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Abstract

This paper presents a novel face detection method by applying discriminating feature analysis (DFA) and support vector machine (SVM).
The novelty of our DFA–SVM method comes from the integration of DFA, face class modeling, and SVM for face detection. First, DFA
derives a discriminating feature vector by combining the input image, its 1-D Haar wavelet representation, and its amplitude projections.
While the Haar wavelets produce an effective representation for object detection, the amplitude projections capture the vertical symmetric
distributions and the horizontal characteristics of human face images. Second, face class modeling estimates the probability density function
of the face class and defines a distribution-based measure for face and nonface classification. The distribution-based measure thus separates
the input patterns into three classes: the face class (patterns close to the face class), the nonface class (patterns far away from the face
class), and the undecided class (patterns neither close to nor far away from the face class). Finally, SVM together with the distribution-
based measure classifies the patterns in the undecided class into either the face class or the nonface class. Experiments using images from
the MIT–CMU test sets demonstrate the feasibility of our new face detection method. In particular, when using 92 images (containing
282 faces) from the MIT–CMU test sets, our DFA–SVM method achieves 98.2% correct face detection rate with two false detections.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Face detection methods generally learns statistical mod-
els of face and nonface images, and then apply two-class
classification rules to discriminate between face and non-
face patterns [1,2]. As a face must be located and extracted
before it can be verified or identified, face detection is the
first step towards building an automated face verification or
identification system. Face verification mainly concerns au-
thenticating a claimed identity posed by a person, while face
identification focuses on recognizing the identity of a person
from a database of known individuals [3,4]. An automated
vision system that performs the functions of face detection,
verification, and identification has great potential in a wide
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spectrum of applications, such as airport security and ac-
cess control, building (embassy) surveillance and monitor-
ing, human–computer intelligent interaction and perceptual
interfaces, smart environments for home, office, and cars
[2,1,5–7].

This paper presents a novel face detection method by
applying discriminating feature analysis (DFA) and Support
Vector Machine (SVM). The novelty of our DFA–SVM
method comes from the integration of DFA, face class
modeling, and SVM for face detection. Our DFA–SVM
method works as follows: First, DFA derives a discriminat-
ing feature vector by combining the input image, its 1-D
Haar wavelet representation, and its amplitude projections.
While the Haar wavelets produce an effective representation
for object detection, the amplitude projections capture the
vertical symmetric distributions and the horizontal charac-
teristics of human face images. Second, face class modeling
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statistically estimates the probability density function (PDF)
of the face class and defines a distribution-based measure for
face and nonface classification. The face class is modeled as
a multivariate normal distribution [8], and the distribution-
based measure then separates the input patterns into three
classes: the face class (patterns close to the face class), the
nonface class (patterns far away from the face class), and
the undecided class (patterns neither close to nor far away
from the face class). Note that the distribution-based mea-
sure also derives nonface patterns for SVM training. Finally,
the SVM together with the distribution-based measure clas-
sifies the patterns in the undecided class into either the face
class or the nonface class. Experiments using images from
the MIT–CMU test sets show the feasibility of our new face
detection method. The DFA–SVM method is trained using
600 FERET facial images [9] and 3813 nonface images that
lie close to the face class. When tested using 92 images
(containing 282 faces) from the MIT–CMU test sets [10],
our DFA–SVM method achieves 98.2% correct face detec-
tion rate with two false detections, a performance compa-
rable to the state-of-the-art face detection methods, such as
Schneiderman–Kanade’s method [11].

2. Background

Earlier efforts of face detection research have been
focused on correlation or template matching, matched
filtering, subspace methods, deformable templates, etc.
[12,13]. For comprehensive surveys of these early meth-
ods, see Refs. [14,6,7]. Recent face detection approaches,
however, emphasize on statistical modeling and machine
learning techniques [15,16]. Some representative methods
are the probabilistic visual learning method [8], the example-
based learning method [17], the neural network-based
learning method [10,18], the probabilistic modeling method
[11,19], the mixture of linear subspaces method [20], the
machine learning approach using a boosted cascade of sim-
ple features [21], statistical learning theory and SVM-based
methods [22–24], the Markov random field-based methods
[25,26], the color-based face detection method [27], and the
Bayesian discriminating feature (BDF) method [28].

Moghaddam and Pentland [8] applied unsupervised learn-
ing to estimate the density in a high-dimensional eigenspace
and derived a maximum likelihood method for single face
detection. Rather than using principal component analysis
(PCA) for dimensionality reduction, they implemented the
eigenspace decomposition as an integral part of estimat-
ing the conditional PDF in the original high-dimensional
image space. Face detection is then carried out by com-
puting multiscale saliency maps based on the maximum
likelihood formulation. Sung and Poggio [17] presented an
example-based learning method by means of modeling the
distributions of face and nonface patterns. To cope with
the variability of face images, they empirically chose six
Gaussian clusters to model the distributions for face and
nonface patterns, respectively. The density functions of the

distributions are then fed to a multiple layer perceptron
for face detection. Rowley et al. [10] developed a neural
network-based upright, frontal face detection system, which
applies a retinally connected neural network to examine
small windows of an image and decide whether each window
contains a face. The face detector, which was trained using a
large number of face and nonface examples, contains a set of
neural network-based filters and an arbitrator which merges
detections from individual filters and eliminates overlapping
detections. In order to detect faces at any degree of rotation
in the image plane, the system was extended to incorporate
a separate router network, which determines the orientation
of the face pattern. The pattern is then derotated back to the
upright position, which can be processed by the early devel-
oped system [18]. Schneiderman and Kanade [19] proposed
a face detector based on the estimation of the posterior prob-
ability function, which captures the joint statistics of local
appearance and position as well as the statistics of local ap-
pearance in the visual world. To detect side views of a face,
profile images were added to the training set to incorporate
such statistics [11]. Viola and Jones [21] presented a ma-
chine learning approach for face detection. The novelty of
their approach comes from the integration of a new image
representation (integral image), a learning algorithm (based
on AdaBoost), and a method for combining classifiers (cas-
cade). Hsu et al. [27] developed a face detection method in
color images by detecting skin regions first, and then gen-
erating face candidates based on some constraints, such as
the spatial arrangement. The face candidates are further ver-
ified by constructing eye, mouth, and boundary maps. Liu
[28] recently developed a BDF method for multiple frontal
face detection. The BDF method applies a DFA procedure
for image representation, statistical modeling of face and
nonface classes, and the Bayes classifier for face detection.

SVM is a particular implementation of statistical learn-
ing theory, which describes an approach known as struc-
tural risk minimization by minimizing the risk functional in
terms of both the empirical risk and the confidence inter-
val [29]. Osuna et al. [30] pioneered the research of face
detection using SVM and demonstrated its generalization
capability for face detection. Papageorgiou et al. [31] de-
veloped a wavelet-based SVM method for face and pedes-
trian detection. Romdhani et al. [32] proposed a method for
speeding up a nonlinear SVM by evaluating a subset of sup-
port vectors. Recently, Bartlett et al. [33] combined an Ad-
aBoost algorithm with an SVM for face detection in video,
and Heisele et al. [34] presented a hierarchical face detec-
tion method using cascaded SVMs for face detection in a
coarse-to-fine fashion.

3. Face detection using discriminating feature analysis
and Support Vector Machine

The system architecture of our DFA–SVM face detection
method is shown in Fig. 1. An input image is first processed
by the DFA, which defines a feature vector by combining
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Fig. 1. System architecture of the DFA–SVM face detection method.

the input image, its 1-D Haar wavelet representation, and
its amplitude projections. Based on the DFA feature vector,
the face class is then modeled using a multivariate normal
density and a distribution-based measure is defined for face
and nonface classification. The distribution-based measure
separates the patterns in the input image into three classes:
the face class (patterns close to the face class), the nonface
class (patterns far away from the face class), and the unde-
cided class (patterns neither close to nor far away from the
face class). Finally, a SVM detects faces in the undecided
class and passes patterns to the DFA–SVM decision rule,
which further classifies them into either the face class or the
nonface class.

3.1. Discriminating feature analysis

Let I (i, j) ∈ Rm×n represent an input image (e.g., train-
ing images for the face and the nonface classes, or subim-
ages of test images), and X ∈ Rmn be the vector formed
by concatenating the rows (or columns) of I (i, j). The 1-D
Haar representation of I (i, j) yields two images, Ih(i, j) ∈
R(m−1)×n and Iv(i, j) ∈ Rm×(n−1), corresponding to the
horizontal and vertical difference images, respectively.
Ih(i, j) and Iv(i, j) then form two vectors, Xh ∈ R(m−1)n

and Xv ∈ Rm(n−1), by concatenating the rows (or columns).
The amplitude projections of I (i, j) along its rows and
columns form the horizontal (row) and vertical (column)
projections, Xr ∈ Rm and Xc ∈ Rn, respectively.

The vectors X, Xh, Xv , Xr , and Xc are normalized to zero
mean and unit variance, respectively. The normalized vectors
are then concatenated to form a new feature vector Y ∈ RN ,
where N = 3mn. Finally, the feature vector Y is normalized
to zero mean and unit variance to form the discriminating
feature vector for face detection. Fig. 2(a) shows the mean
face (i.e., the average of the training face images), its 1-D
Haar wavelet representation, and its amplitude projections.
The first image is the mean face. The second and the third
images are the vertical and the horizontal difference images
of the mean face, respectively, which correspond to the 1-D
Haar wavelet representation. The last two bar graphs draw
the vertical (column) and horizontal (row) projections of the
mean face, which correspond to the amplitude projections.
Fig. 2(b) shows the mean nonface (i.e., the average of the
training nonface images), its 1-D Haar wavelet representa-
tion, and its amplitude projections. Fig. 2(c) shows the mean
support nonface (i.e., the average of the support nonface im-
ages, which are chosen from the training nonface images by
SVM, see Section 3.3), its 1-D Haar wavelet representation,
and its amplitude projections. Note that the images and pro-
jections in Fig. 2(b) and (c) resemble their counterparts in
Fig. 2(a) due to the fact that the nonface samples lie close to
the face class. Furthermore, Fig. 2(c) looks more like a face
than Fig. 2(b) does because Fig. 2(c) is the mean of sup-
port nonfaces, which lie closer to the face class than other
nonfaces do.

3.2. Face class modeling and distribution-based measure

Statistical modeling of the face class defines in essence
the PDF, of the face class. A common assumption of the
PDF is a multivariate normal distribution, which is especially
reasonable if one models only the upright frontal faces that
are properly aligned to one another [8,28]. Note that the
training face images are all upright, frontal, and properly
aligned, the density function of the face class is, therefore,
modeled as a multivariate normal distribution

p(Y) = 1

(2�)N/2|�|1/2

× exp

{
−1

2
(Y − M)t�−1(Y − M)

}
, (1)

where Y ∈ RN is the discriminating feature vector, M ∈
RN and � ∈ RN×N are the mean vector and the covariance
matrix of the face class, �f , respectively. Take the natural
logarithm on both sides, we have

ln[p(Y)] = − 1
2 {(Y − M)t�−1(Y − M)

+ N ln(2�) + ln |�|}. (2)

The covariance matrix, �, can be factorized into the fol-
lowing form using PCA [35]:

� = ���t with ��t = �t� = IN ,

� = diag{�1, �2, . . . , �N }, (3)
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Fig. 2. Discriminating feature analysis of the mean face, the mean nonface, and the mean support nonface. (a) The first image is the mean face, the second
and the third images are its 1-D Haar wavelet representation, and the last two bar graphs are its amplitude projections. (b) The mean nonface, its 1-D Haar
wavelet representation, and its amplitude projections. (c) The mean support nonface, its 1-D Haar wavelet representation, and its amplitude projections.
Note that the images and projections in (b) and (c) resemble their counterparts in (a) due to the fact that nonface samples lie close to the face class.

where � ∈ RN×N is an orthogonal eigenvector matrix, � ∈
RN×N a diagonal eigenvalue matrix with diagonal elements
(the eigenvalues) in decreasing order (�1 ��2 � · · · ��N ),
and IN ∈ RN×N is an identity matrix. An important property
of PCA is its optimal signal reconstruction in the sense of
minimum mean-square error when only a subset of principal
components is used to represent the original signal [36]. The
principal components are defined by the following vector,
Z ∈ RN :

Z = �t(Y − M). (4)

It then follows from Eqs. (2)–(4):

ln[p(Y)] = − 1
2 {Zt�−1Z + N ln(2�) + ln |�|}. (5)

Note that the elements of Z are the principal components.
Due to the optimal signal reconstruction property of PCA,
we use only the first M (M>N ) principal components to
estimate the PDF. We further adopt a model developed by
Moghaddam and Pentland [8] to estimate the remaining
N−M eigenvalues, �M+1, �M+2, . . . , �N , using the average
of those values:

� = 1

N − M

N∑
k=M+1

�k . (6)

Note that from Eq. (4), we have ‖Z‖2 = ‖Y − M‖2, where
‖ · ‖ denotes the norm operator. This observation shows that
the PCA transformation, which is an orthonormal transfor-

mation, does not change norm. Now, it follows from Eqs. (5)
and (6) that

ln[p(Y)]

= −1

2

{
M∑
i=1

z2
i

�i

+ ‖Y − M‖2 −∑M
i=1z

2
i

�

+ ln

(
M∏
i=1

�i

)
+ (N − M) ln � + N ln(2�)

}
, (7)

where zi’s are the elements of Z defined by Eq. (4).
Note that the last three terms, ln(

∏M
i=1 �i ), (N −M) ln �,

and N ln(2�), are constants for all patterns and discarded
in our experimental implementations. Eq. (7) thus defines a
distribution-based measure for face and nonface classifica-
tion using the first M principal components, the input im-
age, and the mean face. The distribution-based measure not
only classifies the input patterns into the face class (pat-
terns close to the face class), the nonface class (patterns far
away from the face class), and the undecided class (patterns
neither close to nor far away from the face class), but also
derives nonface images for SVM training (see Section 4.1).
The SVM together with the distribution-based measure will
finally classify the patterns in the undecided class into either
the face class or the nonface class.

3.3. Support Vector Machine

SVM is a particular realization of statistical learning
theory. It describes an approach known as structural risk
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minimization, which minimizes the risk functional in terms
of both the empirical risk and the confidence interval [29].
The main idea of SVM comes from (i) a nonlinear map-
ping of the input space to a high-dimensional feature space,
and (ii) designing the optimal hyperplane in terms of the
maximal margin between the patterns of the two classes in
the feature space. SVM, which displays good generaliza-
tion performance, has been applied extensively for pattern
classification, regression, and density estimation.

Let (x1, y1), (x2, y2), . . . , (xk, yk), xi ∈ RN , and yi ∈
{+1, −1} be k training samples in the input space, where yi

indicates the class membership of xi . Let � be a nonlinear
mapping between the input space and the feature space, � :
RN → F, i.e., x → �(x). The optimal hyperplane in the
feature space is defined as follow:

w0 · �(x) + b0 = 0. (8)

It can be proven [29] that the weight vector w0 is a linear
combination of the support vectors, which are the vectors xi

that satisfy yi(w0 · �(xi ) + b0) = 1:

w0 =
∑

support vectors

yi�i�(xi ), (9)

where �i’s are determined by maximizing the following
functional:

L(�) =
k∑

i=1

�i − 1

2

k∑
i,j=1

�i�j yiyj�(xi ) · �(xj ) (10)

subject to the following constraints:

k∑
i=1

�iyi = 0, �i �0, i = 1, 2, . . . , k. (11)

From Eqs. (8) and (9), we can derive the linear decision
function in the feature space

f (x) = sign

⎛
⎝ ∑

support vectors

yi�i�(xi ) · �(x) + b0

⎞
⎠ . (12)

Note that the decision function (see
Eq. (12)) is defined by the dot products in the high-
dimensional feature space, where computation might be
prohibitively expensive. SVM, however, manages to com-
pute the dot products by means of a kernel function [29]

K(xi , xj ) = �(xi ) · �(xj ). (13)

Three classes of kernel functions widely used in kernel clas-
sifiers, neural networks, and SVMs are polynomial kernels,
Gaussian kernels, and sigmoid kernels [29]:

K(xi , xj ) = (xi · xj )
d , (14)

K(xi , xj ) = exp

(
−‖xi − xj‖2

2�2

)
, (15)

K(xi , xj ) = tanh(�(xi · xj ) + ϑ), (16)

where d ∈ N, � > 0, � > 0, and ϑ < 0.

3.4. Face detection using distribution-based measure and
SVM

The first decision rule applies the distribution-based mea-
sure (Eq. (7)) to detect faces that are very close to the face
class and exclude patterns that are very far away from the
face class. This decision rule separates the patterns in the
input image into three classes: the face class (�f ), the non-
face class (�n), and the undecided class (�u):

Y ∈
{�f if ln[p(Y)]�	f ,

�u if 	n < ln[p(Y)] < 	f ,

�n otherwise,
(17)

where Y is the discriminating feature vector derived from
an input pattern, ln[p(Y)] is the distribution-based measure
defined by Eq. (7), and 	f and 	n are thresholds.

The second decision rule, the SVM decision rule, then
applies the SVM classifier to detect faces in the �u class:

Y ∈
{

�f if f (Y) > 0,

�n otherwise,
(18)

where f (Y) is the decision function of the SVM classifier
defined by Eq. (12). Our experiments, however, show that
the SVM classifier alone cannot detect all the faces in the
�u class, and some face patterns are misclassified to the �n

class.
To improve the face detection performance of our method,

we design the third decision rule, the DFA–SVM decision
rule, which further checks the patterns assigned to the �n

class from the �u class:

Y ∈
{

�f if g(Y) > 	s and ln[p(Y)] + cg(Y) > 	t ,

�n otherwise,
(19)

where c is a positive constant, 	s and 	t are thresholds, and
g(Y) is the decision value of the SVM classifier without the
sign function (see Eq. (12)):

g(Y) =
∑

support vectors

yi�i�(xi ) · �(Y) + b0. (20)

Note that the functionality of the first term, g(Y) > 	s , is
to select candidate face patterns misclassified to the �n

class by the SVM classifier (see Eq. (18)); the second term,
ln[p(Y)]+cg(Y) > 	t , then further determines the true faces
from the candidate patterns by linearly combining the de-
cision values from the distribution-based measure and the
SVM classifier.

The three decision rules detailed above actually apply a
coarse-to-fine classification strategy in the sense that they
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are cascaded in an increasing order of detection accuracy
and decreasing order of computational efficiency. Regarding
detection accuracy, the third decision rule detects faces more
accurately than the first two rules do because it combines the
classification power of the distribution-based measure and
SVM. As to computational efficiency, the first decision rule
runs faster than the second and the third one due to the fact
that the term ln[p(Y)] is evaluated by estimating the first M
principal components of the input vector Y, while the term
g(Y) is obtained directly in the original input space, RN .
Note that M is much smaller than N (see Section 3.2).

4. Experiments

This section details statistical learning, learning the
thresholds, face detection performance, and computational
complexity of the DFA–SVM method. The training data for
the DFA–SVM method comes from the FERET database
[9] Batch 15, which contains 600 frontal face images. The
testing data comes from the MIT–CMU test sets [10], which
include images from diverse sources. Experimental results

Fig. 3. Some examples of the face and the nonface training images: (a) examples of the face training images; (b) examples of the nonface training images.

show that our DFA–SVM method, which is trained on a
simple image set yet works on much more complex images,
displays robust generalization performance.

4.1. Statistical learning of the DFA–SVM method

The statistical learning of the DFA–SVM method includes
three stages: face class modeling, nonface image generation,
and SVM. First, the DFA–SVM method models the face
class, �f , as a multivariate normal distribution and defines a
distribution-based measure, ln[p(Y)], using 600 frontal face
images from the FERET database Batch 15 [9]. Note that
we also include the mirror images of the training data; hence
the total training images for face class modeling is 1200.

Second, nonface training images are derived by choosing
subimages from 14 natural scene images that do not contain
any face at all. The subimages that lie close to (in the sense
of the distribution-based measure, ln[p(Y)]) the face class
are chosen as nonface training images:

ln[p(Y)] > 	n, (21)
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experiments. (b) The threshold, 	f , is set to be the largest distribution-based measure of all these nonface images. Note that in our experiments, the
threshold 	f is increased to 	∗

f
to reduce the number of false detections.

where ln[p(Y)] is the distribution-based measure (see
Eq. (7)) and 	n is the threshold (see Eq. (17)). Note that the
number of principal components, M, defined in Eq. (7) is
fixed at 10 throughout our experiments.

Finally, we apply the 1200 face images and 3813 non-
face images to train a SVM with a polynomial kernel of
degree 2 for face detection. Note that both the face and
the nonface images are normalized to a spatial resolution
of 16 × 16. Fig. 3(a) shows some examples of the face
training images that are normalized to 16 × 16, and Fig.
3(b) shows some examples of the nonface training im-
ages derived from a natural scene image. Note that the
nonface images in Fig. 3(b) display different sizes, which
correspond to different scales of the original natural scene
image when the nonface images are derived. The spatial
resolution of all the nonface images, however, is the same,
16 × 16.

4.2. Learning the thresholds

Thresholds play important roles in our DFA–SVM face
detection method as a change of a threshold may affect the
system performance significantly. This section describes a
general procedure to fine-tune the four thresholds, 	n, 	f ,
	s , and 	t , defined in Section 3.4.

4.2.1. Thresholds 	f and 	n

The learning of thresholds starts with 	n as it directly
determines the number of nonface training images derived
from the 14 natural scene images (see Eq. (21)). Fig. 4(a)
plots the relationship between the total number of nonface
images and the threshold 	n. The horizontal axis indicates
the value of 	n, and the vertical axis is the total number of
nonface images derived from all the 14 natural scene images.
Note that in order to prevent one scene image from unduly
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Fig. 5. The learning of thresholds 	s and 	t : (a) the number of missed faces increases when either 	s or 	t increases; (b) the number of false detections
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dominating the others, we cap the number of nonface images
for each scene at 300. As a result, the maximum number of
nonface images derived from all the scene images should be
4200, which is shown in Fig. 4(a) by the flat curve segment.
Our choice of 	n is thus close to the threshold value that leads
to this flat curve segment. In particular, the chosen thresh-
old 	n generates 3813 nonface images from the 14 natural
scene images, and these generated images form the nonface
training set for the DFA–SVM face detection method.

After generating the nonface images, a reasonable choice
of the threshold, 	f , is the largest distribution-based measure
of all these nonface images (see Fig. 4(b)). However, Eq. (17)
is applied for coarse detection, whose purpose is to reliably
classify face and nonface patterns while leaving difficult
patterns in the undecided class. We therefore increase the
threshold from 	f to 	∗

f (see Fig. 4(b)) to reduce the number
of false detections.

4.2.2. Thresholds 	s and 	t

The thresholds, 	s and 	t , in Eq. (19) are used for the fine
detection, whose functionality is to classify the undecided
patterns into either the face class or the nonface class. The

values of these two thresholds are determined through a
numerical analysis procedure. Let 
s be a set of values of
	s and 
t be a set of values of 	t , we evaluated the face
detection performance of each combination of 
s ×
t using
a subset (24 images containing 54 faces) of the MIT–CMU
test sets. Note that the parameter, c, defined in Eq. (19) is
fixed at 0.05 throughout our experiments.

Figs. 5(a), (b), and (c) show the number of missed faces
versus the thresholds (	s and 	t ), the number of false detec-
tions versus the thresholds, and the number of total errors
(missed faces + false detections) versus the thresholds, re-
spectively. Fig. 5(a) shows that the number of missed face
increases when either 	s or 	t increases. Fig. 5(b) shows,
however, that the number of false detections decreases when
either 	s or 	t increases. Finally, Fig. 5(c) shows that the
smallest total error occurs at {−0.68, −0.66}. We therefore
set 	s and 	t to be −0.68 and −0.66, respectively.

4.3. Face detection performance of the DFA–SVM method

The data used to test our DFA–SVM method for
face detection comes from the MIT–CMU test sets [10].
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Fig. 6. Examples of detecting multiple faces using the DFA–SVM method.

Specifically, the test set includes 92 images containing
282 faces.1 As our method addresses detection of frontal
and real human faces, those MIT–CMU test images con-

1 The 92 images are listed as follows: aerosmith-double.gif, albert.gif,
Argentina.gif, audrey1.gif, audrey2.gif, audrybt1.gif, baseball.gif,
bksomels.gif, blues-double.gif, brian.gif, bttf301.gif, bwolen.gif,
cfb.gif,churchill-downs.gif, class57.gif, cluttered-tahoe.gif, cnn1085.gif,
cnn1160.gif, cnn1260.gif, cnn1630.gif, cnn1714.gif, cnn2020.gif,
cnn2221.gif,cnn2600.gif, cpd.gif, crimson.gif, ds9.gif, ew-courtney-
david.gif, ew-friends.gif,fleetwood-mac.gif, frisbee.gif, Germany.gif,
giant-panda.gif, gigi.gif, gpripe.gif, harvard.gif, hendrix2.gif, henry.gif,
jackson.gif, john.coltrane.gif, judybats.gif, kaari-stef.gif, kaari1.gif,
kaari2.gif,karen-and-rob.gif, knex0.gif, knex37.gif, kymberly.gif,

taining large pose-angled faces, line-drawn faces, poker
faces, masked faces, or cartoon faces are not included in
our experiments. Note that the test images used in our

(footnote 1 continued)
lacrosse.gif,larroquette.gif, madaboutyou.gif, married.gif, me.gif,mom-
baby.gif,mona-lisa.gif, music-groups-double.gif, natalie1.gif, nens.gif,
newsradio.gif, oksana1.gif, original1.gif, original2.gif, pittsburgh-park.gif,
police.gif, sarah4.gif, sarah_live_2.gif, seinfeld.gif, shumeet.gif, soccer.gif,
speed.gif, tahoe-and-rich.gif, tammy.gif, tommyrw.gif, tori-crucify.gif, tori-
entweekly.gif, tori-live3.gif, torrance.gif, tp-reza-girosi.gif, tp.gif, tree-
roots.gif, trek-trio.gif, trekcolr.gif, tress-photo-2.gif, tress-photo.gif, u2-
cover.gif, uprooted-tree.gif, voyager2.gif, wall.gif, window.gif, wxm.gif,
yellow-pages.gif, ysato.gif.
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Fig. 7. Examples of detecting rotated faces using the DFA–SVM method.

experiments are from diverse sources, while the training im-
ages are from only one database, i.e., the frontal face im-
ages of the FERET Batch 15 [9]. The test data is thus able
to test the generalization performance of our DFA–SVM
method.

The basic search procedure of the DFA–SVM method is
sliding a 16 × 16 window across all possible locations and
scales in a test image. Specifically, the window is shifted

pixel-by-pixel and the incremental scale is a factor of 1.125.
Note that detecting faces using a scale of k × k actually
involves two operations: first resize the image by a ratio
of 16/k, and then slide a 16 × 16 window in the resized
image. Fig. 6 (a) shows the detection results of searching
from the scale of 12 × 12 to 120 × 120. Note that even
though the sizes of faces appeared in Fig. 6(a) are smaller
than 20 × 20, the DFA–SVM method searches at a wide
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Fig. 8. Examples of detecting faces that are either very large or very small using the DFA–SVM method.

spectrum of scales without leading to any false detection.
Similarly, Figs. 6(b)–(e) display examples of multiple face
detection in different scales. Note that Figs. 6(b), (c), and (e)
show face detection performance of the DFA–SMV method
in low contrast images, and Figs. 6(b), (d), and (e) show the

detections of slightly rotated faces. All the faces in Fig. 6
are successfully detected by the DFA–SMV method.

Fig. 7 shows some examples of detecting multiple frontal
faces across different rotation angles. All the faces in Fig. 7
are correctly detected, but there is one false detection in
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Fig. 9. Examples of detecting faces in low quality images using the DFA–SVM method.

Fig. 7(a). The false detection occurs because the configu-
ration of that pattern resembles a human face. Note that
because our DFA–SVM face detection method is trained
using only upright frontal faces, the rotated faces are de-
tected by rotating test images to predefined degrees, such
as ±5◦, ±10◦, ±15◦, ±20◦, and ±25◦. For example, in
Fig. 7(a), the DFA–SVM face detection method searches
from the scale of 21 × 21 to 210 × 210 with 15◦ and −25◦
rotation angles.

Fig. 8 shows examples of detecting faces that are either
very large or very small. Fig. 7(a), for example, displays the
detection of the largest face in the test set (360 × 360) and
Fig. 8(b) shows the detection of the smallest face in the test
set (13×13). Faces in Figs. 8(c)–(f) are detected at the scales
of 16×16, 16×16, 290×290, and 210×210, respectively.

Fig. 9 shows examples of detecting faces in low qual-
ity images. Again, all the faces are correctly detected by
the DFA–SVM method. In particular, Fig. 9(a) displays



272 P. Shih, C. Liu / Pattern Recognition 39 (2006) 260–276

Fig. 10. Examples of detecting faces with illumination and slightly pose-angled variations using the DFA–SVM method.

detection of faces with dark glasses; Figs. 9(b)–(e) show
detections of faces with blurred facial features.

Fig. 10 shows examples of detecting faces with il-
lumination and slightly pose-angled variations. Specif-
ically, Figs. 10(a), (b), and (e) show images contain-
ing slightly pose-angled faces, and our DFA–SVM
method successfully detects all the faces in these im-
ages. However, the DFA–SVM method cannot detect
large pose-angled faces, such as the one shown in
Fig. 10(d). The reason of such a missed detection is

that our DFA–SVM method is only trained by the up-
right frontal face images, i.e., 600 FERET frontal face
images, which do not include any pose-angled face.
Fig. 10(c) shows an image with uneven lighting, and the
face in this image displays one side brighter than the
other side. Still, the face is successfully detected by the
DFA–SVM method.

Among the state-of-the-art face detection methods,
Schneiderman–Kanade’s method [11] is publicly avail-
able: http://vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi. We

http://vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi
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therefore compare our DFA–SVM face detection method
with Schneiderman–Kanade’s method [11]. This method
has two thresholds, the frontal detection threshold and
the profile detection threshold, which control the num-
ber of faces detected and the number of false detections.
Table 1 shows the comparative face detection performance
of Schneiderman–Kanade’s method and our DFA–SVM
method. Note that the two numbers in the parentheses
correspond to the frontal detection threshold and the pro-
file detection threshold, respectively. Experimental results
show that Schneiderman–Kanade’s method achieves 96.1%
face detection accuracy with 41 false detections when the
thresholds are set to be 1.0. Note that the number of false
detections of Schneiderman–Kanade’s method counted here
only refers to the frontal face false detections, and it does
not include the false detections caused by profile face de-
tection. The face detection rate of Schneiderman–Kanade’s
method decreases when the thresholds get larger. Our
DFA–SVM method, achieving 98.2% face detection accu-
racy, thus compares favorably against the state-of-the-art
face detection methods, such as Schneiderman–Kanade’s
method [11].

4.4. Computational efficiency

We apply two criteria to improve the computational effi-
ciency of the DFA–SVM method: the single response crite-
rion and the early exclusion criterion. The single response
criterion avoids multiple responses to a singe face, while
the early exclusion criterion applies heuristic procedures to
exclude subimages that cannot be face.

The single response criterion states that a face should be
marked by a single square boundary. Let the DFA–SVM
method scan the test images by moving a 16 × 16 win-
dow from top to bottom, and then from left to right. For
the sake of simplicity, we use the upper left pixel to rep-
resent a 16 × 16 subimage in the following discussion.
Fig. 11(a) shows the idea of the single response criterion.
Suppose a face is detected at p, the DFA–SVM method
searches its 7×7 neighborhood to find a face that lies closest
to the face class. Note that due to the predefined searching
order, half of these neighbors have already been visited, and
the unsearched neighbors are the pixels inside the area A.
Among the 24 neighbors in the area A, suppose q represents
a face that lies closest to the face class, then the 542 pix-
els inside the area B should not be searched again because
any detection inside this area will overlap with the face de-
tected at q. As a result, the single response criterion improves
the computational efficiency by eliminating the large search
area, B.

The single response criterion also benefits face detection
in multiple scales. Fig. 11(b) shows the idea of the single
response criterion applied to multiple scale face detection.
Suppose a face is detected at the scale of a × a, when the
DFA–SVM method tries to detect faces at another scale,
say b × b, the area R should not be searched because any

Table 1
Comparative face detection performance of Schneiderman–Kanade’s
method and our DFA–SVM face detection method using 92 images con-
taining 282 faces from the MIT–CMU test sets

Method Faces False Detection
detected detections rate (%)

Schneiderman–Kanade’s 271 41 96.1
method (1.0, 1.0)
Schneiderman–Kanade’s 264 5 93.6
method (2.0, 2.0)
Schneiderman–Kanade’s 255 1 90.4
method (3.0, 2.0)
The DFA–SVM method 277 2 98.2

B

q

p

A

(a)

a

b

b

a

R

Test Image

(b)

Fig. 11. The single response criterion: (a) a face detected at q eliminates
the area B from being searched; (b) a face detected at the scale of a × a

eliminates the area R from being searched when the face detector scans
at the scale of b × b.
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Fig. 12. Multiple scale face detection. The DFA–SVM method detects faces in the order of descending scales, and such order benefits the computational
efficiency by eliminating as much search region as possible at each detection scale.

detection inside this area will overlap with the face detected
at the scale of a×a. Note that the multiple scale searching in
the DFA–SVM method always starts with the largest search
scale and then goes to the smaller ones. The single response
criterion is thus able to eliminate as much search region as
possible and improve the overall computational efficiency.
Fig. 12 demonstrates the idea of multiple scale face detection
of our DFA–SVM method. From the largest to the smallest
scale, faces are detected at the scales of 120 ×120, 80 ×80,
60×60, 40×40, and 30×30, respectively. Note that the area
R should be shrunk by one or two pixels in order to detect
closely adjacent or slightly overlapping faces as shown in
Fig. 10(d).

To further improve the computational efficiency, the early
exclusion criterion defines heuristic procedures to exclude
subimages that cannot be face at all. Fig. 13 shows a 16×16
subimage with five labeled regions corresponding to the left
eye (A), the nose bridge (B), the right eye (C), the nose (D),
and the mouth (E). The early exclusion criterion first cal-
culates the variances in the regions D and E, respectively,
and excludes the subimage as face candidate if either vari-
ance is smaller than its predefined threshold. If the subim-
age is not excluded so far, the early exclusion criterion then
calculates the mean values in the regions A, B, and C. Based
on these three mean values, two average values, mA and

D

E

A B C

Fig. 13. A 16 × 16 subimage with five labeled regions corresponding to
the left eye (A), the nose bridge (B), the right eye (C), the nose (D), and
the mouth (E).

mC , are derived by averaging the intensity values of the pix-
els whose intensity values are smaller than the mean values
of the regions A and C, respectively; and another average
value, mB , is computed by taking the average of the inten-
sity values of the pixels whose intensity values are larger
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than the mean value of the region B. Finally, the early ex-
clusion criterion eliminates the subimage as face candidate
if mB < �mA or mB < �mC , where � is a control factor. On
a computer with 1.2 GHz Pentium III processor and 128 MB
main memory, our DFA–SVM face detection method can
process a 240 × 320 gray scale image in half a second.

5. Conclusions

This paper presents a novel face detection method by in-
tegrating DFA, face class modeling, and SVM. Discriminat-
ing feature analysis derives a feature vector by combining
the input image, its 1-D Haar wavelet representation, and its
amplitude projections. Face class modeling, then, estimates
the PDF of the face class and defines a distribution-based
measure for face and nonface classification. And finally,
SVM together with the distribution-based measure classifies
the patterns in an input image into either the face class or
the nonface class. Experiments using images from the MIT–
CMU test sets show the feasibility of our new face detection
method.

The DFA–SVM method differs from the Bayesian dis-
criminating feature (BDF) method [28] in the following
aspects: (i) The BDF method applies the Bayes classifier
for face and nonface classification, while the DFA–SVM
method applies the distribution-based measure and SVM for
face and nonface classification. (ii) The BDF method para-
metrically models both the face class and the nonface class,
while the DFA–SVM method does not model the nonface
class at all. (iii) The DFA–SVM method applies a coarse-
to-fine classification strategy, the single response criterion,
and the early exclusion criterion to improve computational
efficiency.

Our future research will be focused on extending our
DFA–SVM method to detect pose-angled and partially oc-
cluded faces. Towards that end, we will expend our training
set to incorporate more facial variations and pose-angled im-
ages. We will also investigate the optimal combination of the
distribution-based measure and the SVM output values. One
possibility is to apply stochastic search algorithms, such as
genetic algorithms, to search for the optimal combination.
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