) x))))

(aget (subr pure ((x t)) int)

(lambda ((x t))

((proj get @foo) (down-t x))))

(aset (subr pure ((x t) (y int)) unit)

(lambda ((x t) (y int))

((proj set @foo) x y)))))

An alternative to this restriction would be to eliminate the e�ect masking
rule. But this would eliminate opportunities for optimization. Disabling the
e�ect masking rule just within the mod typing rule would be non-uniform
and would still inhibit optimizations. (Recall that the mod expression is the
source of all recursion in the language.)

Abstract e�ect constructors could be useful for specifying that operations
de�ned in some module do not interfere with any outside computations,
regardless of accidental choice of region names. But if one can use this power
to change the apparent latent e�ect of subroutines, then an e�ect loophole
opens up. Determining how to add abstract e�ects in a safe and useful way
is the subject of current research.5

In accordance with Design Constraint 2 the interface types are kind
checked in an environment where the abstraction names are available, but
the �eld names are not.

There is a rich design space of mechanisms for converting between an
abstract type and its concrete representation. Perhaps the simplest method
in a system with a fully speci�ed module signature is to allow abstract names
to be interconvertible with their representations throughout the module def-
inition. The resulting modof type is then taken from the signature. This
approach is taken by Quest [Cardelli 89]. This system has two failings:

5The author and Pierre Jouvelot have investigated this issue and examined possible
applications.
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� The module writer cannot use the abstractions locally to enforce in-
variants. This is especially important for large modules which de�ne
multiple abstractions.

� The modof type will be underspeci�ed if the explicit interface is omitted
when type reconstruction is added to the language.6

Another approach is to provide a form where the programmer speci�es
what names are interconvertible with their representations within the form
and what the result type should be. This is similar to the above idea, where
conversion happens everywhere, but the programmer can control the scope
and extent of the conversion. Such a form is very general, but unnecessarily
complicated when the usual case is very simple.

The option settled on in this design is to provide subroutines bound to
names derived from the abstraction names. The subroutines are polymor-
phic if the abstraction is higher kinded. (See the de�nitions of UpType and
DownType below.) Implicit projection often allows the programmer to ig-
nore the fact that these subroutines are polymorphic. With such a scheme,
the programmer only converts between the abstract and concrete types when
necessary, taking advantage of the abstraction internally whenever possible.
Where additional special forms would complicate the static semantics with
more rules, subroutines do not. The semantics of these subroutines are very
simple: they are identity subroutines.

UpType(�a; type; �r) =
(subr pure ((x �from)) �a)

UpType(�a; (dfunc (�1 . . .�n) �n+1); �r) =
(poly ((x1 �1) . . . (xn �n))
UpType( (�a x1 . . .xn); �n+1; (�r x1 . . .xn) ))

DownType(�a; �; �r) =
UpType(�r; �; �a)

An implementation of complex numbers based on pairs and 
oating point
numbers is a simple and useful example of a module. If ipairof represents

6Type reconstruction issues are beyond the scope of this thesis, but it is a design goal
of FX to allow as many declarations as possible to be omitted. For current results of the
FX type reconstruction e�ort, see [O'Toole and Gi�ord 89, O'Toole 89].
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the type constructor of immutable pairs, and icons, icar, and icdr the
corresponding constructor and destructuring operations, then the following
module implements complex numbers:

(mod ((complex (ipairof float float)))

((origin (up-complex (icons 0.0 0.0)))

(make-complex (lambda ((x float) (y float))

(up-complex (icons x y))))

(get-x (lambda ((c complex))

(icar (down-complex c))))

(get-y (lambda ((c complex))

(icdr (down-complex c))))

(get-rho (lambda ((c complex))

(let ((c (down-complex c)))

(sqrt

(fl+ (fl* (icar c) (icar c))

(fl* (icdr c) (icdr c)))))))

(get-theta (lambda ((c complex))

(let ((c (down-complex c)))

(atan (fl/ (icar c) (icdr c))))))

(= (lambda ((c1 complex) (c2 complex))

(let ((c1 (down-complex c1))

(c2 (down-complex c2)))

(and (fl= (icar c1) (icar c2))

(fl= (icdr c1) (icdr c2))))))

(+ (lambda ((c1 complex) (c2 complex))

(let ((c1 (down-complex c1))

(c2 (down-complex c2)))

(up-complex

(icons (fl+ (icar c1) (icar c2))

(fl+ (icdr c1) (icdr c2)))))))

(- (lambda ((c1 complex) (c2 complex))

(let ((c1 (down-complex c1))

(c2 (down-complex c2)))

(up-complex

(icons (fl- (icar c1) (icar c2))

(fl- (icdr c1) (icdr c2)))))))))
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With

The expression in the body of a with form is evaluated in an environment in
which the identi�ers exported by the module expression are bound to their
respective abstractions and values.

TK ` em : (modof ((ida1 �1) . . . (idan �n))
((idv1 �1) . . . (idvm �m)))

! �m
TK[ida1 :: �1 . . .][idv1 : �1 . . .] ` e : � ! �

� 0 = [mj=1(with em idvj)=idvj]�
� 00 = [ni=1(dselect em idai)=idai]�

0

TK ` � 00 :: type

TK ` (with em e) : � 00 ! (maxeff �m �)

The type of the value returned from a with expression may contain ref-
erences to the identi�ers exported by the module. Abstraction names are
replaced by appropriate dselects, and �eld names are replaced by with

expressions.

Verifying the kind of the result type after substitution is a compact way
to check that any expression actually substituted into the result type has an
e�ect commensurate with Design Constraint 1.

Inside a with expression, the programmer may refer directly to the names
bound by a module. The with expression:

(with pair-impl

(the (pairof int bool @bar) ((proj mk-pair @bar) 0 #t)))

has type (pair-impl.pairof int bool @bar).

Input

The input form allows programs to be split into multiple �les. The �le
named in an input form must exist at compile time. The only free variables
allowed in such a separate �le are those de�ned by the FX library. (See
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Section 3.6 for a description of the fx module.) � represents the empty type
and kind environment.

� ` (with fx FS(string-literal)) : � ! �

TK ` (input string-literal) : � ! �

FS is the mapping from string literals to FX expressions represented by
the �le system. In order for this system to be type-safe, FS must be a func-

tion: the �le system must be immutable. This is actually not a bad restric-
tion: Chapter 3 demonstrates how this can be implemented on a standard
�le system. (See page 40.)

The program

(let ((pair-impl (input "PSRG:FX;IMPL;PAIROF.FX")))

(with pair-impl

((proj mk-pair @baz) #t #f)))

has type

((dselect (input "PSRG:FX;IMPL;PAIROF.FX") pairof) bool bool @baz)

See Section 3.6 for examples of linking using �le input and subroutines.

2.3 Inclusion Rules

The following inclusion rules are either additions or changes to the inclusion
relation v de�ned in Appendix A. The rules can be thought of as de�ning
a reduction semantics for descriptions with �, �, and � conversion. Because
this language does not have the transparent recursive types of FX-87, the
kinded system of descriptions corresponds to the simply typed lambda cal-
culus [Berendregt 84], and all descriptions have normal forms modulo alpha-
renaming.
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The new subroutine type admits alpha-renaming:

idi
0 62 FV(�j) (1 � i � n) (2 � j � n + 1)

� 0j = [ni=1idi
0=idi]�j (2 � j � n + 1)

(subr � ((id1 �1) . . . (idn �n)) �n+1) � (subr � ((id1
0 � 01) . . . (idn

0 � 0n)) �
0

n+1)

The inclusion rule on subroutine types is the same as the old rule, though
it may be used in conjunction with the above alpha-renaming rule.

� v �0

� 0i v �i (1 � i � n)
� v � 0

(subr � ((id1 �1) . . . (idn �n)) �) v (subr �0 ((id1 � 01) . . . (idn � 0n)) �
0)

One may freely permute the �elds in a modof type:

� is a permutation on [1; n]
�0 is a permutation on [1; m]

(modof ((ida1 �1) . . . (idan �n))
((idv1 �1) . . . (idvm �n)))

v
(modof ((ida�(1) ��(1)) . . . (ida�(n) ��(n)))

((idv�0(1) ��0(1)) . . . (idv�0(m) ��0(m))))

To get a subtype of a modof type, one may add new �elds and/or take
subtypes of the �elds.

� 0i v �i (1 � i � n)

(modof ((ida1 �1) . . . (idan �n) . . .)((idv1 � 01) . . . (idvm � 0n) . . .))
v

(modof ((ida1 �1) . . . (idan �n))((idv1 �1) . . . (idvm �n)))
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There is no proper inclusion on dselect forms, only equivalence.

e � e0

(dselect e id) � (dselect e0 id)

The dselect equivalence rule requires that the � relation be de�ned
on value expressions (elements of Exp). There are many choices for the
de�nition: Equivalence on expressions could be de�ned as equivalence on
the values they compute (given a de�nition of equivalence on values). But
this would require arbitrary, possibly non-terminating computation in the
type-checker. Equivalence could be based on a simpler sort of evaluation
that involves � and � conversion, and limited � substitutions (just in let

expressions, say). But this requires the programmer to understand yet a
third sort of reduction (the other two being the reduction of standard value
expression evaluation and the reduction implied by the inclusion rules on
descriptions). The simplest equivalence relation is textual equality. This will
su�ce for present purposes.7

Note: substitutions into descriptions in the kind and type inference rules
apply to the expression in a dselect. Thus if the body of a let expression
has a type (deselect x y) for an x bound to e by the let, then the type of
the let is (deselect e y). Thus descriptions never contain liberated local
identi�ers.

7A formal de�nition of textual equality is straight-forward and tedious. It is therefore
omitted.
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Chapter 3

Implementation

Implementation experience shows that the SDT system described in Chapter
2 can be implemented and that it is powerful enough to allow FX to be its
own linking language.

In addition, the implementation has provided, and continues to provide,
valuable feedback into the design process. Implementing and using SDTs
clari�es the power, bene�ts, interactions, and limitations of language fea-
tures. For example, experimentation exposed weaknesses in predecessors
to the up- and down- subroutines described on page 28. Implementation
problems exposed errors in the typing rules: the restrictions on free region
constants in representations and the availability of module �eld names in
�eld types are prominent examples.

The FX-87 Interpreter described in [Jouvelot and Gi�ord 88] was the
starting point of this implementation. Modifying the implementation to sup-
port the SDT system of Chapter 2 was quite straightforward. Kind, type,
and e�ect checking for new and modi�ed forms is, for the most part, a direct
implementation of the rules from the static semantics. For example, the code
in the implementation which computes the kind of a modof form is:

35



(define (kind-of-modof node tk-env dstore)

(let ((abstractions (modof-abstractions node))

(values (modof-values node)))

(and

(tst? (every? (lambda (bind) (kexp? (cadr bind)))

abstractions)

"Cannot kind-check abstraction bindings in MODOF")

(tst? (every? (lambda (bind) (finally-type? (cadr bind)))

abstractions)

"Abstraction must be type or type constructor in MODOF")

(tst? (every?

(lambda (bind)

(texp? (cadr bind)

(add-tk-env tk-env abstractions *kind*)

(add-dstore dstore

(map (lambda (bind)

`(,(car bind)

(,(make-d-variable

(car bind))

,(make-d-variable

(car bind)))))

abstractions))))

values)

"Invalid type expression in MODOF")

(make-kind-type))))

The code checks that the abstraction bindings contain valid kinds which
may be types or higher order type constructors. Then it checks that the
types of the �elds are valid types when the abstractions bindings are in the
tk-env (the analog of TK). If all goes well, then the kind of the modof form
is type. (The purpose of the dstore is explained below.)

In addition to the modi�cations to the interpreter, the implementation
packages all the built-in types, type constructors, and subroutines into an
fx module. All user programs may assume that they are surrounded by
(with fx . . . ).
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3.1 Alpha-Renaming

In the plambda rule of [Lucassen 87, p. 43] and of [Gi�ord, et al. 87, p.
129], the bound description variables may not capture the free description
variables in the types of the free ordinary variables of the body. This restric-
tion naturally applies to plet expressions as well. The advent of dependent
descriptions requires that the restriction also be observed in dlambda and
dlet expressions. However, with the assumption that there are no duplicate
bindings in the type and kind environment (TK),1 the inference rules do not
need to enforce this restriction because the undesirable situation can never
arise.

Within any invocation of the FX Interpreter, all programs are alpha-
renamed. This guarantees that all programs observe the restriction on the
type and kind environment by eliminating all duplicate bindings.

Alpha-renaming a variable consists of appending an integer to the end of
its name. So that alpha-renamed variables are readily distinguishable (for
debugging purposes), the @ character is placed between the name and the
number. (The @ character may not appear in variable names in legal input
programs.)

The implementation creates a global environment for alpha-renaming
when it is loaded. This alpha-env has two components: an environment
mapping identi�ers from the input program to the alpha-renamed identi�ers
which replace them (the pending environment) and a structure mapping
identi�ers to the number of times they have been introduced since system
invocation (cur-nums). The pending environment consists of frames built
up in accordance with the lexical structure of the program. When variables
are introduced at the beginning of some lexical scope, the parser adds a new
frame to the front of the pending environment mapping the identi�ers to
names computed from the information in cur-nums. Cur-nums is updated
whenever a variable is introduced.

Unfortunately, there is no way to know during the parse phase what
variables are bound by a with expression: These variables come from the type
of the module expression, which is not known until the module expression is

1This restriction is articulated in the kinding rule for description variables (Appendix
A, page 55) and in the typing rule for ordinary variables (Appendix A, page 58).
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type checked. To �x this problem, the parser builds a with node where only
the module expression has been parsed. (The lexical environment for the
module expression is apparent.) The unparsed text of the with expression
body and the current alpha-env are placed in the node. When the type of
the with node is computed, the parsing continues with appropriate identi�ers
added to the alpha-env. Identi�ers introduced in the body of the with

expression are still numbered properly since the cur-nums component of the
alpha-env stored in the with node is updated by side e�ect.

3.2 Representing Descriptions

The implementation of [Jouvelot and Gi�ord 88] did not distinguish the
abstract and concrete syntax of descriptions: Descriptions were represented
in the implementation with the text used to write them in programs. This
has disadvantages:

� Code in the type checker relies unnecessarily on the concrete syntax of
the language. Changes to the syntax then have wide ranging e�ects.

� Error messages and other code which prints descriptions does not un-
parse descriptions. This is of particular concern when dependent de-
scriptions (dselect) appear in the language since these expressions
would naturally contain parse trees representing value expressions.
Keeping the parse tree in a dselect description means that code which
does substitutions (see the next section) can use the same abstractions
as all other code which manipulates programs after the parse phase.

� There is no clean way to associate particular information with descrip-
tions, e.g., their kinds, without parse trees.

Clearly there are ad hoc solutions to the last two problems, but all the
problems are cleanly solved by creating an abstract syntax for descriptions
and implementing a parse tree similar to the one for expressions beneath the
abstraction. To do this, the present implementation contains a parser and
an unparser for descriptions as well as all the appropriate accessor functions
for the abstract nodes. All code in the implementation handling descriptions
had to be changed to use the abstractions.

38



3.3 Supporting Substitutions

The dstore in the original implementation was a substitution environment
mapping description variables to their de�nitions. The de�nitions in the
dstore were fully reduced: free variables were substituted away, � and �
reductions were completed, and recursive types were represented with circular
structures.

The new design does not have the transparent recursive descriptions of
FX-87: recursion in the description domain is only allowed through abstrac-
tions in modules. Thus, descriptions in this language have normal forms.

The new design requires that the actual text of the de�nition of every
description and ordinary variable be kept. An occurrence of any variable in
a dependent description can have its de�nition substituted for it when leaving
the scope of an application, let, etc. However, the fully reduced de�nitions
are also useful for cases where the substitution happens before something is
type checked, e.g. in the plet rule.

To accommodate these needs, the current implementation extends the
dstore so that every variable maps to two things:

� Its de�nition in normal form. (Because comparisons of expressions in
descriptions rely on the expressions' textual de�nition. Therefore, there
is no need to store a anything here for ordinary variables.)

� The full text of its de�nition.

The FX-87 kind rules did not need to call the type checker and, in fact,
did not need to do any substitutions of description variables. It therefore
did not need the dstore. Since the new kind checker does invoke the type
checker, the dstore has to be passed around in the kind checker. The only
routine which makes use of the dstore is kind-of-dselect, which needs it
to invoke the type checker on a module expression.
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3.4 Input From Separate Files

There are several ways to support the assumption made on page 32 that the
�le system is immutable. The current system stamps every input expression
with a tag derived from the universal time of the last �le update. This tag is
compared whenever two dependent descriptions containing input expressions
are compared.

This is not enough by itself because a �le may hide the fact that it imports
from another �le. It merely places the input inside an abstraction.

There are several ways to handle this problem:

� Allow only compiled �les in input expressions. In order for a �le to
make use of a new version of a �le it imports, it must be recompiled.
This will alter the time of last update for the object �le.

� Force the user to specify more information, e.g. a stamp in the form of
the universal time of the last �le write, or a version number (assuming
version numbers are uncorruptible).

� Infer the above sort of identifying information. The stamp assigned to
the input of a �le may be the max of its universal time stamp and the
stamps of the �les it inputs.2

� Compute a checksum for the input �le and the �les it inputs. This
method is probabalistic, but it permits a user to recompile a �le without
fear that the entire system will need to be recompiled.

The current implementation takes the �rst approach because it is the sim-
plest. Speeding up the speed of compilation or adopting the last approach
would make interactive program development easier. Incremental compila-
tion schemes for FX are the subject of current research.

2This approach is inspired by the implementation of the sharing mechanism in ML
[MacQueen 88].
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3.5 Run Time Support

A module is represented at run-time as a record with �elds corresponding to
the module's value bindings. The precise representation interacts with the
choice of subtyping rule for modof types. If there were no subtyping rule or
if subtyping were only by pre�x, then modules could easily be implemented
as vectors and �eld selections could be translated into vector references with
constant indices. If subtyping were only by �eld reordering (not by superset-
ting), then �elds could be kept in a canonical order, alphabetical order say,
and the same vector implementation would work.

Using a vector implementation in the presence of the more general modof
subtyping rules of Chapter 2 implies generating additional code when match-
ing two modof types requires subsetting. Assuming that �elds are stored in
some canonical order, the code can either generate a structure for subsequent
selections to indirect through, or the code can copy the vector to a smaller
vector. ML copies the module at run-time in a process called thinning [Mac-
Queen 88].

For simplicity, this implementation represents modules as association lists
even though access time is proportional to the number of �elds in the module.
The value bindings of a mod expression are already in the right form, and
accesses to module �elds just become assq expressions.

Up- and down- subroutines simply compile to identity functions. It is a
relatively simple matter, when programs are alpha-renamed, for an imple-
mentation to detect when an up- or down- call refers to a coercion subroutine
supplied as part of the implementation of a mod expression. In such a case,
the call can be removed. The only time the identity function really needs
to exist is when the programmer passes it out of the module or into another
subroutine.

3.6 The fx Module

As an experiment to test the utility of SDTs, most of the built-in data types
were removed from the FX-87 implementation. Instead, when the new FX
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system is loaded, it automatically inserts a de�nition of fx into the environ-
ment whose value is the result of loading the fx module from a �le.

The fx module is itself written in FX. It loads a set of modules, one for
each library type, and repackages them into one module. Here is part of its
de�nition:

(let ((refof-mod (input "PSRG:FX;IMPL88;REFOF.FXBIN"))

(int-mod (input "PSRG:FX;IMPL88;INT.FXBIN"))

(char-mod (input "PSRG:FX;IMPL88;CHAR.FXBIN"))

(string-mod (input "PSRG:FX;IMPL88;STRING.FXBIN"))...)

(let* ((char-mod (char-mod int-mod))

(string-mod (string-mod int-mod char-mod refof-mod))

...)

(mod

((unit type refof-mod.unit)

(refof (dfunc (type region) type)

refof-mod.refof)

(int type int-mod.int)

...)

((new

(poly ((r region))

(poly ((t type))

(subr (alloc r) (t)

(refof t r))))

(plambda ((r region))

(plambda ((t type))

(lambda ((v t))

(up-refof

((proj (proj refof-mod.new r) t) v))))))

...

(set

(poly ((r region))

(poly ((t type))

(subr (alloc r) ((refof t r) t)

unit)))

(plambda ((r region))

(plambda ((t type))

(lambda ((x (refof t r)) (v t))
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(up-unit ((proj (proj refof-mod.set r) t)

(down-refof x) v))))))

(= (subr pure (int int)

bool)

(lambda ((x int) (y int))

(int-mod.= (down-int x) (down-int y))))

...))))

Notice that some modules are abstracted over others. In particular, the
string module is abstracted over both the integer and character modules.

There are special provisions for constants of library types. The implemen-
tation knows that there will be an fx module, and it assumes that the code
generation of constants is compatible with the implementation. Therefore,
it assigns the type fx.t to a constant of type t.

3.7 Evaluation of the Implementation

It may be possible to make the implementation much more e�cient by ex-
ploiting sharing in type checker structures the way ML does [MacQueen 88].
Substitutions currently take a fair amount of time. There is also a lot of
complexity in the implementation to support the circular structures repre-
senting FX-87 recursive types. But all this mechanism is no longer necessary
because there are no transparent recursive descriptions.

SDTs seem to have enough power to express program modularity and
simplify program linking. However, writing the fx module and other sam-
ple programs revealed several avenues for future improvement. Section 4.1
discusses this further.
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Chapter 4

Summary

4.1 Directions for Future Research

4.1.1 Bounded Quanti�cation

Consider the identity function on some type t. Its type is t ! t. If a
programmer calls such a function with a value of type t0 v t, the result is
still of type t.1 The system does not provide a way to say that the return
type is the same as the input type, whatever that is.

Bounded quanti�cation [Cardelli 85] allows one to express the idea that a
value's type is preserved. With universal bounded quanti�cation, a program-
mer could write the identity function of type: 8t0 � t:t0 ! t0. Then, when the
programmer projects this function onto a particular t0, the return type will
be t0. Quest and CLU (with where clauses) provide bounded quanti�cation.

[Lucassen 87] discusses bounded quanti�cation in conjunction with FX.
It seems a very useful feature, and adding it to FX with SDTs presents no
problem. Quest provides bounded quanti�cation in conjunction with exis-
tential quanti�cation. This would also be no problem in the context of SDTs,
but it is unclear that it provides any bene�t over the ability to do upward
type coercions (as with the).

1In fact, in a system with implicit subtyping at subroutine calls, the is just a syntactic
sugar for a call to the polymorphic identity function.
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4.1.2 Transparent Descriptions

The next version of FX will have a module system allowing the export of
abstraction, value, and transparent description bindings. These bindings
appear in the module and in the type. For example, the following modof type
exports an abstract type a, a transparent type t whose de�nition is given, a
value of the abstract type, and a subroutine which accepts an argument of
the transparent type.

(modof ((a type))

((t (pairof a a @red)))

((x a)

(f (subr pure ((y t)) a))))

Since module interface types are often quite long, shorthand names are
very useful. A good convention might be that the author of a module create a
separate �le which contains the module's interface packaged as a transparent
binding in another module. Then, programmers who want to specify the
interface type in the argument to a subroutine can load the interface �le and
select the transparent bindings out.

(let ((interface (input "fx-interface.fx")))

(lambda ((fx-impl interface.fx))

...run FX programs...))

The question arises whether the transparent descriptions should be re-
cursive. If so, should they be similar to the recursive descriptions of FX-87?
Should the abstractions be able to refer to the transparent names? There
are a host of such questions currently under consideration.

4.1.3 Local Bindings and Syntax

The current system make no provision for local bindings. One can get the
e�ect of local bindings by de�ning a module with all the �elds required and
then embed the module in a the form and coerce it to a type that excludes
the bindings which were intended to be local:
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(the (modof ((a type))

((x a)))

(mod ((a type int)

(b type bool))

((x a (up-a 3))

(y b (up-b #t)))))

This scheme is verbose and requires duplicated declaration information.

One alternative is to provide bindings which are labeled as local explicitly.
Then, those bindings do not appear in the type of the module. One must be
careful that a local name does not appear free in a transparent de�nition or
in a �eld type.

(mod ((a type int)

(local b type bool))

((x a (up-a 3))

(local y b (up-b #t))))

Another approach is to provide an explicit export list where the program-
mer provides a list of exported names. This approach assumes bindings are
local unless speci�cally exported whereas the previous approach assumes the
opposite. Two alternative syntaxes are:

(mod ((a type int)

(b type bool))

((x a (up-a 3))

(y b (up-b #t)))

(exports a x))

(exports a x

(mod ((a type int)

(b type bool))

((x a (up-a 3))

(y b (up-b #t)))))

The module syntax, as currently implemented, is currently too verbose.
There are several approaches to a cleaner syntax. The interface types could
all be moved to a separate part of the module, so that the interface infor-
mation is all together and the implementation information is all together.
Perhaps the argument types to subroutines may be omitted since they ap-
pear in the interface. The same should be true of kinds of polymorphic
values.
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These syntactic problems may lessen with the introduction of type recon-
struction into FX [O'Toole and Gi�ord 89]. Type reconstruction allows the
compiler to deduce declarations omitted by the programmer.

4.1.4 Opening Modules

One problem, illustrated clearly by the fx module itself, is the way �elds
inherited from a module must be repackaged into a new module. An open

form which makes all the names of a module available in some scope would be
most useful. There are quite a few design issues with such a facility: Do the
names shadow other names in the current environment? Is there an elegant
way to do systematic renaming?

It would also be useful to have a more general facility for converting the
types of values to use abstract names. Currently, a subroutine which uses
the representation of some abstraction cannot be converted directly to a sub-
routine using the abstraction. Instead, as in the fx module, the arguments
(description and value) must be collected and converted to the representa-
tion type, the subroutine must be called on the converted values, and the
result must be converted to the abstract type. This is unnecessary work. In
addition, such convoluted code is error prone and adds extra subroutine calls
which may be di�cult for the compiler to open code.

There may be a way to solve the above problem together with the problem
of merging modules (a common operation). The form (extend a b) might
the �elds of the modules a and b, changing the types of the �elds to re
ect the
re-exported abstractions. Problems of name clashes and renaming remain.

4.1.5 Sharing

ML has a mechanism for describing and enforcing sharing constraints. The
following example comes from [MacQueen 88].

signature SYMBOL = sig type symbol ... end

signature LEX =

sig
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structure Symbol : SYMBOL

val next : unit -> Symbol.symbol

...

end

signature SYMBOLTABLE =

sig

structure Symbol : SYMBOL

type var

val bind : Symbol.symbol * var -> unit

...

end

signature PARSE_ARGS =

sig

structure Lex : LEX

structure SymTab : SYMBOLTABLE

sharing Lex.Symbol = SymTab.Symbol

end

functor Parse (A : PARSE_ARGS) =

struct ... A.SymTab.bind(A.Lex.next(), v) ... end

In this example, the ML system guarantees that Lex.Symbol and
SymTab.Symbol are the same structure. This will allow the module cre-
ated by a call to Parse to pass the symbol values returned by Lex.next to
SymTab.bind.

The system presented in this thesis has no concise way to express shar-
ing constraints. The programmer can abstract the LEX and SYMBOLTABLE

modules over their submodules (Symbol in this case). Then the PARSE_ARGS
constructor can take a Symbol module as an argument and explicitly pass it
to the Lex SymTab modules. This is awkward and entails extra subroutine
calls which may be di�cult for the compiler to open code.

The problem with the ML sharing mechanism is that it is based on a
particular ad hoc algorithm for assigning tags to structures. This is, in fact,
the inspiration for the method of implementing input described in Chapter
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3. However, the programmer does not need to know about the tags in the
implementation of input: the implementation supports simple abstraction of
an immutable �le system articulated in the design. An approach to sharing
based on some higher level abstraction would be valuable.

4.1.6 Persistence

One important restriction of the system presented here is that the type of
a value in a �le must be known statically. This does not support persistent
typed values. Quest has some support for this in the form of automatic
types, and CLU provides the any type. An automatic value has its actual
type attached to its run time representation, and its exact type is not known
statically. The programmer may convert any value to an automatic value but
can only access an automatic value through a case dispatch on its type (like
a case discrimination for a tagged union type with the full generality of the
type system in the tag). The system tests to see if the type tag is equivalent
to a type in the case expression at run time. This makes highly optimized
type equivalence checking and type representation important. Adding such a
facility to FX is not di�cult, but the implementation costs are not yet clear.

One fairly simple way to get persistence is to put such tagged values in
�les. Then, the language could supply the form (load T E) where T is a
type and E is an expression which computes a string. At run time, the �le
named in the string computed by E can be read, and its type tag can be
compared dynamically with T. Computation proceeds only if the types are
equivalent.

4.2 Summary

Static dependent types support a module system which is more 
exible than
other statically type checked systems. This 
exibility has proven both prac-
tical and useful in an implementation built on the FX-87 Interpreter; in par-
ticular, the module system provides a uniform way to build small program
structures and to link them together into a complete system. Static e�ect
constraints guarantee that the type system is sound in the presence of side
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e�ects. Though work remains to make the notation for modules more com-
pact, the essential system of static dependent types is a promising approach
to the construction of large systems.
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Appendix A

An FX-87 Kernel Language

The following kernel language is a subset of the FX-87 kernel and forms the
basis for the extensions described in the thesis. This language di�ers from
FX-87 in the following ways:

� There are no mutable variables.

� There is no implicit subtyping. Programmers must write the forms to
do explicit upward type coercions.

� There is a new does form for doing upward e�ect coercion; the no
longer performs e�ect coercions.

� Recursion in both the description and value domains is accomplished
using the module proposal in the thesis. This implies the demise of
transparent recursive descriptions (i.e., that recursive descriptions no
longer admit structural equality). They would be easy to add again
and their design is orthogonal to the issues examined in the thesis.
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A.1 Syntax

A.1.1 Kinds

Kexp = { Kinds (�)
region j effect j type
(dfunc (Kexp. . . ) Kexp)

A.1.2 Descriptions

Dexp = { Descriptions (�)
Rexp j Eexp j Texp j HDesc

Rexp = { Regions (�)
@id
(runion Rexp Rexp . . . )
GDesc

Eexp = { E�ects (�)
pure

(alloc Rexp)
(read Rexp)
(write Rexp)
(maxeff Eexp. . . )
GDesc

Texp = { Types (�)
bool

(subr Eexp (Texp. . . ) Texp)
(poly ((var Kexp). . . ) Texp)
GDesc
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HDesc = { Higher order descriptions
(dlambda ((id Kexp). . . ) Dexp)
GDesc

GDesc = { Generic descriptions
id
(HDesc Dexp. . . )
(dlet ((id Dexp). . . ) Dexp)

A.1.3 Value Expressions

Exp = { Expressions (e)
id
(lambda ((id Texp). . . ) Exp)
(Exp Exp. . . )
(let ((id Exp). . . ) Exp)
(if Exp Exp Exp)
(begin Exp Exp. . . )
(plambda ((id Kexp). . . ) Exp)
(proj Exp Dexp. . . )
(plet ((id Dexp). . . ) Exp)
(the Texp Exp)
(does Eexp Exp)
Literal

Literal = { Literals
#t j #f
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A.2 Static Semantics

The FX-87 kind inference rules use a kind assignment, and the type inference
rules use a type assignment. The kind and type environments introduce two
distinct namespaces which must be kept consistent in order to preserve the
single namespace semantics of FX.1 Because of this problem, and because
kind inference in the dependent description system described in the thesis
requires both type assignment and kind assignment information, the rules
given here are written with a single environment (TK) for both sorts of
bindings.

A.2.1 Kind Inference Rules

The following rules form an inductive de�nition of the has kind ( :: ) relation.

There is an in�nite set of region constants which begin with an @. The
programmer chooses these names.

There is one distinguished region @= which is the immutable region. Ref-
erences stored in the mutable region may not be stored into.

An expression with no side e�ects is said to be pure.

The type of the true and false values is bool.

TK ` @id :: region

TK ` pure :: effect

TK ` bool :: type

The type and kind environment (TK) maps bound description identi�ers
to their kinds. The restriction that a given identi�er may not be rebound does
not constrain programs if the implementation does global alpha-renaming.
(See Section 3.)

id 62 Domain(TK)

TK[id :: �] ` id :: �

1Pierre Jouvelot pointed out this shortcomming of the semantics in [Gi�ord, et al. 87].
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The runion region constructor forms the set union of the given regions.

TK ` �i :: region (1 � i � n)

TK ` (runion �1 �2 . . .) :: region

The alloc form indicates an allocation and initialization of a location in
some region of the store.

TK ` � :: region

TK ` (alloc �) :: effect

The read form indicates a dereferencing of a location in some region of
the store.

TK ` � :: region

TK ` (read �) :: effect

The write form indicates a mutation of a location in some region of the
store.

TK ` � :: region
Mutable(�)

TK ` (write �) :: effect

The Mutable predicate is true of every region except the immutable region
@= and any region containing it. The Immutable predicate is the negation of
the Mutable predicate.

Immutable(�) i� @= v �

Forbidding write e�ects on the immutable region prevents any reference
stored there from being stored into.
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The maxeff form represents the combination of a set of e�ects.

TK ` �i :: effect (1 � i � n)

TK ` (maxeff �1 . . .) :: effect

The type of a subroutine includes the e�ect incurred by an application of
a subroutine value with that type (the latent e�ect), as well as the types of
the arguments and of the return value. (This rule will be replaced in section
2.2.1.)

TK ` � :: effect

TK ` �i :: type (1 � i � n)
TK ` � :: type

TK ` (subr � (�1 . . .) �) :: type

A poly form is the type of a value which is polymorphic over some de-
scriptions whose kinds are given in the type.

TK[ni=1idi :: �i] ` � :: type

TK ` (poly ((id1 �1) . . .) �) :: type

Users may de�ne their own description functions (e.g., type and e�ect
constructors) with the dlambda form.

TK[ni=1idi :: �i] ` � :: �

TK ` (dlambda ((id1 �1) . . .) �) :: (dfunc (�1 . . .) �)

Combinations in descriptions represent applications of description func-
tions.

TK ` � :: (dfunc(�1 . . .)�)
TK ` �i :: �i (1 � i � n)

TK ` (� �1 . . .) :: �
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The dlet form is a way to introduce local description synonyms. The
result is the same as having written the de�nitions in place of the local
names in the body. (See the equivalence rule for dlet below.)

TK ` �i :: �i
TK[ni=1idi :: �i] ` � :: �

TK ` (dlet ((id1 �1) . . .) �) :: �

A.2.2 Type and E�ect Inference Rules

The has type ( : ) and the has e�ect ( ! ) relations hold up to description
equivalence (de�ned below in section A.2.3):2

TK ` e : � ! �
� � � 0 ^ � � �0

TK ` e : � 0 ! �0

Moreover, the ! relation is not unique because of e�ect masking :3 If a
region constant or region variable appears free in the e�ect of an expression
but does not appear free in the type of any free variable of the expression,
then any read or write e�ects on that region may be masked; furthermore,
if the region constant or variable does not appear free in the type of the
expression, then any alloc e�ect on the region may be masked.

Suppose the set of e�ect constants is extended by the distinguished region
o denoting a region with no locations. Any e�ects on o are interconvertible
with pure, and (runion o �) is equivalent to �. The following rules provide
a formal de�nition of e�ect masking:

2Pierre Jouvelot suggested the following rule as a compact formalization of this
property.

3The following description of e�ect masking, including the inference rules, is adapted
(by minor rewording and simple notational variations) from [Gi�ord, et al. 87, pp. 132{
133].
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TK ` e : � ! �
TK ` � :: region

(id 2 FV(e) ) ^ (TK ` id : � 0) ) � 62 FV(� 0) [ FRC(� 0)

TK ` e ! (maxeff [o=�]� (alloc �))

TK ` e : � ! �
TK ` � :: region

(id 2 FV(e) ) ^ (TK ` id : � 0) ) � 62 FV(� 0) [ FRC(� 0)
� 62 FV(�)

TK ` e ! [o=�]�

FV is the function which returns the set of free variables of an expression
or description. FRC is the function which returns the set of free region
constants of an expression.

This implies that an expression may have more than one e�ect. By con-
vention, any assertion of the form e ! � in a premise of a typing rule will
mean that � is the least e�ect of e under TK. The partial order under which
the e�ect is least is the one de�ned by the description inclusion relation v
given below in Section A.2.3.

The kernel contains boolean constants for true and false:

TK ` #t : bool ! pure

TK ` #f : bool ! pure

The type and kind environment maps bound value identi�ers to their
types. Looking up a variable is always pure since there are no mutable
variables.

id 62 Domain(TK)

TK[id : � ] ` id : � ! pure
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The lambda form is the constructor of subroutine values. Notice that the
latent e�ect is encoded in the subroutine type. (This rule will be replaced in
section 2.2.2.)

TK ` �i :: type (1 � i � n)
TK[ni=1idi : �i] ` e : � ! �

TK ` (lambda ((id1 �1) . . .) e) : (subr � (�1 . . .) �) ! pure

Combinations represent subroutine application. The type of an applica-
tion is the return type of the subroutine. The e�ect of an application is the
combined e�ect of evaluating the subroutine value and all the arguments and
the latent e�ect of the subroutine.

TK ` e : (subr �l (�1 . . .) �) ! �
TK ` ei : �i ! �i (1 � i � n)

TK ` (e e1 . . .) : � ! (maxeff �l �1 . . .)

A let expression could be rewritten (with suitable typing information)
as an application of a lambda expression. But since the argument types are
easily deducible from the let bindings, this form is included in the kernel.

TK ` ei : �i ! �i (1 � i � n)
TK[ni=1idi : �i] ` e : � ! �

TK ` (let ((id1 e1) . . .) e) : � ! (maxeff � �1 . . .)

The two arms of a conditional expression must have the same type.

TK ` e : bool ! �
TK ` e1 : � ! �1
TK ` e2 : � ! �2

TK ` (if e e1 e2) : � ! (maxeff � �1 �2)

The begin form is for sequencing (side-e�ecting) expressions. The value
of a begin form is the value of the last expression in it.
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TK ` ei : �i ! �i (1 � i � n)

TK ` (begin e1 e2 . . .) : �n ! (maxeff �1 . . .)

Polymorphic values are created with the plambda form: an expression
may be abstracted over a set of description arguments. Requiring the body
of a plambda expression to be pure simpli�es the type system (because poly
types do not need a latent e�ect) and allows the value to evaluated once at
the point of de�nition. Projections are, then, zero cost.

The rule given here is simpler than the corresponding rule from [Gi�ord,
et al. 87, p. 129]. The condition is that free variables of the body of
a plambda may not contain free occurrences of any of the plambda-bound
variables. (For a thorough explanation of the restriction, see [McCracken 79,
p. 20{21]) The restriction is no longer necessary because of the assumption
that variable names may not be rebound in TK.

TK[ni=1idi :: �i] ` e : � ! pure

TK ` (plambda ((id1 �1) . . .) e) : (poly ((id1 �1) . . .) �) ! pure

To get an instantiation of a polymorphic value, one projects it onto a set
of description arguments of the appropriate kinds.

TK ` e : (poly ((id1 �1) . . .) �) ! �
TK ` �i :: �i (1 � i � n)

TK ` (proj e �1 . . .) : [
n
i=1�i=idi]� ! �

Just as let allows local value bindings, plet allows local description
bindings. Like dlet, the bindings are transparent synonyms: it is just as
though the de�nitions had been used in the body in place of the local names.
Thus, plet is not like an applied plambda.

TK ` �i :: �i (1 � i � n)
TK ` [ni=1�i=idi]e : � ! �

TK ` (plet ((id1 �1) . . .) e) : � ! �
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A the expression asserts that an expression has a larger type.

TK ` e : � 0 ! �0

� 0 v �

TK ` (the � e) : � ! �0

A does expression asserts that an expression has a larger e�ect.

TK ` e : � 0 ! �0

�0 v �

TK ` (does � e) : � 0 ! �

Note that the the and does rules are the only typing rules which make
use of the inclusion relation (de�ned below). This means that all coercions
must be explicit.

A.2.3 Description Inclusion

The description inclusion relation (v) is the re
exive-transitive closure of
the following rules. Two descriptions are equivalent (�) if and only if each
is included in the other.

The rule for inclusion on identi�ers might suggest that description inclu-
sion is context-dependent; however, this is not true because programs are
globally alpha-renamed in the implementation described in the thesis. (See
Section 3.1.)

id v id

Region constants are equivalent if they have the same name. The im-
mutable region is included in every other region.
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@id v @id

The runion operation is set union on regions. It is idempotent, commu-
tative, and associative.

(runion �) � �

(runion �1 �2) � (runion �2 �1)

(runion (runion �1 �2) �3) � (runion �1 (runion �2 �3))

(runion � �) � �

Region inclusion is the same as set inclusion.

8i 2 [1; n] 9j 2 [1; m]s.t.�i v �j

(runion �1 �2 . . . �n) v (runion �01 �02 . . . �
0

m)

E�ects form a lattice with pure as bottom element; pure denotes the
absence of all side-e�ects.

pure v �

alloc and read e�ects on immutable regions are equivalent to pure.

Immutable(�)

(alloc �) � pure

Immutable(�)

(read �) � pure
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Inclusion on primitive e�ects (alloc, read, write) is inherited from in-
clusion on the regions over which the e�ects take place.

�1 v �2

(alloc �1) v (alloc �2)

�1 v �2

(read �1) v (read �2)

�1 v �2

(write �1) v (write �2)

The maxeff operation on e�ects is also like set union. The empty maxeff

is another name for pure. Like runion, maxeff is idempotent, commutative,
and associative.

(maxeff) � pure

(maxeff �) � �

(maxeff �1 �2) � (maxeff �2 �1)

(maxeff (maxeff �1 �2) �3) � (maxeff �1 (maxeff �2 �3))

(maxeff � �) � �

Inclusion on maxeffs is like inclusion on runion.

8i 2 [1; n] 9j 2 [1; m] s.t. �i v �j

(maxeff �1 . . . �n) v (maxeff �01 . . . �
0

m)

Subroutine types are monotonic in their e�ect and return type compo-
nents, but anti-monotonic in their argument type components.
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� v �0

� 0i v �i (1 � i � n)
� v � 0

(subr � (�1 . . . �n) �) v (subr �0 (� 01 . . . �
0

n) �
0)

Bound variables in poly expressions may be alpha-renamed:

idi
0 62 FV(�) (1 � i � n)

(poly ((id1 �1) . . . (idn �n)) �)
�

(poly ((id1
0 �1) . . . (idn

0 �n)) [
n
i=1idi

0=idi]�)

If every projection of a polymorphic value is a subtype of every projection
of another polymorphic value, then the poly type of the �rst is a subtype
of the poly type of the second. Notice that this rule may be applied in
conjunction with the above alpha-renaming rule.

� v � 0

(poly ((id1 �1) . . . (idn �n)) �) v (poly ((id1 �1) . . . (idn �n)) �
0)

Bound variables in dlambda forms may be alpha-renamed:

idi
0 62 FV(�) (1 � i � n)

(dlambda ((id1 �1) . . . (idn �n)) �)
�

(dlambda ((id1
0 �1) . . . (idn

0 �n)) [
n
i=1idi

0=idi]�)

Description functions admit �-conversion.

idi 62 FV(�) (1 � i � n)

(dlambda ((id1 �1) . . . (idn �n)) (�id1 . . . idn)) � �
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If a description function always returns a subdescription of another de-
scription function, then it is included in that description function. Notice
that this rule may be applied in conjunction with the above alpha-renaming
rule.

� v �0

(dlambda ((id1 �1) . . . (idn �n)) �) v (dlambda ((id1 �1) . . . (idn �n)) �
0)

An applied description function is equivalent to its body with the argu-
ments substituted for the formals.

((dlambda ((id1 �1) . . . (idn �n)) �)�1 . . . �n) � [ni=1�i=idi]�

An otherwise unreducible description application is equivalent to another
i� all components are equivalent. There is no proper inclusion on description
applications because there is no way to say whether a description function is
monotonic, anti-monotonic, or neither in an argument.

�i � �0i (1 � i � n)

(desc1 . . . �n) � (desc01 . . . �
0

n)

dlet forms introduce local description abbreviations. The abbreviations
are transparent in the sense that they are equivalent to their de�nitions.

(dlet ((id1 �1) . . .) �) � [ni=1�i=idi]�
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