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Abstract—Driver behavioral cues may present a rich source
of information and feedback for future intelligent advanced
driver-assistance systems (ADASs). With the design of a simple
and robust ADAS in mind, we are interested in determining the
most important driver cues for distinguishing driver intent. Eye
gaze may provide a more accurate proxy than head movement
for determining driver attention, whereas the measurement of
head motion is less cumbersome and more reliable in harsh
driving conditions. We use a lane-change intent-prediction system
(McCall et al., 2007) to determine the relative usefulness of each
cue for determining intent. Various combinations of input data are
presented to a discriminative classifier, which is trained to output
a prediction of probable lane-change maneuver at a particular
point in the future. Quantitative results from a naturalistic driving
study are presented and show that head motion, when combined
with lane position and vehicle dynamics, is a reliable cue for
lane-change intent prediction. The addition of eye gaze does not
improve performance as much as simpler head dynamics cues.
The advantage of head data over eye data is shown to be statis-
tically significant (p < 0.01) 3 s ahead of lane-change situations,
indicating that there may be a biological basis for head motion to
begin earlier than eye motion during “lane-change”-related gaze
shifts.

Index Terms—Driver-assistance systems, driver behavior,
driver intent inference, intelligent vehicles, machine vision, sparse
Bayesian learning.

I. INTRODUCTION

ADVANCED driver-assistance systems (ADASs) have the
potential to save many lives by aiding drivers in making

prompt safe decisions about driving maneuvers. Every year,
traffic accidents result in approximately 1.2 million fatalities
worldwide; without novel prevention measures, this number
could increase by 65% over the next two decades [2]. In
the U.S. alone, more than 43 000 fatalities are projected this
year due to traffic accidents, with up to 80% of them due to
driver inattention [3], [4]. To counter the effect of inattention,
ADASs are designed to provide the driver ample warning time
to impending dangerous situations and even assist the driver in
reacting appropriately. The ADAS could thus prevent collisions
and make roads safer.
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The design of robust and practical intelligent assistance
systems is an active field of research and development. In
particular, the type and placement of sensors to achieve maxi-
mum performance has yet to be well understood. Several recent
systems, including collision warning and brake support, backup
warning systems, and lane-departure warning systems, use very
specific environmental sensors that are associated with their ap-
plication to augment the driver’s awareness. However, the basis
of all these systems is the sensors detecting the environment
outside the vehicle, along with the vehicle dynamics.

Recent research has supported the incorporation of sensors
looking inside the vehicle into these systems in a holistic
manner [5], [6]. A major advantage of monitoring drivers is the
ability to observe driver behavior and potentially infer driver
intent. Such data could inform an ADAS on several matters.

1) Awareness: Is the driver aware of the pertinent surround-
ings in their environment? What is the focus of attention
and distraction level?

2) Intent: Is the driver planning to move into a dangerous
situation? What is the planned trajectory or possible
movements?

Given the driver’s attention patterns, it may be possible to infer
whether the system should warn the driver and reduce false
alarms. In this work, we will focus on the second applica-
tion, i.e., how driver behavior can be used to predict future
maneuvers.

In particular, we are interested in determining important
driver cues for distinguishing intent to support future ADAS
designs. In prior intent prediction research [1], [7], [8], head
dynamics, which is a derivative of head pose, has been proposed
as a pertinent cue. While robust monocular in-vehicle head pose
estimation systems have been developed [9]–[11], it may be
argued that head pose is not a sufficient estimate of true gaze.
To derive precise gaze estimates, it follows that eye gaze should
be included [12]. Unfortunately, there are several drawbacks
with modern eye gaze estimators in vehicles, including the
need to overcome lighting changes, shadows, occlusions, and
potentially cumbersome stereo rigs or intrusive head-mounted
cameras. Therefore, we are motivated to determine if eye gaze
and head motion are useful intent predictors and, furthermore,
which one (or combination) is the more informative cue.

In this paper, we use a lane-change intent-prediction system
[1] to determine the relative usefulness of eye gaze and head
dynamics data. Our comparative experiments are designed to
distinguish the merits of the two cues and compare their im-
portance. By determining the better cue, we hope to provide
the basis for appropriate future designs of lane-change intent
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systems, as well as a foundation for interactive driver-assistance
systems in general.

II. DRIVER BEHAVIORAL CUES

The analysis of driver behavior has long been a popular field
of research in light of the potential for safety improvements.
With respect to the particular maneuver of lane changes, the
analysis of driver behaviors dates back at least 30 years.

Here, we present a summary of relevant research. We then
present our methodology for determining driver behavior, in
preparation for our comparative experiments.

A. Related Research in Lane Change Behavior Analysis

According to early research in the field, there is significant
reason to believe that behavior analysis of the driver can lead
to reliable predictions about lane-change intent. As described
here, to safely decide to change lanes, a driver should have
recently given some attention to the occupancy and state of
the neighboring objective lane. According to Hoffman [13],
“attention is free to move independent of the eyes, but eye
movements require visual attention to precede them to their
goal.” Thus, by measuring driver behavior corresponding to a
visual search, we can hope to capture obvious shifts in attention
and thereby deduce lane-change intentions.

The time period 3 s ahead of the actual lane change was
determined to be a critical time period during which the driver
engages in a visual search to determine feasibility of lane
change [14]. In the period several seconds prior to the lane-
change maneuver, certain patterns emerge in the driver’s visual
search behaviors.

In fact, according to Tijerina et al. [15], there are specific
eye glance patterns that take place in the period before a
lane change. It was determined that, during left lane changes,
there were 65%–85% chance of looking at the left mirror and
56%–67% chance of looking at the rearview mirror. Corre-
spondingly, during right lane changes, drivers looked at the
right mirror with 36%–53% probability and the rearview mir-
ror with 82%–92% probability. Moreover, the mirror glance
duration before lane change maneuvers lasted, on average,
1.1 s, varying between 0.8 and 1.6 s [3]. Mourant and Donohue
observed that lengthy blind spot checks occurred only in con-
junction with lane-change maneuvers; in lane-keeping situa-
tions, no such checks were performed by the drivers [14].

Bhise et al. [16] studied a series of naturalistic lane changes
in real-world settings and discovered that most visual searches
prior to lane changes involve head motions and relatively
very few (5.4% in their study) involve eye glance alone.
Furthermore, Robinson et al. [17] found a remarkably stable
relationship between eye glance behavior and head movement
behavior: In an experiment where a visual fixation was placed at
60◦, the eyes moved first, and the head followed approximately
50 ms later. The relationship in which head movement imme-
diately follows eye movement was found to be stable across all
individuals in the experiment.

The experiments of Land [18] corroborate these results in a
real automotive setting. Upon examining the head movements

and eye behavior of several drivers approaching intersections,
the author found some remarkable tendencies in the drivers’
behavioral patterns. When a decision to change gaze has sub-
consciously or “unthinkingly” been generated, eye and head
movements, by “default,” begin at nearly the same time. The
eyes more quickly move than the head; however, the velocity
of the head movement is a direct correlation of the magnitude
of the gaze change (i.e., the head moves faster for a larger gaze
change). These results indicate that head and eye movements
are correlated under an unguided visual search, in a situation
that is similar to the search prior to a lane change.

These results lead to the hypothesis that eye gaze and head
pose can be reliable indicators of a driver’s intent to initiate
a lane change. Furthermore, it might be posited that head pose
alone could be good enough, given that fixations tend to reliably
draw head movements, along with eye-gaze changes.

Other studies more recently have included eye gaze measure-
ments as a part of laboratory tests of driver fatigue [19], [20] or
of simulated lane change events [21], [22]. Simulators though
do not capture all the dynamics and variability of real-world
environments [4]. Some real-world studies of driver behavior
during lane changes have measured eye gaze by manually
reducing data [3], [4], [15], [23], [24]. By doing so, they can
ensure the reliability and accuracy of the eye-gaze data; these
studies have shown some promise of using eye gaze as a cue
for driver intent. There have also been real-world studies that
relied on automatically detecting eye gaze, but their results
were limited due to robustness issues, particularly with regard
to occlusions from sunglasses and harsh lighting conditions
[25]–[28]. Finally, there have been several studies that achieved
promising results using just head motion as a cue for behavior
prediction [1], [7], [8], [29].

As they involve testing more dangerous situations, we leave
the in-depth study of lane-change behaviors in the presence
of fatigue, distractions, and heavy traffic to future research;
here, we assume that they play no more than a minor role in
the process of changing lanes. To fully study the effects of
these variables, simulator studies could be developed. In the
following research, we investigate highway situations without
heavy traffic or abnormal fatigue levels and distractions, in the
interest of driver safety.

Henning et al. [30] examined the predictive power of
“glances to the left mirror” prior to lane changes. They found
that left mirror glances are a good predictor of intention to
change lanes but should be combined with other indicators to
reduce false alarms. The participants in the study were told
about the goals of the study, however, potentially changing
their behavior. In fact, the participants’ near-ubiquitous usage
of turn signals to indicate lane changes was significantly higher
than turn indicator usage from naturalistic studies of drivers’
lane-change behaviors [3]. As described here, the data used in
our study come from experiments in which drivers were not
told about the goals of the study, increasing the likelihood of
naturalistic behaviors.

Prior studies have suggested that head pose may be better
suited than eye gaze to infer lane-change intent [31] without
providing any statistical evidence. This work significantly ex-
pands upon the analysis and extends those preliminary results,
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including a larger sample size and quantified significance tests,
which finally allow concrete conclusions to be drawn. No other
study that quantifiably compares the predictive power of each
of these cues in determining a driver’s intention to change
lanes has been found. Additionally, we will propose a biological
explanation for why head pose consistently has more predictive
power than eye gaze earlier in time prior to a lane change.

B. Experimental Data Collection and Reduction

For this work, data were collected in a driving experiment
with an intelligent vehicle testbed outfitted with a number of
sensors detecting the environment, vehicle dynamics, and driver
behavior. These data are the same data used in the lane change
intent work by McCall et al. [1]. A lane-position detector and
controller area network (CAN) bus interface provided most of
the data related to the vehicle and surrounding environment.
The lane detector was a camera-based lane detector based
on the VioLET lane tracker [32], with the camera mounted on
the top right of the windshield.

The main driver-focused sensor was a rectilinear color cam-
era mounted above the radio facing toward the driver, providing
30 frame/s at 640 × 480 resolution. These data from this camera
were collected and postprocessed to extract behavioral cues
based on head pose and eye gaze, as described here.

The data set was collected from a naturalistic ethnographic
driving experiment in which the subjects were not told that the
objective was related to lane change situations. Eight drivers of
varying age, sex, and experience drove for several hours each
on a predetermined route. A total of 151 lane changes were
found on highway situations with minimal traffic at speeds in
the range of 55–75 mi/h. A total of 753 negative samples were
collected, corresponding to highway “lane-keeping” situations.

1) Head Dynamics: To be invariant to illumination changes
and independent of driver identity, head movement is estimated
using optical flow and block matching, as described here.

To capture the essence of the head motion, optical flow
vectors are calculated for each of the regions falling within
the detected face region, which is found using the Viola/Jones
face detector [33]. These vectors are calculated for each of the
frames within the window specified. The vectors are integrated
over time and are separate over space; the integrated values
are input as features to the classifier. In this manner, any sort
of rapid head movements will be captured, and the length of
time and extent to which the head moved left or right will
also be recorded. This methodology is based on that developed
by McCall et al. [1] and proves to be a robust estimator of
head motion. Other methods could also be used to estimate
and derive dynamical cues from the true pitch and yaw of the
driver’s head [9].

Fig. 1 shows the head motion of a driver plotted along with
the eye gaze patterns prior to lane changes. It can be seen
that the driver’s head motion increases before and during lane
change maneuvers.

2) Eye Gaze: Because of the nature of the camera posi-
tioning, which was placed to minimize occlusion and dis-
traction, automatic eye-gaze measurements were deemed too
cumbersome and unreliable to collect. The data came from

Fig. 1. Head motion and eye gaze positions prior to lane changes. (Black
line) Lane changes. (Red line) Magnitude of the eye gaze shift left or right.
(Blue line) Side-to-side head motion.

Fig. 2. (Top) Approximate distribution of eye-gaze location classifications for
labeling purposes. (Bottom) Samples from the data set showing corresponding
eye-gaze locations.

a monocular camera mounted near the radio controls at the
center of the dashboard looking at an angle toward the driver.
This angle was too obtuse for monocular eye gaze estimators
such as [34] to reliably work. In an ideal world, a properly
designed stereo or monocular eye-gaze system would provide
robust data. Therefore, to approximate the ideal case and retain
the best possible chance of getting reliable and accurate eye-
gaze estimates, the data were manually reduced. The procedure
followed was similar to those followed in the National Highway
Traffic Safety Administration (NHTSA) lane-change and work-
load experiments [3], [4] to produce output that a real-world
eye-gaze tracker would output in an optimal setting.

Nine different gaze locations were derived from the proce-
dure described in [4] as relevant to the task at hand: Looking
Straight, Glancing Left or Right, Looking at Dash or Rearview
Mirror, Looking at Left or Right Mirrors, and Looking Over
Left or Right Shoulders. Sample images from each of these
cases are shown in Fig. 2.

As described in Section III-A, data over a span of 1 s prior to
the decision time are input to the lane-change intent system.
The dynamics of the eye gaze over these time windows can
be seen in Table I and Fig. 3. Table I shows the average
amount of time spent looking in certain directions prior to
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TABLE I
GLANCE DURATIONS FOR 3.0- AND 2.0-s-AHEAD DECISION TIMES. NOTE THE LACK OF A PATTERN IN THE EYE GLANCES LEFT OR

RIGHT BEFORE LANE CHANGES, WHEREAS THE OVER-THE-SHOULDER LOOK IS MORE INDICATIVE OF A LANE CHANGE

Fig. 3. Eye-glance transition probabilities for lane-keeping and lane-change situations used in this study (brighter squares indicate greater likelihoods; black
indicates that no such data was found). During regular lane-keeping situations, the driver is likely to be looking straight; any other glances will also likely end up
looking straight. Prior to lane changes, it is much more likely for a left or right mirror glance to transition to a corresponding over-shoulder glance.

lane changes, compared with normal lane-keeping situations.
A significant difference is seen between lane change and lane-
keeping situations, particularly in mirror and over-the-shoulder
glances. Glance transition probabilities for each situation are
shown in Fig. 3. For each decision time, the eye-glance behavior
does not significantly change during lane-keeping situations, as
expected. However, prior to lane changes, it is much more likely
for mirror glances to end up in over-shoulder glances. Thus, to
robustly represent the eye gaze over this time period, several
different formats were input to the system, including raw eye-

gaze classifications and the histogram of glances over the time
window.

III. LANE-CHANGE INTENT PREDICTION

Driver intent inference is a challenging problem, given the
wide variety of potential behaviors and intents. To limit the
scope of the problem, we simply examine the driver’s intent
to change lanes at a particular time in the near future. We base
our experiments on the lane change intent system developed by
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McCall et al. [1], which was labeled “Driver Intent Inference
System (DIIS).” It is important to note that we are using this
system as a basis for our comparative study about various input
cues. There are a number of other works in this field [24],
[30], [35]–[37]; our current research will hopefully help inform
the future design of these and other intent predictors when
considering which inputs to include.

A. DIIS

The DIIS is a discriminative classifier for distinguishing
between two events, i.e., lane changing (either right or left) and
lane keeping. The following classes of variables are available
to the classifier: 1) vehicle state variables; 2) environment
variables; and 3) driver state variables.

Vehicle state variables include gas pedal position, brake
pedal depression, longitudinal acceleration, vehicle speed,
steering angle, yaw rate, and lateral acceleration; these are
derived from the vehicle’s CAN bus network and are henceforth
referred to as “Vehicle data.” Environment variables collected
include road curvature metric, heading, lateral lane position,
lateral lane position 10 m ahead, and lateral lane position 20 m
ahead and are referred to as “Lane data.” More information on
the process and methodology for acquiring the lane data is given
by McCall et al. [1]. Finally, driver state variables, including
the variables of particular interest in this work, i.e., head or
Head dynamics, and Eye-gaze measurements, are collected and
preprocessed, as previously described.

Each of these variables, as a time series, is windowed to
a length of 1 s prior to the chosen decision time. They are
then concatenated into a large feature vector, from which a
small subset of useful features should be chosen to determine
the intent. To find these important features and their relative
weightings, a relevance vector machine (RVM) is employed as
described here. This classifier outputs a class membership prob-
ability, which can then be thresholded to determine a true posi-
tive and false positive rate for the predicted lane-change intent.

B. RVM

The RVM classifier used to train the DIIS is based on
sparse Bayesian learning (SBL), which was developed by
Tipping [38], [39] and implemented in [1]. The algorithm
is a Bayesian counterpart to the popular support vector ma-
chines (SVMs); it is used to train a classifier that translates
a given feature vector into a class membership probabil-
ity. RVMs, in particular, use a parameterized prior to prune
large feature vectors and facilitate a sparse representation of
the data.

The basic form of the RVM classifier is given as follows:

y(x) =
M∑

i=1

wiK(x,xi) (1)

where x is the input feature vector, wi is the learned model
weight, and K(·, ·) is a kernel function. Output y(x) then
represents the probability that x belongs to a particular class.

For our purposes, the feature vector for each example xi

includes temporal blocks of each of the input cues previously
described. For example, at time t, the feature vector looks like

x(t) = [LateralPos(t), . . . , LateralPos(t − N + 1)
SteeringAngle(t), . . . , SteeringAngle(t − N + 1)
EyeHistogram(1), . . . , EyeHistogram(9); etc.] (2)

where N represents the number of past values of each variable
that have internally been stored; we selected N such that the
feature vector represented a 1-s-long sliding window of data.

A detailed description of the RVM algorithm can be found
in [38]; the specific algorithm used in these experiments is
described in more detail in [39]. The RVM has been shown to be
quite effective in predicting lane change intent [1]; thus, for our
comparative study, we have selected it as a baseline, although
other methods could be used.

Indeed, several advantages of this methodology motivate
the use of RVMs over other algorithms, such as SVMs and
hidden Markov models (HMMs). The RVM is designed to sift
through large feature sets and obtain a sparse representation
of the data, which is particularly useful in this application
in identifying a small set of useful features. Multimodal data
from various sets of sensors can thereby be easily combined,
with the discriminating cues from each modality automatically
chosen by the RVM. The resulting sparse representation allows
for quick computation and classification in real-time and real-
world conditions with limited hardware.

The SBL methodology is general enough to consider cases,
such as in our experiment, where there are relatively few
training examples, compared with the number of features. As
opposed to SVMs, RVMs also provide a theoretical framework
for determining class membership probabilities. This allows
the user to tune the decision boundary to achieve desired
performance in a principled manner. Finally, by including the
windowed time series of cues in the final feature vector and ap-
plying the kernel function, the RVM is capable of determining
nonlinear temporal relationships between features, eliminating
the need for HMMs.

IV. EXPERIMENTS AND ANALYSIS

In this section, we describe the analysis procedures and
results from our experiments.

To predict lane change intent, the classifier needs to be
trained for a particular decision time, with a given window
of data prior to that time. Based on the prior research and
the optimal results in [1], we decided to obtain results for
two decision times of 2 and 3 s prior to the lane change. By
detecting a lane change this far in advance, an ADAS would
be able to warn the driver in time for the driver to be able to
safely react [1], [21], [37]. In each case, data in a window of
1 s prior to that decision time were used to make the decision.
The data were formatted as previously described into a feature
vector.

To counter the effects of scale in feature selection, each
feature was renormalized to be of zero mean and unit variance,
where the mean and variance were estimated using the training
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TABLE II
TRUE POSITIVE AND FALSE POSITIVE RATES FOR A FIXED THRESHOLD

(T = 0) FOR THE 3-s-AHEAD DECISION TIME

data. The data were then sent through a radial basis function
kernel, as described in the SBL algorithm, with a kernel width
of 0.5.

Data were split into training and testing data sets, in a ratio of
80%–20% for a fivefold cross validation. Five such randomized
trials were conducted. Since the output of the classifier was a
class membership probability, the decision threshold was varied
across the range of probabilities to obtain a receiver operating
characteristic (ROC) curve for the set of trials.

To judge the relative effects of Head and Eye data, various
combinations of input features were tested, by including or
excluding some subset of Head, Eye, Lane, or Vehicle data from
the feature vector. The results of these comparative experiments
for the 3- and 2-s-ahead decision times are presented here.

The data for the 3-s-ahead decision time was collected in a
window between 4 and 3 s in advance of the lane change. As
can be seen in Table II and the comparison ROC curves using
different input cues in the top left of Fig. 4, we can make some
general observations. It turns out that “Eye” data basically has
no effect on the performance of the detector. In fact, the best
performance occurs by using “Lane & Vehicle & Head (LVH)”
data, with “Lane & Vehicle & Head & Eye (LVHE)” barely
below that. As discussed here, the reason for this dip may be
noisiness in the eye data particularly since people glance around
much more than they move their head. However, in all cases, the
performance of the 2.0-s detector is much better.

Data for the 2-s-ahead decision time were collected in a
window between 3 and 2 s in advance of the lane change. Once
again, the relative effects of Eye data are not great, as seen in
Table III and the right half of Fig. 4. We can note that adding
Head data to Lane & Vehicle improves performance better
than adding Eye data to Lane & Vehicle. However, the best
performance is achieved by using all four sources of data.

In this case, as opposed to the 3-s-ahead case, the addition of
eye data does improve the performance of the overall detector.
The improvement is slight but noticeable, whereas, in the
3-s-ahead data, the eye data had negligible effect. The progres-
sion of a lane change attempt could then be tipped off first
by head movements 3 s before the lane change; then, closer
to the 2-s-ahead threshold, eye-movement data would become
a useful additional input. This result is corroborated by the
statistical significance tests presented here.

1) Statistical Significance: This study is intended to build
upon the results of McCall et al. [1]; hence, the data used in
this study comprise the usable data obtained from that study, as

previously described. As this strategy involved a limited popu-
lation of eight drivers, it is important to determine the statistical
significance of the results before drawing conclusions.

To determine the statistical significance of the results, we
performed an analysis of variance (ANOVA). The data under
test are the intent prediction confidences, which were output
as the result of three different lane change intent classifiers.
For each driver, the output confidences for every lane change
example of that driver are averaged together. We compare this
sample population of average prediction confidences across
three different classifiers: 1) Lane & Vehicle & Eye (LVE);
2) LVH; and 3) LVHE. The analysis of the confidence outputs
allows judgment on whether the results were significantly dif-
ferent between the eye-gaze- and head-pose-based classifiers,
as well as when both cues are included.

Using this analysis, we can conclude, in a statistically signif-
icant way (p < 0.01), that, 3 s before a lane change, the head-
pose-based classifier is more confident than the eye-gaze-based
classifier. Table IV shows the p values for various pairs of one-
way ANOVA calculations. In the case of 3 s prior to the lane
change, both LVHE and LVH are significantly more confident
than LVE.

Two seconds prior to the lane change, the results are not as
significant, although the trend (p = .10) is similar. This might
indicate that the eye gaze cue provides better information about
upcoming lane change intentions closer to the actual event. The
head dynamics, however, seem to achieve a better result overall
and are certainly significantly better than eye dynamics at an
earlier point.

One may call into question the assumption under ANOVA
that the data are drawn from a Gaussian distribution. We
thus additionally employ a nonparametric test that requires no
assumptions about the distribution of the data. We present the
results of the paired two-sided WSR test in Table IV. The
resulting p values are more or less in line with the results of
the ANOVA test; therefore, we can reasonably draw similar
conclusions based on either of these tests.

Thus, while it may not seem to be a large population, the
conclusion may be drawn that the patterns are so consistent
and dramatic that the trends for the 3-s decision time are
statistically significant. We can reliably conclude based on the
ANOVA analysis that, for most drivers, head dynamics have
significantly more predictive power than eye dynamics 3 s prior
to an intended lane change.

A. Discussion

In some sense, it is surprising that the addition of head
dynamics by itself does as well as or better than eye gaze since
eye gaze would inherently seem to include the motion of the
head in its estimate. After observing the data, there seem to be
two major causes for the lack of influence held by the eye-gaze
data.

Closer analysis of the patterns of head movement and eye
gaze movement from Fig. 1 is shown in Fig. 5. Data suggest
that, in this movement pattern and in many others in the data
set, head motion actually starts before the eye-gaze movement.
In other words, the gaze shift began with an initial head
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Fig. 4. ROC comparing different input data, i.e., 3- and 2-s decision times. The figures represent the same data, comparing the output of the classifier using
various sets of inputs and times. The top figures show that the addition of Eye data to Lane & Vehicle improves performance but not as much as the addition of
Head data. When using all four sets of inputs, the results are more or less the same as those without Eye data. Similar patterns are seen between the (left) 3-s and
(right) 2-s decision times. All the data are shown for comparison in the bottom figures.

TABLE III
TRUE POSITIVE AND FALSE POSITIVE RATES FOR A FIXED THRESHOLD

(T = 0) FOR THE 2-s-AHEAD DECISION TIME

motion; then, the eye shift followed later. This behavior may
seem counterintuitive; however, such a pattern turns out to be
consistent with a specific biological model of attention shifts.

According to an experimental study analyzing the relation-
ship between eye and head movements by Zangemeister and
Stark [40], such early head movement with respect to the overall
gaze shift occurred mainly in gaze shifts of large amplitude,
gaze shifts with predictable targets, and/or very rapid shifts.

TABLE IV
STATISTICAL SIGNIFICANCE TESTS (ONE-WAY ANOVA). A p VALUE OF

LESS THAN 0.05 INDICATES THAT THE TWO POPULATIONS UNDER TEST

HAVE SIGNIFICANTLY DIFFERENT MEANS. VARIOUS COMBINATIONS OF

LANE (L), VEHICLE (V), HEAD (H), AND EYE (E) CUES ARE COMPARED

AGAINST EACH OTHER. ΔIPC − Means SHOWS THE DIFFERENCE

BETWEEN THE AVERAGES OF EACH GROUP’S INTENT PREDICTION

CONFIDENCES. p VALUES FROM ANOVA AND THE WILCOXON SIGNED

RANK (WSR) TEST ARE SHOWN

The study identified various other models of eye–head move-
ment, including early eye movements in situations with small
amplitude shifts or unknown target location.
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Fig. 5. Head motion and eye-gaze positions prior to a lane change. (Black line) Lane change. (Red line) Magnitude of the eye gaze shift left or right. (Blue line)
Side-to-side head motion. The driver’s image from various points is shown at the corresponding time. Note that the slight head motion visibly starts before the
eye-gaze shift occurs.

The task-oriented gaze shift associated with lane change
glances certainly falls into the former category, where the driver
has a premeditated gaze target and thus prepares the gaze
shift with a preliminary head movement. By capturing this
movement, we can predict the intention of the driver earlier than
if we wait for the eye-gaze shift.

This leads us to the conclusion that, in situations where there
are tasks requiring large gaze shifts to predetermined locations
prior to the execution of the task, head motion can be used to
predict the onset of the gaze shift earlier than eye motion can.
The data previously presented indeed support this; head motion
is shown to have significantly more predictive power than eye
gaze 3 s prior to the task, but the difference is not as significant
2 s prior to the task.

A secondary factor in the performance of the eye gaze data is
that the amount of eye movement also varies between drivers,
whereas head motion may be more consistent. With a limited
data set, it is difficult to train a classifier to adapt to each driver’s
own style of eye glancing prior to lane changes. Head pose
movements, however, occur in a more telling manner across
the population; this pattern extends from the general results of
Bhise et al. [16]. This property makes head dynamics a more
reliable metric for inferring driver intent.

The NHTSA Lane Change Study [3] and the Intelligent Vehi-
cle Highway System review [41] both led to the hypothesis that
measuring head dynamics may be enough to detect distinctive

behavioral cues prior to a lane change. Having confirmed that
hypothesis, it can be argued that the relative ease of capturing
head motion information, compared with eye gaze in vehicles,
outweighs the advantages of adding eye data to head, lane, and
vehicle data. Given the choice between the two cues, head pose
can be considered as a better and earlier indicator to use for
lane-change intent inference.

Eye gaze may still be useful, however, for driver workload
and distraction studies. For intent analysis, behavioral infor-
mation derived from head motion is more important than eye-
gaze data, and robust systems may be designed using just
measurements of driver head dynamics, along with lane and
vehicle data.

V. CONCLUDING REMARKS

We have presented a comparative study of the influence of
eye gaze and head movement dynamics on driver behavior and
intent prediction with respect to lane change maneuvers. Intent
prediction has been carried out using a discriminative classifier
based on SBL, where various combinations of features were
used to train a classifier, given labeled naturalistic driving data.
We have found that, in general, eye gaze was significantly not
as informative as head motion (p < 0.01) in helping determine
the correct prediction of whether a driver would change lanes
3 s prior to the lane change. Head motion, together with lane
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and vehicle data, serves as a very good indicator of lane-change
intent, and we have discussed a biological reason why head
pose is actually an earlier indicator than eye gaze.

With the design of simple robust intelligent driver assistance
systems in mind, we have thus attempted to determine the im-
portant driver cues for distinguishing driver intent. The addition
of eye gaze is relatively cumbersome and potentially unreliable
in harsh conditions and does not improve performance as early
nor as robustly as do simpler head dynamics cues.

Future studies could further examine the effects of dis-
tractions and fatigue on these behavioral cues prior to lane
change events, potentially in a driving simulator or controlled
environment [45], along with the effects of external vehicles on
the driver’s motivations to change lanes [46].
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