
www.elsevier.com/locate/jss

The Journal of Systems and Software 78 (2005) 101–110
Automatic detection and correction of programming faults
for software applications

Prattana Deeprasertkul a,*, Pattarasinee Bhattarakosol a, Fergus O�Brien b

a Department of Mathematics, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
b School of Information Technology, Faculty of Informatics and Communication, Rockhampton Campus, Central Queensland University, Australia

Received 29 September 2004; received in revised form 9 February 2005; accepted 10 February 2005
Available online 8 April 2005
Abstract

Software reliability is an important feature of a good software implementation. However some faults which cause software unre-
liability are not detected during the development stages, and these faults create unexpected problems for users whenever they arise.
At present most of the current techniques detect faults while a software is running. These techniques interrupt the software process
when a fault occurs, and require some forms of restart.

In this paper Precompiled Fault Detection (PFD) technique is proposed to detect and correct faults before a source code is com-
piled. The objective of the PFD technique is to increase software reliability without increasing the programmers� responsibilities. The
concepts of ‘‘pre-compilation’’ and ‘‘pattern matching’’ are applied to PFD in order to reduce the risk of significant damage during
execution period. This technique can completely eliminate the significant faults in a software and thus, improves software reliability.
� 2005 Elsevier Inc. All rights reserved.

Keywords: Programming error; Software fault; Software failure; Fault detection; Pattern matching; Software inspection
1. Introduction

The task of implementing a program without faults
and errors is challenging. Currently, the various compil-
ers for languages have been progressively improved.
However, some faults and errors which are the results
of human oversight are still left out and interrupt the
system processing at operation time. The existence of
the faults in applications can increase the number of
software failures and can thus decrease the reliability
of software. Of course, the software reliability is
improved if the risks of software failure are avoided.

Achieving reliable software is an objective of develop-
ers and users. In order to prevent such faults and errors,
0164-1212/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2005.02.027

* Corresponding author. Tel.: +6623145054; fax: +6622249852.
E-mail address: prattana.d@student.netserv.chula.ac.th (P. Dee-

prasertkul).
programmers and software inspectors must verify soft-
ware for all possible faults during the development
stages, and also validate the software product before
delivering it. Therefore, it challenges researchers to
develop methods or techniques to detect or prevent the
faults during development period in order to obtain a
high level of reliability for software product.

Currently many software detection techniques have
been proposed and implemented. One of these tech-
niques is code inspection, first introduced by Fagan
(1976). This technique can detect the software coding
errors at early stage in lifecycle. Although code inspec-
tion�s effect is that software quality can be improved,
all the existing techniques for maintaining software reli-
ability are reliant on the ‘‘checklist’’ approach to verify
the software instructions and data sets. If the software
size is small and not so complicated, the checklist
process can be performed manually, otherwise it can

mailto:prattana.d@student.netserv.chula.ac.th

102 P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110
become too unwieldy. In this paper, we show how to
automatically detect and correct the hidden faults in
the software application prior to compilation time.

1.1. Problem description

Software reliability is partially depended on capabili-
ties built into the languages� compiler. If the interpreters
or compilers of languages are able to detect all common
faults and errors, software reliability can be enhanced.
Thus, Java and Erlang (Ganapathy et al., 2003; Arm-
strong et al., 1993) were developed with capabilities
aimed at the objective of obtaining software reliability.

Java is a popular language which is widely used and
classified as an object-oriented language. It is incorpo-
rated significant error checking such as the feature of
detecting array indexes exceeding the array bounds dur-
ing run-time, therefore containing the array indexes out-
of-bounds handling.

Another functional programming language, Erlang
(Armstrong et al., 1993) developed by Ericsson Sweden,
is used to develop highly reliable the communication soft-
ware products. A characteristic of this language is the
pattern matching functionality which assists in tightly
coupling faults and failures, so that, whenever a failure
arises, the Erlang interpreter can immediately locate the
cause of such failures. So, the software implemented in
Erlang exhibit a very high level of software reliability.

There are, however, some faults and errors that can-
not be detected by the compiler of software program-
ming languages. Considering C programs, for example,
the faults include cases such as array indexes out-of-
bounds, passing the wrong types of function arguments,
no-default-case in switch statements, or infinite loops.
Furthermore, it is not uncommon that programmers
or developers ignore warning message at compile time
when, in fact, there warning messages may indicate the
potential for a critical fault during software execution.

1.2. Approach

This paper proposes the design and implementation
of a technique that can improve the software reliability
of a system in a manner that cannot be achieved by
any current methods. The major difference of PFD from
the other existing techniques is the automatic detection
and correction of faults performed prior to compile
time. The software programs are preprocessed through
PFD for detecting and correcting faults. The program-
mers are not allowed to ignore any warnings of the
potential critical faults in the source code until proper
actions have been performed. Consequently, faults and
errors will be reduced, the system will then improve soft-
ware reliability. Note that this technique applies many
of the built-in reliability features of Erlang such as the
feature of detecting array indexes exceeding the array
bounds or the feature of detecting types of function
arguments matching.

1.3. Contribution

The contribution of this paper is an introduction of a
Precompiled Fault Detection (PFD) technique. This tech-
nique is a novel approach for automatically detecting
and correcting the programming errors, which are the
results of programmers inadvertence and cannot be
detected by a compiler, in the source code prior to com-
pilation time. The PFD technique can be applied to C
applications and will be applied to other language appli-
cations in the future. Furthermore, we present experi-
mental results that demonstrate an effectiveness of our
technique.

The organization of this paper is as follows: In Sec-
tion 2, the related work is discussed. Section 3 intro-
duces the problems and motivations considered in this
research. Section 4 presents an overview of pattern lan-
guage used in PFD technique. Section 5 describes an
architecture of PFD for detecting and correcting faults
and Section 6 describes an implementation details of
PFD technique. The testing method with results is
covered in Section 6. The experimental results are shown
in Section 7. Section 8 contains a discussion of our
research. The final section is a conclusion of this paper.
2. Related work

Since software faults and errors interfere with normal
processing, a number of techniques have been devised to
minimize their effect. Many software inspection tools are
used to inspect the running processes of software appli-
cations, such as ICICLE (Sembugamoorthy and Broth-
ers, 1990), ASSIST (Macdonald, 1998), and Suite
(Drake et al., 1991). Macdonald et al. (1995) compared
the inspection processes of these software techniques.
One tools for identifying faults during inspections is a
‘‘checklist’’. This checklist helps inspectors by listing
all the fault types to look for (Rady de Almeida Jr.
et al., 2003). The difficulty of manually verifying that
the software under inspection conforms to the rules is
partly to mistake.

One critical problem which is considered by many
researchers as an example is the buffer overrun of array
indexes. This problem can be solved by either dynamic
or static techniques. Dynamic techniques such as Stack-
guard (Cowan et al., 1998), CCured (Necula et al., 2002)
and High Coverage Detection of Input-Relate Security
Faults (Larson and Austin, 2001) have been proposed
to prevent the incorrect memory accesses without elimi-
nating bugs in the source. These tools are applied at run-
time, in a reactive fashion, attempting to catch invalid
accesses. On the other hand, the static analysis tools

P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110 103
proposed to prevent and detect buffer overrun cases are
mentioned in (Wagner, 2000; Ganapathy et al., 2003;
Xie et al., 2003). These static tools focus on either the
buffer overruns or memory access error detection look-
ing for equivalent faults to the dynamic techniques.
Once the problem of buffer overrun is detected, a warn-
ing message will be presented to the user.

Even though many software detection techniques and
tools are proposed, the reliability of the software appli-
cation is still largely reliant on the human designer�s
skills. Since the techniques noted above cannot avoid
human errors, the potential improvement offered by
inherently reliable programming languages such as
Erlang (Armstrong et al., 1993) is needed. Erlang is a
functional programming language that can guarantee
the software reliability without permitting a wide range
of human errors. The Erlang compiler uses a pattern
matching technique that assists in tight coupling
between faults and failures, therefore it can detect most
of the hidden faults such as the incorrectness of array
indices, the mismatch of function arguments types,
and no-default-case in switch statements.

This paper proposes a technique that is to apply to
program�s source code before passing through the com-
pilation process. The software source code will be ana-
lyzed to automatically detect and correct the coding
errors before they will be released. This technique is
called Precompiled Fault Detection (PFD). In this paper,
we address the fault examples in C (Spuler, 1994; Harb-
ison and Steele Jr, 1995) which are the case studies and,
hence, they have a little difference of detection and cor-
rection procedure in each other. The reliability features
of Erlang are applied to C programming language by the
PFD technique.
3. Problem descriptions and motivations

Having a hidden fault in an application program
can create the critical problems for an organization.
1 #include <stdio.h>
2 main() {
3 int F_cls[5], B_cls[5], E_cls[10], i, j;
4 char cls;
5 for(i = 0; i <= 5; i++) {
6 printf("%d: ", i++);
7 scanf("%d", &F_cls[i]);
8 }
9 printf("\n");
10 for(i = 0; i < 5; i++) {
11 printf("%d: ", i++);
12 scanf("%d", &B_cls[i]);
13 }
14 …
15 switch(cls){
16 case 'f' :
17 INSURANCE(cls);
18 for(j = 0; j <= 5; j++)

19
20
21
22
23
24
25
26
27 }
28 INS
29 {
30 if
31
32 e
33
34 e
35
36 }

Fig. 1. An example of an applic
Although software faults are rare ones in production
cases, once a fault occurs, some critical system failures
can occur. Since these faults cannot be detected by the
compiler, it is the responsibility of programmers and
testers to ensure that the developed software contains
minimal faults. One way of performing fault detection
is to take an advantage of software inspection. A
source code is general examined by checking it for
the presence of errors, rather than by simulating its
execution (Ghezzi et al., 2003). Using this mechanism,
it can detect and eliminate faults and errors in the
software products developed during the software life
cycle. Consequently, the reliability of applications are
increased. However, fault detection is likely to fail
unless extreme care is taken during a program inspec-
tion process.

Currently, the various compilers for languages have
been progressively improved. However, programming
languages have the different errors which still exist
in the programs, depending on the error-prone fea-
tures of the language. For instance, in C++ and
Java, many mismatches between actual and formal
parameters can be caught at compile time, but there
might be an exception in C, etc. The following is a
list of some classical programming errors (Ghezzi
et al., 2003).

• array indexes out of bounds;
• mismatches between actual and formal parameters in
procedure calls;

• nonterminating loops;
• use of uninitialized variables.

Fig. 1 shows a program about the seat allocation of
flight. The program contains various faults including
array indexes out-of-bound, passing incorrect types of
function parameters and no-default-case in switch state-
ments. The C compiler cannot detect these faults that
have been identified as being responsible for many
system essences.
 printf("Seat %d\n", F_cls[j]);
 break;

 case 'b' :
 INSURANCE(cls);

for(j = 0; j < 5; j++)
 printf("Seat %d\n", B_cls[j]);
 break;

 …

URANCE(int class)

(class == 1)
 printf("ins of first class: 400,000\n");
lse if(class == 2)
 printf("ins of business class: 100,000\n");
lse
 printf("ins of crew: 100,000\n");

ation that contains faults.

B_cls

0 1 … 4

F_cls

 1 2 … 5

After F_cls
index over bound

Before F_cls
index over bound

0 1 … 4

0 0 … 0

B_cls

0 1 … 4

F_cls

 1 2 … 5

5 1 … 4

6 0 … 0

When B_cls is
set the values

0 1 … 4

F_cls

 1 2 … 5

0 1 … 4

7 8 … 10

B_cls

Fig. 2. Memory allocations for F_cls�s index out of bound; the
replacement of F_cls with B_cls.

Table 1
Symbols used for syntactic entities in source code

Syntactic entity Pattern symbol

Variable $v
Array variable $a[. . .]
Function $f[. . .]
Type $t
Declaration $d
Expression #
Statement @

104 P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110
Example 1. Considering array indexes out-of-bound in
Fig. 1, the instructions at line 5 to 8 declare values for
array F_cls [0] to F_cls [5] when the upper bound of
array F_cls should be 4. When array B_cls is declared
the values from B_cls [0] to B_cls [4], the value of B_cls
[0] replaces the value of F_cls [5]. Thus a person at F_cls
[5] location is automatically eliminated. This error
affects the company�s reputation in negative manner.
Fig. 2 shows the results of booking process and the
memory declarations for F_cls and B_cls.

Example 2. When a function is generally called, para-
meters are passed to a called function. Since the old ver-
sions of C do not support function prototypes, therefore
the passed type of function arguments are not checked.
On the other hand, in the modern C, the programmers
are able to declare the function before it is called. Thus
its parameters� type are checked when the function is
called. However some functions are not declared until
the function has been used. Therefore the compiler treat
these functions as if it is a non-prototype for function
arguments. Once the function is recognized as the non-
prototype for function arguments, the parameter check-
ing is ignored.

Considering Fig. 1 at line 28, the INSURANCE func-
tion is declared and a passing argument is an integer
named class. However at lines 17 and 22, INSURANCE
function is called and the passing argument is cls, which
is declared as a character. Since the value of passing
parameter is ‘‘f’’, which is different from the declared
parameter of INSURANCE function, there is no
matched value in the if-statement and then the else com-
mand at lines 34, 35 are executed.

Example 3. Considering switch statement in Fig. 1 at
lines 15 to 27, there is no default case. If the user types
‘‘F’’, instead of ‘‘f’’, to retrieve an insurance value of the
first class, an user does not receive any values from the
execution. Consequently, the user may misunderstand
that the program is wrong, or malfunction occurs. If
there is no matching case in switch statement, the default
case should be defined in order to inform user that the
program performs its task and cannot find any matching
cases.

For more examples of the problems, considering the
examples of C programs in (Deeprasertkul and Bhattar-
asinee, 2003) the errors include cases such as array
indexes out of bound, passing the wrong types of func-
tion arguments, and no-default-case in switch statement.

Although programmers try to detect faults by run-
ning test data, or program inspection software, unfortu-
nately some of faults may not be detected before
software is delivered to users. Even though the faults
do not cause an interruption in the software execution,
the result from its execution cannot be trusted and, in
a worse case, can produce a plausible but incorrect
result. Thus the reliability of the software is not as high
as expected. The PFD technique proposed in this paper
helps programmers detect which faults and errors might
be left in the programs. PFD can also automatically cor-
rect some faults if the programmers desires. The details
of PFD technique are explained in Section 5 and 6.
4. Pattern language

The pattern language (Paul and Prakash, 1994; Hage-
meister et al., 1996) is applied to check the programming
language constructs such as variables declarations, type
declarations, functions� argument types, etc. To illus-
trate our approach, we describe an overview of the pat-
tern symbols in a sample pattern language for C. Table 1
lists the pattern symbols. We have developed the pat-
terns using these symbols and collected them in Pattern
Library. The brackets [. . .] and (. . .) in the array and
function entries, respectively, stand for a list of argu-
ments that can themselves be other identifiers or
constants (Hagemeister et al., 1996).

All pattern symbols can be named where name can be
any symbols made of alphanumeric characters. Named
symbols can be used to express constraints within pat-
terns, and to restrict the matching of pattern (Hagemei-
ster et al., 1996). The list of them are given in Table 2.

Table 2
Named symbols used for syntactic entities in source code

Entity Pattern symbol

Array variable $a_name[. . .]
Function $f_name(. . .)

P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110 105
4.1. Writing a pattern

Using the symbols previously mentioned, the patterns
can be written. For example, suppose we want to locate
the arrays in a source code, a pattern is then $a[. . .].
Therefore, the entire arrays in source code are scanned
from left to right to be the matches. Another example,
if we want to locate INSURANCE function in source
code, we use a named symbol $f_INSURANCE(. . .) to
be the pattern.
5. The proposed technique

PFD technique performs the fault detection as a soft-
ware guard. The PFD preprocesses the programs before
the compilation takes place as shown in Fig. 3. Only
after the detected faults were corrected can the corrected
software be compiled.

According to the functionality defined for PFD, it
consists of two main modules: detection module, and
correction module. Before describing our system in
more detail, we formally introduce the definitions of a
set of PFD faults, a fault detection function, and a fault
correction function.

Definition 1. Let F be a set of all faults and let F 0 be a
set of faults detected by PFD. Let Fu be a set of
undetected faults. A fault f is a fault in F 0 if the fault f
Step 2 Step 1

Pattern
Matcher

Program
Source Code Parser

Error Messages
or Warnings

Pattern
Library

List o
Fault

Detection Module

Fig. 4. The functionality of Pre

Program PFD
Program
corrected
by PFD

Compiler

Fig. 3. Precompiled Fault Detection in context.
is detected by PFD. A fault f is a fault in Fu if it is not a
fault in F 0.

F 0 ¼ F � F u or F 0 ¼ ff 0jf 0 2 F ; f 0 62 F ug

Definition 2. Let S be a set of statements in source code.
Df is called a detection function of PFD if all faults of F 0

in S are detected by Df.

Df : S ! F 0 or f 0 ¼ Df ðsÞ where f 0 2 F 0; s 2 S

Definition 3. Let Sr be a set of corrected statements in
source code. Cf is called a correction function of PFD
if all faults in F 0 are corrected by Cf.

Cf : F 0 ! Sr or sr ¼ Cf ðf 0Þ where sr 2 Sr; f 0 2 F 0

When all faults in F 0 are corrected, all corrected state-
ments Sr are executed without the faults in F 0.
5.1. Detection module

The detection module is an important module that
identifies and guarantees software reliability for the hid-
den faults. This module is responsible for detecting
faults that cannot be detected by compiler, and informs
the programmers about faults.

When the programmers need to compile the pro-
grams, the programs are first analyzed by PFD. Each
statement is traced by Df of PFD to look for the faults
F 0 in source code. PFD then generates a list of each fault
to be used as input to the correction module. This pro-
cess corresponds to Step 1 and Step 2 in Fig. 4.

Step 1: To detect the programming faults in program
P, we first input P to PFD for analyzing each statement
in P. The Parser parses the source code to discover
which statements contain the potential faults.

A graph in Fig. 5(a) (Ferrante et al., 1987) is a direc-
ted graph for the constructs of a part of program in Fig.
5(b). The vertices represent statements in the pro-
gram such as data types, variables, parameters, condi-
tional branches, and assignment statements. The edges
f
s

Analyzer
Corrected
Program

Source code
Compiler

Step 3

Correction Module

compiled Fault Detection.

entry main

ind(F_cls) = 5 ind(B_cls) = 5 ind(E_cls) = 10 for i = 0; i <= 5; i++

print i++ write F_cls[i]
 control
 data
 declaration

1 main() {
2 int F_cls[5], B_cls[5], E_cls[10], i, j;
3 char cls;
4 for(i = 0; i <= 5; i++) {
5 printf("%d: ", i++);
6 scanf("%d", &F_cls[i]);
7 }

(a) (b)

Fig. 5. An example of system graph (a) for a part of program in Fig. 1 shown on (b).

1 Function main_PFD_function(P) {
2 if (D1() == True) then C1();
3 if (D2() == True) then C2();
4
5 if (Dn() == True) then Cn();
6 else
7 compile P;
8 }

...

Fig. 6. An algorithm of a main functionality of PFD for detecting and
correcting faults.

106 P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110
between the vertices indicate data, control dependence,
or declaration. A data edge indicates a way in which
the data value can be transmitted. For example, there
is a data edge between the vertex for for(i = 0; i<= 5;
i++) and the vertex for print i++, which indicates that
a value for i flows between these two vertices in Fig.
5(a). A control edge between a source vertex and a des-
tination vertex indicates whether or not the destination
vertex (e.g. print i++, write F_cls[i]) is reached by the
result of executing the source vertex (e.g. for(i = 0;
i < = 5; i++)). A declaration edge indicates the decla-
ration of variables in programs (e.g. F_cls[5]). For
example, a vertex ind(F_cls) = 5 means that a size of
F_cls index is 5.

The pattern matching in Erlang (Armstrong et al.,
1993) provides the basic mechanism by which values
become assigned to variables. Then, the value of these
variables have been bound. The build-in reliability fea-
tures of Erlang, such as the tuples are data structures
which are used to store a fixed number of elements,
are therefore applied in PFD.

In our approach, a source code is therefore parsed for
looking for the required variable declarations or state-
ments, e.g. int F_cls[5], INSURANCE(. . .). They
match the pattern of PFD�s faults in Pattern Library

described in Section 4. These required variable declara-
tions or statements are then generated to be the new pat-
terns in Pattern Library by the Parser.

Step 2: The Pattern Matcher considers the used vari-
ables, function call, etc. to match the pattern of declara-
tions which are generated in Step 1. The Pattern

Matcher also creates a log file for each fault defined in
PFD as follows: Assume that method D1 declares the
detection of a fault type F1 in program P1. The Pattern
Matcher creates the log file, P1F1.log. In a log file, there
are n potential faults of F1. An algorithm of main func-
tionality of PFD is shown in Fig. 6.

An example of the pattern and the match graphs
which are used to consider the programs in Step 1 and
Step 2 is shown in Fig. 7. When the value of index i of
F_cls in match part does not match with its value in pat-

tern(ind(F_cls) = 5), this fault is recorded in the list of
faults. For example, when i = 5, it makes size of F_cls
index is over its declaration (size of F_cls index is 6).
An error message appears to caution the programmers
and this fault is then corrected in Step 3.
5.2. Correction module

The aim of the correction module is to correct the
detected faults during the detection module. Whenever
any faults are detected, the programmer must correct
them, otherwise the source code are not accepted by
the compiler. Thus the faults cannot be bypassed by
the programmer. A resulting program becomes more
reliable since these detected faults which cause the criti-
cal system failures are corrected. Note that the correc-
tion module is optional, i.e., a programmer might
prefer to fix a program manually instead of using auto-
matic correction.

The correction module is Step 3 in Fig. 4.
Step 3: Most faults F 0 are automatically corrected by

Cf of PFD. Some fault corrections cannot, however, be
automatic. For example, the default case is automati-
cally added to the no-default-case in switch statement,
but the operations of inserted default case must be deter-
mined by the programmers.

The Analyzer in correction module performs this task
by using the information from each log file provided by

match

entry main

ind(F_cls) = 5 ind(B_cls) = 5 ind(E_cls) = 10 for i = 0; i <= 5; i++

print i++ write F_cls[i]

pattern

 control
 data
 declaration
 comparison

i = 5

Error!

Fig. 7. An example of the pattern and match graphs for the program in Fig. 5(b).

1 function check_array(char *name)
2 while read next character until end of file
3 if item == declared variable type
4 while read next character until new line
5 if item == array variable
6 put name and index in an array log file;
7 endwhile
8 else
9 if item == array variable
10 compare the array index with index in the log file;
11 endif
12 endwhile

(a)

1 function check_function(char *name)
2 while read next character until end of file
3 if item == name of declared function
4 put function name, line and argument types in the
5 functional log file;
6 else if item == name of function call
7 compare function call and declared function in log file;
8 endif
9 endwhile

P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110 107
the detection module. The log file exhibits the fault loca-
tions to PFD correction mechanism (C1,C2, . . . ,Cn in
Fig. 6).

5.3. Complexity

Considering the algorithm in Fig. 6, a program P

with F fault types, a fault type has N potential faults.
Therefore, the number of detected fault are F*N faults.
However, our approach mentioned in Section 5.1 can
detect N faults of a fault type in one time detecting.
For example, in a program P1, there are three faults of
the fault type F1. All of three faults are detected in
one execution time of the program input P1. Thus, we
implemented PFD that can detect all fault types by exe-
cuting the program F times. The time complexity of
detection module is O(F).
(b)

1 function check_switch(char *name)
2 while read next character until end of file
3 if item1 == “switch”
4 if item2 == “default”
5 set TRUE;
6 endif
7 endif
8 endwhile
9 if not TRUE
10 display an error message;
11 endif

(c)

Fig. 8. Three examples of fault detection algorithm in PFD. (a) An
algorithm of array index detection. (b) An algorithm of function
argument types detection. (c) An algorithm of no-default-case in switch

statement.
6. PFD Implementation

According to the PFD architecture and algorithm in
Section 5, PFD is implemented by using the C language
to perform the fault detection and correction. The input
of the PFD is an application written in C. The execution
of PFD starts with asking the programmers to enter a
program file.

The detection mechanism is the header files embed-
ded in PFD implementation. Each source file is first
passed to the detection mechanism. Fig. 8 shows the
examples of fault detection algorithms in PFD
(D1(),D2(), . . . ,Dn() in Fig. 6). An algorithm for detect-
ing array indexes is shown in Fig. 8(a). The array vari-
ables in source file are inspected to compare the
declared indexes to the used ones. A fault is recorded
in a log file, if the array index exceeds its bound. The
case of function argument types is shown in Fig. 8(b).
Fig. 8(c) illustrates the detection of no-default-case in
switch statement.
The detection mechanism is used to parse the source
code of a given program for finding the potential faults.
The given program input is parsed repeatedly to detect
at all programming faults defined in PFD and the
results of online checks are written out to log files by

Log fileCode segment
Name Size

1 main() {
2 int F_cls[5], B_cls[5], E_cls[10], i, j;
3 char cls;
4 for(i = 0; i <= 5; i++)
5 {
6 printf("%d", i++);
7 scanf("%d", &F_cls[i]);
8 }

9
10 }

1. F_cls
2. B_cls
3. E_cls

1. F_cls

5
5

10

6

Pattern

Error!

...

Fig. 9. An example of a log file: array indices out-of-bound detection.

108 P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110
the detection mechanism. These log files are then pro-
cessed to classify each fault. An example of a log file is
shown in Fig. 9. Therefore, the outputs of this process
are the log files and errors or warning messages.

The correction mechanism is also the header files in
PFD implementation. This task traces each record in
the log files provided by detection mechanism. The
PFD requires access to the source code for correcting
according to each record. If each fault in the log file is
corrected, that record is flagged. After the given pro-
gram is analyzed by PFD the compiler of language is
called to compile the program.
Random
data

Data
files

Run source
files

Run corrected
source files
7. Experimental results

To validate PFD technique, we first defined a set of
programming faults which mostly occur in C programs
such as the incorrectness of array indexes, the mismatch
of function arguments types, and no-default-case in
switch statements. These faults are encountered in the
real applications. We used the applications containing
them to make sure that our PFD correctly detects faults
during the detection module and effectively corrects
them during the correction module. Experiments were
conducted following the methodology described in Sec-
tion 5: We executed the PFD for analyzing each applica-
tion. Table 3 lists a number of programming faults
existing in the applications and a number of failures
resulting from the detected faults. These testing applica-
tions are the prototypes of the seat allocation system
Table 3
The number of programming faults in each C application

Application # Faults # Failure

Before using PFD After using PFD

1 S_Darray.c 2 9000 0
2 SeatRev.c 3 9002 2
3 MedOrd.c 2 9001 1
4 Fmap.c 3 987 0
5 SeatCls.c 2 424 0
6 PatType.c 1 296 6
7 Swcases.c 1 1443 0
8 SeatPrice.c 1 1755 4
and medical system. A source file S_Darray.c and Med-

Ord.c contains two array indexes out-of-bound each.
SeatRev.c, which is the seat reservation program, has
three array indexes out-of-bound. Fmap.c, SeatCls.c,
and PatType.c have three, two, and one faults, respec-
tively, about passing wrong type of function arguments.
Swcases.c and SeatPrice.c hold one of no-default-case in
switch statement each.

Fig. 10 illustrates a flowchart of PFD evaluation
steps. After implementing PFD to detect and correct
the faults in applications, a set of simulation data
(10,000 data) has been applied in order to measure the
resulting reliability of software. The resulting graphs
of running software using the test data set before and
after using PFD are presented in Fig. 11. Since there
are a large number of testing data (10,000 data), all of
them cannot be clearly represented in this paper. Thus,
the graphs in Fig. 11 illustrate the only 100 testing data
inputs. The number of failures, which are the effects of
Number
of

failures

Number
of

failures

Compare

Results
of test
case

Fig. 10. A flowchart of the steps involved in the evaluation of using
PFD.

Programs

#F
ai

lu
re

s

Before Correction After Correction

100

80

90

70

60

50

40

30

20

10

0
1 2

2

3 4 5 6 7 8

4
0

47

3
10

0
7

0

13

10

90 92 91

63

Fig. 11. A resulting graph before and after correcting by PFD.

P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110 109
the faults in Table 3, are completely removed from the
applications. However, the failure occurrence after using
PFD of SeatRev.c, MedOrd.c, PatType.c, and Seat-

Price.c shown in Table 3 are not the effects of faults
defined in PFD.
8. Discussion

Generally application code may contain faults both
visible and invisible. These faults may cause the prob-
lems incorrect usage for the applications, thus effecting
the reliability of usage. The reliability of software is a
function of the number of faults in the program, there-
fore software developers must try to eliminate as many
faults as possible. The consequence of fault elimination
is that the risk of software failure is reduced and the reli-
ability of the software can be significantly increased.

The objective of PFD is to detect the faults, and assist
the software developer to correct these faults before
passing the source code through to the compiler. These
detected and corrected faults in the application software,
after applying the PFD technique, will not occur again
in the compiled applications.

Referring to the results presented in Section 7, these
results confirm that the PFD technique has the capabil-
ity of eliminating the critical faults that arise in C pro-
gramming, such as the static array index out-of-bound,
the passing of incorrect type of function arguments, or
the no-default-case in switch statements. Software appli-
cations that utilize PFD during the software develop-
ment process contain a significantly lower number of
hidden faults than the software that compiles directly.
Therefore the application software filtered by PFD will
be efficient and reliable software as the users require.

The three cases of faults, the static array index out-of-
bound, the passing of incorrect type of function argu-
ments, and the no-default-case in switch statements,
are representative of the scope of the PFD technique,
a technique that has a wide applicability not restricted
to the three chosen cases. In addition, we will apply this
PFD technique to other programming languages.
9. Conclusion

The existence of faults in application code are both
inevitable and can give rise to serious system outcomes.
It is the responsibility of software developers to prevent
and detect these hidden faults as far as possible. Cur-
rently there are a number of fault detection techniques
such as buffer overrun or memory access error detection
algorithms. But these techniques perform the fault
detection at run-time, and may be unable to identify
the fault�s location easily, so that fault repair is difficult.

This paper has proposed a new and significant tech-
nique called Precompiled Fault Detection (PFD). The
pattern matching in Erlang is applied to this technique
for detecting and correcting hidden faults in a C imple-
mentation. The proposed technique has been tested by
running a set of simulation programs with a test set of
data, and the number of faults is counted before and
after the program passes through the PFD. The result
shows that, after passing the PFD, the number of faults
from the application program is reduced or totally elim-
inated. Therefore the program execution will not be
effected by the hidden faults.

The applications that can run without termination or
interruption from its internal faults is certainly classed
as reliable software. The PFD technique that supports
automatic fault detection and correction of software,
can be considered as a step towards increasing software
reliability, in other words the software that has been pre-
processed through PFD is shown to be much more reli-
able than software that is directly compiled. Therefore,
PFD can guarantee the reliability of all the application
software passed through.
Acknowledgment

We would like to thank Dr. Rob Rendell who was a
staff at Software Engineering Research Centre, RMIT,
Melbourne, Australia for his valuable comments on
problems encountered in programming languages.

110 P. Deeprasertkul et al. / The Journal of Systems and Software 78 (2005) 101–110
References

Armstrong, J.L., Virding, S.R., Williams, M.C., 1993. Concurrent
Programming in Erlang. Prentice Hall.

Cowan, C., Beattie, S., Day, R-F, Pu, C., Wagle, P., Walthinsen, E.,
1998. Automatic Detection and Prevention of Buffer Overflow
Attacks, 7th USENIX Sec. Symposium.

Deeprasertkul, P., Bhattarasinee, P., 2003. Software Fault Detection in
C Programs, 12th Int. Conf. on Intelligent and Adaptive Systems
and Software Engineering.

Drake, J., Mashayekhi, V., Riedl, J., Tsai, W., 1991. A Distributed
Collaborative Software Inspection Tool: Design, Prototype, and
Early Trial. Technical, Report TR-91-30, University of Minnesota.

Fagan, M., 1976. Design and code inspections to reduce errors in
program development. IBM Systems Journal 15 (3), 182–211.

Ferrante, J., Ottenstein, K., Warren, J., 1987. The program depen-
dence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems 3 (9), 319–349.

Ganapathy, V., Jha, S., Chandler, D., Melski, D., Vitek, D., 2003.
Buffer Overrun Detection using Linear Programming and Static
Analysis, 10th ACM Conference on Computer and Communica-
tion Security.

Ghezzi, C., Jazayeri, M., Mandrioli, D., 2003. Fundamentals of
Software Engineering. Prentice-Hall (International edition).

Hagemeister, J.R., Bhansali, S., Raghavendra, C.S., 1996. Implemen-
tation of a Pattern-Matching Approach for Identifying Algorith-
mic Concepts in Scientific FORTRAN Programs, 3rd International
Conference on High Performance Computing, pp. 209–214.

Harbison, S.P., Steele Jr., G.L., 1995. C: A Reference Manual, fourth
ed. Prentice-Hall.
Larson, E., Austin, T., 2001. High Coverage Detection of Input
Related Security Faults, 12th USENIX Sec. Symposium.

Macdonald, F., Miller, J., Brooks, A., Roper, M., Wood, M., 1995. A
Review of Tool Support for Software Inspection, Proceeding 7th
International Workshop Computer-Aided Software Engineering
(CASE-95).

Macdonald, F., 1998. Computer-Supported Software Inspection, PhD
thesis, Department of Computer Science, University of Strathclyde.

Necula, G.C., McPeak, S., Weimer, W., 2002. CCured: Type-Safe
Retrofitting of Legacy Code, ACM Conference on the Principles of
Programming Language (POPL).

Paul, S., Prakash, A., 1994. A framework for source code search using
program patterns. IEEE Transactions on Software Engineering 20
(6), 463–474.

Rady de Almeida Jr., J., Batista Camargo Jr., J., Abrantes Basseto, B.,
Miranda Paz, S., 2003. Best practices in code inspection for safety-
critical software. IEEE Software.

Sembugamoorthy, V., Brothers, L., 1990. ICICLE: Intelligent Code
Inspection in a C Language Environment, Proceeding 14th
Annual Computer Software and Applications Conference,
pp. 146–154.

Spuler, D.A., 1994. C++ and C Debugging, Testing, and Reliability:
the Prevention, Detection, and Correction of Program Errors.
Prentice-Hall.

Wagner, D., 2000. Static Analysis and Computer Security: New
Techniques for Software Assurance, PhD. Thesis, UC Berkeley.

Xie, Y., Chou, A., Engler, D., 2003. ARCHER: Using Symbolic Path-
Sensitive Analysis to Detect Memory Access Errors, 9th European
Software Engineering Conference and 11th ACM Symposium on
Foundation of Software Engineering (ESEC/FSE).

	Automatic detection and correction of programming faults for software applications
	Introduction
	Problem description
	Approach
	Contribution

	Related work
	Problem descriptions and motivations
	Pattern language
	Writing a pattern

	The proposed technique
	Detection module
	Correction module
	Complexity

	PFD Implementation
	Experimental results
	Discussion
	Conclusion
	Acknowledgment
	References

