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Abstract

Scientific applications executed with modern distributszhhologies tend to be computed on various, dispersed
resources, and workflows become a natural method of desgrihem. This method of the functional application
decomposition allows for fully manual design only to a ciertevel of complexity. However, the scientific simu-
lations usually expose non-trivial processing logic inihg multiple distinct processing elements connected with
complicated control patterns. Thus an environment for ssntomated and assisted composition and orchestration of
such application workflows is desired. This report deserihe concept and design of such a platform that analyzes
user requirements regarding application results and lis&dsser in the process of possible solution constructipn, d
namic refinement and execution. The tools forming the ptteskesystem use domain-specific knowledge and employ
several levels of workflow abstractness in order to deliierftinctionality in a more natural way for the human user.
This work presents a real-life case study from the city ragfmulation domain, in order to introduce subsequent
steps of workflow orchestration. It also supplies a disarssn existing similar systems for workflow orchestration
and it finishes with a conclusions section.

This research work is carried out under the FP6 Network ofliecce CoreGRID funded by the European Commission (Conitgl-2002-
004265).



1 Introduction
1.1 Scientific Workflows on the Grid

The possibility to distribute computations performed biestific applications among many computer resources al-
lows to approach more computationally-challenging sdiergroblems. The Grid is a technology that facilitates such
dispersed computation model based on resources situatifierent administrative domains. This solution — com-
bined with the novel service-oriented computing paradi@fj | constitutes a powerful basis for modern application
development and execution platforms. One concept of usiisgapproach for distributed processing in the Grid is
the idea to describe the higher-level application logiceinms of a workflow. This description involves naming the
parts of the distributed processing and the interdepenetitat occur between them (in the form of either a control
or a data flow) [21]. Such an explicit expression of applmat structure makes it possible for an artificial automa-
ton to process it and to execute the application using sopg ishata and possibly producing some output. Such an
automaton is called a workflow engine and the workflow desiorihecomes a language to program the engine.

This approach requires an additional important step in thieeeprocess — the preparation of a workflow descrip-
tion. In the Grid environment this step is often done by areeixwho is able to comprehend the workflow description
notation and who can use it to assemble a new Grid applicasing the resources available in the environment.
With the application of the service-oriented architect(8©A) the resources are accessible as services providing
well-defined functionality, which is usually available ttugh some uniform protocol and interface (the WSRF frame-
work is an example of such a uniform interface standard [B})these circumstances the basic building element of
a workflow becomes a single service operation. Several tipasainvocations may be formed into a workflow by
specifying the dependencies between them — usually in a dbardata transfer activity when an output of some op-
eration becomes an input to another. The workflow executigme is therefore responsible for the proper invocation
of operations (it is in fact a generic client for the servjcasd brokering the intermediate data between services.

1.2 Properties of Scientific Workflows

The traditional process of applying the workflow technolagy distributed environment involves three, mostly se-
guential phases: first the discovery of matching resousmsynd the preparation of the workflow description and
third the execution and the gathering of the results. In otdassist the person that assembles a new application
there exist sophisticated registries where one may loothbasic building blocks of the application, which in terms
of service-oriented computing are the services and tharagjpns [20]. The research in the field of Semantic Grid
concerning semantic description of Grid services will fiertimprove the process of service search and discovery
using domain-specific knowledge to assist a user [3]. Ttosdver, involves the development of specialized tools
that are able to use the additional knowledge provided bydbmstries to make the workflow composition task faster
and possibly less erroneous. Tools like that are frequeettyred to as workflow composition and orchestration tools
Together with the execution element they form an integradetkit for scientific workflows designers and users.

One important feature of a workflow language and the infuastire that surrounds it is to support more than one
level of abstractness in the resource description. Theorefis that is the dynamism of the Grid environment — the
resources available are not guaranteed and may be swit¢thedaitered with time. Therefore if someone is using
addresses (names) of such resources to build a workflowkeethis possibility that in the future the workflow will no
longer be executable (or will yield errors instead of expdaesults). In order to overcome this obstacle the solution
must support an abstract layer in resources’ identifica@tne names (identifiers) used by the workflow designer will
not become outdated due to changes in the environment. éroéétse service approach in order to abstract away from
the certain instances of services published in the Grid,ratteer introduces a concept of an abstract service (or an
abstract service operation) which could be dynamicallypeaion the realization(s) that are available at the exetutio
runtime and not at the workflow design time.

Another important property of a scientific workflow is its dymic nature. The dynamism is required from the
workflow orchestration infrastructure to:

e support the concept of multiple levels of workflow abstrati- the flexibility is needed to concrete an abstract
workflow description at runtime;

e optimize the workflow execution with respect to given cider the dynamism allows for as-late-as-possible
decisions to allow scheduling based on the most recentitnéreture information;
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e introduce a certain level of fault-tolerance — the statickflow engine can not recover from a failure having no
runtime decision units built-in;

e and to allow the user to modify the workflow during runtimey.edependent on intermediate workflow results.

The reasons above are even more important in the case ofiiciapplications as they tend to be long-running
processes with complex logic. The support of the workfloncdpon language and the workflow engine for such
more advanced processing patterns like loops and paradlething is also a very important property [17].

This report describes a scientific workflow approach thdtl$uthe properties described above and provides an
integrated platform for using scientific workflows in the Ganvironment. The document starts with a detailed top-
down explanation of the system, along with the applied cptecand techniques to provide the functionality, followed
by a comparison of our approach with other scientific workfi@ystems. The work finalizes with conclusions.

2 Workflow Orchestration
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Figure 2: Initial workflow as
a problem specification.

Figure 1: Partial snapshot of the example domain.

This chapter describes the whole workflow orchestratiorcgss, beginning with the
specification of the user request (Section 2.1), continmiith the composition of
abstract workflows that provide suitable solutions (Secf#d®), and ending with the
refinement and the dynamic execution of the workflows on altél Grid resources
(Section 2.3).

2.1 Specification of the User Request

As the workflow orchestration and execution toolkit formsaatf a larger problem
solving environment, the problem specification phase isthging point for the user.
The requirement is to provide the user with a tool that assish with the definition
of the problem to be solved but that is not too constraininthasame time. The first
step to the fulfilment of this requirement is to make the aaststooluse the same
languageas the user does. This involves applying of domain-relatedéedge so the
expert is able to specify the problem with the concepts andgeaised in his area of
expertise [10]. For the purpose of demonstration we usedhgaih of the city traffic
pollution analysis (an application from that field will besalthe example we refer to
throughout this work). Fig. 1 shows a part of the taxonomytaiming concepts and
relations among them. The relations include the frequargd general relations of

hyponymy (specialization) and meronymy (inclusion).
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As the infrastructure needs a proper tool to design, stodeuae explicitly defined domain knowledge, we use
the idea of knowledge transcribed with ontologies. The fdmethod of storing the vocabularies and taxonomies in
ontologies allow for artificial systems to use it while thglnievel of design freedom helps the ontology modeler to
precisely express the facts. However, this kind of domaieesic knowledge needs specialized repositories that are
able not only to store it but also to publish it with adequaterg-response mechanisms. We use the concept of Grid
Organization Memory to this end [13]. This technology applthe Semantic Web standards (OWL Web Ontology
Language and RDQL query language) to provide a higher-lsedss to the ontology-transcribed knowledge to the
other tools of the infrastructure. The ontology store iseasible and dynamically alterable by the domain expert
that models application-related knowledge. While thissparis required to understand the concept of ontologies and
description logics it is important not to ask that kind of exjise from an every-day user.

Finally, in order to facilitate the easy use of the toolkit \@pply the
knowledge-based assistance technique to lead the usegthtioe problem spec-
ification phase. The assistant tool employs the contex¢badvice system that O
is able to use both structured (i.e. expressed throughamtpknowledge and
free-text user notes in order to propose the possible sthdtuser may obtain

using the workflow system [14]. After the user finally decidesthe type of
problem he wants to tackle with, the initial form of workflokedch is gener- O O
ated.
Fig. 2 shows an example of an initial workflow. In this caseuber asks for
the results of the pollutant emission due to the city traffite workflow that

is generated states what kind of outcome the user expectstfre workflow

execution (the bottom circle in the diagram). The followsegtion brings the | xpecpata Sir:':l‘;;?on

description of the used formalism and notation to define flownks. Data
_AirPollution

2.2 Abstract Solution Composition EmissionCalculator

The language for the description of workflows which we uséinithe exam-
ples in this paper is based on the Petri Nets formalism [12fypAcal Petri net
has a set of transitions (visualized as rectangles or badsa&et of places (de-
picted with circles) with possible directed connectioret o from a place to a
transition or vice versa. The execution mechanism usesatiemof tokens that Figure 3: An example of workflow
reside in places and that drive the workflow with the generalthat a transition after one step of composition.

firesby consuming one token from each input place and produciegaien in

every output place. Absence of a token in any of the incomlaggs precludes

the execution of the transition. In our case, the transitimme related to service

operations (method calls) and the tokens to the workflow. d&t¢h, operations and data, may possess several levels
of abstractness. In order to support these multiple levisddstractness in the workflow description we apply the idea
of the High-Level Petri Nets (HLPN). With this approach wendee the additional information on the current level of
abstractness of a workflow element with its color. In the Rigne may see the light bottom place which denotes an
abstract but semantically identified data. This means thskinown what kind of data may be produced there while
there is no real data at the moment. The darker gray transitiove the place is an unknown part — the element we
know nothing about except the fact that is should eventyadiigl PollutionEmissiomesult. This construction with the
data type of not known producer defined inside a workflow ikededin unsatisfied dependency. The next tool involved
in the process of workflow composition is responsible fontng such unknown parts into a proposed solution in the
form of a workflow.

For every dependency that needs to be resolved the toolatsritee ontological registry in order to find suitable
service operations that may produce the required resudtrddiistry is therefore another source of knowledge (bsside
the domain-specific vocabularies mentioned in Sect. 1)Hemiorkflow orchestration environment [2]. The services
are described in an ontological form with statements raggrthe service operations’ inputs, outputs, precondgion
and effects (the IOPE set). Through these notions the tavidbmposes workflows is able to match different opera-
tions into a workflow. By associating the required data whithproduced output the tool constructs a data flow between
operations (it also uses a specific notion of effect that niagt two operation together with non-data dependency).

As may be noticed in Fig. 3, a newly introduced operation (idpet-grey bottom transition) is described in an
abstract form. It specifies an operation type in a meaningéyl for a domain expert and identifies a certain operation

PollutionEmission
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class. An operation class is a logic set of all the operatistances that implement (or realize) given functionality.
Therefore a single operation class may also be understadamterpart to aimterfacein the object-oriented design.
This level of abstraction of a workflow ensures that the agpion logic is valid (as the correct data flow is secured)
while it lacks any implementation-specific details, suclspescific service endpoints addresses. This feature makes
the workflow description invulnerable to the frequent chemin the Grid environment and allows for the workflow
reuse capability. Another property of the operation is aoc$dtvo input data. The composition assistant using the
semantic description of the operation may identify the ssitg for further inputs to be provided — every such an input
constitutes another unsatisfied dependency that needsesdiged. Following this reverse traversal approach tbk to
composes the application workflow. It also uses workflow otida algorithms and searches for the suitable solutions
internally in the workflow in order to provide useful contpmtterns like loops and alternative or parallel branching.
For more detailed description of the tool please refer t¢.[11

getSessionlD

calcEmission

Figure 4: The application workflow after full composition.

The Fig. 4 shows the example of city traffic pollution anadysorkflow after the full composition phase. It involves
several Grid service operations some of which form the cionelation. There are also parallel executions and a loop
involved as the application iterates in order to analyzepbssible traffic scenarios. The final pollution emission
calculator uses provided scenario with pollution-relatath to result with the prediction of the pollution emission
a given case. The workflow describes the experiment on araabstvel and needs proper refinement and execution
mechanism in order to be successfully completed. The diara needed for construction of a workflow of this level
of complexity is around 3-4 seconds. To compose larger wanlsfl(not pictured here of complexity reasons) that
count around 35-40 operations and several loops takes édfduseconds what we claim is rather acceptable result.
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2.3 Solution Refinement and Dynamic Execution

The result of theabstract solution compositiodescribed in the last section is an abstract workflow thatia¢e
be mapped onto available resources in order to be executeerefbre, our approach involves several subsequent
workflow refinement steps, which are displayed in Fig. 5.

t--i' “l want
User Request /T?J th|s data

- "
User Request

Abstract Workflow N“@—" N
-, : — ...—ﬂ-
Service Candldates @—:-'-"-'—— o]
A — L —
@—*"
Service Instances AP —= QY — @

N m— 88—
— ) —®

Grid Resources

Figure 5: The workflow refinement process.

After the composition of the abstract workflow, the next stefp map the abstract nodes onto matching services.
This is done iteratively during the processing of the wonkfldEach time the workflow engine reaches a transition
related to an abstract (non-executable) operation, it @afipecial workflow refinement service. This service refines
the workflow description by searching for matching serviaedidates, which fulfill the requirements defined by the
profile of the abstract nodes [8]. The decision of whetherraige matches the requirements is done by rules that
depend on several properties, such as functionality (gegvice produces certain class of output data or side gffect
performance (e.g., operation should complete witti) or reliability (e.g., only services which have been opieral
during the las2h should be taken into account). If it is possible to find matgtservice candidates, the refinement
service attaches a list of the corresponding interfacergd®ns URLs (e.g. wsdl URLS) to the abstract transition.

The next step of the workflow refinement process consistseadéfection of one service instance out of the list of
available service candidates. In order to optimize thiecti&n, the system uses a HEFT scheduling algorithm [19],
which takes into account the recorded as well as the currenitoring information about the services and the Grid
infrastructure. Each time the workflow engine reaches atradis(non-executable) transition that contains list of
service candidates, it invokes a scheduling service thattseone of the services in the list. In long-running wonkéo
it makes sense to refine only the next workflow transitions &ne ready to be invoked. This kind of scheduling is
also referred to adeferred planning7]. In short-running workflows or in cases where it is neegg$o have some
kind of co-allocation it is also possible to select serviestances for all workflow nodes at once. In the case of
stateful services, such as WSRF, several subsequent wedierations often need to be invoked on the same service
instance (e.ginitialize — simulate — getData). This is considered during the refinement process by atingta
the workflow withinstance group labelsvhich are taken into account during the scheduling process

Each time the workflow engine detects an activated tramsittated to a concrete (executable) operation, it uses
the corresponding lower-level Grid middleware in orderltocate the resources and to invoke the operation. The pro-
totype implementation currently supports pure Web Seromerations (using Axis), WSRF Grid Service operations,
WS-GRAM program executions, and Reliable File TransfelST|R(using Globus Toolkit 4). Further Grid middle-
ware can be supported by simply providing a specific Java claisich extends the abstrakttivity class within the
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workflow engine or by providing a Web Service interface.

The Petri Net formalism used in the prototype implementatitakes it relatively easy to implement the workflow
interpreter, as the workflow description just contains fdiffierent types of main elements: transitions, placess arc
and tokens. The workflow engine cycles through the graph eactkes for activated transitions that are ready to fire,
and dynamically delegates the workflow refinement to extexgiices or the user. The workflow logic is inherently
expressed by the structure of the Petri Net, so the workflayinendoes not need to explicitly take care about specific
workflow constructs, such as loops, choices, and the seiqienparallel execution of tasks. All workflow abstraction
levels are described by the same workflow description lagguso it is possible that one single workflow contains
abstract as well as concrete workflow parts at the same tirh&s éhables the workflow orchestration system to be
highly dynamic and to react on changes in an unreliable Gristenment.

As the current state of the workflow is stored within the takefthe Petri Net (callecharking), it is possible to
save the state by just writing the workflow description to @ dif to an XML database. In our prototype implementa-
tion, we use an eXist XML database in order to store workflo@cgipoints which can later be restored or migrated
to another workflow engine. During the workflow processingworkflow engine annotates the workflow document
with further runtime properties, such as performance imfation and fault messages, which are later automatically
analyzed to gather knowledge for the future orchestrati@mnoilar workflows.

3 Comparison with other Scientific Workflow Systems

There are currently several scientific workflow systems #natestablished in the Grid community. While one may
compare them with regard to many various criteria we wolkd to concentrate on the level of dynamism of the
systems and their support for different layers of abstactas those are qualities that are particularly addressed i
our approach. The working environments offered by Triajagdd Taverna [15] systems bind workflow description
documents directly with the realizations of their buildelgments. As the direct reference model offers the poggibil

of faster execution it lacks the needed level of flexibilityorder to overcome possible changes in the pool of available
resources. The information reuse in these systems is rddii¢avor of the more transparent execution process what
makes them fast application prototyping platforms.

In the Kepler [1] system there is an intermediate level ofraylel workflow element description. An actor is
described in an abstract way through the ports that surrduadd may be further implemented as a number of
different realizations (including remote execution sSolésfor the Grid). However, as the decision on how to concrete
an actor is taken at design time, only a single element ofgasing is a subject of possible reuse. The execution
mechanism does not possess a dynamic refinement/schedbilityg

Another group of systems (Askalon [9], Pegasus [6]) intaejwapart from their own workflow notation, a spe-
cial language to describe the workflow in a more abstract Wafien a user supplies this kind of description it is
automatically translated into a concrete workflow real@matontaining all the execution details needed to carry the
processing on. The advantage of this approach is that oneeasily reuse the abstract workflows and thus the tool
is flexible enough to work in a frequently changing enviromtmélowever, the fact that the whole translation process
takes place before the execution results in a static scimgdahd refinement approach — the decisions regarding the
entire processing are taken before it starts. This may leadntime faults especially with long-running applicaton
that are frequent in the scientific community.

A similar approach provides Karajan [18], a parallel sénigtianguage, which is able to express abstract work-
flows, which then are bound onto the specific services or potsaduring runtime. The scripting language itself,
however, is rather complex, and there are no semantic methatlassist the users in orchestrating the workflows.

4 Conclusions

This report presents the Grid scientific workflow system thateant to assist the user to compose, refine and execute
an application in a distributed environment. The most inguarfeatures of the system we would like to stress are:

e multiple abstractness levetlat help to express the application logic on sufficientlyhhlievel for the end user
to comprehend it and for the workflow to be reusable,

e dynamisnthat allows the runtime refinement of the workflow elemends #re invoked and the lazy scheduling
strategies that use the most recent information available,
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e semantic driverapproach in workflow composition and refinement in order tepkthe workflow description
legible for the human expert and also to introduce certaiel lef automation,

e completeness provided with covering every step of workflogation, enactment, storing and reuse within the
same integrated environment.

As the presented system covers the stages of problem sp#oifi¢Sect. 2.1), solution generation (Sect. 2.2) and
dynamic execution (Sect. 2.3) it forms an important part sémantic-aware problem solving environment for scien-
tific applications. The approach was tested with two pilgilegations, including a flood scenarios simulation and the
traffic pollution emission calculations.
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