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Abstract

Scientific applications executed with modern distributed technologies tend to be computed on various, dispersed
resources, and workflows become a natural method of describing them. This method of the functional application
decomposition allows for fully manual design only to a certain level of complexity. However, the scientific simu-
lations usually expose non-trivial processing logic including multiple distinct processing elements connected with
complicated control patterns. Thus an environment for semi-automated and assisted composition and orchestration of
such application workflows is desired. This report describes the concept and design of such a platform that analyzes
user requirements regarding application results and leadsthe user in the process of possible solution construction, dy-
namic refinement and execution. The tools forming the presented system use domain-specific knowledge and employ
several levels of workflow abstractness in order to deliver the functionality in a more natural way for the human user.
This work presents a real-life case study from the city traffic simulation domain, in order to introduce subsequent
steps of workflow orchestration. It also supplies a discussion on existing similar systems for workflow orchestration
and it finishes with a conclusions section.

This research work is carried out under the FP6 Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-
004265).
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1 Introduction

1.1 Scientific Workflows on the Grid

The possibility to distribute computations performed by scientific applications among many computer resources al-
lows to approach more computationally-challenging scientific problems. The Grid is a technology that facilitates such
dispersed computation model based on resources situated indifferent administrative domains. This solution – com-
bined with the novel service-oriented computing paradigm [16] – constitutes a powerful basis for modern application
development and execution platforms. One concept of using this approach for distributed processing in the Grid is
the idea to describe the higher-level application logic in terms of a workflow. This description involves naming the
parts of the distributed processing and the interdependencies that occur between them (in the form of either a control
or a data flow) [21]. Such an explicit expression of application’s structure makes it possible for an artificial automa-
ton to process it and to execute the application using some input data and possibly producing some output. Such an
automaton is called a workflow engine and the workflow description becomes a language to program the engine.

This approach requires an additional important step in the entire process – the preparation of a workflow descrip-
tion. In the Grid environment this step is often done by an expert who is able to comprehend the workflow description
notation and who can use it to assemble a new Grid applicationusing the resources available in the environment.
With the application of the service-oriented architecture(SOA) the resources are accessible as services providing
well-defined functionality, which is usually available through some uniform protocol and interface (the WSRF frame-
work is an example of such a uniform interface standard [5]).In these circumstances the basic building element of
a workflow becomes a single service operation. Several operations invocations may be formed into a workflow by
specifying the dependencies between them – usually in a formof a data transfer activity when an output of some op-
eration becomes an input to another. The workflow execution engine is therefore responsible for the proper invocation
of operations (it is in fact a generic client for the services) and brokering the intermediate data between services.

1.2 Properties of Scientific Workflows

The traditional process of applying the workflow technologyin a distributed environment involves three, mostly se-
quential phases: first the discovery of matching resources,second the preparation of the workflow description and
third the execution and the gathering of the results. In order to assist the person that assembles a new application
there exist sophisticated registries where one may look forthe basic building blocks of the application, which in terms
of service-oriented computing are the services and their operations [20]. The research in the field of Semantic Grid
concerning semantic description of Grid services will further improve the process of service search and discovery
using domain-specific knowledge to assist a user [3]. This, however, involves the development of specialized tools
that are able to use the additional knowledge provided by theregistries to make the workflow composition task faster
and possibly less erroneous. Tools like that are frequentlyreferred to as workflow composition and orchestration tools.
Together with the execution element they form an integratedtoolkit for scientific workflows designers and users.

One important feature of a workflow language and the infrastructure that surrounds it is to support more than one
level of abstractness in the resource description. The reason for that is the dynamism of the Grid environment – the
resources available are not guaranteed and may be switched off or altered with time. Therefore if someone is using
addresses (names) of such resources to build a workflow he risks the possibility that in the future the workflow will no
longer be executable (or will yield errors instead of expected results). In order to overcome this obstacle the solution
must support an abstract layer in resources’ identificationso the names (identifiers) used by the workflow designer will
not become outdated due to changes in the environment. In case of the service approach in order to abstract away from
the certain instances of services published in the Grid, onerather introduces a concept of an abstract service (or an
abstract service operation) which could be dynamically mapped on the realization(s) that are available at the execution
runtime and not at the workflow design time.

Another important property of a scientific workflow is its dynamic nature. The dynamism is required from the
workflow orchestration infrastructure to:

• support the concept of multiple levels of workflow abstraction – the flexibility is needed to concrete an abstract
workflow description at runtime;

• optimize the workflow execution with respect to given criteria – the dynamism allows for as-late-as-possible
decisions to allow scheduling based on the most recent infrastructure information;
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• introduce a certain level of fault-tolerance – the static workflow engine can not recover from a failure having no
runtime decision units built-in;

• and to allow the user to modify the workflow during runtime, e.g., dependent on intermediate workflow results.

The reasons above are even more important in the case of scientific applications as they tend to be long-running
processes with complex logic. The support of the workflow description language and the workflow engine for such
more advanced processing patterns like loops and parallel branching is also a very important property [17].

This report describes a scientific workflow approach that fulfils the properties described above and provides an
integrated platform for using scientific workflows in the Grid environment. The document starts with a detailed top-
down explanation of the system, along with the applied concepts and techniques to provide the functionality, followed
by a comparison of our approach with other scientific workflows systems. The work finalizes with conclusions.

2 Workflow Orchestration

Figure 1: Partial snapshot of the example domain.

Figure 2: Initial workflow as
a problem specification.

This chapter describes the whole workflow orchestration process, beginning with the
specification of the user request (Section 2.1), continuingwith the composition of
abstract workflows that provide suitable solutions (Section 2.2), and ending with the
refinement and the dynamic execution of the workflows on available Grid resources
(Section 2.3).

2.1 Specification of the User Request

As the workflow orchestration and execution toolkit forms a part of a larger problem
solving environment, the problem specification phase is thestarting point for the user.
The requirement is to provide the user with a tool that assists him with the definition
of the problem to be solved but that is not too constraining atthe same time. The first
step to the fulfilment of this requirement is to make the assistant tooluse the same
languageas the user does. This involves applying of domain-related knowledge so the
expert is able to specify the problem with the concepts and terms used in his area of
expertise [10]. For the purpose of demonstration we use the domain of the city traffic
pollution analysis (an application from that field will be also the example we refer to
throughout this work). Fig. 1 shows a part of the taxonomy containing concepts and
relations among them. The relations include the frequentlyused general relations of

hyponymy (specialization) and meronymy (inclusion).
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As the infrastructure needs a proper tool to design, store and use explicitly defined domain knowledge, we use
the idea of knowledge transcribed with ontologies. The formal method of storing the vocabularies and taxonomies in
ontologies allow for artificial systems to use it while the high level of design freedom helps the ontology modeler to
precisely express the facts. However, this kind of domain-specific knowledge needs specialized repositories that are
able not only to store it but also to publish it with adequate query-response mechanisms. We use the concept of Grid
Organization Memory to this end [13]. This technology applies the Semantic Web standards (OWL Web Ontology
Language and RDQL query language) to provide a higher-levelaccess to the ontology-transcribed knowledge to the
other tools of the infrastructure. The ontology store is accessible and dynamically alterable by the domain expert
that models application-related knowledge. While this person is required to understand the concept of ontologies and
description logics it is important not to ask that kind of expertise from an every-day user.

Figure 3: An example of workflow
after one step of composition.

Finally, in order to facilitate the easy use of the toolkit weapply the
knowledge-based assistance technique to lead the user through the problem spec-
ification phase. The assistant tool employs the context-based advice system that
is able to use both structured (i.e. expressed through ontology) knowledge and
free-text user notes in order to propose the possible results the user may obtain
using the workflow system [14]. After the user finally decideson the type of
problem he wants to tackle with, the initial form of workflow sketch is gener-
ated.

Fig. 2 shows an example of an initial workflow. In this case theuser asks for
the results of the pollutant emission due to the city traffic.The workflow that
is generated states what kind of outcome the user expects from the workflow
execution (the bottom circle in the diagram). The followingsection brings the
description of the used formalism and notation to define workflows.

2.2 Abstract Solution Composition

The language for the description of workflows which we use within the exam-
ples in this paper is based on the Petri Nets formalism [12]. Atypical Petri net
has a set of transitions (visualized as rectangles or bars) and a set of places (de-
picted with circles) with possible directed connections that go from a place to a
transition or vice versa. The execution mechanism uses the notion of tokens that
reside in places and that drive the workflow with the general rule that a transition
firesby consuming one token from each input place and producing one token in
every output place. Absence of a token in any of the incoming places precludes
the execution of the transition. In our case, the transitions are related to service
operations (method calls) and the tokens to the workflow data. Both, operations and data, may possess several levels
of abstractness. In order to support these multiple levels of abstractness in the workflow description we apply the idea
of the High-Level Petri Nets (HLPN). With this approach we denote the additional information on the current level of
abstractness of a workflow element with its color. In the Fig.2 one may see the light bottom place which denotes an
abstract but semantically identified data. This means that it is known what kind of data may be produced there while
there is no real data at the moment. The darker gray transition above the place is an unknown part – the element we
know nothing about except the fact that is should eventuallyyield PollutionEmissionresult. This construction with the
data type of not known producer defined inside a workflow is called an unsatisfied dependency. The next tool involved
in the process of workflow composition is responsible for turning such unknown parts into a proposed solution in the
form of a workflow.

For every dependency that needs to be resolved the tool contacts the ontological registry in order to find suitable
service operations that may produce the required result. The registry is therefore another source of knowledge (besides
the domain-specific vocabularies mentioned in Sect. 1) for the workflow orchestration environment [2]. The services
are described in an ontological form with statements regarding the service operations’ inputs, outputs, preconditions
and effects (the IOPE set). Through these notions the tool that composes workflows is able to match different opera-
tions into a workflow. By associating the required data with the produced output the tool constructs a data flow between
operations (it also uses a specific notion of effect that may bind two operation together with non-data dependency).

As may be noticed in Fig. 3, a newly introduced operation (thelight-grey bottom transition) is described in an
abstract form. It specifies an operation type in a meaningfulway for a domain expert and identifies a certain operation
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class. An operation class is a logic set of all the operation instances that implement (or realize) given functionality.
Therefore a single operation class may also be understood asa counterpart to aninterfacein the object-oriented design.
This level of abstraction of a workflow ensures that the application logic is valid (as the correct data flow is secured)
while it lacks any implementation-specific details, such asspecific service endpoints addresses. This feature makes
the workflow description invulnerable to the frequent changes in the Grid environment and allows for the workflow
reuse capability. Another property of the operation is a setof two input data. The composition assistant using the
semantic description of the operation may identify the necessity for further inputs to be provided – every such an input
constitutes another unsatisfied dependency that needs to beresolved. Following this reverse traversal approach the tool
composes the application workflow. It also uses workflow reduction algorithms and searches for the suitable solutions
internally in the workflow in order to provide useful controlpatterns like loops and alternative or parallel branching.
For more detailed description of the tool please refer to [11].

Figure 4: The application workflow after full composition.

The Fig. 4 shows the example of city traffic pollution analysis workflow after the full composition phase. It involves
several Grid service operations some of which form the core simulation. There are also parallel executions and a loop
involved as the application iterates in order to analyze thepossible traffic scenarios. The final pollution emission
calculator uses provided scenario with pollution-relateddata to result with the prediction of the pollution emissionin
a given case. The workflow describes the experiment on an abstract level and needs proper refinement and execution
mechanism in order to be successfully completed. The overall time needed for construction of a workflow of this level
of complexity is around 3-4 seconds. To compose larger workflows (not pictured here of complexity reasons) that
count around 35-40 operations and several loops takes around 10 seconds what we claim is rather acceptable result.
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2.3 Solution Refinement and Dynamic Execution

The result of theabstract solution compositiondescribed in the last section is an abstract workflow that needs to
be mapped onto available resources in order to be executed. Therefore, our approach involves several subsequent
workflow refinement steps, which are displayed in Fig. 5.

Figure 5: The workflow refinement process.

After the composition of the abstract workflow, the next stepis to map the abstract nodes onto matching services.
This is done iteratively during the processing of the workflow. Each time the workflow engine reaches a transition
related to an abstract (non-executable) operation, it calls a special workflow refinement service. This service refines
the workflow description by searching for matching service candidates, which fulfill the requirements defined by the
profile of the abstract nodes [8]. The decision of whether a service matches the requirements is done by rules that
depend on several properties, such as functionality (e.g.,service produces certain class of output data or side effect),
performance (e.g., operation should complete within1h), or reliability (e.g., only services which have been operational
during the last72h should be taken into account). If it is possible to find matching service candidates, the refinement
service attaches a list of the corresponding interface descriptions URLs (e.g. wsdl URLs) to the abstract transition.

The next step of the workflow refinement process consists of the selection of one service instance out of the list of
available service candidates. In order to optimize this selection, the system uses a HEFT scheduling algorithm [19],
which takes into account the recorded as well as the current monitoring information about the services and the Grid
infrastructure. Each time the workflow engine reaches an abstract (non-executable) transition that contains list of
service candidates, it invokes a scheduling service that selects one of the services in the list. In long-running workflows
it makes sense to refine only the next workflow transitions that are ready to be invoked. This kind of scheduling is
also referred to asdeferred planning[7]. In short-running workflows or in cases where it is necessary to have some
kind of co-allocation it is also possible to select service instances for all workflow nodes at once. In the case of
stateful services, such as WSRF, several subsequent workflow operations often need to be invoked on the same service
instance (e.g,initialize → simulate → getData). This is considered during the refinement process by annotating
the workflow withinstance group labels, which are taken into account during the scheduling process.

Each time the workflow engine detects an activated transition related to a concrete (executable) operation, it uses
the corresponding lower-level Grid middleware in order to allocate the resources and to invoke the operation. The pro-
totype implementation currently supports pure Web Serviceoperations (using Axis), WSRF Grid Service operations,
WS-GRAM program executions, and Reliable File Transfers (RFT) (using Globus Toolkit 4). Further Grid middle-
ware can be supported by simply providing a specific Java class, which extends the abstractActivity class within the
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workflow engine or by providing a Web Service interface.
The Petri Net formalism used in the prototype implementation makes it relatively easy to implement the workflow

interpreter, as the workflow description just contains fourdifferent types of main elements: transitions, places, arcs
and tokens. The workflow engine cycles through the graph and searches for activated transitions that are ready to fire,
and dynamically delegates the workflow refinement to external services or the user. The workflow logic is inherently
expressed by the structure of the Petri Net, so the workflow engine does not need to explicitly take care about specific
workflow constructs, such as loops, choices, and the sequential or parallel execution of tasks. All workflow abstraction
levels are described by the same workflow description language; so it is possible that one single workflow contains
abstract as well as concrete workflow parts at the same time. This enables the workflow orchestration system to be
highly dynamic and to react on changes in an unreliable Grid environment.

As the current state of the workflow is stored within the tokens of the Petri Net (calledmarking), it is possible to
save the state by just writing the workflow description to a file or to an XML database. In our prototype implementa-
tion, we use an eXist XML database in order to store workflow checkpoints which can later be restored or migrated
to another workflow engine. During the workflow processing the workflow engine annotates the workflow document
with further runtime properties, such as performance information and fault messages, which are later automatically
analyzed to gather knowledge for the future orchestration of similar workflows.

3 Comparison with other Scientific Workflow Systems

There are currently several scientific workflow systems thatare established in the Grid community. While one may
compare them with regard to many various criteria we would like to concentrate on the level of dynamism of the
systems and their support for different layers of abstraction, as those are qualities that are particularly addressed in
our approach. The working environments offered by Triana [4] and Taverna [15] systems bind workflow description
documents directly with the realizations of their buildingelements. As the direct reference model offers the possibility
of faster execution it lacks the needed level of flexibility in order to overcome possible changes in the pool of available
resources. The information reuse in these systems is reduced in favor of the more transparent execution process what
makes them fast application prototyping platforms.

In the Kepler [1] system there is an intermediate level of a single workflow element description. An actor is
described in an abstract way through the ports that surroundit and may be further implemented as a number of
different realizations (including remote execution suitable for the Grid). However, as the decision on how to concrete
an actor is taken at design time, only a single element of processing is a subject of possible reuse. The execution
mechanism does not possess a dynamic refinement/schedulingability.

Another group of systems (Askalon [9], Pegasus [6]) introduce, apart from their own workflow notation, a spe-
cial language to describe the workflow in a more abstract way.When a user supplies this kind of description it is
automatically translated into a concrete workflow realization containing all the execution details needed to carry the
processing on. The advantage of this approach is that one mayeasily reuse the abstract workflows and thus the tool
is flexible enough to work in a frequently changing environment. However, the fact that the whole translation process
takes place before the execution results in a static scheduling and refinement approach – the decisions regarding the
entire processing are taken before it starts. This may lead to runtime faults especially with long-running applications
that are frequent in the scientific community.

A similar approach provides Karajan [18], a parallel scripting language, which is able to express abstract work-
flows, which then are bound onto the specific services or protocols during runtime. The scripting language itself,
however, is rather complex, and there are no semantic methods that assist the users in orchestrating the workflows.

4 Conclusions

This report presents the Grid scientific workflow system thatis meant to assist the user to compose, refine and execute
an application in a distributed environment. The most important features of the system we would like to stress are:

• multiple abstractness levelsthat help to express the application logic on sufficiently high level for the end user
to comprehend it and for the workflow to be reusable,

• dynamismthat allows the runtime refinement of the workflow elements that are invoked and the lazy scheduling
strategies that use the most recent information available,
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• semantic drivenapproach in workflow composition and refinement in order to keep the workflow description
legible for the human expert and also to introduce certain level of automation,

• completeness provided with covering every step of workflow creation, enactment, storing and reuse within the
same integrated environment.

As the presented system covers the stages of problem specification (Sect. 2.1), solution generation (Sect. 2.2) and
dynamic execution (Sect. 2.3) it forms an important part of asemantic-aware problem solving environment for scien-
tific applications. The approach was tested with two pilot applications, including a flood scenarios simulation and the
traffic pollution emission calculations.
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