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Abstract

The Box-Cox quantile regression model introduced by Powell (1991) is a flexible and

numerically attractive extension of linear quantile regression techniques. Chamberlain (1994)

and Buchinsky (1995) suggest a two stage estimator for this model but the objective function

in stage two of their method may not be defined in an application. We suggest a modification

of the estimator which is easy to implement. A simulation study demonstrates that the

modified estimator works well in situations, where the original estimator is not well defined.
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1 Introduction

This paper studies the practical implementation of the Box-Cox quantile regression (BCQR) model

introduced by Powell (1991). We consider a numerical difficulty with the two step estimation ap-

proach for Box-Cox quantile regression as suggested by Chamberlain (1994) and Buchinsky (1995),

denoted here as CBTS. Applications of the BCQR model in Buchinsky (1995) and Machado and

Mata (2000) use the CBTS approach. In these applications, the estimated Box–Cox transforma-

tion parameter λ appears to vary too much and often hits the upper or lower bound, −2 or 2,

which is set ex ante by the authors.1 It may be possible that these problems reflect a numerical

problem when implementing the estimator.

The CBTS approach involves an attractive two step procedure for the nonlinear BCQR model.

In the first step, one runs a standard linear quantile regression for the given Box–Cox transfor-

mation parameter λ. Then, the second step involves a nonlinear optimization problem which is

one–dimensional and which can be solved effectively by a grid search over λ. However, in the

second step of the CBTS approach, the objective function may not be defined because the inverse

of the Box-Cox transformation may not be computed for a share of the observations.

This numerical problem is by no means negligible because it can emerge in typical data situa-

tions. As a motivation, we illustrate the problem by an empirical example. We take an adminis-

trative data set of individual unemployment periods for West-Germany during the period 1981 to

1997. Lüdemann, Wilke and Zhang (2006) use similar data and provide all relevant details about

it. The sample contains more than 79000 observations. From these data, we draw 500 independent

random samples of size n = 5000 and estimate Box-Cox quantile regression with non–censored

unemployment duration as dependent variable. We use the same 25 regressors that are used by

Lüdemann et al. (2006) and estimate the model at the 0.1, 0.5 and 0.8-quantile. Table 1 reports

the mean share of inadmissible observations for the original CBTS estimator. The mean is taken

over the 500 samples. It is evident that the CBTS estimator fails at all quantiles since there is

always a positive share of observations (between 0.4% and 1.7%) which are inadmissible for the

computation of the inverse Box-Cox transformation.

This paper suggests a modified objective function which takes care of almost all inadmissible

observations. Our modification is based on an exact theoretical result for the bivariate regression.

However, this result may be violated when there are multiple regressors. For such cases, we suggest

an additional modification which ensures that the objective function is still well defined. We

perform several simulations which show that our modified estimator works well in finite samples

for multiple regressions. We also sketch that the basic asymptotic properties of the original

1This observation was pointed out to us by an anonymous referee.
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Table 1: Mean share of inadmissible observations in samples of unemployment duration data for

the 0.1, 0.5 and 0.8-quantile. Standard deviations are in parentheses.

θ = 0.1 θ = 0.5 θ = 0.8

CBTSa 0.4% (0.003) 1.5% (0.005) 1.7% (0.004)

a: Two step estimation approach for Box-Cox quantile regressions as

suggested by Chamberlain (1994) and Buchinsky (1995).

estimator carry over after the modification.

The remainder of this paper is structured as follows: Section 2 describes the Box–Cox quantile

regression model and the CBTS estimation approach. Section 3 describes the modified estima-

tion procedure and Section 4 presents simulation results to demonstrate the applicability of the

modified estimator.

2 Two Stage Estimation

The BCQR model is a special case of a monotonic, possibly nonlinear regression model under

quantile restrictions as introduced by Powell (1991). Let Quantθ(y|x) denote the θ-quantile of

the conditional distribution of a positive variable y given x. Using a single index assumption, we

assume that the conditional θ–quantile of y given x depends upon a linear index x′βθ through a

nonlinear function g(.), i.e.

Quantθ(y|x) = g(x′βθ, λθ) , (1)

where g(.) is strictly monotonically increasing in x′βθ and also depends upon the parameter λθ.

Furthermore, y > 0, x ∈ IRK are observed, while the parameters βθ ∈ B ⊂ IRK and λθ ∈ IR are

unknown, and θ ∈ (0, 1).

Box and Cox (1964) introduce a specific functional form for models as in Equation (1). This

Box–Cox transformation has gained popularity in applied econometrics as it contains the linear and

the log-linear case as special forms. Powell (1991) discusses using the Box–Cox transformation for

the model in (1).2 For the Box–Cox transformation, the inverse of g(x′βθ, λθ) in its first argument

is given by:

yλ = g−1(y, λ) =





(yλ − 1)/λ if λ 6= 0

log(y) if λ = 0,

2To be precise, Powell (1991) analyzes the Bickel and Doksum (1981) transformation which is a generalization

of the original transformation by Box and Cox (1964).
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assuming λ ∈ R and R = [λ, λ] to be a finite closed interval. The Box–Cox transformation is quite

attractive as it preserves the ordering of the observations due to the equivariance of quantiles with

respect to the monotonically increasing transformation yλ, i.e. Quantθ(yλ|x) = (Quantθ(y|x))λ.

Using the Box–Cox transformation as the inverse of g(x′βθ, λθ) in its first argument, Equation (1)

becomes

Quantθ(y|x) = (λθx
′βθ + 1)1/λθ . (2)

It is also important to note that a linear model results for

Quantθ(yλθ
|x) = x′βθ .

The estimation of βθ and λθ is considered by Powell (1991), Chamberlain (1994), Buchinsky

(1995), and Machado and Mata (2000). A Box–Cox quantile regression amounts to minimize the

following distance function

minβ∈B,λ∈R
1

n

n∑
i=1

ρθ(yi − (λx′iβ + 1)1/λ), (3)

where the check function is given by ρθ(t) = θ|t|1It≥0 + (1− θ)|t|1It<0 and 1I denotes the indicator

function. The resulting parameter estimates are denoted by λ̂θ and β̂θ. Powell (1991) shows that

this nonlinear estimator is consistent and asymptotically normal, see also Machado and Mata

(2000) for a concise discussion of the asymptotic distribution. In principle, the estimator could

be obtained directly using an algorithm for nonlinear quantile regressions, e.g. Koenker and Park

(1996). However, this is likely to be computationally demanding and the same numerical problem

as discussed below arises along the optimization process.

Chamberlain (1994) and Buchinsky (1995) suggest the following numerically attractive sim-

plification in form of a two step procedure (CBTS) which exploits the equivariance property of

quantiles:

1. estimate βθ(λ) conditional on λ by

β̂θ(λ) = argminβ∈B
1

n

n∑
i=1

ρθ(yλi − x′iβ) (4)

2. estimate λθ by solving

minλ∈R
1

n

n∑
i=1

ρθ(yi − (λx′iβ̂θ(λ) + 1)1/λ). (5)
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Note that the objective function in (4) cannot be used to estimate both βθ and λθ (this would

result in the degenerate estimator β̂θ = 0 and λ̂θ = −∞). Chamberlain (1994) sketches the large

sample theory of the CBTS estimator (see also Machado and Mata, 2000, Appendix B). Buchinsky

(1995) derives large sample properties of this estimator for discrete regressors when applying the

minimum distance method.

When implementing the CBTS procedure, we encountered the following numerical problem.

It is not guaranteed that for every λ and all observations, the basis of the inverse Box-Cox

transformation λx′iβ̂θ(λ) + 1 is strictly positive. However, this is necessary to conduct the second

step of the above procedure.3 Table 1 suggests that this numerical problem can easily occur in an

application. The applied researcher therefore faces the question how to proceed in such cases. It

may seem natural to omit the observations for which this condition is not satisfied and we suspect

that this was done in applications in the past. But doing so raises some problems. First, the set

of omitted observations changes when going through an iterative procedure to find the optimal

λ. Second, it is not a priori clear how such an omission of observations affects the properties of

the estimator. Third, should still the full set of observations be used in the first step? The main

purpose of this paper is to suggest a structured way on how to implement the necessary omission

of data points as a modification of CBTS and to analyze the consequences of doing so.

3 Modified Estimation

The estimation problem given in (5) can only be solved if

λx′iβ̂θ(λ) + 1 > 0 (6)

for all i = 1, . . . , n and for all λ ∈ R. As this condition depends on the first stage estimate and the

specific value of λ it can be violated for several reasons. One reason is the finite sampling variation

of β̂θ(λ). Even at the true value of λθ the condition may therefore fail. Another important reason

is that the objective function is evaluated for many values of λ during the iterative procedure to

obtain the estimator. For all λ ∈ R except the true value, step 1 results in a generally misspecified

linear quantile regression of yλ on xi. This misspecification can lead to a violation for several values

3The issue also arises for any other available computation methods in the literature such as the algorithm by

Koenker and Park (1996) for nonlinear quantile regression or the minimum–distance approach of Buchinsky (1995),

see Equation (10), page 117 of that paper. Koenker and Park (1996) provide an algorithm to solve the nonlinear

minimization problem given in (3) directly through an iterative procedure. Both studies involve the inverse Box–

Cox transformation (λx′iβ̂θ(λ) + 1)1/λ, which is likely to fail for some observations along the search process for the

parameter estimates due to the same reason as discussed for the CBTS estimator.
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of λ. Since the true model is not known in an application, a general misspecification of the model

may lead to a violation for all λ. Therefore, the condition is likely to fail for some observations in

typical applications.

Our modification of the estimator consists of using only those observations in the second step

for which the second stage of the estimation is always well defined for all λ ∈ R. The first step is

still implemented based on all observations, which allows for a more efficient estimator.

Define the set of admissible observations Nθ,n as those for which λx′iβ̂θ(λ)+1 > 0 for all λ ∈ R.

Note that Nθ,n changes with n both due to the additional observations and due to the variation

of β̂θ. A method for finding Nθ,n in applications is suggested below. Instead of solving (5), we

now solve in the second step

minλ∈R
1

n

n∑
i=1

1Ii∈Nθ,n
· ρθ(yi − g̃i[λ, β̂θ(λ)]), (7)

where 1Iω is the indicator function for the event ω and for any c ∈ IR

g̃i[λ, β̂θ(λ)] =





c if λ > 0 and if x′iβ̂θ(λ) ≤ −1/λ

c if λ < 0 and if x′iβ̂θ(λ) ≥ −1/λ

(λx′iβ̂θ(λ) + 1)1/λ otherwise.

Note it does not matter what value of c is chosen because the indicator function in Equation (7)

is always zero in these cases. This notation is introduced to guarantee that the objective function

involves a well defined sum from 1 to n. As sketched in Appendix A, the modified estimator has

similar asymptotic properties as the original CBTS estimator. Specifically, it remains consistent

and it shows an asymptotic distribution which only involves a slight modification.

How to choose Nθ,n and R in an application?

As a purely hypothetical rule, one could simply choose Nθ,n as the set of observations for

which λx′iβ̂θ(λ) + 1 > 0 is true for all λ ∈ R. However, this is not a practical rule because in an

application one cannot determine in advance whether the condition holds for all λ ∈ R. Another

difficulty is that the elements of Nθ,n also depend on the actual set R = [λ, λ], i.e. on the specific

choice of λ and λ. For these reasons, a practical alternative is needed.

Analogous to the model for means (least squares regression), exact guidance on the choice of

λ and λ cannot be provided but similarly, both limits should not be too large in absolute values.

Given that two focal parameter values of the Box-Cox model are λ = 0 (logarithmic) and λ = 1

(linear), it is advisable to include them in the interval. In our applications and simulations, we

use different such intervals (in the simulations all these intervals include the true parameter). Our
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simulations do not provide evidence that the specific choice of the interval affects the estimation

results in a noticeable way despite the fact that the crucial condition is more likely to be violated

if |λ| tends to be large. A large interval, however, increases the computation time significantly

and should therefore be avoided. Based on our experience, we suggest the interval [−1.5, 2] as a

practical first rule of thumb for applications.

The choice of Nθ,n is more difficult and we cannot present a rule that detects all relevant

observations in any case. In the following we suggest a rule that is, however, strictly valid in the

bivariate regression case K = 2 involving an intercept. In this case, it turns out that it is only

necessary to check for the smallest and the largest values λ and λ in R, respectively, whether

g̃i[λ, β̂θ(λ)] is well defined (see Proposition 1 and its proof in Appendix B). For the case K > 2,

Appendix B provides arguments supporting that the rule generally works well for all practical

purposes. This is also confirmed by our simulations in Section 4. More precisely, we suggest the

following simple heuristic rule for the choice of Nθ,n:

(HR) Our heuristic selection rule defines Nθ,n as the set of observations for which

the condition λx′iβ̂θ(λ) + 1 > 0 holds for both λ = λ and λ = λ (with λ ≤ 0 ≤ λ).

Unfortunately, (HR) does not necessarily detect all inadmissible observations in models with

K ≥ 3. Appendix B formalizes why (HR) does not detect all possibly inadmissible observations

and it provides an example. Moreover, it argues why (HR) is able to detect most of the inadmissible

observations in typical data situations. This also confirmed by the empirical example of the

introduction where we observe that only very few inadmissible observations are not detected by

HR, see Table 2. Moreover, our simulations in Section 4 show only a very small number of cases

for which applying (HR) fails during the search for estimating λθ.

Table 2: Mean share of not detected inadmissible observations in samples of unemployment du-

ration data for the 0.1, 0.5 and 0.8-quantile. Standard deviations are in parentheses.

θ = 0.1 θ = 0.5 θ = 0.8

Modified estimator using (HR) 0.007% (0.000) 0.000% (0.000) 0.000% (0.000)

In case our rule (HR) is violated, the researcher needs more guidance how to proceed with the

remaining inadmissible observations. We suggest as a practical modification to set

λx′iβ̂θ(λ) + 1 = ε (8)
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for some small ε > 0 in order to make the objective function well defined.4 Based on our experience,

a violation of (HR) is a rare event for K > 3. For this reason, the modification is unlikely to affect

the final estimates. This becomes apparent in the next section.

4 Simulations

This section assesses the finite sample performance of the modified estimator (7) through Monte

Carlo simulations. For this purpose we use the following model:

yλ = β0 + β1x1 + β2x2 + σ(x′β)ε,

where x1 is uniformly distributed between −10 and 10, x2 ∈ {0, 1} with Prob(x2 = 0) =Prob(x2 =

1) = 0.5 and β = (10, 1, 2)′. The error term ε follows a truncated standard normal distribution

with bounds5 [−1, 1] and it is independent of x. We use both a homoscedastic and a heteroscedastic

design.

For the homoskedastic design, the scale function σ(x′β) is set to 1, and for the heteroskedastic

design the scale function is set to exp(x′β/10)/4. Note that both for the homoskedastic and the

heteroskedastic design the residuals have very similar sample variances. The true value of λ is

set to 1 and we choose R = [−0.5, 2.5]. We draw 1000 independent random samples from this

model. Estimates for β are obtained using the algorithm implemented in TSP Version 4.5. We

apply a grid search in λ on the interval [−0.5, 2.5] with step size 0.005 because the objective

function may be locally non-convex.6 Table 3 presents the results for four experiments based on

1000 replications with sample sizes n = 100 and n = 1000.7

4This modification is based on a suggestion by Blaise Melly. Note that the additional modification (8) for

admissible observations differs from the modified objective function given in (7) involving setting an arbitrary c for

the non–admissible observations, which are irrelevant for the optimization.
5Note that yλ > −λ−1 if λ > 0 and yλ < −λ−1 if λ < 0 are required for the inverse of the Box-Cox transformation

to be well defined for the true λ. Thus, we use a truncated error term distribution. For further details see Poirier

(1978).
6We also replicate the simulation study by using the Koenker and Park (1996) algorithm for MATLAB provided

by Hunter (2002). The second stage is solved by using the fminsearch function of MATLAB which uses the Nelder-

Mead simplex method for non-differentiable objective functions. We use a randomly chosen initial start point. The

computation is much faster than for the grid search and the results only marginally changed. These results are

available upon request.
7We also considered simulation designs with more than three regressors and different marginal distributions of

the covariates. The performance of the modified estimator is very similar in these designs and results are therefore

not presented.
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Table 3 shows that the proposed modified estimator performs well even in designs where the

numerical problem of the original CBTS estimator is by no means negligible. On average, between

16 and 17 percent of all observations are excluded by our modified estimation approach for these

simple data generating processes. The results confirm that our modified estimator works well as

the averages of the estimates are close to the true parameter values. The estimator appears to be

unbiased even in small samples.

Figures 1 and 2 depict the empirical distributions of the share of observations not falling in

N0.5,n and of the estimates of λ. It turns out that in some samples more than 20 percent of

the observations are affected by the numerical problem addressed here when the sample size is

100. As to be expected, the share of critical observations is much more concentrated around 17

percent when the sample size is 1000. The distribution of λ̂ is nicely concentrated around the true

parameter λ = 1 and the variance decreases with the sample size.

To analyze how the performance of the modified estimator changes with different values of λ

and with various search intervals, we consider two additional simulation designs. The distributions

of x and ε are the same in these two scenarios, but the parameters are different. We restrict the

model to the homoskedastic case. x1 is standard normally distributed, and truncated in [−2, 2].

x2 follows an exponential distribution with mean µ = 1 and variance σ2 = 1. The error term ε

is uniformly distributed between −0.5 and 0.5. The parameters are chosen such that the sample

variance of yλ is similar. Table 4 describes the details of the simulation designs.

The simulation results are presented in Tables 5 and 6. Again, the modified estimator performs

well in all cases. This is remarkable, because in the case of a wider R, there are on average up to

17% inadmissible observations, if we apply the original CBTS estimator. This demonstrates that

the modified estimator shows satisfactory statistical properties and also that the choice R has

only an effect on the variance but not on the average of the estimated coefficients. The smaller

standard deviations in the case of a smaller interval R are likely to be due to the smaller support

of λ̂ or due to the fact that less observations have been excluded.

We observed only a few violations of our heuristic rule (HR). Table 7 shows the relative

frequency that the violation occurs for any observation at each grid point (denoted by ’Total’) of

λ considered or at one of the grid points in each estimation (denoted by ’Observations’) presented

above, respectively. Table 7 also reports the frequencies for the simulated sample from the real

data in Lüdemann et al. (2006) as described in the introduction. For all simulated data sets,

the number of observed violations is extremely small. In such cases we apply the additional

modification suggested at the end of Section 3. Apparently, they do not distort the pattern of the

simulation results.
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Appendix

Appendix A: Asymptotic Properties of the modified estimator

We sketch the asymptotic properties of our modified estimator based on the following four steps,

following the analysis of the asymptotic distribution of Box–Cox quantile regression in Chamber-

lain (1994, Appendix A.2) and building on the analysis in Powell (1991) and Machado and Mata

(2000). For a given θ-quantile, λ0 and β0,θ are the true parameter values.

1. For a possibly misspecified linear quantile regression define the best linear quantile predictor8

in the population (Angrist, Chernozhukov, and Fernández–Val, 2006, Section 2.1) under

asymmetric loss by

βθ(λ) = argminβ Eρθ(yλ − x′β) .

For a given λ and under standard regularity conditions, the linear quantile regression esti-

mator β̂θ(λ) is
√

n–consistent and it converges to the coefficients of the best linear quantile

predictor. Under standard regularity conditions as in Powell (1991) or Chamberlain (1994),

in particular y is continuously distributed conditional on x guaranteeing differentiability of

the population objective function, and analogous to the least squares case, it can be shown

then that βθ(λ) satisfies the following first order condition
∫

x

{∫

y

x(1I(yλ<x′β) − θ)f(y|x)dy

}
f(x)dx = Ex(1I(yλ<x′β) − θ) = 0

as a population moment condition. It is clear that for the true λ0, we obtain βθ(λ0) =

β0,θ. Even though, the linear quantile predictor as an approximation does not satisfy

Quantθ(yλ|x) = x′βθ(λ) for general λ (Angrist et al., 2006) the population moment condition

suffices for β̂θ(λ) to be a
√

n–consistent estimator of βθ(λ), as suggested by Chamberlain

(1994) and shown explicitly in Fitzenberger (1998).

2. The dummy variable indicating the admissible observations for the modified estimator is

given by

1Ii∈Nθ,n
= 1I

({λx′iβ̂θ(λ)+1>0} and {λx′iβ̂θ(λ)+1>0})

which is based on the estimated linear quantile predictors for both λ and λ. For the popu-

lation quantile predictors, define

Ii = 1I
({λx′iβθ(λ)+1>0} and {λx′iβθ(λ)+1>0}) .

8This definition is analogous to the linear projection for least squares, see Wooldridge (2002), Chapters 2 and

3.
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Note that there is no a priori reason why the misspecified model should not involve inad-

missible observations for the population coefficients βθ(λ), βθ(λ) unless of course one of the

two values λ, λ corresponds to the true population value of λ. Therefore, Ii may be zero for

some observations.
√

n–consistency of β̂θ(λ) implies that E(1Ii∈Nθ,n
− Ii) = Op(n

−1/2) and V ar(1Ii∈Nθ,n
− Ii) =

Op(n
−1) for uniformly bounded moments (higher than second) of xi.

9

3. For the asymptotic analysis, we can replace 1Ii∈Nθ,n
by Ii in the objective function for the

second step of the modified estimator in Equation (7) because the difference

1

n

n∑
i=1

Ii · ρθ(yi − g̃i[λ, β̂θ(λ)])− 1

n

n∑
i=1

1Ii∈Nθ,n
· ρθ(yi − g̃i[λ, β̂θ(λ)]). (9)

uniformly converges to zero in probability. Note that 1Ii∈Nθ,n
and Ii do not depend upon λ

(and therefore β̂θ(λ)), because λ and λ are fixed a priori. Thus, the asymptotic properties

of the modified estimator can simply be derived as resulting from minimizing the first term

in Equation (9), i.e. the estimation error in 1Ii∈Nθ,n
does not matter asymptotically.

4. Since conditional on xi, Ii is not random, the asymptotic analysis in Powell (1991) and Cham-

berlain (1994) applies analogously to the modified estimator provided that E(1/n)
∑

i Iixix
′
i

is uniformly positive definite in order to guarantee identification. For finite λ and λ this con-

dition is satisfied for non-degenerate distributions of xi. Under this assumption and standard

regularity conditions as in Powell (1991), consistency and
√

n asymptotic normality of the

modified estimator follows immediately based on the analysis in Powell (1991) and Cham-

berlain (1994). Denoting η′ = (β′, λ) and following Chamberlain’s (1994, p. 204) notation

(see also the appendix in Machado and Mata, 2000) as closely as possible, the asymptotic

covariance matrix of the joint modified estimator η̂ = (β̂θ(λ̂θ)
′, λ̂θ) is given by

[
A0

∂m(η0)

∂η′

]−1

A0 θ(1− θ) E

(
xix

′
i Ii

∂g̃i

∂η
x′i

xiIi
∂g̃i

∂η′ Ii
∂g̃i

∂η′
∂g̃i

∂η

)
A0

′
[
A0

∂m(η0)

∂η′

]−1′
,

where A0 =

(
EK 0 0

0 ∂βθ(λ0)
∂λ

1

)
, EK is the K ×K identity matrix,

and m(η) = E

(
[1I(yλ,i<xiβ) − θ] · xi

Ii · [1I(yλ,i<xiβ) − θ] · ∂g̃i

∂η

)
.

9Alternatively, in cases, when our heuristic rule does not work, one can define

1Ii∈Nθ,n
= 1I(λx′iβ̂θ(λ)+1>0) and Ii = 1I(λx′iβθ(λ)+1>0) for all λ ∈ [λ, λ].

However, strictly speaking, the implied alternative rule is infeasible in practical applications.
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The asymptotic results derived here differ from Chamberlain (1994) only by the fact that the

dummy Ii enters the asymptotic first order condition for the second step of the estimator

when optimizing over λ. Since Ii is nondecreasing for all observations – except in very

rare exceptions – when a smaller set R is used (i.e. when λ decreases or λ increases) still

containing λ0, the asymptotic variance decreases (in the usual matrix sense), i.e. the modified

estimator becomes asymptotically more efficient.

Allowing for misspecification of the Box–Cox quantile regression analogous to Angrist, Cher-

nozhukov, and Fernández–Val (2006), the asymptotic covariance matrix of the joint modified

estimator is given by

[
A0

∂m(η0)

∂η′

]−1

A0 E

[
(1I(yλ,i<xiβ) − θ)2

(
xix

′
i Ii

∂g̃i

∂η
x′i

xiIi
∂g̃i

∂η′ Ii
∂g̃i

∂η′
∂g̃i

∂η

)]
A0

′
[
A0

∂m(η0)

∂η′

]−1′
.

Appendix B: Theoretical Motivation for the HR

We first present and prove a result for the bivariate regression model. We then discuss why it may

not hold for a model with more regressors and we present a counter example. Finally we provide

some reasoning why these violations are rare.

Proposition 1: For the bivariate regression model K = 2 (one regressor plus an intercept) and

some λ ≤ 0 and λ ≥ 0, consider the set of observations Nθ,n for which λx′iβ̂θ(λ) + 1 > 0 and

λx′iβ̂θ(λ) + 1 > 0. Assume that the rank of the design matrix in the sample Nθ,n is equal to K.

For i ∈ Nθ,n, it follows that λx′iβ̂θ(λ) + 1 > 0 for all λ ∈ [λ, λ]. In case of non–uniqueness of the

coefficients, the conditions are supposed to hold for all possibly non–unique β̂θ(λ).

Proof of Proposition 1: Without loss of generality, assume that λ > 0. In the following, we

will show that λx′iβ̂θ(λ) + 1 > 0 implies λx′iβ̂θ(λ) + 1 > 0 for all λ ∈ [0, λ]. Therefore, assume

λ ≥ 0 in the following. The proof proceeds in a number of steps (steps 1 to 8 below).

The flow of argument in the proof is as follows: Step 1 characterizes the quantile regression

estimates as a function of λ. The set of interpolated data points in basic solutions only change

at a finite number of values for λ. In case of nonuniqueness, all estimates are convex linear

combinations of such estimates. Step 2 states that there are no inadmissible observations both

for λ = 0 and for small positive λ. Steps 3 to 7 show that ∂x′iβ̂θ(λ)/∂λ < 1/λ2 ≡ ∂(−1/λ)/∂λ for

x′iβ̂θ(λ) being close to −1/λ, which suffices to show the result of Proposition 1 between critical

values of λ where the set of interpolated data points changes. This is because the distance between

the fitted values and the critical limit −1/λ where an observation becomes inadmissible increases

when λ falls. Step 8 concludes the proof by showing that the absolute distance between the fitted

11



values and the critical limit −1/λ does not strictly decrease when λ reaches a critical value where

the set of interpolated data points changes. Step 9 discusses the typical case of nonuniqueness in

a bit more detail.

Details of the proof:

For the proof, define Nθ,n the set of observations for which λx′iβ̂θ(λ) + 1 > 0 and assume that the

rank of the design matrix in the sample Nθ,n is equal to K.

1. This point establishes the following characterization of the quantile regression estimates as

a function of λ: In a given subsample Nθ,n, there exist a finite sequence of λj, j = 0, 1, ..., J

with λ0 = 0 < λ1 < ... < λJ = λ with the quantile regression coefficients β̂θ(λ) and the set of

K linearly independent (regarding the matrix formed by the regressor vectors) interpolated

data points being the same for all λ ∈ [λj−1, λj]. In case of nonuniqueness of the quantile

regression coefficients, all solutions of the minimization problem are convex combinations

of coefficient vectors satisfying this interpolation property. Therefore, it suffices to analyze

these coefficient estimates. At λ = λj (j=1,...,J-1), the quantile regression coefficients β̂θ(λ)

the coefficient vector associated with the estimated line through the set of interpolated data

points in (λj−1, λj) and in (λj, λj+1), respectively, is the same. Thus, the set of interpolated

data points only changes at a finite number of λj, j = 1, ..., J − 1.

This characterization is shown as follows: The interpolation property of linear quantile

regression (Koenker and Bassett, 1978, Theorem 3.1) implies that there exist K observa-

tions with x′i(h)β̂θ(λ) = yi(h),λ
10 for h = 1, ..., K. Define XH = (xi(1), xi(2), ..., xi(K)) and

YH,λ = (yi(1),λ, yi(2),λ, ..., yi(K),λ)
′ (H = (i(1), i(2), ..., i(K))). The indices i(1), ..., i(K) ∈ Nθ,n

denote K distinct individual observations with linearly independent xi(h). The interpolation

property is summarized as

(IP ) β̂θ = X−1
H YH,λ with rank[XH ] = K .

The interpolation property is implied by the fact that estimating a linear quantile regression

involves solving a standard linear program.

β̂θ is a possibly nonunique solution to the estimation problem, if the following subgradient

condition holds (see Koenker and Bassett, 1978, p. 40, and Koenker and d’Orey, 1978, p.

385)

ψ(β̂θ, λ, w) =
N∑

i=1

[1/2− 1/2sgn∗(yi,λ − x′iβ̂θ;−x′iw)− θ]x′iw ≥ 0 (10)

10With yi(h),λ = (yλ
i(h) − 1)/λ for λ 6= 0 and yi(h),λ =log(yi(h)) for λ = 0.
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for all w ∈ RK , where sgn∗(u; z) = sgn(u) if u 6= 0 and sgn∗(u; z) = sgn(z) if u = 0. β̂θ

is unique when the inequality in (10) holds strictly for all w ∈ RK . Nonuniqueness occurs

when ψ(β̂θ, w) = 0 for some w. Then, there exists a basic solution in direction w with K

linearly independent (regarding the matrix formed by the regressor vectors) interpolated

data points. In fact, due to the linear programming nature of the problem, all coefficient

estimates can be written as convex combinations of such basic solutions (Koenker, 2005, p.

36). Therefore, it suffices to analyze solutions β̂θ satisfying (IP).

Note that in Equation (10), λ only affects the first argument of sgn∗(.; .). For data points,

which are not interpolated (yi,λ − x′iβ̂θ 6= 0), the sign of the residuals does not change in

response to an infinitesimally small change in λ. Thus, a change in the first argument

of sgn∗(.; .) in Equation (10) in response to a change in λ does not result in a change of

the subgradients for those observations which are not interpolated at the current β̂θ. In

contrast, for interpolated data points, which remain interpolated despite an infinitesimally

small change in λ, the gradient condition (10) remains unchanged for all w.

For the subsequent arguments, one needs to distinguish various cases, see Koenker and

D’Orey (1987, p. 385) and Koenker (2005, Section 6.3) for a similar argument when estimat-

ing the entire process of linear quantile regressions coefficients as a function of θ (’Parametric

Programming’). Analogously, with a variation of λ, the set of interpolated observations H

continues to define the ’basic’ solution for the estimator, i.e. β̂θ = X−1
H YH,λ, until the in-

equality in Equation (10) is violated for one w. Nevertheless, with constant H, β̂θ changes

with λ because ∂yi(h),λ/∂λ = −log(yi(h))y
λ
i(h)/λ

2 resulting in a change in YH,λ.

A change in the set of interpolated data points H occurs at the critical values λj (j =

1, ..., J − 1). At such a critical value, the residual yl,λ − x′lβ̂θ for some data points l ∈ L,

becomes interpolated at λ = λj, i.e. yl,λj
= x′lβ̂θ. Note that the set L may involve more than

one element. The data points l ∈ L are not interpolated for λj−1 < λ < λj. The change in

the subgradients (10) at λj is

ψ(β̂θ, λj, w)− ψ(β̂θ, λ, w) =
∑

l∈L

1/2
[
sgn(x′lw) + sgn(yi,λ − x′lβ̂θ)

]
x′lw ≥ 0 ,

which is nonnegative because sgn(x′lw)x′lw = |x′lw| ≥ 0 and |sgn(yi,λ − x′lβ̂θ)| ≤ 1. Thus, β̂θ

remains optimal but also any other combination of K linearly independent data points in

H ∪ L now defines the coefficient vector β̂θ via the interpolation property (IP).

Now, when λ increases above λj, the set of interpolating data points typically changes be-

cause not all elements in H∪L can remain interpolated at the same resulting coefficient vector
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β̂θ.
11 To show this, note that xl can be represented as a linear combination

∑K
h=1 ghxi(h)

of the regressor vectors in H. The weights gh sum up to one, i.e.
∑K

h=1 gh = 1, because

the first element of the regressor vector involves 1 which reflects the intercept. Then, we

have yl,λj
= x′lβ̂θ =

∑K
h=1 ghx

′
i(h)β̂θ =

∑K
h=1 ghyi(h),λj

. Since we assume λ > 0, this implies

y
λj

l =
∑K

h=1 ghy
λj

i(h). Define the difference D = y
λj

l −∑K
h=1 ghy

λj

i(h), then

∂D

∂λ
= log(yl)y

λ
l) −

K∑

h=1

ghlog(yi(h))y
λ
i(h) =

1

λ

[
log(yλ

l )yλ
l −

K∑

h=1

ghlog(yλ
i(h))y

λ
i(h)

]
. (11)

To complete this step, we now show that typically ∂D/∂λ 6= 0 and therefore not all elements

in H ∪ L can remain interpolated when λ increases above λj. Because the function m(z) =

zlog(z) is a strictly convex function with m′′(z) < 0, it follows that

[
log(yλ

l )yλ
l −

K∑

h=1

ghlog(yλ
i(h))y

λ
i(h)

]
< 0

unless yi(h) is the same for all h and coincides with yl. This is because yλ
l is the weighted

average of yλ
i(h) for h = 1, ..., K.

In the case, where yi(h) is the same for all h and coincides with yl, yλ
l would have been

interpolated for λ smaller than λj. This would be in contradiction to the rationale behind

the identification of the lth observation above.

Since observation l becomes interpolated at λ = λj, it follows that ∂D/∂λ < 0 in an interval

around λj and therefore the quantile regression for λ slightly above λj can not interpolate all

points in H ∪ L. The set of K interpolated data points may change at λj. In fact, the data

point l will change sides of the regression still interpolating the data points in the former

basic set H because ∂D/∂λ is strictly negative. Since the share of observations lying strictly

on one side of the fitted regression line is bounded (Koenker and Bassett, 1978, Theorem

3.4), this change of sides of observation l typically results in a new set of interpolated data

points associated with the coefficient estimates β̂θ for λ increasing above λj.

2. For λ = 0 corresponding to the logarithmic transformation, the invertibility of the Box–Cox

transformation is given and there are no inadmissible observations. There exists a sufficiently

small λ0 > 0 such that λx′iβ̂θ(λ)+1 > 0 holds for all data points i and 0 < λ ≤ λ0. Such a λ0

exists because the set of interpolated data points remains unchanged (under the provisions

11A potential apparent exception would be a case where all interpolated points take the same values of the

response variable and, therefore, of the fitted values. In this case, the slope parameter will be zero. The discussion

below shows that this case leads to a contradiction.
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of point 1) for an infinitesimal increase of λ from 0 and the change in β̂θ(λ) is therefore

continuous.

3. The condition λx′iβ̂θ(λ) + 1 > 0 is equivalent to x′iβ̂θ(λ) > −1/λ. To prove the our result,

we show in the following that ∂x′iβ̂θ(λ)/∂λ < 1/λ2 ≡ ∂(−1/λ)/∂λ for x′iβ̂θ(λ) being close to

−1/λ. This suffices because point 2 implies that λx′iβ̂θ(λ) + 1 > 0 holds for all data points

for small positive λ.

4. We omit for this step the index i. Note that

f(y, λ) ≡ ∂yλ

∂λ
=

1

λ2
+

yλ(λlog(y)− 1)

λ2

and

f(y, λ)

(
>

=

)
0 for y

(
6=
=

)
1 and f(y, λ)




<

=

>




1

λ2
for y




<

=

>


 exp

(
1

λ

)
.

Starting at some λ, for y being small, i.e. y <exp(1/λ), reducing λ will result in an increase

of yλ + 1/λ and for y being large, i.e. y >exp(1/λ), in a decline of yλ + 1/λ.

5. A reduction in λ for λ > 0 results in a stronger decline of the interpolated y(h),λ the higher its

value. In particular, for a small y(h),λ, it follows that y(h),λ +1/λ = x′(h)β̂θ(λ)+1/λ increases.

6. Suppose for some λ ≤ λ and some observation i with xi =
∑K

h=1 ghx(h) for weights gh

(note that every xi can be represented as a linear combination of K linearly independent

vectors x(h)) it is the case that x′iβ̂θ(λ) = −1/λ. Due to the presence of an intercept,

it is clear that
∑K

h=1 gh = 1 (see step 1). By the interpolation property, it follows that∑K
h=1 ghy(h),λ = −1/λ, because x′(h)β̂θ(λ) = y(h),λ. The latter statement is equivalent to

∆ ≡ ∑K
h=1 ghy(h),λ +1/λ =

∑K
h=1 ghy

λ
(h) = 0, where the left–hand–side denotes the difference

between the fitted value for observation i and the critical value −1/λ. We now show that

∂∆/∂λ < 0.

7. This step requires K = 2: Assume without loss of generality y1 6= y2 (for the case y1 = y2

there are no critical data point with fitted values not lying strictly above −1/λ thus requiring

no further consideration). For the critical data point i in the previous step, it follows that

g1 = yλ
(2)/(y

λ
(2) − yλ

(1)) and g2 = 1− g1 = yλ
(1)/(y

λ
(1) − yλ

(2)). Then, after some straightforward

manipulations, we obtain

∂∆

∂λ
=

2∑

h=1

ghlog(y(h))y
λ
(h) =

yλ
(2)y

λ
(1)[log(y(1))− log(y(2))]

λ(yλ
(2) − yλ

(1))
< 0 .
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The inequality holds because [log(y(1))−log(y(2))] and [λ(yλ
(2) − yλ

(1))] have opposite signs.

This is due to both log(y) and yλ being increasing functions of y.

8. After more than an infinitesimally small change of λ, it may occur that the set of interpolated

observations changes. For the specific λ = λj, where this occurs, the linear quantile regres-

sion through the data points, which are interpolated so far, will typically interpolate other

data points indexed by l ∈ {1, ..., n} with x′lβ̂θ(λ) = yl,λ in addition to i(h), h = 1, ..., K. If

λ changes infinitesimally further, then the data points l will typically replace some of the

interpolated i(h) in the set of interpolated data points with linearly independent regressor

vectors (see step 1).

The fact, that at the critical λj the estimated quantile regression interpolates both the data

points l and the data points i(h), h = 1, ..., K, is due to the continuous nature of the opti-

mization problem and the local monotonicity of the Box–Cox–transformation (see step 1).

Thus, at the critical λj, data points can not just discontinuously switch sides of the esti-

mated quantile regressions.

For the new set of interpolated data points, the regressor vectors will again be linearly in-

dependent. Since the quantile regression interpolates all y(h),λ as well as yl,λ and all except

one of the i(h) data points remain interpolated when λ moves beyond the critical value,

the same argument applies as in the previous step. Thus, also for such critical values of λ,

where the set of interpolated data points changes, it is clear that both the derivative to the

left (∂∆/∂λ)dλ<0 and the derivative to the right (∂∆/∂λ)dλ>0 are non–positive for critical

observations where the quantile regression interpolates −1/λ.

9. The case of non–uniqueness of the coefficient estimates β̂θ(λ) results from a rare feature of the

design matrix in the case of purely discrete regressors, see Koenker (2005, p. 36). In such a

case, non–uniqueness applies to all λ and the all non–unique β̂θ(λ) are convex combinations

of a fixed number of coefficient estimates with K linearly independent interpolated data

points (see Koenker and D’Orey, 1987). The latter change with λ as analyzed above.

The proof proceeds in an analogous way for λ < 0 showing that if λx′iβ̂θ(λ) + 1 > 0 holds for

λ = λ, then it holds for all λ ∈ [λ, 0].

¤

Counter example for the result in Proposition 1 for K = 3

Consider the following data set with n = 10 observations and 2 regressors x1i and x2i:
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i xi,1 xi,2 yi

1 -2 -2 0.3

2 1 3 0.2

3 1 3 0.2

4 1 3 0.2

5 2 -3 2.0

6 2 -3 2.0

7 2 -3 2.0

8 3 -1 1.9600354921

9 3 -1 1.9600354921

10 3 -1 1.9600354921

Note that three times three observations are the same respectively and that for λ = 2 the Box–

Cox quantile regression at the median (θ = 0.5) interpolates observations 2(=3,4), 5(=6,7), and

8(=9,10). Observation 1 is a critical observation for our purpose with x′1β̂θ(λ) = −1/λ = −0.5 for

λ = 2. For λ = 1.99, the fitted value is x′1β̂θ(λ) = −0.50310 < −0.50251 = −1/λ and for λ = 2.01,

the fitted value is x′1β̂θ(λ) = −0.49691 > −0.49751 = −1/λ. For λ = 2, one obtains (g1, g2, g3) =

(1.125, 2.75,−2.875) as weights for observation 1 with g1, g2, g3 referring to observations 2, 5, and

8, respectively. Furthermore, ∂∆/∂λ =
∑K

h=1 ghlog(y(h))y
λ
(h) = 0.11932 > 0 for λ = 2. The critical

condition (12) is violated in this case, because of the large positive weight g2 for the observation

with the highest value of the dependent variable y5 = 2.0 resulting in a strong “leverage effect”

on the critical observation 1.

Discussion of the HR

Proposition 1 can be explained as follows: Assume that for some λ > 0 and some critical obser-

vation j the linear quantile regression in step 1 of the estimation procedure yields x′jβ̂θ(λ) = −1/λ.

The fitted value x′jβ̂θ(λ) is a weighted average of yi(h),λ for the two interpolated, linearly indepen-

dent observations (i(h), h = 1, 2), which are fitted perfectly by the estimated regression line, see

Theorem 3.1 in Koenker and Bassett (1978).12 The regressor vector for the critical observation

j can be expressed as xj = g1x(1) + (1 − g1)x(2) with weight g1 and x(h) = xi(h). Typically, an

infinitesimally small change in λ does not change the set the interpolated observations, but it

12The interpolation property is due to the fact that estimating a linear quantile regression involves solving a

linear program.
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affects differentially the interpolated values yi(h),λ.
13 We show in the proof that a reduction in λ

results in an increase of the distance ∆ ≡ x′jβ̂θ(λ) + 1/λ, a result which is formally expressed in

Equation (12) below. Thus, if an observation j is admissible for some λ > 0 it is also admissible

for all λ̃ ∈ [0, λ]. This intuition is rigorously formalized in the proof.

Note that Proposition 1 does not hold for censored Box-Cox quantile regressions because the

result hinges critically on the interpolation of actual data points for linear quantile regressions.

This is not necessarily the case for censored quantile regressions, see Fitzenberger (1997). Limited

simulation evidence (simulation results are available upon request) suggests that our selection rule

works for censored Box-Cox quantile regressions only up to an upper and lower bound of λ. These

bounds seem to depend on the simulation design. Further research is necessary on this issue.

Next, we argue why HR is still a good choice in models with K > 2 even when it does not

detect all inadmissible observations.

The proof of Proposition 1 considers critical observations with regressor values xj resulting in

fitted values xj
′β̂θ(λ) equal to −1/λ for some λ. The fitted values are weighted averages of the

fitted values of the K interpolated observations with xj =
∑K

h=1 ghx(h) defining the weights gh for

the interpolated observations h = 1, ..., K. To investigate the change in the set of observations

satisfying the condition as given in (6) in response to a change in λ, the following condition is

critical (see proof of Proposition 1)

∂∆

∂λ
≡

K∑

h=1

ghlog(y(h))y
λ
(h) < 0 (12)

with ∆ =
∑K

h=1 ghy
λ
(h) = 0 and

∑K
h=1 gh = 1, where ∆ corresponds to the distance between xj

′β̂θ(λ)

and −1/λ. If the condition given in (12) is satisfied for K > 2 and all λ ∈ {λ, λ}, then the result

in Proposition 1 applies in this case as well. The proof of Proposition 1 above is formulated for

the case with general K and condition (12) is only needed in step 7 of the proof.

Note that the condition in (12) holds strictly if the minimum of the dependent variable for all

observations with negative weights is not smaller than the maximum of the dependent variable for

all observations with positive weights, i.e. min{y(h), gh < 0} ≥ max{y(h), gh > 0}. This is a useful

benchmark, since −1/λ, which is the fitted value at the critical data points, is strictly below y(h),λ

for all h. For this reason, some of the weights have to be negative because, at the critical point, the

regression predicts a smaller value than at all the interpolating point. Typically the weights are

positive for the interpolating points, which are closer to the critical point in the covariates space,

and the closer interpolating points are typically associated with smaller predicted values, thus

being closer to the predicted value at the critical point. Therefore, it is typically the case that gh

13Unless yi(h),λ coincide and there would be no critical observation j.
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is positive, if y(h) is small, and gh is negative, if y(h) is large. This generally holds in practical data

designs implying the condition in (12). This typical setup does not hold in our counter example

since none of the interpolating data points is close to the critical point in the covariates space (all

interpolating points lie in different quadrants). In this situation, the observation with the largest

value of the dependent variable also has the largest positive weight resulting in a strong “leverage

effect” on the critical data point. Our extensive simulation results in the Section 4 are consistent

with our reasoning here.
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Tables and Figures

Table 3: Simulation results for 1000 Monte Carlo samples (θ = 0.5). Averages with standard

deviations in parentheses.

Homoskedastic Heteroskedastic

n = 100 n = 1000 n = 100 n = 1000

% of i not in N0.5,n 17.8% (0.023) 18.3% (0.007) 17.6% (0.023) 18.2% (0.007)

β̂0 10.068 (1.217) 9.989 (0.352) 10.069 (1.046) 9.987 (0.273)

β̂1 1.010 (0.164) 0.999 (0.047) 1.009 (0.131) 0.999 (0.033)

β̂2 2.017 (0.367) 2.001 (0.105) 2.012 (0.269) 1.999 (0.065)

λ̂ 0.999. (0.067) 0.999 (0.019) 1.001 (0.059) 0.999 (0.015)

Table 4: Simulation designs

β0 β1 β2 λ R 1 R 2 grid

Design A 3 −1.5 1.5 0.5 [−0.5, 2] [0, 1.5] 0.005

Design B −3 1.5 −1.5 −0.5 [−1.5, 1.5] [−1, 0.5] 0.005
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Table 5: Design A: Finite sample evidence from 1000 Monte Carlo samples. Averages with

standard deviations in parentheses.

A R = [−0.5, 2] R = [0, 1.5]

n = 100 n = 1000 n = 100 n = 1000

% of i not in N0.5,n 14.1% (0.027) 14.5% (0.008) 8.0% (0.023) 8.3% (0.007)

β̂0 3.008 (0.262) 3.000 (0.082) 3.001 (0.225) 3.000 (0.067)

β̂1 −1.527 (0.324) −1.498 (0.096) −1.516 (0.278) −1.500 (0.076)

β̂2 1.536 (0.372) 1.497 (0.111) 1.523 (0.319) 1.500 (0.090)

λ̂ 0.499 (0.086) 0.499 (0.027) 0.498 (0.075) 0.500 (0.022)

Table 6: Design B: Finite sample evidence for 1000 Monte Carlo samples. Averages with standard

deviations in parentheses.

B R = [−1.5, 1.5] R = [−1, 0.5]

n = 100 n = 1000 n = 100 n = 1000

% of i not in N0.5,n 16.4% (0.035) 16.7% (0.011) 1.8% (0.013) 1.9% (0.004)

β̂0 −3.080 (0.560) −3.008 (0.127) −3.009 (0.344) −3.002 (0.108)

β̂1 1.655 (0.713) 1.514 (0.150) 1.526 (0.383) 1.506 (0.125)

β̂2 −1.695 (0.835) 1.519 (0.175) −1.540 (0.447) −1.509 (0.144)

λ̂ −0.508 (0.175) −0.502 (0.043) −0.495 (0.110) −0.500 (0.036)
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Figure 1: Distribution of shares of inadmissible observations not in N0.5,n (left panel) and distribu-

tion of λ̂0.5 (right panel) for 100 (top panel) and 1000 observations (bottom panel), homoskedastic

design
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Figure 2: Distribution of shares of inadmissible observations not in N0.5,n (left panel) and distribu-

tion of λ̂0.5 (right panel) for 100 (top panel) and 1000 observations (bottom panel), heteroskedastic

design
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