
CRYPTON : A New 128-bit Block Cipher{ Speci�cation and Analysis {Chae Hoon LimInformation and Communications Research CenterFuture Systems, Inc.372-2, Yang Jae-Dong, Seo Cho-Gu, Seoul, 137-130, KoreaTel: +82-2-578-0581, Fax: +82-2-578-0584chlim@future.co.kr, http://crypt.future.co.kr/ chlimAbstractA new 128-bit block cipher called CRYPTON is proposed as a candidate algorithm for theAdvanced Encryption Standard (AES). The cipher encrypts/decrypts a 128-bit data block with avariable-length key up to 256 bits (with increment by a multiple of 32 bits) by iterating a fully par-allelizable round function 12 times. The decryption process can be made identical to the encryptionprocess by applying di�erent round keys generated by di�erent key schedules. CRYPTON is designedto make full use of increasing software/hardware parallelisms in today's microprocessor designs. Ituses only very simple operations, such as logical ANDs, ORs, XORs, Shifts and table lookups. Fur-thermore, the two 8 � 8 S-boxes were carefully chosen by taking into account hardware e�ciency.As a result, CRYPTON can achieve very high performances in various platforms, such as softwareimplementations on 8-bit, 16-bit, 32-bit and 64-bit microprocessors and a dedicated hardware imple-mentation. Our C language implementation could achieve the speed of about 6.4 Mbytes/sec on a200 MHz Pentium Pro PC, running Windows 95. Key scheduling is also very simple and takes lesstime than encrypting one 128-bit data block. Based on our preliminary analysis we conjecture thatthere is no known attack on the 12-round CRYPTON faster than exhaustive key search. For example,di�erential and linear cryptanalysis can be shown to require more ciphertexts than available. Thispaper present various aspects on the design, analysis and implementation of CRYPTON.
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1 IntroductionMost block ciphers have been designed based on the Feistel structure, e.g., DES, LOKI, Blow�sh, CAST,etc. In these Feistel-type ciphers, the plaintext is divided into two equal sub-blocks, and in each round onesub-block is transformed by some nonlinear function and then exclusive-ored with the other sub-block.Such round function is repeated su�ciently many times to achieve adequate security.On the other hand, some other block ciphers were designed using round functions allowing parallelnonlinear processing on the whole data block. For example, the ciphers IDEA, SAFER, 3-Way, SHARKand SQUARE belong to this category. The advantage of this approach is that the resulting cipheris highly parallelizable and easy to analyze the security against di�erential and linear cryptanalysis.Parallelizability is of great importance for maximizing speed, since most modern processors are supportingmore and more parallelisms in software and/or hardware.The block cipher CRYPTON is designed based on the latter approach. In fact, its design is muchinuenced by SQUARE. CRYPTON processes each data block by representing it into a 4� 4 byte arrayas in SQUARE. The round transformation of CRYPTON consists of four parallelizable steps: byte-wisesubstitutions, column-wise bit permutation, column-to-row transposition, and then key addition. Theencryption process invloves 12 repetitions of (essentially) the same round transformation. The decryptionprocess can be made the same as the encryption process, except that di�erent subkeys are applied ineach round. Figure 1 shows the high level structure of CRYPTON.
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Figure 1: The structure of CRYPTONThe block cipher CRYPTON has the following features:� 12-round self-reciprocal cipher with block length of 128 bits.� Key lengths supported: 64 + 32k (0 � k � 6) bits (may allow any number of key length up to 256bits).� Identical process for encryption and decryption (with di�erent subkeys).� Strong security against existing attacks: e.g, di�erential and linear cryptanalysis require moreciphertexts than available.� High parallelism for fast implementation in both software and hardware.� Tradeo�s between speed and memory: Standard software implementation of CRYPTON requires512 bytes of storage for two 8 � 8 substitution boxes (S-boxes for short) and thus well suitedto the environment with limited computing resources, such as smart cards and other portabledevices. Using 4 Kbytes of memory, the speed can be substantially increased. In the case of VLSI1



implementation, the S-boxes can be e�ciently implemented using a relatively small number of nandgates.� Ease of implementation in various platforms: easy to implement on 8-bit, 16-bit or 32-bit processors,also very e�cient for hardware implementation.We believe that CRYPTON meets all the requirements for the Advanced Encryption Standard (AES).In this paper we present a complete speci�cation of the proposed cipher CRYPTON and our prelim-inary analysis for its security and e�ciency.2 Algorithm Speci�cation2.1 Symbols and NotationThroughout this paper we will use the following symbols and notation:� We use the term `word' to denote a 32-bit number (note however that DWORD is used in C sourcecode). A number is usually represented in hexadecimal (with pre�x `0x').� We follow the little endian convention for byte ordering in char string $ word conversion. That is,the �rst character is always placed in the least signi�cant position.� We write A = (A[3]; A[2]; A[1]; A[0])t when the data variable A represent a 4� 4 byte array, whereA[i] (0 � i � 3) is a 4-byte word represented by A[i] = ai3 k ai2 k ai1 k ai0. Here k denoteconcatenation of two bit strings and the superscript t in a vector or array denotes transposition.� ROL(x; n) denotes left-rotation of integer x by n-bit positions. We also use the notation x�ninterchangeably, whenever convenient.� f � g denotes composition of functions f and g, i.e., (f � g)(x) = f(g(x)).� ^;_;�: bit-wise logical operations for AND, OR and XOR (exclusive-or), respectively.� x denotes the bit-wise complement of x.2.2 Basic Building Blocks2.2.1 Nonlinear Substitution CRYPTON uses two 8 � 8 S-boxes, S0 and S1, for a nonlinear transformation. The two S-boxes wereconstructed from three 4�4 S-boxes using a 3-round Feistel structure so that S0(S1(x)) = S1(S0(x)) = xfor any 8-bit number x. The construction and property of these S-boxes will be described in more detailin Sect.3.1.The S-box transformation  consists of byte-wise substitutions on a 4� 4 byte array (see Figure 2).Two di�erent transformations are used alternatively in successive rounds: o in odd rounds and e ineven rounds.� S-box transformation o for odd rounds (i.e., rounds 1, 3, etc.): B = o(A) de�ned byB[0] S1(a03) k S0(a02) k S1(a01) k S0(a00),B[1] S0(a13) k S1(a12) k S0(a11) k S1(a10),B[2] S1(a23) k S0(a22) k S1(a21) k S0(a20),B[3] S0(a33) k S1(a32) k S0(a31) k S1(a30).� S-box transformation e for even rounds (i.e., rounds 2, 4, etc.): B = e(A) de�ned byB[0] S0(a03) k S1(a02) k S0(a01) k S1(a00),B[1] S1(a13) k S0(a12) k S1(a11) k S0(a10),B[2] S0(a23) k S1(a22) k S0(a21) k S1(a20),B[3] S1(a33) k S0(a32) k S1(a31) k S0(a30).2



Note that two S-boxes are arranged so that o(e(A)) = o(e(A)) = A for any 4 � 4 byte array A.This property will be used to derive the identical process for encryption and decryption.A[0] a03 a02 a01 a00 B[0] S1(a03) S0(a02) S1(a01) S0(a00)A[1] a13 a12 a11 a10 o B[1] S0(a13) S1(a12) S0(a11) S1(a10)A[2] a23 a22 a21 a20 =) B[2] S1(a23) S0(a22) S1(a21) S0(a20)A[3] a33 a32 a31 a30 B[3] S0(a33) S1(a32) S0(a31) S1(a30)A[0] a03 a02 a01 a00 B[0] S0(a03) S1(a02) S0(a01) S1(a00)A[1] a13 a12 a11 a10 e B[1] S1(a13) S0(a12) S1(a11) S0(a10)A[2] a23 a22 a21 a20 =) B[2] S0(a23) S1(a22) S0(a21) S1(a20)A[3] a33 a32 a31 a30 B[3] S1(a33) S0(a32) S1(a31) S0(a30)Figure 2: The S-box transformation 2.2.2 Linear Transformations � and �As linear transformations, CRYPTON uses a bit-wise permutation and a byte-wise transposition insequence. The bit permutation � mixes four bytes in each byte column of a 4�4 byte array and the bytetransposition � transposes the resulting byte columns into byte rows.For bit-extraction we de�ne the four masking words (M3;M2;M1;M0) asM0 = m3km2km1km0 = 0x3fcff3fc;M1 = m0km3km2km1 = 0xfc3fcff3;M2 = m1km0km3km2 = 0xf3fc3fcf;M3 = m2km1km0km3 = 0xcff3fc3f;where m0 = 0xfc;m1 = 0xf3;m2 = 0xcf;m3 = 0x3f. We will use two versions of � to make theencryption and decryption processes identical: �o is used in odd rounds and �e is used in even rounds.They are de�ned as follows:� Bit permutation �o for odd rounds: B = �o(A) de�ned byB[0] (A[0] ^M0)� (A[1] ^M1)� (A[2] ^M2)� (A[3] ^M3),B[1] (A[0] ^M1)� (A[1] ^M2)� (A[2] ^M3)� (A[3] ^M0),B[2] (A[0] ^M2)� (A[1] ^M3)� (A[2] ^M0)� (A[3] ^M1),B[3] (A[0] ^M3)� (A[1] ^M0)� (A[2] ^M1)� (A[3] ^M2).� Bit permutation �e for even rounds: B = �e(A) de�ned byB[0] (A[0] ^M1)� (A[1] ^M2)� (A[2] ^M3)� (A[3] ^M0),B[1] (A[0] ^M2)� (A[1] ^M3)� (A[2] ^M0)� (A[3] ^M1),B[2] (A[0] ^M3)� (A[1] ^M0)� (A[2] ^M1)� (A[3] ^M2),B[3] (A[0] ^M0)� (A[1] ^M1)� (A[2] ^M2)� (A[3] ^M3).Note that �o and �e can be implemented by the same function as follows:�e((A[3]; A[2]; A[1]; A[0])t) = �o((A[2]; A[1]; A[0]; A[3])t):The bit permutation � may be viewed as consisting of two steps: Each byte column is rearranged insuch a way that each byte in the same byte column contributes two bits to each new byte and then themod-2 sum of the four input bytes is exclusive-ored with each new byte to form the �nal output byte.3



For example, the expression for �o can be rewritten as follows (see also Figure 3 for graphical view of �o,where addition of T is omitted.):T = A[0]�A[1]�A[2]�A[3];B[0]  (A[0] ^MI0)� (A[1]^MI1)� (A[2] ^MI2)� (A[3] ^MI3)� T;B[1]  (A[0] ^MI1)� (A[1]^MI2)� (A[2] ^MI3)� (A[3] ^MI0)� T;B[2]  (A[0] ^MI2)� (A[1]^MI3)� (A[2] ^MI0)� (A[3] ^MI1)� T;B[3]  (A[0] ^MI3)� (A[1]^MI0)� (A[2] ^MI1)� (A[3] ^MI2)� T;where MIi is the bit-wise complement of Mi, i.e.,MI0 = 0xc0300c03 = 11000000 00110000 00001100 00000011(2);MI1 = 0x03c0300c = 00000011 11000000 00110000 00001100(2);MI2 = 0x0c03c030 = 00001100 00000011 11000000 00110000(2);MI3 = 0x300c03c0 = 00110000 00001100 00000011 11000000(2):
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B[3]Figure 3: The bit permutation �o (adding exclusive-or sum omitted)As shown above, the bit permutation �o (�e, resp.) consists of column-wise permutations. Let Ai bethe i-th byte column of A, i.e., Ai = (a3i; a2i; a1i; a0i)t. And Let �i be the bit permutation of the i-thcolumn induced by �. Then we can rewrite �o and �e as�o(A) = (�3(A3); �2(A2); �1(A1); �0(A0))t;�e(A) = (�0(A3); �3(A2); �2(A1); �1(A0))t:The component column-permutation �i can be easily derived from the description of �. For example,B0 = �0(A0) is given byb00  (a00 ^m0)� (a10 ^m1)� (a20 ^m2)� (a30 ^m3);b10  (a00 ^m1)� (a10 ^m2)� (a20 ^m3)� (a30 ^m0);b20  (a00 ^m2)� (a10 ^m3)� (a20 ^m0)� (a30 ^m1);b30  (a00 ^m3)� (a10 ^m0)� (a20 ^m1)� (a30 ^m2):It is also easy to see that if �0([d; c; b; a]t) = [h; g; f; e]t, then�1([d; c; b; a]t) = [e; h; g; f ]t;�2([d; c; b; a]t) = [f; e; h; g]t;�3([d; c; b; a]t) = [g; f; e; h]t:The byte transposition � simply rearranges a 4 � 4 byte array by moving the byte at the (i; j)-thposition to the (j; i)-th position. 4



� Byte transposition � : B = �(A), where bij = aji. That is,B[0] a30 k a20 k a10 k a00,B[1] a31 k a21 k a11 k a01,B[2] a32 k a22 k a12 k a02,B[3] a33 k a23 k a13 k a03.A[0] a03 a02 a01 a00 B[0] a30 a20 a10 a00A[1] a13 a12 a11 a10 � B[1] a31 a21 a11 a01A[2] a23 a22 a21 a20 =) B[2] a32 a22 a12 a02A[3] a33 a32 a31 a30 B[3] a33 a23 a13 a33Figure 4: The byte transposition �2.2.3 Key Addition �Key mixing is performed by simply exclusive-oring round keys with data words as follows:� Key addition �K : B = �K(A) is de�ned byB[0] A[0]�K[0],B[1] A[1]�K[1],B[2] A[2]�K[2],B[3] A[3]�K[3].2.2.4 Round Transformation �One round of CRYPTON consists of applying in sequence S-box transformation, bit permutation, bytetransposition and key addition. That is, the encryption round functions used for odd and even rounds(the round number is denoted by r) are de�ned by�oK(A) = (�K � � � �o � o)(A) for r = 1; 3; � � � etc.;�eK(A) = (�K � � � �e � e)(A) for r = 2; 4; � � � etc.;where K = (K[3];K[2];K[1];K[0])t is a 4-word round key and A = (A[3]; A[2]; A[1]; A[0])t is a 4-wordinput data (both key and data are regarded as 4� 4 byte arrays).Notice the inverse relations of each component functions. All component functions except for o ande are involutions. That is, �1o = e (�1e = o), ��1o = �o (��1e = �e), ��1 = � and ��1K = �K .Therefore, the decryption round transformation is given by��1oK(A) = (e � �o � � � �K)(A);��1eK(A) = (o � �e � � � �K)(A):With this decryption round we can decrypt the ciphertext by applying encryption round keys in reverseorder. However, it would be better to be able to decrypt ciphertexts by using the same encryption process.This is possible in CRYPTON, as can be seen below. Of course, for this we have to generate decryptionround keys using a di�erent key schedule.2.3 Encryption and DecryptionLet Kie be the i-th encryption round key consisting of 4 words, derived from a user-supplied key K usingthe encryption key schedule described later. The encryption transformation EK of r-round CRYPTON5



under key K consists of an initial key addition and r=2 times repetitions of �o and �e and then a �naloutput transformation (we assume r is even). EK can be described asEK = �e � �eKre � �oKr�1e � � � � � �eK2e � �oK1e � �K0e ; (1)where �e is the output transformation to make the encryption and decryption processes identical and isgiven by �e = � � �e � �:Similarly we de�ne �o as �o = � ��o � � . The corresponding decryption transformation DK can be shownto have the same form as EK , except for using suitably transformed round keys:DK = �e � �eKrd � �oKr�1d � � � � � �eK2d � �oK1d � �K0d ; (2)where the decryption round keys are de�ned byKr�id = � �e(Kie) for i = 0; 2; 4; � � �;�o(Kie) for i = 1; 3; 5; � � �: (3)This shows that encryption and decryption can be performed by the same code (logic) if di�erent roundkeys are applied.Notice that �e � �Kie = ��e(Kie) � �e = �Kr�id � �e for i = 0; 2; 4; � � �;�o � �Kie = ��o(Kie) � �0 = �Kr�id � �o for i = 1; 3; 5; � � �:Using this property, we can incorporate the output transformation �e into the �nal round as follows:�e � �eKre = �e � �Kre � � � �e � e= �K0d � �e � � � �e � e= �K0d � � � e:Also note that � �  =  � � .We next explain how the decryption process is derived. For simplicity, we consider a 2-round versionof CRYPTON (r = 2). The encryption process of this two round version can be rewritten as:EK = �e � �eK2e � �oK1e � �K0e= �e � (�e � �K0d � �e � � � �e � e) � (�o � �K1d � �o � � � �o � o) � �K0e= (�K0d � � � e) � (�o � �K1d � � � o) � �K0e= �K0d � (e � �o � � � �K1d ) � (o � � � �K0e )= �K0d � (�K1d � � � �o � o)�1 � (�K0e � � � e)�1= (�K0d)�1 � (�oK1d)�1 � (�e � �eK2d )�1:Therefore, the decryption process of the reduced version is given byDK = E�1K = �e � �eK2d � �oK1d � �K0d :Thus we have shown that the decryption process can be the same as the encryption process, except that�-transformed round keys are applied in reverse order.2.4 Key SchedulingThe purpose of key scheduling is to securely generate from a given short secret key as many subkeys asneeded during the encryption/decryption process. R-round CRYPTON requires total 4� (r + 1) roundkeys of 32 bits. These round keys are generated from a user key of 64 + 32k(k = 0; 1; � � � ; 6) bits in twosteps (we just restricted the key length to a multiple of 32 bits to avoid the inconvenience of handing the6



key in bits or bytes): �rst nonlinear-transform the user key into 8 expanded keys and then generate therequired number of round keys from these expanded keys using simple linear operations. This two-stepgeneration of round keys may be advantageous in case where storage requirements do not allow to storethe whole round keys (e.g., implementation in a portable device with restricted resources). In such acircumstance, we may store only the 8 expanded keys and generate the round keys from these expandedkeys each time of encryption/decryption.Generation of Expanded Keys1. Let K = ku�1 � � � k1k0 be the user key of u bytes (u = 8+4i, i = 0; 1; � � � ; 6). prepend (left-extend)as many zeros as needed to make K to 256 bits.2. convert the resulting user key into 8 32-bit words U [i](0 � i � 7): U [i] = k4i+3k4i+2k4i+1k4i.3. compute 8 expanded keys Ee[i] using the basic transformations described before as follows:(Ve[3]; Ve[2]; Ve[1]; Ve[0])t = (� � o � �P � �o)((U [6]; U [4]; U [2]; U [0])t);(Ve[7]; Ve[6]; Ve[5]; Ve[4])t = (� � e � �Q � �e)((U [7]; U [5]; U [3]; U [1])t);T0 = Ve[0]� Ve[1]� Ve[2]� Ve[3];T1 = Ve[4]� Ve[5]� Ve[6]� Ve[7];Ee[i] = Ve[i]� T1 for i = 0; 1; 2; 3;Ee[i] = Ve[i]� T0 for i = 4; 5; 6; 7;where P = (P3; P2; P1; P0)t and Q = (Q3;Q2;Q1;Q0)t are constants given byP0 = 0xbb67ae85 P1 = 0x3c6ef372 P2 = 0xa54ff53a P3 = 0x510e527fQ0 = 0x9b05688c Q1 = 0x1f83d9ab Q2 = 0x5be0cd19 Q3 = 0xcbbb9d5dThese constants were obtained from the fractional parts of the �rst 8 odd primes, e.g., P0 is theinteger part of 232(p3� 1) and Q7 is the integer part of 232(p23� 4).Generation of encryption round keys1. Let Kie = (Ke[4i+3];Ke[4i+2];Ke[4i+1];Ke[4i])t be the i-th round keys (the initial key additionstep is considered as the 0-th round). Set the �rst 4 expanded keys toK0e and the second 4 expandedkeys to K1e .2. The round keys K2i+2e (K2i+3e , resp.) for i � 0 are successively derived from the round keys K2ie(K2i+1e , resp.) by constant additions and rotations. More speci�cally, two of the 4 round keys inK2ie are updated to the corresponding two keys in K2i+2e by left-rotation by some multiples of 8 andthe remaining two keys by constant addition. Table 1 shows the rotation amounts and constantsused in successive evolutions. The constants RCi's are de�ne byRC0 = 0x01010101 RC1 = 0x02020202 RC2 = 0x04040404RC3 = 0x08080808 RC4 = 0x10101010 RC5 = 0x20202020 :For example, the evolution of K0e to K2e is:Ke[8] = ROL(Ke[0]; 8);Ke[9] = RC0 �Ke[1];Ke[10] = ROL(Ke[2]; 16);Ke[11] = RC0 �Ke[3];where ROL(X;n) denotes left rotation of X by n-bit positions.7



K2ie ! K2i+2e K2i+1e ! K2i+3ei 3 2 1 0 3 2 1 00 RC0 16 RC0 8 24 RC0 16 RC01 8 RC1 24 RC1 RC1 16 RC1 82 RC2 24 RC2 16 8 RC2 24 RC23 16 RC3 8 RC3 RC3 24 RC3 164 RC4 8 RC4 24 16 RC4 8 RC45 24 RC5 16 RC5Table 1: Rotation amounts and constants for updating encryption round keysTable 11 in Appendix A shows the encryption round keys expressed in terms of expanded keys. Thistable will be useful for key schedule cryptanalysis.Let Kid = (Kd[4i+3];Kd[4i+2];Kd[4i+1];Kd[4i])t be the i-th round decryption keys. The decryptionround keys may be derived from encryption round keys by component-wise transformations under �e /�o, as mentioned in the previous section (see eq. 3). However, using some properties of �, we can derivea more e�cient version of decryption key schedule.First observe that the transformations �o = � � �o � � and �e = � � �e � � are actually row-wise bitpermutations and can be rewritten as�o(A) = (�3(A[3]); �2(A[2]); �1(A[1]); �0(A[0]))t;�e(A) = (�0(A[3]; �3(A[2]); �2(A[1]); �1(A[0]))t;where the component transformation �i is actually the same as �i, except that 4 input bytes are nowarranged in row vector (see Sect.2.2.2). Also note the shift property of �i�i(ROL(X; 8k)) = ROL(�i(X); 32� 8k) for k = 1; 2; 3;�i(X) = ROL(�j(X); 8) for j = i+ 1 mod 4;and the linear property under exclusive-oring�i(A[j]�C) = �i(A[j])� �i(C):In particular, �i(C) = C if C consists of 4 identical bytes.Generation of decryption round keys1. compute the expanded key Ed for decryption using �o / �e as follows:fEd[3]; Ed[2]; Ed[1]; Ed[0]g = f�0(Ke[51]); �3(Ke[50]); �2(Ke[49]); �1(Ke[48])g;fEd[7]; Ed[6]; Ed[5]; Ed[4]g = f�3(Ke[47]); �2(Ke[46]); �1(Ke[45]); �0(Ke[44])g:Since Ke[j]'s can be expressed in terms of Ee[i]'s (see Table 11 in Appendix A), one can transformEe into Ed using the shift and linear properties of �i as follows:Ed[0] = �3(Ee[0])�RC1 �RC3 �RC5;Ed[1] = �0(Ee[1])�RC0 �RC2 �RC4;Ed[2] = �1(Ee[2])�RC1 �RC3 �RC5;Ed[3] = �2(Ee[3])�RC0 �RC2 �RC4;Ed[4] = �3(Ee[4])�RC0 �RC2 �RC4;Ed[5] = �3(Ee[5])�RC1 �RC3;Ed[6] = �3(Ee[6])�RC0 �RC2 �RC4;Ed[7] = �1(Ee[7])�RC1 �RC3:2. Set the �rst 4 expanded keys to K0d and the second 4 expanded keys to K1d . Then, derive thedecryption round keys Kid = fKd[4i+3];Kd[4i+2];Kd[4i+1];Kd[4i]g (i = 0; 1; � � � ; 12) successively,as in the encryption key schedule, using the constants and rotation amounts shown in Table 2.Table 12 in Appendix A shows how the decryption round keys can be expressed in terms of expandedkeys. 8



K2id ! K2i+2d K2i+1d ! K2i+3di 3 2 1 0 3 2 1 00 24 RC5 16 RC5 16 RC4 8 RC41 RC4 8 RC4 24 RC3 24 RC3 162 16 RC3 8 RC3 8 RC2 24 RC23 RC2 24 RC2 16 RC1 16 RC1 84 8 RC1 24 RC1 24 RC0 16 RC05 RC0 16 RC0 8Table 2: Rotation amounts and constants for updating decryption round keys3 Security AnalysisWe �rst investigate the di�usion property of linear transformations and the di�erential and linear charac-teristics of S-boxes together with their construction method. We then analyze the security of CRYPTONagainst various possible attacks.3.1 Di�usion Property of Linear TransformationsDue to memory requirements, small size S-boxes are commonly used in most block cipher designs andthus the di�usion of S-box outputs by linear transformations plays a great role in providing resistanceagainst various attacks such as the di�erential and linear attacks.From Sect.2.2.2, we can see that it su�ces to consider any one component transformation �i of � toexamine the di�usion property of �, since � acts on each byte column independently. Consider �0, forexample. It is easy to see that any column vector with n (n < 4) nonzero bytes is transformed by �0 intoa column vector with at least 4�n nonzero bytes (this number 4 is called a di�usion order). This is dueto the operation of exclusive-or sum in �. More important is that the number of such input vectors givingminimal di�usion is very limited. This is due to the masked bit permutation. Exhaustive search showsthat there are only 204 values among 232 possible values that achieve the minimum di�usion order 4.Furthermore, the nonzero bytes in input vector should have the same value to achieve minimal di�usion(see Tables 13 - 15 in Appendix B).Input: (d; c; b; a)t Round Possible valuesClass Type 1 2 3 4 5 6 7 8 of x; y (in hexa)Class 1 (0;0; 0; x)(0;0; x; 0) 1 3 9 3 1 3 9 3(0; x; 0; 0) x :(x;0; 0; 0) 01,02,03; 04,08,0cClass 2 (0; 0; x; x) 10,20,30; 40,80,c0(0; x; x; 0)(x; x; 0; 0) y :(x; 0; 0; x) 2 2 6 6 2 2 6 6 01,02,03; 04,08,0c(0; y; 0; y) 10,20,30; 40,80,c0(y;0; y;0) 11,12,13; 21,22,23Class 3 (x;x; x; 0) 31,32,33; 44,48,4c(x;x; 0; x) 3 1 3 9 3 1 3 9 84,88,8c; c4,c8,cc(x;0; x; x)(0; x; x; x)Table 3: Number of nonzero bytes in S-box inputs in each roundLet us examine the di�usion e�ect of � through consecutive rounds. This analysis can be done byassuming that in each round the S-box output can take any desired value, irrespective of the input value.This assumption is to take into account the probabilistic nature of S-box transformation combined withunknown round keys. Since it su�ces to consider worst-case propagations, we only examine the inputswith 1, 2, or 3 nonzero bytes in any one byte column, say the �rst byte column (see Appendix B). Theseinput values can be divided into 3 classes as shown in Table 3. The sum of the number of nonzerobytes throughout the evolution is of great importance to ensure resistance against di�erential and linear9



cryptanalysis. Table 3 shows that the number of nonzero bytes per round is repeated with period 4 andtheir sum up to 8 rounds is at least 32.3.2 S-boxes Construction and their PropertyThe S-boxes for a block cipher should be chosen to have two important requirements: di�erential unifor-mity and nonlinearity. Combined with the di�usion e�ect of linear transformations used, they directlya�ect the security of the block cipher against di�erential and linear cryptanalysis (DC and LC, for short)[1, 15].Following the formalization by Matsui [16], we de�ne the di�erential and linear approximation prob-abilities of an S-box S (DPS and LPS for short) as follows. Let X and Y be a set of possible 2ninputs/outputs of S, respectively. Then, DPS and LPS , respectively, are de�ned byDPS def= max�x6=0;�y #fx 2 XjS(x)� S(x��x) = �yg2n ; (4)LPS def= max�x;�y 6=0�#fx 2 Xjx � �x = S(x) � �yg � 2n�12n�1 �2 ; (5)where a � b denotes the parity of bit-wise product of a and b.The nonlinear transformation adopted in CRYPTON is byte-wise substitution using two 8�8 S-boxes,S0 and S1. We �rst constructed an S-box S0 from three 4� 4 S-boxes, P0; P1; P2, using a 3-round Feistelcipher. That is, y = S0(x) is obtained byxlkxr = x; where jxrj = jxlj = 4;yr = xr � P1(xl � P0(xr));yl = xl � P0(xr)� P2(yr);y = ylkyr:Then the S-box S1 is derived from S0 as (see Figure 5) S1(x) = S0(x)�1 for x = 0; 1; � � � ; 255. Thistechnique to generate a larger S-box from smaller S-boxes was �rst introduced in MISTY [17] and alsoused in CS-cipher [21]. According to Nyberg and Knudsen [19], the S-boxes constructed as above willhave DPSi � 2p2 (LPSi � 2p2, resp.) if each Pi is bijective with DPPi � p (DPPi � p, resp.).
P0
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S0 S1Figure 5: Construction of 8� 8 S-boxes S0 and S1 from 4� 4 S-boxes Pj (j = 0; 1; 2)The 4 � 4 S-boxes shown in Table 4 were found in some restricted search space of 4-bit functionsaccording to the following criteria:� The S-boxes should have good di�erential and linear characteristics. More speci�cally, DPPi =LPPi � 2�2. Furthermore, the number of di�erence pairs (selection patterns, resp.) with the bestdi�erential (linear approximation, resp.) probability in the resulting 8 � 8 S-boxes should be assmall as possible when the input is restricted to the minimal di�usion set under � (see Table 3).10



� The S-boxes P0 and P2 need not be one-to-one mappings. However, P1 should be one-to-one for Si'sconstructed from Pi's to achieve good di�erential and linear characteristics. We further requiredP1 to satisfy the strict avalanche criterion (SAC).� The S-boxes should be implemented in hardware using as small gates as possible. The algebraicdegree of the component functions for P0 and P2 is restricted to two and that for P1 to three forhardware e�ciency. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P0 15 9 6 8 9 9 4 12 6 2 6 10 1 3 5 15P1 10 15 4 7 5 2 14 6 9 3 12 8 13 1 11 0P2 0 4 8 4 2 15 8 13 1 1 15 7 2 11 14 15Table 4: 4� 4 S-boxes P0; P1 and P2P0 y0 = (x2 ^ x3) _ (x1 ^ x3)y1 = (x0 ^ x3) _ (x0 ^ x2)y2 = (x1 ^ x2) _ (x0 ^ x2)y3 = (x0 ^ x1) _ (x1 ^ x3)P1 y0 = (x3 ^ (x1 _ (x0 ^ x2))) _ ((x0 ^ x2) ^ ((x0 ^ x1) _ (x2 ^ x3)))y1 = (x0 ^ (x3 _ (x1 ^ x2))) _ ((x1 ^ x2) ^ ((x0 ^ x1) _ (x2 ^ x3)))y2 = (x1 ^ (x3 _ (x0 ^ x2))) _ ((x0 ^ x2) ^ ((x0 ^ x1) _ (x2 ^ x3)))y3 = (x3 ^ (x0 _ (x1 ^ x2))) _ ((x1 ^ x2) ^ ((x0 ^ x1) _ (x2 ^ x3)))P2 y0 = (x0 ^ x2) _ (x2 ^ x3)y1 = (x1 ^ x3) _ (x1 ^ x2)y2 = (x1 ^ x3) _ (x0 ^ x3)y3 = (x0 ^ x2) _ (x0 ^ x1)Table 5: Boolean expressions for y = Pi(x) (y = y3y2y1y0; x = x3x2x1x0)The selected 4-bit S-boxes Pi's have the following DC and LC characteristics:DPP0 = DPP2 = 2�3;LPP0 = LPP2 = 2�2;DPP1 = LPP1 = 2�2:The boolean expressions for implementing Pi's are given in Table 5. It is easy to see that P0 and P1 canbe implemented using 16 nand gates and P1 using 27 nand gates.The two 8 � 8 S-boxes constructed from the selected 4-bit S-boxes are presented in Appendix C.The S-box S0 has one �xed point and S1 has two. Table 6 shows their statistics on the distribution ofinput-output di�erence/linear approximation pairs, where the entry value is the number computed bythe numerator of equation (4) (equation (5) in the case of linear approximations).Di�erence distributionentry value 0 2 4 6 8no of entries 41503 16592 6576 560 304Linear approx. distributionentry value 0 8 16 24 32no of entries 26655 31200 7232 288 160Table 6: Distribution of nonzero entries in the di�erence/linear approx. tables of Si11



From the table, we can see that for i = 0; 1pd def= DPSi = 8256 = 2�5; (6)pl def= LPSi = (2 � 32256 )2 = 2�4; (7)and that there are 304 input-output di�erence pairs achieving the best characteristic probability pd (160input-output selection patterns achieving the best linear approximation probability pl). However, if theinput is restricted to the minimal di�usion set shown in Table 3, there are only 2 such pairs (8 such pairsin the case of linear approx.). Table 7 shows such pairs in each S-box.DC (80, 88) (80, c8)S0 LC ( 2, 80) ( 4, 80) ( 8, 10) (12, 8)(12, 11) (88, 2) (88, 84) (8c, 4)DC (88, 80) (c8, 80)S1 LC ( 2, 88) ( 4, 8c) ( 8, 12) (10, 8)(80, 2) (80, 4) (11, 12) (84, 88)Table 7: Selected I/O pairs with maximum entry value in the di�erence/linear approx. tables of Si3.3 Di�erential CryptanalysisDi�erential cryptanalysis is a chosen plaintext attack introduced by Biham and Shamir [1], which triesto �nd the subkey of the last round by examining changes in the ciphertext bits in response to con-trolled changes in the plaintext bits. Di�erential cryptanalysis relies on the existence of highly probablecharacteristics/di�erentials. An r-round characteristic consists of a sequence of (input di�erence, outputdi�erence) pairs in each round up to round r, while an r-round di�erential only considers an input di�er-ence at the 1st round and an output di�erence at the r-th round [13]. Thus the probability of an r-rounddi�erential with input di�erence � and output di�erence � is equal to the sum of the probabilities of allr-round characteristics with input di�erence � and output di�erence �. Therefore, it would be right toconsider di�erentials, rather than characteristics, to prove security against di�erential attacks.Let us �rst evaluate the best r-round characteristic probability for CRYPTON. It can be shown (e.g.,see [3]) that the probability of any characteristic in CRYPTON is completely determined by the numberof active S-boxes and their characteristic probabilities. For worst-case analysis, suppose that the smallestactive S-boxes involved in an r-round characteristic is � and all the S-boxes involved have the bestcharacteristic probability pd. Then, under the assumption of independent and uniform distribution forplaintexts and round keys, the probability pCr for the r-round characteristic is given bypCr = p�d :From Table 3, we know that the best 8-round characteristic should involve at least 32 active S-boxes. (Inthe context of di�erential cryptanalysis the nonzero bytes in Table 3 should be thought of as input/outputdi�erences.) Therefore, the probability pC8 that the best 8-round characteristic could take is at mostpC8 = 2�160;since our S-boxes have pd = 2�5. This �gure shows that any di�erential attack based on the characteristicwould require at least 2160 known plaintexts (more than available) and thus impossible. Furthermore, wecan easily see from Table 7 and Tables in Appendix B that there exist no such characteristic.Next, consider the best r-round di�erential probability pDr . Given a pair of input and output dif-ferences, there may be a relatively large number of characteristics starting with the input di�erence andending with the output di�erence. With a little close examination of the di�usion property of lineartransformations � and � , we can obtain a very loose bound on the number of possible characteristicsthat can reside in any di�erential involving the smallest possible S-boxes. In fact, the number of suchcharacteristics for 8-round CRYPTON can be bounded by 158 � 42 � 36 � 23 � 247:8. This �gure was12



obtained by assuming that each S-box can take any desired output di�erence for a given input di�erence.Even though we assume the existence of such number of best characteristics, the best 8-round di�erentialprobability is su�ciently small, i.e., pD8 = 2�112:2 .Note that the above �gures were obtained by assuming that all S-boxes involved can take maximumpossible values for di�erential and linear approximation probabilities (i.e., 2�5 and 2�4, resp.). Actual �g-ures will be much lower, since our S-boxes each have only 2 input/output di�erence pairs giving pd = 2�5when di�erence values are limited to those with minimum di�usion (see Table 7) and linear transforma-tions between rounds would make it impossible to form a chain only with best S-box characteristics.The above analysis shows that we can get strong enough resistance against DC only with 10 rounds(assuming a 2R-attack). Though it is assumed in this analysis that the plaintexts and round keys areindependent and uniformly random, which does not hold in practice, such an analysis has been found toprovide a reasonable estimation on the security against DC.3.4 Linear CryptanalysisLinear cryptanalysis is a known plaintext attack introduced by Matsui [15]. The key point in this attack isto �nd an e�ective linear approximation involving some bits of the plaintext (selected by input selectionpatterns), some bits of the ciphertext (selected by output selection patterns) and the associated keybits. If this linear approximation holds with some probability biased from 12 , then the correct value ofthe combination of key bits, thus equivalent one-bit key information, can be extracted by testing thesatis�ability of the linear approximation with su�ciently many plaintext-ciphertext pairs. Obviously, thegreater the bias, the fewer the number of plaintext-ciphertext pairs required to determine the correct keybit value.In the context of linear cryptanalysis the nonzero bytes in Table 3 should be thought of as input/outputselection patterns. Note that the S-boxes chosen for CRYPTON has the best linear approximation proba-bility of pl = 2�4. The overall linear approximation involves a number of S-box linear approximations andthe number of such S-boxes (i.e., active S-boxes) determines the complexity of linear cryptanalysis. As indi�erential cryptanalysis, it is known that the probability pLr for the best r-round linear approximationcan be approximated by pLr = p�l ;under the assumption that the plaintext and key bits are distributed independently and uniformly atrandom, where � denotes the total number of active S-boxes involved. Therefore, the best linear approx-imation probability for 8-round CRYPTON is approximated bypL8 = 2�128:Again this value is a very loose upper bound. Actually there will be no linear approximation achievingthis probability, considering the linear characteristic of S-boxes and the linear transformations involved(see Table 7 and the related tables in Appendix B).As in the di�erential attack, we may use multiple linear approximations to improve the basic linearattack [10, 11]. Suppose that one can derive N linear approximations involving the same key bits withthe same probability. Then the complexity of a linear attack can be reduced by a factor of N , comparedto a linear attack based on a single linear approximation [10]. However, a large number of linear approxi-mations involving the same key bits are unlikely to be found in most ciphers, in particular in CRYPTON.Multiple linear approximations involving di�erent key bits may be used to derive the di�erent key bitsin the di�erent linear approximations simultaneously with almost the same complexity [11]. However,this will be of little help to improve the basic linear attack, since we already have a linear approximationprobability far beyond a practical attack. Therefore, we believe that there will be no linear attack on10-round CRYPTON with a complexity signi�cantly lower than 2128.3.5 Security against Other Possible AttacksThere are some variants to the basic di�erential attack discussed above. Knudsen introduced the idea oftruncated di�erentials [7]. A truncated (or partial) di�erential is a di�erential that predicts only part ofthe di�erence (not the entire value of di�erence). The existence of good truncated di�erentials and theirusefulness depend on speci�c cipher algorithms. Knudsen demonstrated that this variant of DC may be13



more e�ective against some kind of ciphers than the basic di�erential attack and may be independent ofthe S-boxes used [9]. Our preliminary analysis shows that truncated di�erentials are not much useful fordi�erential cryptanalysis of CRYPTON compared to ordinary di�erentials.Another variant of DC is the higher order di�erential attack considered by Lai [12]. This variantis also quite e�ective for some ciphers [7, 4]. Let d be the polynomial degree of (r � 1)-round outputbits expressed as polynomials of plaintext bits. Then the higher order di�erential attack allows us to�nd some key bits of the last round key for an r-round cipher using about 2d+1 chosen plaintexts [4].Obviously the success of this attack depends on the nonlinear order of S-box outputs. Since CRYPTONuses S-boxes with nonlinear order 5, the polynomial degree of output bits after 4 rounds increases to54 � 128. Therefore, the higher order di�erential attack on CRYPTON will be completely infeasibleafter 4 rounds.On the other hand, Jacobsen and Knudsen presented an interesting algebraic attack on block cipherscalled the interpolation attack [4]. This attack exploits the fact that the ciphertext can be expressed as apolynomial of the plaintext with a �xed number (say n) of unknown coe�cients and thus the encryptionpolynomial can be reconstructed given n pairs of plaintexts/ciphertexts encrypted under a �xed key K.This polynomial should then be equivalent to an encryption algorithm under the key K. Clearly thecomplexity of this attack depends upon the number of S-boxes applied throughout encryption and/or thepolynomial degree of S-box outputs. The S-boxes used in CRYPTON do not allow a simple algebraicdescription. Furthermore, the bit permutation � in each round destroys any potential algebraic structurethrough the bit-wise mixing of the S-box outputs and encryption involves a large enough number of S-box applications. Therefore, we believe that CRYPTON also provides strong resistance against algebraiccryptanalysis, such as the interpolation attack.3.6 Key Schedule CryptanalysisKey schedule cryptanalysis is another important category of attacks on block ciphers. Typical weaknessesexploited in key schedule cryptanalysis include weak keys or semi-weak keys, key collisions (equivalentkeys), linear factors, simple relations such as the complemetation property existing in DES, etc. (fordetails, see e.g. [8, 5, 6]). These weaknesses can be exploited to speed up an exhaustive key search or tomount related key attacks. Though most of these attacks on key schedules are not practical in normaluse, they may be a serious aw in certain circumstances (e.g., when a block cipher is used a basic buildingblock for hash functions).The key schedule for CRYPTON is designed with the above known weaknesses in mind. There is noweak keys or semi-weak keys. Weak keys exist in CRYPTON if there exist round keys such thatKe[4k + j] = Ke[48� 4k + j] (0 � k � 5; 0 � j � 3):Referring to Table 11, we can easily check that there are no weak keys (This is mainly due to the use ofdi�erent round constants in each round). There are no semi-weak keys either, since no weak keys existwhatever values the expanded keys take.The 8 expanded keys are derived from a user key via an invertible transformation and thus no di�erentuser keys can produce the same expanded keys. This guarantees that there is no equivalent keys.There is no complementation property either, since both key expansion and encryption processesinvolve parallel nonlinear substitutions. The same reason ensures that there will be no other simplerelations between di�erent user keys.We also believe that there are no related keys that can be used to mount related-key di�erential attacks.First, a user-supplied key is transformed into expanded keys by a nonlinear bijective transformation,ensuring that any controlled change in the user key should result in at least one-byte change in one of theexpanded keys. Second, the same 8 expanded keys are used six or seven times throughout encryption,each time at least two round keys being rotated and thus applied to di�erent locations of data array.Finally, parallel nonlinear substitutions in each round make it di�cult for an attacker to exploit anycontrolled change in an expanded key.The CRYPTON key schedule is designed to be very e�cient in both software and hardware imple-mentation. In hardware the 8 expanded keys can be retained in registers and updated at each round byrotations and constant additions. In software the whole round keys can be generated and stored for usein multiple blocks of encryption. 14



4 Implementation and E�ciencyThe cipher CRYPTON is designed to be highly parallelizable, considering the current trend of micro-processor technology and the e�ciency of hardware implementation. Today's most microprocessors areadopting multiple levels of pipelining and a certain amount of parallelism to maximize their performances.Thus parallelizability has been one of important design criteria in modern algorithm designs. The roundfunction of CRYPTON actually consists of three steps of parallelizable operations. Therefore we canexpect that CRYPTON will be extremely fast in both software and hardware implementation.4.1 Implementation on 32-bit MicroprocessorsThe round transformation of CRYPTON can be e�ciently implemented on a 32-bit microprocessor usingtable lookups, if we use 4 KBytes of storage in addition. The idea is to precompute and store 4 tables of256 words (0 � j � 255) as follows:SS0 [j] = S0[j] ^m3 k S0[j] ^m2 k S0[j] ^m1 k S0[j] ^m0;SS1 [j] = S1[j] ^m0 k S1[j] ^m3 k S1[j] ^m2 k S1[j] ^m1;SS2 [j] = S0[j] ^m1 k S0[j] ^m0 k S0[j] ^m3 k S0[j] ^m2;SS3 [j] = S1[j] ^m2 k S1[j] ^m1 k S1[j] ^m0 k S1[j] ^m3:Then it is easy to see that the odd round function B = �oK(A) can be implemented byB0 = SS0[a00]� SS1 [a10]� SS2[a20]� SS3 [a30]�K[0];B1 = SS1[a01]� SS2 [a11]� SS3[a21]� SS0 [a31]�K[1];B2 = SS2[a02]� SS3 [a12]� SS0[a22]� SS1 [a32]�K[2];B3 = SS3[a03]� SS0 [a13]� SS1[a23]� SS2 [a33]�K[3]:Similarly, the even round B = �eK(A) can be implemented byB0 = SS1[a00]� SS2 [a10]� SS3[a20]� SS0 [a30]�K[0];B1 = SS2[a01]� SS3 [a11]� SS0[a21]� SS1 [a31]�K[1];B2 = SS3[a02]� SS0 [a12]� SS1[a22]� SS2 [a32]�K[2];B3 = SS0[a03]� SS1 [a13]� SS2[a23]� SS3 [a33]�K[3]:Therefore, one round of CRYPTON can be performed using 20 table lookups (16 to SS-boxes, 4to round keys), 16 XORs, 12 shifts and 16 ANDs (for byte extraction). (If there are a number ofregisters available, as in most RISC machines, it may be more e�cient to use the 8 expanded keys duringencryption/decryption instead of round keys, since we only need 2 XORs and 2 rotates for round keycomputation from expanded keys. This method of partial key schedule is also expected to yield a betterperformance in the case of frequent key change, e.g., when CRYPTON is used for hashing.) Due to theparallel processing of data, 8 intermediate data variables cannot be managed by registers on most PCsand thus some of these variables should be loaded/stored from/to memory.We have implemented CRYPTON on 200 MHz Pentium Pro running Windows 95 (with 32 Mbytesof RAM) and on 167 MHz UltraSparc running Solaris 2.5 (the two C codes are a little di�erent.) Theresult is shown in Table 8 (These timings were obtained using our core routines without including AES-API overheads. The codes submitted to NIST were not fully optimized due to our tight time schedule.The presented timings were obtained with the latest version of our optimized codes. The updated codesare available from my home page at http://crypt.future.co.kr/~chlim). Our optimized C code runs quitefast, giving an encryption rate of about 6.4 Mbytes/sec on Pentium Pro. The partial assembly code canencrypt/decrypt about 7.8 Mbytes per second, running about 20 % faster than the optimized C code.(Only the encryption routine is implemented in-line assembly.) We expect that a full assembly languageimplementation will be a little faster. On UltraSparc, CRYPTON runs somewhat slower, achieving anencryption rate of about 4.1 Mbytes/sec.The key setup time of CRYPTON is di�erent for encryption and decryption. Decryption key setuprequires a little more computations, i.e., transformation of expanded keys. Our encryption key schedule15



is very fast, taking much less time than one-block encryption. As a result, CRYPTON is very e�cienteven in the case of encrypting/decrypting only a few blocks of data. Note that the key setup time remainsalmost the same for di�erent sizes of user keys.CRYPTON should be initialized with a table for S-boxes at the �rst time of use. Once generated, theseS-boxes are embedded into the code. The table generation (Pj(j = 0; 1; 2) ! S0; S1 ! SSi(0 � i � 3))takes a relatively large amount of time compared to key scheduling. But this will cause no problem inpractice, since it is required only once at the algorithm setup time. (Actually we need not generate SS-boxes. In most cases, it su�ces to write into a �le (to be included in the encryption routine) appropriatelymasked versions of S-boxes, as described above.)Language\Clocks Alg. setup Key setup (enc/dec) Enc/DecIn-line Asm (PC) N/A N/A 390 / 390MSVC 5.0 (PC) 9740 325 / 360 475 / 475GNU C (UltraSparc) 11460 470 / 520 615 / 615Table 8: Speed of CRYPTON on Pentium Pro and UltraSparc4.2 Implementation on 8-bit MicroprocessorsSince CRYPTON essentially processes data byte by byte, it is very simple and e�cient to implement on8-bit microprocessors. It uses only simple operations, such as logical ANDs, XORs and table lookups.The 8-bit S-boxes Si (i = 0; 1) take 512 bytes of EEPROM and intermediate data variables require only20 bytes of RAM. Furthermore, it is reasonable to assume that 32-byte expanded keys can reside withinRAM during encryption, so there may be no need to generate round keys. This will be of great advantagewhen implemented on small portable devices such as smart cards.If a target microprocessor cannot accommodate even 512 bytes of storage, each S-box table entry canbe directly computed from three 4� 4 S-boxes Pi (i = 0; 1; 2). In this case the table needs only 48 bytesof memory (or even can be packed to 24 bytes if a few more operations are used to access the table entry).Then, we can obtain one S-box table entry by using 10 operations (3 table lookups, 3 XORs, 2 AND/ORand 2 shifts (to extract/combine two 4-bit values from/to a byte value)).We do not have access to an 8-bit microprocessor, so we simply estimate the number of requiredinstructions (cycles) under the following computing model:� The microprocessor has two Accumulator registers and su�cient memory (EEPROM) to hold thetwo 8� 8 S-boxes.� Destination of any instruction must be Accumulator. Therefore, data must be �rst loaded intoAccumulator, processed there using other data in a register or memory and then stored back intomemory.� We only use three kinds of instructions, each of which is assumed to take 3 clock cycles: register-to-memory/memory-to-register MOV, register-to-register/memory-to-register XOR and immediate-to-register/memory-to-register AND. Note that some instruction (e.g., memory access by indexedaddressing) may require more clock cycles, while some other instructions (e.g., AND/XOR withimmediate data) take less cycles. By averaging, we made a uniform 3 cycle assumption to simplifythe speed estimation.We estimated two cases of encryption/decryption time. If a microprocessor has a su�cient RAM spacefor intermediate data variables and round keys, and if many data blocks need to be encrypted/decrypted,then we can generate and store the encryption/decryption round keys from a user-supplied key. Afterthen, data can be encrypted/decrypted using the round keys stored in RAM. On the other hand, if onlya small amount of RAM is available, then we have to encrypt/decrypt data together with in-line keyscheduling. Table 9 shows the resource requirements and the estimated speeds for each scenario. We didnot try any optimization for this estimation. Note that component functions of encryption/decryption arere-grouped into di�erent round transformations to facilitate the estimation. The di�erence in the number16



of instructions (416) between one-time encryption and decryption exactly corresponds to the operationsneeded to transform expanded keys (two times of � � � � � and constant additions, see Sect.2.4).RAM 20 (data) + 208 (round keys) = 228 bytesEEPROM 512 bytes for S-boxes# of instructions # of cycles notes � � 64 192 round 1 � � � � � � 224 672 round 2 - 11� � � �  � � � � � � 240 720 round 12Total Enc/Dec 2544 7632 Round keys in RAMKey Expansion 576 1728 from 32-byte UserKeyEnc Round key Gen. 520 1560 from 32-byte ExpKeyDec Round key Gen. 670 2010 from 32-byte ExpKeyTotal Enc Key Setup 1096 3288Total Dec Key Setup 1246 3738RAM 20 (data) + 32 (UserKey) = 52 bytesEEPROM 512 bytes for S-boxes# of instructions # of cycles notesKey Expansion 576 1728Trans. of ExpKeys 416 1248 Ee ! EdRoundKey Update 40 120 11 times� � � � � 192 576 for �nal round keysTotal Encryption 3752 11256 with In-line Key SchedulingTotal Decryption 4168 12504 with In-line Key SchedulingTable 9: Estimated speed of CRYPTON on an 8-bit microprocessor4.3 Software Implementations on Other PlatformsCRYPTON can also be e�ciently implemented on other platforms using the table lookup method de-scribed above, for example, on 16-bit or 64-bit microprocessors or digital signal processors. It can beexpected that CRYPTON will run a little faster on a 64-bit microprocessor than on a 32-bit micro-processor, since eight 32-bit data variables can be managed with four 64-bit registers. The number ofrequired operations is almost the same if we use 12 Kbytes of storage. Also, CRYPTON will be ideal tobe implemented on DSPs which have multiple execution units such as TMS320C6x. We are working onimplementation on TMS320C6x.4.4 VLSI ImplementationCRYPTON is designed by taking into account e�cient hardware implementations. The 4� 4 S-boxes P0and P2 can be implemented using 16 nand gates of depth 3 and P1 needs 27 nand gates of depth 5 (seeTable 5). Thus, each S-box can be implemented using 107 nand gates of depth 20. Therefore, we can seethat one round of CRYPTON can be implemented using 3248 nand gates with depth 26. The initial keyaddition and the special �nal round together can be implemented using 2736 nand gates. We also needtwo 128-bit registers as input and output data bu�ers.Generation of 8 expanded keys (for encryption) requires the circuit equivalent in gate count to tworound encryptions plus 14 XORs of 32-bit words. This amounts to 8288 nand gates. We also need 2048nand gates for conversion of expanded keys. Round key generation (from round 2) only needs 32 nandgates per round. There also should be two 128-bit registers to bu�er 256-bit expanded keys and one32-bit register to update a round constant. Therefore, the whole key scheduling part can be implementedusing 10688 nand gates and a 288-bit register. 17



With a cheap technology we may implement just two rounds of encryption and iterate this circuit 6times to encrypt one block. In this case, we also need to implement the initial key addition (512 nandgates) and the �nal output transformation (� ��e � � ; 1024 nand gates). This circuit can be implementedusing 8032 nand gates and a 384-bit register, where we assume that pre-computed round keys are appliedto the circuit and thus only one 128-bit register is counted for key scheduling.On the other hand, we can implement the full 12-round CRYPTON, including the complete keyscheduling part, for high speed applications such as ATM, HDTV, B-ISDN and PCI bus, etc. Thiscircuit can be implemented using 49152 nand gates and a 544-bit register. Table 10 summarizes thenumber of nand gates required for this full implementation. Note that the time to pass the key expansionpart corresponds to an initial key setup delay in hardware implementation. For multiple blocks ofencryption/decryption, the expanded keys can be retained in registers for later use. We have not yetcarried out any simulation to estimate the required number of clocks.# of nand gates depth noteInitial KeyAdd 512 3Round Trans 3248 26 round 1 - 11Final round 2224 23Total Enc/Dec 38464 312 + 256-bit registerKey Expansion 8288 35RoundKey Update 32 3 round 2-12ExpKey Trans 2048 6Total Key Schedule 10688 doesn't matter + 288-bit registerTable 10: Estimated gate count for a full parallel implementation of CRYPTON5 Other Considerations and Discussions5.1 The Number of Rounds and Possible VariantsOur preliminary analysis shows that the complexity of di�erential and linear attacks on 10-round CRYP-TON would require more ciphertexts than available. We thus propose to use 12 rounds for CRYPTON,with a margin of two more rounds. We believe that this number of rounds will be far su�cient to thwartany known attack against block ciphers. Nevertheless, if desired, we may increase the number of roundsto, say, 16 by extending the key scheduling process. Also, the number of rounds may be increased asthe size of a user key increases. However, in this version of proposal, we did not consider such a variablenumber of rounds.Though we designed CRYPTON with a �xed 128-bit block size, it is quite easy to modify it into acipher with other block size. In fact, the bit permutation � is better suited for use in a 64-bit or 512-bitblock cipher. For example, we can design a 64-bit block cipher using four 4-bit S-boxes and a variantof � in which a new 4-bit nibble is formed by extracting just one bit from each XORed nibble in thesame column. This variant will have better di�erential and linear characteristics, since there are smallernumber of characteristics constituting a di�erential. For fast bulk encryption on a 64-bit microprocessor,we may use a variant of 512-bit block size. This variant processes a 512-bit data block by representing itin 8� 8 byte array.5.2 Advantages and LimitationsSimplicity and Easy Analysis: The simplicity of CRYPTON allows easy analysis against variousknown attacks, including di�erential and linear cryptanalysis. This simple analysis in turn enables usto determine the number of rounds required to guarantee high enough security against those attacks.Though we couldn't carry out a complete analysis against all possible attacks, its simple design will makeit easier to perform various security evaluations. 18



E�ciency in both HW and SW: CRYPTON uses only very simple instructions (AND, XOR, rotateby a multiple of 8 and table lookups), which allows very e�cient implementations in both large micropro-cessors and small microprocessors. Various tradeo�s are possible between speed and memory (e.g., withmemory of 48, 512, 1K, 2K, 4K, 12K, 512K bytes etc.). The S-boxes were carefully designed to enablee�cient implementation with a simple hardware logic. All the other components of CRYPTON can beimplemented in hardware only using XOR gates (1 XOR gate = 4 nand gates). Our estimation on thegate count shows that CRYPTON can be implemented very e�ciently in hardware. We also made muche�ort to make the encryption and decryption processes identical. This greatly reduces the code size (insoftware) and the gate count (in hardware).Fast Key Scheduling: The key scheduling algorithm is also very e�cient and appears to be secureagainst various attacks on key schedules. It is designed by taking into account various applications: Twostep generation of round keys will be very useful in the environment with limited resources. Fast keysetup time makes CRYPTON very advantageous when used for a few blocks of encryption (in particular,for hashing). The CRYPTON key schedule allows to use any size of a user key (Key size is restricted tominimum 64 bits for security) and can be easily extended as the number of rounds increases.CRYPTON has a �xed block size of 128 bits. However, it is possible to modify CRYPTON to operatein other block sizes as mentioned before. We may also double the block length by using the Luby-Racko�construction [14].5.3 Mode of OperationsCRYPTON can be used as a building block for various applications. These include collision-resistant hashfunctions, pseudo-random number generators, stream ciphers and message authentication codes (MACs).Hash Functions: There have been proposed a lot of methods to construct hash functions from blockciphers (e.g., see [20]). Some well-known constructions include the Matyas-Meyer-Oseas constructionand the Davies-Meyer construction. A hash function based on a block cipher is in general much slowerthan the underlying block cipher due to the key schedule overhead. One block hashing typically requiresone-time key schedule and one block encryption. Our key schedule runs very fast, taking much less timethan one block encryption. Actually we could achieve a hashing speed of about 60 % of the encryptionspeed with our C implementation. For a longer hash code we may use double-length hash constructions(for 256-bit hash code in the case of CRYPTON), such as the one described in ISO/IEC 10118-2.Message Authentication Codes: Block ciphers are widely used to generate a MAC. The most popularmethod is to encrypt a message in CBC mode and take the last ciphertext (or part of it) as a MAC (CBC-MAC). CRYPTON can also be used for this purpose.Stream Ciphers: CRYPTON can be used to generate a keystream for a stream cipher. For example,we can use CRYPTON as a synchronous stream cipher by running it in OFB (output feedback) mode,or as a self-synchronizing stream cipher by running it in CFB (cipher feedback) mode.Pseudo-random Number generators: Block ciphers are often used for pseudo-random number gen-eration. The simplest such generator is to run a block cipher in counter mode or in OFB mode. Therealso exist cryptographically more strong PRN generators, such as the PRN generator suggested in ANSIX.9.17. CRYPTON can be used for this purpose as well.5.4 Historical RemarksThe overall structure of CRYPTON is borrowed from Square [2]. However, CRYPTON completely di�ersfrom Square in its bit-permutation and S-box construction. These two components are essential parts inblock cipher designs. We decided to start with the parallel structure of Square, considering its e�ciencyin modern microprocessors implementing more and more parallelisms. One disadvantage of this structureis that more registers are needed for handling intermediate variables.19



The bit permutation � has di�usion order 4, while the MDS matrix multiplication used in Square hasdi�usion order 5. However, our bit permutation is very simple and e�cient (it can be implemented onlyusing XORs) and, since it is involution (i.e., � = ��1), we could make the encryption and decryptionprocesses identical. There are a lot of choices for a masking vector M for �. We did not test all possiblevalues for masking bytes mi's. Our choice is made based on the ease of analysis (systematic di�usionproperty when rotated) and the number of minimal di�usion elements.There were some changes in S-box construction. At a �rst time, we tried to use just one 8 � 8 S-box constructed from an inverse polynomial over GF(28), since such an S-box is self-invertible and hasvery good di�erential and linear characteristics [18]. However, such S-boxes can only be implemented inhardware using ROM or EEPROM. Then, the speed of a cipher will be limited by the memory accesstime. The speed limitation may be even worse, considering parallel accesses to the S-boxes in CRYPTON.Therefore, we wanted the S-boxes to be e�ciently implemented with a simple hardware logic. The �nalS-box S0 was constructed so that it can be implemented using as small number of nand gates as possible.5.5 Future DirectionsWe are currently working toward some improvements in security with minor changes in the algorithm.One direction is to �nd better S-boxes. For example, we have a little uneasy feeling for the bit/bytepermutation used in CRYPTON. The bit permutation only mixes the bits in the same bit column (i.e.,unchanges the bit positions in bytes). Though the byte substitution nonlinearly transforms the resultingbytes into (presumably) new random bytes (combined with key addition), this fact might be a weak pointif the S-boxes would have some relevant, unidenti�ed weakness. We have found no weakness yet, but inthe next revision we will reect the following change in S-boxes.The present version uses just two S-boxes, i.e., S0 and S1 = S�10 . In the revised version we will addtwo more variants of S0 to make it more di�cult to form a chain of good characteristics. The four S-boxesare constructed as: S0, S1(x) = S0(x)�6 for x 2 [0; 256), S2 = S�10 , and S3 = S�11 . We decided to usevariants of one S-box, instead of independent S-boxes, to allow greater exibility in memory requirements(in particular, considering the environment with limited resources, such as smart cards). Actually wehave already updated this change in both the code and document. (This revised version is available frommy home page at http://crypt.future.co.kr/~chlim.) This change increases the storage requirement for8-bit microprocessors (512 bytes to 1024 bytes). With the same 512 bytes of EEPROM we would need 8rotations per round in addition. However, it does not a�ect the e�ciency on large microprocessors or inhardware.Another direction is to �nd a better masking vector for bit permutation. For example, we may usedi�erent bit permutations in odd and even rounds. Finally, the use of essentially the same round keysin the initial and �nal key addition steps may be exploited to speed up some variants of di�erentialcryptanalysis, as is often the case in the existing algorithms. The key scheduling algorithm will also becarefully reviewed in the next revision. We will continue to improve/ analyze the security and e�ciencyof CRYPTON and reect any improvement found in the next revision.6 ConclusionWe have described a new 128-bit block cipher CRYPTON proposed as a candidate algorithm for AESand analyzed its security. CRYPTON uses the same algorithm for encryption and decryption withdi�erent key schedules, and supports variable key-length up to 256 bits. Its high parallelism allows fastimplementation in both software and hardware. Our analysis shows that 12-round CRYPTON is secureagainst most known attacks. At present the best attack on CRYPTON appears to be exhaustive keysearch. However, as usual, more extensive analysis should be done before practical applications of a newlyintroduced cipher, so we strongly encourage the reader to further investigate CRYPTON with variousways of attack. We would greatly appreciate reports of any weakness found.
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A Encryption/Decryption Round Keys in Terms of ExpandedKeysTables 11 and 12 show the encryption/decryption round keys expressed in terms of 8 expanded keys.Ke[0] = Ee[0] Ke[4] = Ee[4]Ke[1] = Ee[1] Ke[5] = Ee[5]Ke[2] = Ee[2] Ke[6] = Ee[6]Ke[3] = Ee[3] Ke[7] = Ee[7]Ke[8] = ROL(Ee [0]; 8) Ke[12] = Ee[4]� RC0Ke[9] = Ee[1]� RC0 Ke[13] = ROL(Ee [5]; 16)Ke[10] = ROL(Ee [2]; 16) Ke[14] = Ee[6]� RC0Ke[11] = E2[3] �RC0 Ke[15] = ROL(Ee [7]; 24)Ke[16] = ROL(Ee [0]; 8)� RC1 Ke[20] = ROL(Ee [4]; 8)�RC0Ke[17] = ROL(Ee [1]; 24)� RC0 Ke[21] = ROL(Ee [5]; 16)�RC1Ke[18] = ROL(Ee [2]; 16)� RC1 Ke[22] = ROL(Ee [6]; 16)�RC0Ke[19] = ROL(Ee [3]; 8)� RC0 Ke[23] = ROL(Ee [7]; 24)�RC1Ke[24] = ROL(Ee [0]; 24)� RC1 Ke[28] = ROL(Ee [4]; 8)�RC02Ke[25] = ROL(Ee [1]; 24)� RC02 Ke[29] = ROL(Ee [5]; 8)�RC1Ke[26] = ROL(Ee [2]; 8)� RC1 Ke[30] = ROL(Ee [6]; 16)�RC02Ke[27] = ROL(Ee [3]; 8)� RC02 Ke[31] = Ee[7]� RC1Ke[32] = ROL(Ee [0]; 24)� RC13 Ke[36] = ROL(Ee [4]; 24)�RC02Ke[33] = Ee[1]� RC02 Ke[37] = ROL(Ee [5]; 8)�RC13Ke[34] = ROL(Ee [2]; 8)� RC13 Ke[38] = ROL(Ee [6]; 8)�RC02Ke[35] = ROL(Ee [3]; 24)� RC02 Ke[39] = Ee[7]� RC13Ke[40] = ROL(Ee [0]; 16)� RC13 Ke[44] = ROL(Ee [4]; 24)�RC04Ke[41] = Ee[1]� RC04 Ke[45] = ROL(Ee [5]; 16)�RC13Ke[42] = ROL(Ee [2]; 16)� RC13 Ke[46] = ROL(Ee [6]; 8)�RC04Ke[43] = ROL(Ee [3]; 24)� RC04 Ke[47] = ROL(Ee [7]; 16)�RC13Ke[48] = ROL(Ee [0]; 16)� RC15Ke[49] = ROL(Ee [1]; 16)� RC04Ke[50] = ROL(Ee [2]; 16)� RC15Ke[51] = ROL(Ee [3]; 16)� RC04Notes : RC02 = RC0 �RC2, RC13 = RC1 �RC3,RC04 = RC0 �RC2 �RC4, RC15 = RC1 �RC3 �RC5.Table 11: Encryption round keys in terms of expanded keysB The Minimal Di�usion Set Under �0The bit permutation �i (acting on a 4-byte column vector) has the property that the sum of the numberof nonzero bytes in input and output is at least 4. (We call this sum as the di�usion order of thepermutation.) Below are given all possible input/output vectors achieving such minimal di�usion under�0. There are 48 values giving 1-to-3 (or 3-to-1) propagation (see Table 13) and 108 values giving 2-to-2propagation (see Table 15). Note that in each of these input/output pairs the value of nonzero bytes isalways the same. Any input vector with nonzero bytes of di�erent values has a di�usion order greaterthan 4.Note that there are 30 possible nonzero byte values in the case of 2-to-2 propagation with separatednonzero bytes. All the other cases have only 12 possible values. Thus, it would be better to choose aninput/output di�erence pair from the former case in order to maximize the number of characteristicsresiding in a particular di�erential.C CRYPTON S-boxesThe two 8� 8 S-boxes used in CRYPTON are given in Tables 16 and 17.22



Kd[0] = Ed[0] Kd[4] = Ed[4]Kd[1] = Ed[1] Kd[5] = Ed[5]Kd[2] = Ed[2] Kd[6] = Ed[6]Kd[3] = Ed[3] Kd[7] = Ed[7]Kd[8] = Ed[0]� RC5 Kd[12] = Ed[4]� RC4Kd[9] = ROL(Ed [1]; 16) Kd[13] = ROL(Ed [5]; 8)Kd[10] = Ed[2]� RC5 Kd[14] = Ed[6]� RC4Kd[11] = ROL(E2 [3]; 24) Kd[15] = ROL(Ed [7]; 16)Kd[16] = ROL(Ed [0]; 24)� RC5 Kd[20] = ROL(Ed [4]; 16)� RC4Kd[17] = ROL(Ed [1]; 16)� RC4 Kd[21] = ROL(Ed [5]; 8)� RC3Kd[18] = ROL(Ed [2]; 8)� RC5 Kd[22] = ROL(Ed [6]; 24)� RC4Kd[19] = ROL(Ed [3]; 24)� RC4 Kd[23] = ROL(Ed [7]; 16)� RC3Kd[24] = ROL(Ed [0]; 24)� RC35 Kd[28] = ROL(Ed [4]; 16)� RC24Kd[25] = ROL(Ed [1]; 24)� RC4 Kd[29] = Ed[5]� RC3Kd[26] = ROL(Ed [2]; 8)� RC35 Kd[30] = ROL(Ed [6]; 24)� RC24Kd[27] = ROL(Ed [3]; 8)� RC4 Kd[31] = ROL(Ed [7]; 24)� RC3Kd[32] = ROL(Ed [0]; 8)� RC35 Kd[36] = ROL(Ed [4]; 24)� RC24Kd[33] = ROL(Ed [1]; 24)� RC24 Kd[37] = Ed[5]� RC13Kd[34] = Ed[2]� RC35 Kd[38] = ROL(Ed [6]; 8)� RC24Kd[35] = ROL(Ed [3]; 8)� RC24 Kd[39] = ROL(Ed [7]; 24)� RC13Kd[40] = ROL(Ed [0]; 8)� RC15 Kd[44] = ROL(Ed [4]; 24)� RC04Kd[41] = ROL(Ed [1]; 16)� RC24 Kd[45] = ROL(Ed [5]; 16)� RC13Kd[42] = Ed[2]� RC15 Kd[46] = ROL(Ed [6]; 8)� RC04Kd[43] = ROL(Ed [3]; 16)� RC24 Kd[47] = ROL(Ed [7]; 16)� RC13Kd[48] = ROL(Ed [0]; 16)� RC15Kd[49] = ROL(Ed [1]; 16)� RC04Kd[50] = ROL(Ed [2]; 16)� RC15Kd[51] = ROL(Ed [3]; 16)� RC04Notes : RC13 = RC1 �RC3, RC24 = RC2 �RC4,RC35 = RC3 �RC5, RC04 = RC0 �RC2 �RC4,RC15 = RC1 �RC3 �RC5.Table 12: Decryption round keys in terms of expanded keysinputs outputs inputs outputs0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 10 0 0 2 2 2 2 0 0 0 2 0 0 2 2 20 0 0 3 3 3 3 0 0 0 3 0 0 3 3 30 0 0 4 4 4 0 4 0 0 4 0 4 4 4 00 0 0 8 8 8 0 8 0 0 8 0 8 8 8 00 0 0 c c c 0 c 0 0 c 0 c c c 00 0 0 10 10 0 10 10 0 0 10 0 10 10 0 100 0 0 20 20 0 20 20 0 0 20 0 20 20 0 200 0 0 30 30 0 30 30 0 0 30 0 30 30 0 300 0 0 40 0 40 40 40 0 0 40 0 40 0 40 400 0 0 80 0 80 80 80 0 0 80 0 80 0 80 800 0 0 c0 0 c0 c0 c0 0 0 c0 0 c0 0 c0 c00 1 0 0 1 0 1 1 1 0 0 0 1 1 0 10 2 0 0 2 0 2 2 2 0 0 0 2 2 0 20 3 0 0 3 0 3 3 3 0 0 0 3 3 0 30 4 0 0 0 4 4 4 4 0 0 0 4 0 4 40 8 0 0 0 8 8 8 8 0 0 0 8 0 8 80 c 0 0 0 c c c c 0 0 0 c 0 c c0 10 0 0 10 10 10 0 10 0 0 0 0 10 10 100 20 0 0 20 20 20 0 20 0 0 0 0 20 20 200 30 0 0 30 30 30 0 30 0 0 0 0 30 30 300 40 0 0 40 40 0 40 40 0 0 0 40 40 40 00 80 0 0 80 80 0 80 80 0 0 0 80 80 80 00 c0 0 0 c0 c0 0 c0 c0 0 0 0 c0 c0 c0 0Table 13: 1-to-3 / 3-to-1 propagations by �023



inputs outputs inputs outputs0 0 1 1 1 0 0 1 0 1 1 0 1 1 0 00 0 2 2 2 0 0 2 0 2 2 0 2 2 0 00 0 3 3 3 0 0 3 0 3 3 0 3 3 0 00 0 4 4 0 0 4 4 0 4 4 0 4 0 0 40 0 8 8 0 0 8 8 0 8 8 0 8 0 0 80 0 c c 0 0 c c 0 c c 0 c 0 0 c0 0 10 10 0 10 10 0 0 10 10 0 0 0 10 100 0 20 20 0 20 20 0 0 20 20 0 0 0 20 200 0 30 30 0 30 30 0 0 30 30 0 0 0 30 300 0 40 40 40 40 0 0 0 40 40 0 0 40 40 00 0 80 80 80 80 0 0 0 80 80 0 0 80 80 00 0 c0 c0 c0 c0 0 0 0 c0 c0 0 0 c0 c0 01 1 0 0 0 1 1 0 1 0 0 1 0 0 1 12 2 0 0 0 2 2 0 2 0 0 2 0 0 2 23 3 0 0 0 3 3 0 3 0 0 3 0 0 3 34 4 0 0 4 4 0 0 4 0 0 4 0 4 4 08 8 0 0 8 8 0 0 8 0 0 8 0 8 8 0c c 0 0 c c 0 0 c 0 0 c 0 c c 010 10 0 0 10 0 0 10 10 0 0 10 10 10 0 020 20 0 0 20 0 0 20 20 0 0 20 20 20 0 030 30 0 0 30 0 0 30 30 0 0 30 30 30 0 040 40 0 0 0 0 40 40 40 0 0 40 40 0 0 4080 80 0 0 0 0 80 80 80 0 0 80 80 0 0 80c0 c0 0 0 0 0 c0 c0 c0 0 0 c0 c0 0 0 c0Table 14: 2-to-2 propagations by �0: consecutive nonzero bytesinputs outputs inputs outputs0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 00 2 0 2 0 2 0 2 2 0 2 0 2 0 2 00 3 0 3 0 3 0 3 3 0 3 0 3 0 3 00 4 0 4 4 0 4 0 4 0 4 0 0 4 0 40 8 0 8 8 0 8 0 8 0 8 0 0 8 0 80 c 0 c c 0 c 0 c 0 c 0 0 c 0 c0 10 0 10 0 10 0 10 10 0 10 0 10 0 10 00 11 0 11 0 11 0 11 11 0 11 0 11 0 11 00 12 0 12 0 12 0 12 12 0 12 0 12 0 12 00 13 0 13 0 13 0 13 13 0 13 0 13 0 13 00 20 0 20 0 20 0 20 20 0 20 0 20 0 20 00 21 0 21 0 21 0 21 21 0 21 0 21 0 21 00 22 0 22 0 22 0 22 22 0 22 0 22 0 22 00 23 0 23 0 23 0 23 23 0 23 0 23 0 23 00 30 0 30 0 30 0 30 30 0 30 0 30 0 30 00 31 0 31 0 31 0 31 31 0 31 0 31 0 31 00 32 0 32 0 32 0 32 32 0 32 0 32 0 32 00 33 0 33 0 33 0 33 33 0 33 0 33 0 33 00 40 0 40 40 0 40 0 40 0 40 0 0 40 0 400 44 0 44 44 0 44 0 44 0 44 0 0 44 0 440 48 0 48 48 0 48 0 48 0 48 0 0 48 0 480 4c 0 4c 4c 0 4c 0 4c 0 4c 0 0 4c 0 4c0 80 0 80 80 0 80 0 80 0 80 0 0 80 0 800 84 0 84 84 0 84 0 84 0 84 0 0 84 0 840 88 0 88 88 0 88 0 88 0 88 0 0 88 0 880 8c 0 8c 8c 0 8c 0 8c 0 8c 0 0 8c 0 8c0 c0 0 c0 c0 0 c0 0 c0 0 c0 0 0 c0 0 c00 c4 0 c4 c4 0 c4 0 c4 0 c4 0 0 c4 0 c40 c8 0 c8 c8 0 c8 0 c8 0 c8 0 0 c8 0 c80 cc 0 cc cc 0 cc 0 cc 0 cc 0 0 cc 0 ccTable 15: 2-to-2 propagations by �0: separate nonzero bytes24



0 1 2 3 4 5 6 7 8 9 a b c d e f0 f0 12 4c 7a 47 16 3 3a e6 9d 44 77 53 ca 7c f1 9b 98 54 90 3d ac 74 56 9e de 5c f3 86 39 3b c42 91 a9 97 5f 9c d 78 cc fd 43 bf 2 4b 92 68 3e3 7d 1d 50 cb b8 b9 70 27 aa 96 48 88 38 d7 60 424 a8 d0 a6 2e 25 f4 2c 6e c b7 ce e0 be b 51 675 8c ec c5 52 d9 d8 9 b4 cf 8f 8d 8b 59 23 24 e36 d3 b1 18 f8 d4 5 a2 db 82 6c 0 46 8a af 29 bc7 99 1a ad b3 1f e 71 4f c7 2b e5 2a e2 58 da 68 f6 fe f9 19 6b ea bb c2 a3 55 a1 df 6f 45 2f 699 8e 7b 72 3c ee ff 7 a5 e8 f1 a 1c 75 e1 83 21a d2 b6 3f f7 73 b2 5d 79 35 80 17 41 94 7e 1e edb b5 d5 93 14 20 61 76 31 c9 6a ab 34 a0 a4 15 bac e7 13 4e c6 d6 87 7f bd 84 62 26 95 6d 4d 2d 28d 4 64 4a 11 1 40 65 8 b0 e9 32 cd 81 66 57 5be ef a7 fb dd f2 33 5a 63 c1 e4 c3 ae dc fc 36 10f fa 9f d1 85 9a 1b 5e 30 eb c8 89 49 37 c0 22 f5Table 16: The S-box S0
0 1 2 3 4 5 6 7 8 9 a b c d e f0 6a d4 2b 6 d0 65 7f 96 d7 56 9a 4d 48 25 75 f1 ef d3 1 c1 b3 be 5 aa 62 83 71 f5 9b 31 ae 742 b4 9f fe 5d 5e 44 ca 37 cf 6e 7b 79 46 ce 43 8e3 f7 b7 da e5 bb a8 ee fc 3c 1d 7 1e 93 14 2f a24 d5 ab 3f 29 a 8d 6b 4 3a fb d2 2c 2 cd c2 775 32 4e 53 c 12 89 17 de 7d 5c e6 df 1a a6 f6 236 3e b5 c9 e7 d1 d6 dd 4f 2e 8f b9 84 69 cc 47 8c7 36 76 92 a4 16 9c b6 b 26 a7 3 91 e 30 ad c68 a9 dc 68 9e c8 f3 1c c5 3b fa 6c 5b 50 5a 90 599 13 20 2d b2 ac cb 39 22 11 70 f4 10 24 9 18 f1a bc 8a 66 88 bd 97 42 e1 40 21 38 ba 15 72 eb 6db d8 61 a5 73 57 b0 a1 49 34 35 bf 86 6f c7 4c 2ac fd e8 87 ea 1f 52 c3 78 f9 b8 d 33 27 db 4a 58d 41 f2 a0 60 64 b1 c4 3d 55 54 7e 67 ec e3 19 8be 4b 9d 7c 5f e9 7a 8 c0 98 d9 85 f8 51 af 94 e0f 0 99 e4 1b 45 ff 80 a3 63 82 f0 e2 ed 28 81 95Table 17: The S-box S1
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