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Abstract—We propose a novel control framework for bilateral
teleoperation of a pair of multi-degree-of-freedom nonlinear
robotic systems under constant communication delays. The pro-
posed framework uses the simple proportional-derivative control,
i.e., the master and slave robots are directly connected via spring
and damper over the delayed communication channels. Using the
controller passivity concept, the Lyapunov–Krasovskii technique,
and Parseval’s identity, we can passify the combination of the
delayed communication and control blocks altogether robustly,
as long as the delays are finite constants and an upper bound for
the round-trip delay is known. Having explicit position feedback
through the delayed P-action, the proposed framework enforces
master–slave position coordination, which is often compromised
in the conventional scattering-based teleoperation. The proposed
control framework provides humans with extended physiological
proprioception, so that s/he can affect and sense the remote slave
environments mainly relying on her/his musculoskeletal systems.
Simulation and experiments are performed to validate and high-
light properties of the proposed control framework.

Index Terms—Bilateral teleoperation, communication de-
lays, extended physiological proprioception (EPP), Lyapunov–
Krasovskii functionals, Parseval’s identity, passivity, propor-
tional-derivative (PD) control.

I. INTRODUCTION

ENERGETICALLY, as illustrated in Fig. 1, a closed-loop
teleoperator is a two-port system with the master and slave

ports being coupled with the human operators and slave environ-
ments, respectively. Therefore, the foremost and primary goal
of the control (and communication) design for the teleoperation
should be to ensure interaction safety and coupled stability [1]
when mechanically coupled with a broad class of slave environ-
ments and humans.

To ensure such interaction safety and stability, energetic
passivity (i.e., mechanical power as the supply rate [2]) of
the closed-loop teleoperator has been widely used as the con-
trol objective (e.g., [3]–[11]). This is due to the property of
the passive systems [12]: a feedback interconnection of any
passive systems (with compatible supply rates) is necessarily
stable (and also passive). In the context of teleoperation, this

Manuscript received June 9, 2004; revised July 12, 2005. This paper was
recommended for publication by Associate Editor C. Melchiorri and Editor I.
Walker upon evaluation of the reviewers’ comments. This work was supported
in part by the Office of Naval Research under Grants N00014-02-1-0011 and
N00014-05-1-0186, in part by the National Science Foundation under Grants
IIS 02-33314, CCR 02-09202, and ECS-01-22412, and in part by the College
of Engineering of the University of Illinois.

The authors are with Coordinated Science Laboratory, University of Illi-
nois at Urbana-Champaign, Urbana, IL 61801 USA (e-mail: d-lee@control.
csl.uiuc.edu; mspong@uiuc.edu).

Digital Object Identifier 10.1109/TRO.2005.862037

property implies that if we ensure energetic passivity of the
closed-loop teleoperator, its mechanical interaction with any
passive environments and humans will be necessarily stable
(i.e., bounded interaction velocity), regardless of how uncertain
and complicated their dynamics are. In many practical appli-
cations where the slave environment is passive (e.g., pushing a
wall or grasping a ball) and the humans’ mechanical impedance
is indistinguishable from that of passive systems [13], this
passivity of the closed-loop teleoperator indeed results in stable
interaction. Energetically passive teleoperators would also be
safer to interact with, since the maximum extractable energy
from it is bounded, and so is the possible damage on the slave
environments and humans.

In this paper, we consider the cases where the forward (i.e.,
from master to slave) and backward (from slave to master) com-
munication signals undergo their respective finite constant time
delays. One example of such cases is when the master and slave
environments are located so far from each other that it takes non-
negligible time for the communication signals to travel between
the two environments (e.g., space teleoperation [14]). The other
example is when the delays are varying but still bounded, so that
by buffering data up to certain (known) worst-case maximum
delays with time stamping, apparent delays can still be made
constant (e.g., Internet teleoperation with insignificant packet
loss [15]).

In [16]–[18], an - and -synthesis, Nyquist-based cri-
teria, and results from linear time-delay systems are respectively
used to ensure the interaction stability of the teleoperation with
constant time delays, where the slave environments and humans
are assumed to be known linear time-invariant (LTI) systems.
Thus, their applicability would be limited in many practical
applications where the dynamics of the slave environments
and/or humans are often time-varying, nonlinear, and even
unknown. To ensure interaction stability (and safety) with such
complicated and possibly unknown slave environments and/or
humans, it is again desired to enforce passivity for the delayed
teleoperation.

How to ensure energetic passivity of the time-delayed bilat-
eral teleoperation was a long-standing problem. In [3], energetic
passivity of the delayed teleoperation is achieved by passifying
the communication block with (possibly unknown) finite con-
stant time delays. This passification was made possible by ap-
plying scattering theory. In [4], this scattering-based result is
further extended, and the notion of the wave variables was in-
troduced. Since these two seminal works, scattering-based (or
wave-based) teleoperation has been virtually the only way to
enforce energetic passivity of the time-delayed bilateral teleop-
eration (e.g., [5], [6], [15], and [19]–[22]).
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Fig. 1. Closed-loop teleoperator as a two-port system, where the dotted arrows represent information flow through the delayed communication channels, while
solid arrows represent mechanical power pairs.

In this paper, we propose a novel control framework for bilat-
eral teleoperation of a pair of multi-degree-of-freedom (DOF)
nonlinear robotic systems with finite constant communication
delays. The proposed framework is based on the simple pro-
portional-derivative (PD) control, i.e., directly connecting the
master and slave robots via spring and damper over the delayed
communication channels. Then, using the controller passivity
concept [11], [23], the Lyapunov–Krasovskii technique for the
delayed systems [24], and Parseval’s identity [25], we can en-
force energetic passivity of the closed-loop teleoperator as long
as the communication delays are finite constants and an upper
bound of the round-trip delay (i.e., sum of the forward and back-
ward delays) can be known, even if the delays are asymmetric
(i.e., forward delay backward delay) and/or their exact esti-
mates are not available. Moreover, by relying on the controller
passivity concept, this passivity is ensured even in the presence
of model parametric uncertainty (i.e., robust passivity [11], [23]
is achieved).

A similar delayed PD control was used in [26], but passivity
was not achieved there. In [27], we proposed a PD-based teleop-
eration control law, which is also able to enforce energetic pas-
sivity of the time-delayed bilateral teleoperation without being
scattering-based. However, this control law, proposed in [27],
assumes the communication delays to be exactly known and
symmetric. In this paper, this often-unrealistic assumption is re-
moved, as stated in the above paragraph.

The main advantage of the proposed framework is the
explicit position feedback through the delayed P-control ac-
tion (i.e., spring term with delayed set position). The lack of
such explicit position feedback has been known as the major
drawback of the conventional scattering-based teleoperation,
in which, roughly speaking, the velocity information is ex-
tracted from the communicated scattering variables, and then
integrated to recover the set position information. Therefore, if
this integration becomes inaccurate (e.g., slave robot makes a
hard contact with a rigid wall or communication is blacked out
shortly), the master and slave positions may start drifting away
from each other (see [28], for example). Having the explicit
position feedback, our proposed framework would prevent
such a position drifting. This explicit position feedback also
enables us to guarantee (i.e., theoretically prove) asymptotic
master–slave position coordination.

In contrast to the scattering teleoperation, where the delayed
communication block is passified so that the closed-loop tele-
operator becomes an interconnection of passive submodules

(i.e., passified communication, passive control, and passive
master/slave robots), the proposed framework passifies the
combination of the communication and control blocks alto-
gether. While the scattering-based teleoperation can be used
without any knowledge of the (finite, constant) delays, our
proposed framework requires knowing an upper bound of the
round-trip delay. However, we think that this is a mild restric-
tion, since, in many practical applications, round-trip delay is
relatively easy to measure/estimate [29].

Although it achieves at least a level of ideal transparency [5],
[17], the main goal of the proposed control framework is to pro-
vide humans with extended physiological proprioception (EPP)
[30], i.e., the closed-loop teleoperator as a tool, by which the
human operator can affect and sense the remote slave environ-
ments, mainly relying on her/his musculoskeletal systems. Note
that the ideally transparent closed-loop teleoperator should not
possess such an intervening tool dynamics [31], as it would alter
the impedance perceived by the human from that of the slave
environment. In this sense, the proposed framework is along
the line of such research work as “common passive mechanical
tool” [10], [11], “task-oriented virtual tool” [9], and “virtual tool
for wave-based teleoperation” [19].

The rest of this paper is organized as follows. The control
problem is formulated in Section II, and the control law is de-
signed and its properties are detailed in Section III. Simulation
and experimental results are presented in Section IV to vali-
date/highlight properties of the proposed framework, and Sec-
tion V contains a summary and concluding remarks.

II. PROBLEM FORMULATION

A. Modeling of Teleoperators Under Constant Time Delay

Let us consider a teleoperator consisting of a pair of -DOF
nonlinear robotic systems

(1)

(2)

where , are the configurations, , are the
human/environmental forcing, , are the controls,

, are the symmetric and positive-def-
inite inertia matrices, and , are
the Coriolis matrices of the master and slave systems, respec-
tively. Due to its structure inherited from the Euler–Lagrangian
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dynamics, the th element of the Coriolis matrices
in (1) and (2) are given by [32]

(3)

for and , , where are
the Christoffel symbols (of the first kind) with the sym-
metric property such that (s.t.) . Also,
from (3), we have the well-known passivity property, i.e.,

are skew-symmetric.
We assume that, following the procedures in [10] and [11],

suitable bilateral motion and/or power scalings have been al-
ready embedded in the dynamics (1) and (2) to match different
kinematic sizes and/or mechanical strengths between the master
and slave environments (e.g., MEMS teleoperation). For the dy-
namics (1) and (2), we also assume that the gravity terms are
either included in the forcing terms , or precompen-
sated by the local controls.

In this paper, we assume the communication structure as
shown in Fig. 1, where the forward and backward communi-
cations are delayed by finite constant time delays and

, respectively. Then, the controls , in (1) and
(2) can be defined as functions of the current local information
and the delayed remote information, i.e.,

(4)

(5)

B. Control Objectives

We would like to design the controls , in (4)
and (5) to achieve: master–slave position coordination: if

(6)

and 2) static force reflection: with

(7)

For the safe interaction and coupled stability, we would also
like to enforce the following energetic passivity of the closed-
loop teleoperator (1) and (2): there exists a finite constant
s.t.

(8)

i.e., maximum extractable energy from the two-port closed-loop
teleoperator is always bounded (see Fig. 1). Let us also define
controller passivity [10], [11], [23]: there exists a finite constant

s.t.

(9)

i.e., energy generated by the two-port controller (see Fig. 1) is
always limited.

Lemma 1 [11], [23]: For the mechanical teleoperator (1) and
(2), controller passivity (9) implies energetic passivity (8).

Proof: Let us define the total kinetic energy

(10)

then, using the dynamics (1) and (2) and its skew-symmetric
property, we have

(11)
Thus, integrating (11) with the controller passivity (9) and the
fact that , we have

Lemma 1 is simple but powerful, in the sense that it enables us
to analyze energetic passivity (8) of the closed-loop teleoperator
by examining only the controller structure, which is often much
simpler than that of the closed-loop dynamics. Furthermore, by
enforcing controller passivity (9), energetic passivity (8) will be
guaranteed robustly (robust passivity [11], [23]), because con-
troller passivity (9) does not depend on the possibly uncertain
open-loop dynamics (1) and (2).

III. CONTROL DESIGN

In order to achieve master–slave coordination (6), bilateral
force reflection (7), and energetic passivity (8) of the closed-
loop teleoperator, we design the master and slave controls ,

in (4) and (5) to be

(12)

(13)

where , are the forward and backward finite con-
stant communication delays, , are the sym-
metric and positive-definite PD control gains, is
the dissipation gain to passify the delayed P-control action (to
be designed below), and is an additional damping
ensuring master–slave coordination (6). Inherent device viscous
damping can substitute this additional damping . Note that the
control laws (12) and (13) require the communication of both
the position and velocity signals. Such an explicit position feed-
back is generally absent in the conventional scattering-based
teleoperation.
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To enforce energetic passivity (8), we design the dissipation
gain in (12) and (13) to satisfy the following condition:

(14)

where, for square matrices , , implies that is
positive-semidefinite. As to be shown below, with this condition
(14), the delayed P-control action (i.e., with ) can be passified
by the dissipation . From the fact that

, one possible solution for the condition (14) can be
given by

(15)

where is an upper bound of the round-trip delay
s.t. .

The proposed control law (12) and (13) under the condition
(14) ensures energetic passivity (8) of the closed-loop teleop-
erator, the master–slave position coordination (6), and the static
bilateral force reflection (7) as summarized by the following the-
orem.

Theorem 1: Consider the mechanical teleoperator (1) and (2)
under the controls (12) and (13) satisfying the condition (14).

1) (Robust Passivity) The closed-loop teleoperator under
the controls (12) and (13) is energetically passive, i.e.,
satisfies (8), regardless of parametric uncertainty in the
open-loop dynamics (1), (2).

2) (Coupled Stability) Suppose that the human operator and
slave environment in Fig. 1 define passive mappings with
their respective mechanical power inflow as their supply
rate [2]: i.e., finite constants , s.t.

(16)

, i.e., maximum extractable energy from the
human operator and slave environment are bounded.
Then, , . Therefore, if the human oper-
ator and slave environment are -stable input–output
impedance maps, , .

3) (Position Coordination) Suppose that the human oper-
ator and slave environment are passive in the sense of
(16). Then, the coordination error
in (6) is bounded . Suppose further that

, and
are all bounded for every , where and are
the th and the th components of the inertia matrix

and the configuration , respectively. Then, if
, (i.e., (6)

is achieved).
4) (Force Reflection) If ,

, i.e., (7) is
achieved.

Proof: 1) Let us denote the mechanical power generated
by the controls (12) and (13) by

(17)

where and are the supply rates associated with the
delayed D-action and the delayed P-action ( dissipation ),
respectively, and defined by

(18)

(19)

and is the following positive-definite quadratic form:

(20)

We want the total controller supply rate in (17) to satisfy
the controller passivity (9).

Let us first consider the delayed D-action supply rate in
(18). Then, using the fact that

(21)
, we can show that

(22)

where is a Lyapunov–Krasovskii functional for delayed
systems [24] defined by

(23)

Then, by integrating the inequality (22), we have

(24)

i.e., energy generation by the delayed D-action is always
bounded by the energy stored in the Lyapunov–Krasovskii
functional (i.e., is the storage function for the
supply rate .

Now, let us consider the supply rate in (19). Then, we
can rewrite in (19) s.t.

(25)
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where is the potential energy stored in the P-action spring,
i.e.,

(26)

with as defined in (6). As in [33], let us
define the truncated signal of s.t. for

if
otherwise.

(27)

Then, the energy generation by the supply rate in (25) can
be written as

(28)

Let us denote the Fourier transform of ( ) by
, where

. Then, as shown in Appendix A, the Fourier trans-
form of in (28) (i.e., ) is
given by . Let us denote
the complex conjugate transpose of a complex vector
by (i.e., ). Then using Parseval’s identity [25], the
equality (28) can be rewritten as

(29)

where, following the derivations in Appendix B,
is given by

Since is Hermitian with positive-definite block diagonal
matrices , following [34, pp. 473], (i.e., is
positive-semidefinite) if and only if

(30)

which is nothing but the condition (14), because
. Thus, with the condition (14) s.t.

, we can show from (29) that

(31)

i.e., energy generation by the supply rate is always
bounded by the P-action spring energy in (26).

Thus, by combining (17), (24), and (31) with the fact that
and , and in (20) is a positive-

definite quadratic form, we can prove controller passivity (9) s.t.

(32)

where the term will be zero if we start from zero velocities
(i.e., ), while the term
would be small, if the initial coordination error

is small. Finally, from Lemma 1, energetic passivity (8) of
the closed-loop teleoperator follows.

2) By integrating the equality (11) with the inequality (32)
and the energetic passivity of the human and slave environment
(16), we have, for all

(33)

Here, since , , , , and are all bounded,
is bounded. Thus, , are also bounded

(i.e., , ). Therefore, if the human operator and
the slave environment are -stable impedance maps, ,

.
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3) Boundedness of is a direct conse-
quence of the inequality (33) and the definition of in (26).

The first step of the position-coordination proof is to show
that . Suppose that ,

. Then, from (33) with and the boundedness of
, , , we have

(34)

where as given in (32), and
is a constant scalar s.t. . Such a always
exists, because in (20) and in (10) are both pos-
itive-definite quadratic form with respect to (w.r.t.)
and . Here, since , the term is
monotonically increasing and upper bounded, thus, it con-
verges to a limit. Therefore, following Barbalat’s lemma [35],
if is uniformly continuous, will also converge
to 0 (i.e., ). To show this, let us con-
sider . Then, from (11) with ,
we have , where

, are bounded from item 2 of this theorem.
Also, , are bounded, since, in their def-
initions (12) and (13), for ,

is bounded (with bounded ), and
is also

bounded (with bounded , , and ). Thus,
is bounded, and is uniformly continuous. Therefore,

and .
The next step of the proof is to show that
to establish . Let us consider the teleoperator

dynamics (1) and (2) with , where, as shown
in the previous paragraph, the controls , in (12) and
(13) are bounded. Also, from the boundedness assumption of

, the Coriolis terms ( ) in (1)
and (2) are bounded. Thus, the accelerations , are also
bounded . Now, let us consider the acceleration in
(1) and (2) (with )

(35)

, where the time derivatives of the terms in
the right-hand side (RHS) are all bounded, due to the
boundedness of , , ,

(from the boundedness
assumption on ), and (from
the boundedness assumption on ). This
implies that the RHS of (35) is uniformly continuous. Thus,

, are also uniformly continuous. Therefore, following
Barbalat’s lemma [35], as .

Now, let us consider the dynamics (1) and (2) with the con-
trols , in (12) and (13) and .
Then, since , we have

, . This condition can

be rewritten as , where the
second term in the left-hand side goes to zero, as and

is finite. Therefore, since is positive-definite,
(i.e., ).

4) Suppose that . Then, from
the teleoperator dynamics (1) and (2) and their controls (12) and
(13), we have

(36)

where and as
.

In Theorem 1, the negative signs in the passivity condition
for the human and slave environment (16) come from the
fact that the power inflows to those systems are given by

, i.e., the product of the reaction force
and the interaction velocity . The boundedness assumption
on , and in item
3 of Theorem 1 will be guaranteed, if the master and slave
configuration spaces are compact and their respective inertia
matrices are smooth. Such compact configuration space and
smooth inertia are possessed by many practical robotic systems
(e.g., revolute joint robots).

The condition (15) [or (14)] enables us to passify the de-
layed P-action in (12) and (13) by the dissipation . This de-
layed P-action contains an explicit position feedback informa-
tion, the lack of which is recognized as the main cause of the
master–slave position drift in the conventional scattering-based
teleoperation. In contrast, the delayed D-action in (12) and (13)
is itself passive, with the Lyapunov–Krasovskii function
in (23) as its storage function (see the proof of item 1). Since
the condition (15) can be achieved as long as the delays ,
are finite constants and their round-trip delay (i.e., ) is
upper bounded, energetic passivity (8) can also be ensured with
such finite constant delays, even if they are not exactly known
or they are asymmetric (i.e., ).

Notice from item 4 of Theorem 1 that the P-action gain
in (12) and (13) determines the (static) force-reflection perfor-
mance, as it specifies how much force is generated for a given
master–slave position error. Note also that a large dissipation
gain in (12) and (13) would make the system response slug-
gish. Therefore, the condition (15) imposes the following impli-
cations on the system performance: 1) with the same force-re-
flection performance (i.e., same ), the motion agility (i.e.,
less ) would be compromised as the delays becomes longer,
since in the condition (15), the required dissipation is pro-
portional to the round-trip delay ; and 2) with the same delay

, there is a tradeoff between the force-reflection performance
and motion agility, since under the condition (15), a large
(i.e., sharp force reflection) requires a large (i.e., poor mo-
tion agility), or a small (i.e., agile free motion) permits only
a small (i.e., poor force reflection).

The key step in the proof of Theorem 1 is the use of Parseval’s
identity in (29). A sufficient condition for Parseval’s identity to
hold is that , [25]. As the following lemma
shows, this sufficient condition is guaranteed in many practical
situations where the human and slave environment are passive
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in the sense of (16), the Christoffel symbols of the master and
the slave robots (1) and (2) are bounded, and the master and
slave velocities and the coordination error are initially bounded.
Parseval’s identity was also used in [33] to ensure the energetic
passivity of haptic interfaces under zero-order-hold.

Lemma 2: Suppose that the human and slave environment
are passive in the sense of (16), and define -stable impedance
maps (i.e., if , , , ). Suppose
further that Christoffel’s symbols in the Coriolis ma-
trices (3) are bounded ( , , , ). Then,
if , , are bounded, , , thus,
Parseval’s identity in (29) holds, and items 1–3 of Theorem 1
requiring Parseval’s identity (29) are ensured.

Proof: Suppose that , , are bounded.
Then, the controls , are bounded (as shown in the
proof of item 3 of Theorem 1) and , are bounded
(from the -stable impedance map assumption). Thus, from
the dynamics (1) and (2) with bounded Christoffel’s symbols

in (3), , are also bounded. Therefore, with
the bounded , , (thus, , are also
bounded), we can find an interval with being a
strictly positive scalar s.t.

(37)

where is defined in (20), and is a sufficiently large
positive scalar. Thus, on the interval , Parseval’s identity (29)
holds, and following the inequality (33), , , are
all bounded.

Suppose that or . Then, from the
fact that is continuous on (since , are
bounded ) and monotonically increasing (since

in (20) is positive-definite), there should exist a time
s.t.

(38)

where we define
with being a (small) strictly positive scalar. However, this
is not possible, since, on the interval , Parseval’s identity (29)
holds, thus, from (33), we have

(39)

for all , i.e., . This inequality
(39) implies that, with bounded initial velocities
and coordination error , in (37) will be uni-
formly bounded by and cannot blow up. Thus, ,

, therefore, following [25], Parseval’s identity (29) is valid
.

IV. SIMULATION AND EXPERIMENT

A. Simulation

In this simulation, we consider a pair of 2-serial-links
revolute-joint direct-drive planar robots. Then, following
a standard textbook as [32], their joint-space inertia ma-
trices ( : master, : slave) share
the following positive-definite and symmetric structure:

with , where is the th
component of ( ) and is the cosine
of the distal link angle w.r.t. the proximal link. We choose

kgm for the master and
kgm for the slave. We

also set the lengths of the proximal and distal links of both the
master and slave robot to be the same as (38 cm, 38 cm). These
kinematic and dynamic parameters are adapted from those
of the slave robot in [11], with the inertia being reduced by
approximately one-third and the proximal link being slightly
lengthened. For more details on the real robot, refer to [11].

We model the human operator as a PD-type position-tracking
controller (i.e., spring and damper) with its spring and damping
gains as 75 N/m and 50 Ns/m for both and directions. These
gains are chosen assuming that the human positions the master
robot without overshoots. To evaluate the contact stability, we
implement a wall in the slave environment at cm, mod-
eled as a lightly damped spring-damper system (with the spring
and damping gains being 500 N/m and 0.1 Ns/m) reacting only
along the direction.

We derive the controller in (12) and (13) w.r.t. the Cartesian
space dynamics (i.e., , in (1) and (2) being the Cartesian

positions) so that, with item 4 of Theorem 1, the Cartesian
force (i.e., end-tip force) can be reflected.1 As a simula-
tion platform, we use MatLab SimuLink (The MathWorks Inc.,
Natick, MA) with a 0.02 s update rate.

We consider the following scenario. At the beginning 0–50 s,
the human operator stabilizes the master at
cm; then, at 50–150 s, the human pushes the master to the posi-
tion cm to make a hard contact (i.e., maintains
the pushing force with negligible velocity/acceleration) between
the slave and the wall; finally, at 150–250 s, the human retracts
the master to the original position cm.

The following two sets of the delays are assumed:
s (i.e., round-trip delay s) and
s (i.e., s). For these two sets, we choose

the P-action gain in (12) and (13) to be N/m. Then,
the dissipation gain in (12) and (13) is chosen according to
(15): for s, and for
s. The extra damping and the D-action gain in (12) and
(13) are also set to be and , respectively. Simula-
tion results with these two delay sets are given in Figs. 2 and 3,
respectively. Only the axis position and force are presented in
the figures, as they are dominant over those in the axis.

As shown in Figs. 2 and 3, when the slave robot is
pushing against the wall with small velocity and accelera-
tion (100–150 s), the contact force is faithfully reflected to

1However, since the master and slave robots are kinematically identical in this
simulation, the Cartesian force reflection also implies joint-torque reflection.
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Fig. 2. Simulation result: � = 1 s, K = 50I , K = 25I .

the human operator via the P-action in (12) and (13).
Also, when the slave does not interact with the wall and the
human forcing is negligible (e.g., 20–50 s and 220–250 s),
the master–slave position coordination is achieved. During the
simulation, the system behavior is stable, as the passivity (8) is
ensured by the condition (15).

The force peaks at 50–55 s and 160–170 s in Figs. 2 and 3
are due to the dissipation in (12) and (13). With the longer
round-trip delay s, the force peaks in Fig. 3 are larger
than those in Fig. 2. This is because according to the condition
(15) with the same , the dissipation gain of Fig. 3 needs
to be three times larger than that of Fig. 2, as increases from

s in Fig. 2 to s in Fig. 3.
The force peak at 50–55 s in Fig. 3 is as large as the maximum

contact force at 100–150 s. Thus, the human operator may not be
able to clearly discern the real contact force from the dissipation
force. This large force peak also shows that the human could
not move the teleoperator agilely in the free motion. In order to

Fig. 3. Simulation result: � = 3 s, K = 50I , K = 75I .

mitigate this large dissipation force, we reduce in (12) and
(13) by half (i.e., ). Then, according to (15), we
also need to reduce by half. Simulation results under these
reduced and with s are given in
Fig. 4.

With the reduced , the dissipation force peaks in Fig. 4
become smaller than those in Fig. 3. Thus, the human would
make a more agile motion of the teleoperator. However, since

is also reduced by half, the human would perceive the wall
as more compliant and spongy. This is because, following item
4 of Theorem 1, to generate similar forces with a lower , the
human needs to push the master further for a larger master–slave
position error. In Fig. 4, the human’s set point is moved from

cm to cm, so that the position
error can become twice larger and a similar contact force as
in Figs. 2 and 3 can be generated with the half-reduced .
This shows that the condition (15) imposes a tradeoff between
force-reflection sharpness and free-motion agility.
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Fig. 4. Simulation result: � = 3 s, K = 25I , K = 37:5I . To
enhance motion agility (i.e., reduce the damping force peaks in Fig. 3), the
dissipation gain K [also, the P-control gain K via (15)] is reduced by half
from Fig. 3.

B. Experiment

For the experiment, we use a pair of identical direct-drive
planar 2-serial-links revolute-joint “D2R2” robots [36] as the
initial experimental platform. We choose one D2R2 as the
master robot, whose distal and proximal links have the lengths
of (25,24.5) cm. We also choose the other D2R2 robot as the
slave robot and attach an additional link on its distal link, so
that its distal and proximal links have lengths of (37.5,24.5) cm.
For more details on the physical construction and specification
of the D2R2 robot, refer to [36].

The control laws (12) and (13) are derived for the Carte-
sian-space dynamics (i.e., , in (1) and (2) as Cartesian

, positions) so that, following item 4 of Theorem 1, the
Cartesian (static) force reflection can be achieved. To evaluate
the system’s contact behavior, we install an aluminum wall

Fig. 5. Coulomb friction in the experiment system.

in the slave environment. As a real-time operating system,
we use Wincon 5.0 (Quanser Inc., ON, Canada) with MatLab
SimuLink, and a 2.5 ms sampling rate is obtained. We also
measure the human and contact forces [i.e., , in (1)
and (2)] using force sensors from JR3 Inc. Recall from (12) and
(13) that our control laws do not require force sensing.

As reported in [36], in spite of its being of direct-drive robots
(i.e., negligible gear friction), the D2R2 robot has substantial
bearing friction. This friction was, in part, compensated for in
[36] for better trajectory tracking. However, by producing spo-
radic stictions, such a friction compensation can often disturb
and corrupt the human’s perception during the teleoperation.
Thus, we do not compensate for the friction in this experiment.
For the robot’s posture frequently encountered during the ex-
periment, we measure the Coulomb friction as shown in Fig. 5,
where the human operator increases his force with the slave
robot being free to move (i.e., no contact). In Fig. 5, the slave
does not move for 15 s. This implies that the (static) Coulomb
friction can go up to 12 N.

For the experiment, we choose similar scenario as in Sec-
tion IV-A: 1) initially, the teleoperator is stabilized with the
slave being positioned at a certain start position; 2) then, without
seeing, the human operates the master to move the slave close
to the aluminum wall and keeps pushing until he perceives the
wall; 3) he makes a hard contact; and 4) finally, while seeing
the slave environment, the human tries to retract the slave into
a certain end position.

Same as in the simulation, we choose the 2-sets of delays:
(0.4,0.6) s (i.e., 1 s) and (1.2,1.8) s

(i.e., 3 s). We choose the P-action gain in (12) and
(13) to be the same for these two delay sets, and set the dis-
sipation gain according to the condition (15). Thus,
for (1.2,1.8) s is three times larger than that for

(0.4,0.6) s. Additional damping is omitted in the
control implementation, as we leave the device friction uncom-
pensated. Experimental results with these two delay sets are
given in Figs. 6 and 7, respectively. Similar to the simulation
(Fig. 4), in order to enhance motion agility, we reduce [and
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Fig. 6. Experimental result with the round-trip delay � = 1 s.

via (15)] by half for the delay (1.2,1.8) s, and
present the result in Fig. 8.

As shown by human force profiles in Figs. 6–8, the human
operator can perceive the aluminum wall through the force re-
flection. Also, in the free motion, the master and slave positions
become coordinated with each other. These free motion and con-
tact behaviors are all stable, as we enforce passivity (8) through
the condition (15). In Figs. 6–8, there are some errors in both
the force reflection (e.g., around 40 s) and position coordination
(e.g., around 80 s). We think that these errors are mainly due to
the substantial device Coulomb friction, as reported in Fig. 5.
Also, notice that the master’s trajectory becomes more wiggly

Fig. 7. Experimental result with the round-trip delay � = 3 s.

with longer delays and less . This is consistent with the fact
that the human had more difficulty in positioning the slave into
a certain desired end position as becomes less and/or the de-
lays become longer.

As shown in Figs. 6 and 7, under the condition (15), free-
motion agility is compromised (i.e., larger ), when the delays
become longer. In Fig. 8, with being reduced by half from
Fig. 7, the dissipation force peaks are reduced. However, with
the condition (15), this reduction of also requires to be
reduced by half, so that to generate a similar contact force, the
master–slave position error needs to be twice larger than that in
Fig. 7 (i.e., less sharp force reflection).
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Fig. 8. Experimental results with the round-trip delay � = 3 s. To enhance
motion agility (i.e., to reduce damping force peaks in Fig. 7), the dissipation
gain K [also the P-action gain K via (15)] is reduced by half.

When a human operator makes a static contact with a fixed
remote object (e.g., the aluminum wall), following item 4 of
Theorem 1, s/he will perceive the remote object via the serial
connection of the P-action spring and the object’s compli-
ance (say ). Thus, the apparent compliance perceived by a
human is dominated by either or , whichever is smaller.
For this experiment, since the P-gain is less than the compliance
of the aluminum wall, it was difficult for the human to perceive
the wall’s compliance (or hardness), although he could still feel
its position and shape via the deflection of the P-action spring.

During the experiment, we did not observe any nonpassive
behaviors possibly associated with the sampling process and

sensor quantization. We believe that this is due to the relatively
large uncompensated device friction in the experimental setup.
For more details on this subject, refer to [37].

The simulation and experimental results in Section IV-A and
Section IV-B together highlight the effects of the condition (15)
or (14) on the system performance: 1) if we want to keep the
same force-reflection performance (i.e., same ) with longer
communication delays, motion agility needs to be compromised
(i.e., larger is required); and 2) when the communication
delay is fixed, there is a tradeoff between force-reflection sharp-
ness and free-motion agility, i.e., a small (or large , resp.)
allows only a small (or large , resp.).

V. SUMMARY AND CONCLUSIONS

In this paper, we propose a novel passive bilateral control
framework for nonlinear robotic teleoperators with constant
communication delays. The proposed framework uses the PD
control, which directly connects the master and slave robots via
spring and damper over the delayed communication. Without
relying on the widely used scattering-based teleoperation, the
proposed framework enforces passivity of the closed-loop
teleoperator by passifying the combination of the delayed
communication and control blocks altogether. To achieve
this, the proposed framework uses the controller passivity
concept, the Lyapunov–Krasovskii technique, and Parseval’s
identity. Due to the explicit position feedback provided by
the delayed P-action, the proposed framework would prevent
position drift between the master and slave robots, which has
been well known as the major problem of the conventional
scattering-based teleoperation. Under the proposed framework,
the closed-loop teleoperator is presented to the human operator
as a tool, by which s/he can extend his/her physiological pro-
prioception to the remote slave environments. Simulations and
experiments are performed to validate/highlight properties of
the proposed control framework.

We believe that the proposed framework is promising for In-
ternet teleoperation, where its explicit position feedback would
serve a role in recovering the master–slave position coordina-
tion in the presence of packet loss and time-varying delays.

The proposed framework aims to achieve a good EPP, which
mainly concerns the low-frequency performance. Therefore, for
the cases where a given task requires an operation in a high-fre-
quency region (e.g., detection of a sharp edge, or “asymmetric
information feedback” [38]), we will investigate high-frequency
characteristics of the proposed framework. When the master
and slave are LTI, this can be easily done by computing the
transfer-function bandwidth or transparency [17]. However, for
the general nonlinear master and slave, we would need a dif-
ferent approach, as the frequency-response concept becomes in-
applicable.

We also believe that this proposed framework can be used
in conjunction with other schemes to improve the system per-
formance and stability. One possibility is to augment the pro-
posed framework with another control scheme designed for a
certain high-frequency region. By doing so, we may be able to
enjoy a good performance both in the low-frequency (by the pro-
posed framework) and high-frequency (by the augmented con-
trol) regions.
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APPENDIX

A. Derivation of for (29)

The Fourier transform of in (28) is defined by

(40)

Let us define the step-function with a time offset
s.t. if , and , otherwise. Then,
following [39, pp. 38], its Fourier transform can be computed
by

(41)

where is the delta impulse function w.r.t. , whose magni-
tude represents the dc component of the signal (i.e., 1/2),
and is the signum function s.t. if , and

, otherwise. The key facts for achieving (41) are
(i.e., Fourier transform of 1

is ), and

(i.e., the Fourier transform of is ).
Now, as in [39, pp. 40], we can rewrite in (40) s.t.

(42)

where is the convolution operator. Thus, using (41), we have

(43)

Similarly, by setting in (42) and using (41), in
(40) can be written as

(44)

Thus, combining (44) and (43), in (40) is given by

(45)

Here, note that does not have any dc component (i.e.,
no impulse at ), since the dc component of the delayed
signals [i.e., in (44)] is the same as that of the original
signal [i.e., in (43)] and are cancelled out by each other
to make in (45).

B. Derivations for the Last Line of (29)

Let us define s.t., for

(46)

Then, using a dummy integration variable , can
be rewritten as

(47)

where we use the fact that
, because is symmetric and

from the definition of the Fourier transform. Thus, by
rewriting in (29) as the average of (46) and (47), with the
dummy variable replaced by , the last line of (29) can be
achieved.
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