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Abstract—In traditional multiple-input–multiple-output
(MIMO) channel and MIMO one-way relay system, nonlinear
precoding design has shown significant performance gain over
linear design. In this paper, we aim to study nonlinear precoding
design for MIMO amplify-and-forward (AF) two-way relay
systems, where nonlinear minimal mean square error (MMSE)
decision feedback equalizers (DFEs) are used in two destinations,
and linear transmit precoding is applied at the source and relay
nodes. We first investigate nonlinear precoding design, where
the precoding is only conducted at two sources for a fixed-relay
precoder. After some transformations, we prove that this design
problem is convex, and an efficient algorithm is provided to
find the optimal solution. Then, we consider the nonlinear joint
precoding design to further incorporate relay precoding. Due to
the nonconvexity of this problem, we first propose an iterative
algorithm (Algorithm I) to approach the optimal solution. It
is proven that Algorithm I is convergent and can converge to
a stationary point of the joint design problem. Moreover, we
present a simplified iterative algorithm (Algorithm II) for joint
precoding design to reduce the design complexity. It is found that
Algorithm II almost achieves the same performance as Algorithm I
in most cases. Our simulation results show that the proposed
nonlinear joint precoding design significantly outperforms the
linear joint precoding design. It is also shown that the choice
between the proposed nonlinear source precoding design and the
linear relay precoding design is dependent on specific conditions.

Index Terms—Minimum mean square error (MMSE), multiple-
input–multiple-output (MIMO), nonlinear precoding, nonregen-
erative relay, two-way relaying.

I. INTRODUCTION

R ECENTLY, two-way relaying has garnered significant
interest for its ability in improving the spectral efficiency

of wireless transmission in the case of long source–destination
distance [1], [2]. As a new cooperative communication scheme,
the notion of two-way relaying is to apply the principle of net-
work coding at the relay node to mix the signals received from
two sources for subsequent forwarding and then apply, at each
destination, self-interference cancelation to extract the desired
information. Thus, in contrast to traditional one-way relaying,
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half of channel usages can be saved to complete one round
of information exchange between two sources. On the other
hand, the multiple-input–multiple-output (MIMO) technique
has been considered to be a significant technical breakthrough
in wireless communications. Similar to conventional point-to-
point and one-way relay systems, incorporating the MIMO
technique into a two-way relay system is expected to further
enhance throughput and achieve more reliable transmissions.

To fully realize the benefits of MIMO and two-way relaying,
conducting precoding at both the source nodes and the relay
node by making use of channel state information (CSI) is
crucial. A few studies have investigated the precoding design
for MIMO two-way relay systems. For example, in [3]–[5],
the relay precoding design for a MIMO two-way relay system
where multiple antennas are only equipped at the relay node is
considered. Then, in [6]–[9], a more complex case is studied,
where both the source and relay nodes are equipped with
multiple antennas. Under the decode-and-forward (DF) relay
strategy, [6] investigates the relay precoding design and com-
pares the capacity gain for two different reencoding operations.
Different from [6], in [7]–[9], the amplify-and-forward (AF)
relay strategy is considered. In addition to relay precoding, [7]–
[9] also incorporate source precoding such that source and relay
precoding are jointly designed to improve system performance.
Other than traditional two-user networks, the precoding of
MIMO two-way relaying has also been extended to multiuser
networks [10]–[12].

It is worth noting that the aforementioned precoding designs
for MIMO two-way relay systems are linear. Although the
nonlinear precoding design has been well studied in MIMO
point-to-point systems [13], [14] and MIMO one-way relay
systems [15], [16], to the best of our knowledge, it has not been
considered in MIMO two-way relay systems. Since nonlinear
precoding has been shown to have better performance than
linear precoding [13]–[16], incorporating nonlinear precoding
into MIMO two-way relay systems is expected to further
improve system performance. Thus, in this paper, we aim to
investigate the nonlinear precoding design for MIMO two-way
relay systems. Specifically, we adopt the AF relay strategy for
its simplicity of implementation. For the considered nonlinear
precoding scheme, we assume that linear precodings are ex-
ploited at the source and relay nodes, and nonlinear decision
feedback equalizers (DFEs) are applied at two destinations. Our
objective is to minimize the total mean square error (Total-
MSE) of two destinations. Thus, we refer to such receiver as
minimum mean square error (MMSE)-DFE receiver, as in [15].

First, we study nonlinear precoding design at two sources
for a fixed-relay precoder. After using some transformations,
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Fig. 1. Nonlinear precoding MIMO two-way relay system.

we prove that this design problem is convex, and an efficient
algorithm is provided to find the optimal solution. Then, we
study the more complex nonlinear joint precoding design at
both the source nodes and the relay node. It is shown that
this joint precoding design problem is nonconvex. To make the
design problem tractable, we first propose an iterative algorithm
(Algorithm I) to approach the optimal solution based on alter-
nating optimization. We prove that Algorithm I is convergent
and can converge to a stationary point of the joint design
problem. Based on the insights obtained from Algorithm I, we
further propose a simplified version of the iterative algorithm
(Algorithm II) by relaxing the relay power constraint when
optimizing the source precoders during each iteration. It is
found that the simplified method, i.e., Algorithm II, almost
achieves the same performance as Algorithm I in most cases.
Our simulation results show that the proposed nonlinear joint
precoding design can significantly outperform the linear joint
precoding design. However, the choice between the proposed
nonlinear source precoding design and the linear relay precod-
ing design is dependent on the conditions.

Notations: E(·) denotes the expectation over the random
variables within the bracket. ⊗ denotes the Kronecker operator.
vec(·) and mat(·) signify the matrix vectorization operator and
the corresponding inverse operation, respectively. Tr(A), |A|,
and A−1 stand for the trace, determinant, and inverse of matrix
A, respectively. Superscripts (·)T , (·)∗, and (·)H denote trans-
pose, conjugate, and conjugate transpose, respectively. Cx×y

denotes the space of x× y matrices with complex entries. SN

and S
N
+ denote the set of symmetric N ×N matrices and the

set of positive semidefinite N ×N matrices, respectively. The
distribution of a circular symmetric complex Gaussian vector
with mean vector x and covariance matrix Σ is denoted by
CN (x,Σ).

II. SYSTEM MODEL

Consider an (N,M,N) MIMO AF two-way relay system
where two N -antenna source nodes denoted as S1 and S2

want to exchange messages through an M -antenna relay node
denoted as R. Here, we assume that N data streams are trans-
mitted from each source to fully utilize the multiplexing gain.
To efficiently transmit N data streams, we assume that M ≥ N
as in [7] and [8]. The information exchange takes two time
slots, as shown in Fig. 1. In the first time slot (also referred
to as multiple access control (MAC) phase), two source nodes
S1 and S2 simultaneously transmit their signals to relay node

R. Thus, the received M × 1 signal vector at the relay node is
expressed as

yR = H1F1s1 +H2F2s2 + nR

where Hi ∈ C
M×N , for i = 1, 2, is the full-rank channel matrix

from Si to R, Fi ∈ C
N×N denotes the transmit precoding ma-

trix at Si, si represents the transmit signal from Si, and nR de-
notes the additive noise vector at R, with nR ∼ CN (0, σ2

RIM ).
Here, we assume that si is normalized as E(sisHi ) = IN , and
the power constraint at two sources can thus be denoted as

Tr
(
FiF

H
i

)
≤ Pi, i = 1, 2 (1)

where Pi is the maximum transmit power at Si.
Upon receiving yR, the relay node amplifies it by multiplying

it with a precoding matrix P ∈ C
M×M . Therefore, the M × 1

transmit signal vector from the relay node can be expressed as
xR = PyR. We assume that the maximum power at the relay
node is PR, which yields

Tr
{
P

(
H1F1F

H
1 HH

1 +H2F2F
H
2 HH

2 + σ2
RIM

)
PH

}
≤PR.

(2)

Then, the received signal at Si after the second time slot [which
is also referred to as the broadcast (BC) phase] can be written
as

yi=GiPHīFīsī+GiPHiFisi+GiPnR + ni, i=1, 2
(3)

where ī = 2 if i = 1 and ī = 1 if i = 2, Gi ∈ C
N×M is the full-

rank channel matrix from R to Si, and ni denotes the additive
noise vector at Si, with ni ∼ CN (0, σ2

i IN ). Subtracting the
backpropagated self-interference term GiPHiFisi from (3)
yields the equivalent received signal vector at each destination
node as

yi = Disī +GiPnR + ni, i = 1, 2 (4)

where Di = GiPHīFī is the equivalent end-to-end MIMO
channel matrix for Si.

At each destination Si, the MMSE-DFE receiver is imple-
mented by using a feedforward matrix filter Wi ∈ C

N×N and
a feedback matrix filter Bi ∈ C

N×N , as shown in Fig. 1. Note
that Bi is a strictly upper triangular matrix, which implies
that the detection of transmit symbols starts from the N th row
and the detection of the kth symbol is precoded by subtracting
the effect of previously decoded symbols. Assuming correct



3986 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 61, NO. 9, NOVEMBER 2012

TABLE I
ILLUSTRATION OF SIGNALING OVERHEAD

previous decisions as in [13]–[16], the input to the detector ŝi
can be written as

ŝī =Wiyi −Bisī

=(WiDi −Bi)sī +WiGiPnR +Wini. (5)

Then, the error vector between ŝī and sī is given by

eī = ŝī − sī

=(WiDi − IN −Bi)sī +WiGiPnR +Wini. (6)

The sum MSE of detector input is thereby derived as

Eī = E
(
eHī eī

)
= Tr

{
(WiDi −Ui)(WiDi −Ui)

H

+ Wi

(
σ2
RGiPPHGH

i + σ2
i IN

)
WH

i

}
(7)

where Ui = IN +Bi, for i = 1, 2.
Before leaving this section, we provide some discussions on

the synchronization issue and the signaling overhead for obtain-
ing the CSI and the precoding information in the system. In this
paper, we assume perfect synchronization at the MAC phase,
so that the transmissions of the two source nodes align. In
addition, we assume that the channel characteristics of each link
change slowly enough so that they can be perfectly estimated
at each receiver by using pilot symbols or training sequences.
The required signaling overhead depends on the node in the
system conducting the joint precoding design. In the following,
we discuss two specific scenarios.

1) The relay node performs joint precoding design and then
broadcasts the resulting precoding and decoding matrices
to the source nodes.1

2) Each node simultaneously performs the joint design.
The illustration of overall signaling overhead is presented

in Table I, where we suppose that the corresponding channel
matrix is estimated at each destination node. For completeness,
both reciprocal channels, i.e., Gi = HT

i , and nonreciprocal
channels, where Gi is independent with Hi, are considered,
respectively. From Table I, it is easy to find that each scheme
has its own merits. Specifically, the first one can lower the
computational complexity at two source nodes, whereas it
requires much signaling overhead to feed back the precoding

1The joint precoding can also be designed at one of the source nodes, but
it requires more signaling overhead to acquire CSI and precoding information
than performing the joint design at the relay node.

information. The second one needs less signaling overhead;
however, it requires that all the nodes have enough processing
ability to conduct the precoding design.

III. NONLINEAR PRECODING DESIGNS

Our goal is to minimize the Total-MSE of two users. Thus,
the precoding design optimization is formulated as

min
Fi,P,Wi,Ui, i=1,2

E1 + E2

s.t. (1), (2). (8)

From (8), it is not hard to see that the feedforward matrix
Wi, for i = 1, 2, is irrelevant to the power constraint. Since
the objective function in (8) is convex with respect to Wi, the
optimal Wi can be obtained by equating the gradient of the
objective function in (8) to zero, which is derived as

Wi = UiD
H
i

(
DiD

H
i +Ri

)−1
, i = 1, 2 (9)

where Ri = σ2
RGiPPHGH

i + σ2
i IN . Substituting the optimal

Wi, for i = 1, 2, into (7), we get an alternative expression of
MSE as

Eī = Tr
{
Ui

(
IN +DH

i R−1
i Di

)−1
UH

i

}
, i = 1, 2.

(10)

Then, the nonlinear precoding design problem can be equiva-
lently rewritten as

min
Fi,P,Ui, i=1,2

2∑
i=1

Tr
{
Ui

(
IN +DH

i R−1
i Di

)−1
UH

i

}
s.t. (1), (2). (11)

We can verify that (11) is nonconvex and that the optimal
solution is not easily tractable. It is worth noting that, from a
practical application point of view, operating the joint nonlinear
precoding at both the source and relay nodes may not be
feasible in some scenarios. Thus, in the following, we first
consider a simple case where the precoding is only conducted
at two source nodes for a fixed-relay precoder. After that, we
consider a more complex case where the precoding is exploited
at both the source and relay nodes.
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A. Nonlinear Source Precoding Design for a
Fixed-Relay Precoder

This precoding scheme is suitable to a scenario where the
relay node does not have enough processing ability to enable
the joint precoding design and the system signaling overhead is
strictly limited. Thus, applying a fixed-relay precoder can lower
the computational complexity at the relay node and, on the
other hand, can reduce the signaling overhead if the precoding
is designed at two source nodes. The corresponding precoding
design problem is thereby yielded as

min
Fi,Ui, i=1,2

2∑
i=1

Tr
{
Ui

(
IN +DH

i R−1
i Di

)−1
UH

i

}
s.t. (1), (2). (12)

Although (12) exhibits a simpler form than (11), it is still a
nonconvex problem. To help derive the optimal solution of (12),
we resort to minimizing a lower bound of (10) as in [13], which
is denoted as

Elb
ī = N

∣∣IN +DH
i R−1

i Di

∣∣−1/N
, i = 1, 2. (13)

To obtain the lower bound (13) from (10), we have used
the arithmetic–geometric mean inequality Tr(X) ≥ M |X|1/M ,
with X being an M ×M positive semidefinite matrix. At the
end of this section, we shall show that suitable Fi and Bi (i.e.,
Ui) can be chosen to achieve this lower bound. According to
(13), the optimization problem to solve Fi is described as2

min
Flb

1 ,Flb
2

2∑
i=1

∣∣∣IN + Flb
ī

H
HH

ī PHGH
i R−1

i GiPHīF
lb
ī

∣∣∣− 1
N

s.t. Tr
(
Flb

i Flb
i

H
)
≤ Pi, i = 1, 2

2∑
i=1

Tr
(
Flb

i

H
HH

i PHPHiF
lb
i

)
≤ P ′

R (14)

where P ′
R = PR − σ2

RTr{PPH}. Since (14) is still nonconvex
with respect to Flb

i , to derive the optimal solution, we rewrite

(14) as follows by introducing Qi = Flb
i Flb

i
H

:

min
Q1,Q2	0

|IN +M1Q1|−1/N + |IN +M2Q2|−
1
N

s.t. Tr(Qi) ≤ Pi, i = 1, 2

Tr{N1Q1 +N2Q2} ≤ P ′
R (15)

where Mī=HH
ī
PHGH

i R−1
i GiPHī, and Ni=HH

i PHPHi,
for i = 1, 2. To proceed in solving (15), we have the following
lemma, the proof of which is given in Appendix A:

Lemma 1: The optimization problem (15) is convex with
respect to Q1 and Q2.

Although (15) is a convex optimization problem, it is not
easy to obtain a closed-form solution. To gain more insight

2For notation convenience, we denote the designed source precoders from
the lower bound as Flb

i , i = 1, 2.

into problem (15), we derive the optimal structure of Qi, for
i = 1, 2, in the following lemma:

Lemma 2: The optimal solution of Qi, for i = 1, 2, in (15)
has the form

Qi = M
− 1

2
i ŨiΣQiŨ

H
i M

− 1
2

i , i = 1, 2 (16)

where ΣQi is a diagonal matrix, with its entries arranged
in increasing order; and Ũi is the eigenvector matrix
of M

−1/2
i ZiM

−1/2
i , where Z1 = λ1IN + λ3N1 and Z2 =

λ2IN + λ3N2, with λ1, λ2, and λ3 being three nonnegative
scalars. The eigenvalue decomposition of M−1/2

i ZiM
−1/2
i can

be denoted as

M
− 1

2
i ZiM

− 1
2

i = ŨiΣ̃iŨ
H
i , i = 1, 2

where the eigenvalues in Σ̃i are arranged in decreasing order.
Proof: See Appendix B. �

Similar to [17], Lemma B.1 also implies that the optimal
solution of (15) can be solved in an alternating manner, i.e., we
can first solve problem (41) in Appendix B, and then update
variables λi, for i = 1, 2, 3, by using the subgradient-based
method. The optimal solution of (15) can be obtained after
convergence of the iteration. According to Lemma 2, solving
the problem (41) can be simplified to solving the following
power allocation problem:

min
ΣQ1,ΣQ2

|IN +ΣQ1|−
1
N + |IN +ΣQ2|−

1
N

s.t. Tr{Σ̃1ΣQ1+Σ̃2ΣQ2}≤P, ΣQi	0, i=1, 2

(17)

where P = λ1P1 + λ2P2 + λ3P
′
R. Let XQ1 = IN +ΣQ1 and

XQ2 = IN +ΣQ2; (17) can be reformed as

min
xj
Q1

,xj
Q2

N∏
j=1

xj
Q1

− 1
N +

N∏
j=1

xj
Q2

− 1
N

s.t.

N∑
j=1

(
dj1x

j
Q1 + dj2x

j
Q1

)
≤ P̄ , xj

Q1 ≥ 1, xj
Q2 ≥ 1

(18)

where xj
Qi is the jth diagonal element of XQi, d

j
i is the jth

diagonal element of Σ̃i, and P̄ = P +Tr(Σ̃2 + Σ̃2). Since
(18) is convex, Karush–Kuhn–Tucker (KKT) conditions are
sufficient and necessary for deriving the optimal solution. The
Lagrange function of (18) can be written as

L =

N∏
j=1

xj
Q1

− 1
N +

N∏
j=1

xj
Q2

− 1
N

+ λ

⎡
⎣ N∑
j=1

(
dj1x

j
Q1 + dj2x

j
Q1

)
− P̄

⎤
⎦

+

N∑
j=1

αj

(
1 − xj

Q1

)
+

N∑
j=1

βj

(
1 − xj

Q2

)
(19)
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where λ, αj , and βj are nonnegative Lagrange variables related
to the constraints in (18). By differentiating (19) with respect to
xj
Qi, the KKT conditions of (18) can be obtained as

∂L
∂xj

Q1

= − 1
N

xj
Q1

−1
N∏
l=1

xl
Q1

− 1
N + λdj1 − αj = 0 (20)

∂L
∂xj

Q2

= − 1
N

xj
Q2

−1
N∏
l=1

xl
Q2

1
N + λdj2 − βj = 0 (21)

λ

⎛
⎝ N∑

j=1

(
dj1x

j
Q1 + dj2x

j
Q1

)
− P̄

⎞
⎠ = 0 (22)

αj

(
xj
Q1 − 1

)
= 0, βj

(
xj
Q2 − 1

)
= 0. (23)

By multiplying (20) and (21) with xj
Q1 (x

j
Q2) at both sides, we

can obtain the following two equations:

1
N

N∏
l=1

xl
Q1

− 1
N =λdj1x

j
Q1 − αjx

j
Q1 = λdj1x

j
Q1 − αj (24)

1
N

N∏
l=1

xl
Q2

− 1
N =λdj2x

j
Q2 − βjx

j
Q2 = λdj2x

j
Q2 − βj (25)

where the second equality of (24) and (25) is obtained by using
(23). From (24) and (25), we find that λ must be larger than
zero. Since αj and βj are two nonnegative Lagrange variables,
to satisfy (23), if αj or βj is larger than zero, we must have the
following:

• If αj > 0, then xj
Q1 = 1, and if βj > 0, then xj

Q2 = 1. On
the other hand, if αj or βj is equal to zero, we must obtain
the following conclusion based on (24) and (25):

• If αj = 0, then dj1x
j
Q1 = a for j = {j|αj = 0}, and if

βj = 0, then dj2x
j
Q2 = b for j = {j|βj = 0}.

Here, a and b are two positive scalars needed to be
optimized. Since elements in the optimal solution xQi =
[x1

Qi, x
2
Qi, . . . , x

N
Qi] are arranged in increasing order as claimed

in Lemma 2, if the optimal solution of (18) makes xj
Q1 = 1, j =

1, 2, . . . , n, and xj
Q2 = 1, j = 1, 2, . . . ,m, the optimization

problem (18) can be simplified as

min
xj
Q1

,xj
Q2

N∏
j=n+1

xj
Q1

− 1
N +

N∏
j=m+1

xj
Q2

− 1
N

s.t.

N∑
j=n+1

dj1x
j
Q1 +

N∑
j=m+1

dj2x
j
Q1 ≤ P̃

xj
Q1 ≥ 1, xj

Q2 ≥ 1 (26)

where P̃ = P̄−
∑n

j=1 d
j
1−

∑m
j=1 d

j
2. Since xj

Qi in (26) should

satisfy dj1x
j
Q1 = a and dj2x

j
Q2 = b as previously claimed, (26)

can be further transformed into

min
a,b

A · a−
N−n
N +B · b−

N−m
N

s.t. (N − n)a+ (N −m)b ≤ P̃

a ≥ dn+1
1 , b ≥ dm+1

2 (27)

where A =
∏N

j=n+1 d
j
1

1/N
, and B =

∏N
j=m+1 d

j
2

1/N
. Again,

by using the Lagrange function of (27) given by

L = J1 + J2 + γ
(
(N − n)a+ (N −m)b− P̃

)
+μ

(
dn+1
1 − a

)
+ ν

(
dm+1
2 − a

)
(28)

where J1 = A · a−N−n/N and J2 = B · b−N−m/N , the KKT
conditions are obtained as

∂J1
∂a

+ γ(N − n)− μ = 0

∂J2
∂b

+ γ(N −m)− ν = 0

γ
(
(N − n)a+ (N −m)b− P̃

)
= 0

μ
(
a− dn+1

1

)
= 0, ν

(
b− dm+1

2

)
= 0. (29)

Combining (29) with the observation that the optimal solution
in (27) must make the power constraint active; we can derive
the following three points, which include the optimal solution:

Case I: If μ 
= 0, then

a = dn+1
1 , b =

P̃ − (N − n)a

N −m
. (30)

Case II: If ν 
= 0, then

b = dm+1
2 , a =

P̃ − (N −m)b

N − n
. (31)

Case III: If μ = 0, ν = 0, then (a, b) satisfies

(N −m)
∂J1
∂a

= (N − n)
∂J2
∂b

(N − n)a+ (N −m)b = P̃ . (32)

By comparing these points, we can obtain the optimal
solution of (27). Then, using a = dj1x

j
Q1 and b = dj2x

j
Q2 in

(26), we finally obtain the optimal solution of (18) under the
assumption that xj

Q1 = 1 for j = 1, 2, . . . , n and xj
Q2 = 1 for

j = 1, 2, . . . ,m. By trying all possible cases of (n,m), we can
find the optimal solution of (17) and then using Lemma 2 to
obtain the optimal solution of (41). Note that, in (41), there
exists variable λi, which needs to be updated by making use
of the subgradient-based method.

In summary, the overall algorithm to optimally solve (15) is
outlined as follows:

• Repeat
• Solve the problem (17) for fixed λi(n), i = 1, 2, 3

— For n,m = 0, 1, 2, . . . , N , do
— Solve (26) under the assumption xj

Q1=1, j=1, . . . , n,

xj
Q2 = 1, j = 1, . . . ,m by using Cases I, II, and III in

(30)–(32).
— End
— Choose an (n,m), which gets the minimal value of the

objective function of (18), and obtain the optimal
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solution of (17). Then, use Lemma 2 to get the optimal
Q1(λi(n)) and Q2(λi(n)).

• Update variables λ1(n), λ2(n), and λ3(n) using the
subgradient-based method3

λ1(n+ 1) =λ1(n)−Δn (P1 − Tr (Q1 (λi(n))))

λ2(n+ 1) =λ2(n)−Δn (P2 − Tr (Q2 (λi(n))))

λ3(n+ 1) =λ3(n)−Δn (PR − Tr (N1Q1 (λi(n)))

+N2Q2 (λi(n))))) .

• Until the termination criterion is satisfied.

By decomposing Qi, we can get the optimal Flb
i . Note that,

until now, the optimal Flb
i , i = 1, 2 are obtained based on the

lower bound of (10). Next, we show that suitably chosen Ui can
achieve this lower bound, which makes the preceding design
indeed optimal. Before that, we need to be reminded that Ei

in (10) achieving the lower bound Elb
i in (13) only occurs

when [13]

Ui

(
IK + FH

ī HH
ī PHGH

i R−1
i GiPHīFī

)−1
UH

i = qIN
(33)

where q = |IK +DH
i R−1

i Di|−1/N . Note that multiplying any
unitary matrix at the right side of Flb

i does not change the value
of Elb in (13). Letting Si be a unitary matrix, we have

Eī =Tr

{
Ui

(
IK + SH

i Flb
ī

H
HH

ī PH

×GH
i R−1

i GiPHīF
lb
ī Si

)−1

UH
i

}
=Tr

{
UiS

H
i AiSiU

H
i

}
(34)

where Ai = (IK + Flb
ī

H
HH

ī
PHGH

i R−1
i GiPHīF

lb
ī
)−1. To

make (33) succeed, we have

UiS
H
i A

1/2
i =

√
qVi (35)

where Vi can be any unitary matrix. Equation (35) further
leads to

VH
i Ui =

√
qA

−1/2
i Si. (36)

By using the equal diagonal QR decomposition method pro-
posed in [19], we can always find a unitary matrix Si that makes
the QR decomposition of

√
qA

−1/2
i Si have equal diagonal

upper triangle matrix Ui. The optimal Fi in (12) can be derived
as Fi = Flb

i Sī. Then, we substitute the derived Ui and Fi into
(9) to get the optimal feedforward matrix Wi.

Remark: Since we have proven the convexity of (15), the
existing advanced software package CVX [20] can also be
applied to obtain the optimal solution. The advantage of the pro-
posed algorithm over CVX is that it can obtain more accurate
solution in the low signal-to-noise ratio (SNR) regime since,

3The subgradient can be found as in [17], and the step size can be chosen as
in [18].

by using Lemma 2, the not-yet-determined elements in (15)
have been reduced from 2N2 to 2N + 3. This is also verified
in the simulation results. In addition, the proposed algorithm
is necessary in certain scenarios where the advanced software
package is not available.

B. Joint Nonlinear Precoding Design

In this section, we consider the joint nonlinear precoding
design to further incorporate the relay precoding. Although
the algorithm proposed in Section III-A enables the optimal
design of the nonlinear source precoding for a fixed-relay
precoder, it is not easy to design all the optimal precoding and
decoding matrices jointly due to the nonconvexity of (8), where
there are seven matrices to be optimized. To find an efficient
way to approach the optimal solution, we next propose two
iterative algorithms to decompose the primal problem into two
subproblems and solve each of them in an alternating manner.

1) Algorithm I: In the first subproblem, we aim to solve the
transmit matrices Fi, for i = 1, 2, and four receive matrices
Wi and Bi (i.e., Ui), for i = 1, 2, for a given relay precoder
P. Note that this subproblem can be transformed into (12)
and then optimally solved by using the algorithm provided in
Section III-A. Thus, the optimal Fi,Wi,Bi, for i = 1, 2, can
be obtained in this subproblem.

In the second subproblem, we shall update the relay precoder
P in (8) for fixed Fi,Wi,Bi, for i = 1, 2. After applying the
circular property of trace operator Tr{AB} = Tr{BA} on (7),
this subproblem can be rewritten as

min
P

2∑
i=1

Tr
{
GH

i WH
i WiG

H
i PRiP−WiGiPHīFīU

H
i

−UiF
H
ī HH

ī PHGH
i WH

i

+ σ2
iWiW

H
i +UiU

H
i

}
s.t. (2) (37)

where Ri = HīFīF
H
ī
HH

ī
+ σ2

RIM . In [7] and [8], we have
proven that (37) is convex with respect to P, and the optimal
P can be obtained by using the following lemma:

Lemma 3: The optimal closed-form P of (37) can be derived
as

P =mat
{[ (

H1F1F
H
1 HH

1 + σ2
2IN

)T ⊗
(
GH

2 WH
2 W2G2

)
+

(
H2F2F

H
2 HH

2 +σ2
1IN

)T ⊗(
GH

1 WH
1 W1G1

)
+ ηOT

1 ⊗ IM

]−1

vec(O2)
}

(38)

where O1=H1F1F
H
1 HH

1 +H2F2F
H
2 HH

2 +σ2
RIN , and O2=

GH
1 WH

1 U1F
H
2 HH

2 +GH
2 WH

2 U2F
H
1 HH

1 . The optimal η is

bounded within [0,
√

O2O
−1
1 OH

2 /PR] and can be found by
using bisection search to satisfy the KKT conditions of (37).

Since the proof of Lemma 3 is similar to the proof of
Lemma 2 in [7] and [8], thus we omit it for brevity.
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Overall, Algorithm I is summarized as follows:

• Repeat
• Solve (12) with P fixed to get the optimal Fi and Ui, for
i = 1, 2, and then, get Wi by using (9).

• Solve the relay precoder P in (37) for fixed Fi, Wi, Bi,
for i = 1, 2, by using (38).

• Until the termination criterion is satisfied.

Lemma 4: The proposed iterative precoding design algo-
rithm, i.e., Algorithm I, is convergent, and the limit point of
the iteration is a stationary point of (8).

Proof: Since, in the proposed algorithm, the solution for
each subproblem is optimal, the Total-MSE is decreased after
each iteration. Meanwhile, the Total-MSE is lower bounded (at
least by zero). Hence, the proposed algorithm is convergent.
It further means that there must exist a limit point denoted as
{F̄i, P̄,W̄i, Ūi, i = 1, 2} after the convergence. At the limit
point, the solution will not change if we continue the iteration.
Otherwise, the Total-MSE can be further decreased, and it con-
tradicts the assumption of convergence. Since {F̄i,W̄i, Ūi, i =
1, 2} and P̄ are local minimizers for each subproblem, we have

Tr
{
∇XJ(X̄; P̄, i = 1, 2)T (X− X̄)

}
≥ 0

Tr
{
∇PJ(P̄; F̄i,W̄i, Ūi, i = 1, 2)T (P− P̄)

}
≥ 0

where X = [F1,F2,W1,W2,U1,U2], and J = E1 + E2.
Summing up the two preceding equations, we get

Tr
{
∇YJ(Ȳ)T (Y − Ȳ)

}
≥ 0 (39)

where Y = [F1,F2,P,U1,U2,W1,W2]. Result (39) implies
the stationarity of Ȳ of (8) by definition. �

We now provide some discussions on the design complexity
of Algorithm I. In general, it consists of two parts, i.e., solving
the source precoders and solving the relay precoder. For solving
the source precoders, almost ns

ite(N + 1)2 steps are needed
to find the final solution, where ns

ite denotes the required
iterations. While for solving the relay precoder, since bisection
search is used to find the optimal η in (38), log2(N̄/e)�
iterations are required to obtain the final relay precoder by

using Lemma 3, where N̄ =
√
O2O

−1
1 OH

2 /PR is a preset
search upper bound of η, and e is the error precision for
the convergence of bisection search. Thus, the overall design
complexity of Algorithm I can be approximated as

L = O
(
nite

(
ns
ite(N + 1)2 +

⌈
log2(N̄/e)

⌉))
where nite denotes the required iterations in Algorithm I.

2) Algorithm II: It is easy to find that the high design
complexity of Algorithm I is due to the fact that no closed-
form solution is available when solving the first subproblem
of Algorithm I. By taking a closer look at the optimization
problem (14), we find that the difficulty lies at existing relay
power constraint such that solving (14) becomes quite different
from solving the nonlinear precoding design problem in tradi-
tional point-to-point systems. Therefore, to reduce the design
complexity, we next propose a simplified iterative algorithm by

Fig. 2. Iterations required to update {λ1, λ2, λ3} for (2,3,2) and (4,5,4)
MIMO two-way relay systems at ρ1 = ρ2 = ρR = 10 dB.

discarding the relay power constraint when solving (14). Then,
solving (14) is simplified to solve the following problem:

max
Fi

∣∣∣IN + Flb
i

H
MiF

lb
i

∣∣∣1/N
s.t. Tr

(
Flb

i Flb
i

H
)
≤ Pi. (40)

The closed-form solution derived in [13] can be used to in-
dependently obtain Flb

1 and Flb
2 , which can significantly re-

duce the computational complexity. Therefore, different from
Algorithm I, in the first subproblem of Algorithm II, we
directly solve (40) instead of solving (14). Note that, since
Algorithm II is heuristic, the convergence of iteration cannot be
strictly proven, whereas, as verified by our simulation, we find
that the algorithm is convergent in most cases. In some special
scenarios, we terminate the iteration when the iteration number
exceeds a preset threshold.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, some simulation results are presented to
evaluate the proposed precoding designs. The channels are
modeled as Rayleigh fading, i.e., the elements of each channel
matrix are complex Gaussian random variables with zero mean
and unit variance. The noise powers at all destinations are set to
be the same, i.e., σ2

1 = σ2
2 = σ2

R = σ2. The average SNRs for
the MAC phase and BC phase are defined as ρ1 = P1/σ

2, ρ2 =
P2/σ

2, and ρR = PR/σ
2, respectively. The average bit error

rate (BER) using quadrature phase-shift keying modulation is
simulated. If not specified otherwise, the previous decoded
symbols are used for the subsequent interference subtraction
at the MMSE-DFE receiver.

In Fig. 2, we show the convergence behavior of updating
{λ1, λ2, λ3} for two random channel realizations. We find
that, in general, the update of {λ1, λ2, λ3} converges fast. To
explicitly show how many iterations are needed on average, we
plot the average iteration number in Fig. 3 as a function of SNR.
It is observed that almost 150 iterations are enough for all the
SNR scenarios.
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Fig. 3. Average iterations required to update {λ1, λ2, λ3}.

Fig. 4. Performance comparison of the nonlinear source precoding design by
using the proposed method and CVX.

Fig. 4 shows the MSE comparison of the nonlinear source
precoding design by using the proposed method and CVX [20].
It is observed that, although they obtain the same performance
in the high-SNR regime, the proposed method performs slightly
better than CVX in the low-SNR regime. The reason is that,
in our proposed method, we have used the optimal precoding
structure derived in Lemma 2, which reduces the not-yet-
determined elements in (15) from 2N2 to 2N + 3. Thereby, the
proposed method can obtain more accurate solution than CVX.

In Fig. 5, we show the MSE and BER comparisons among
three proposed designs for (2, 3, 2) two-way relay system.
The curves first show that the comparison results for MSE and
BER are the same. It is also found that the joint design can
significantly increase the system performance compared with
the source precoding design, and two joint precoding designs
almost obtain similar performance. This observation can also be
found in Fig. 6, where the performance of Algorithms I and II
is compared under several antenna configurations. The intuitive
explanation for this observation is that, although the solution

Fig. 5. MSE and BER comparison of three proposed designs for (2,3,2) two-
way relay system.

Fig. 6. Performance comparison between Algorithm I and Algorithm II.

of precoding matrix Fi during the first step in Algorithm II
is suboptimal by ignoring the relay power constraint, the relay
power violation can be compensated in the second step by opti-
mizing the relay precoder. This way, the relay power violation
may only occur at the beginning of the iteration. As the iter-
ative procedure converges, the solved source precoders begin
satisfying the relay power constraint. Therefore, the obtained
final solution from Algorithm II may be close to that from
Algorithm I. Thus, Algorithm I and Algorithm II can obtain
similar performance. The comparison result also implies that, in
practical implementation, we can discard the relay power con-
straint when solving the source precoder in the first subproblem
to highly reduce the design complexity. In the following, if not
specified otherwise, the nonlinear joint precoding means using
Algorithm II to perform the joint precoding design.

Fig. 7 shows performance comparison for the perfect pre-
vious symbol subtraction and the decoded previous symbol
subtraction at the MMSE-DFE receiver. It is found that the
propagation of the detection error only slightly increases the
system BER. The performance of the proposed precoding
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Fig. 7. Performance comparison of perfect previous symbols subtraction and
decoded previous symbol subtraction for (2, 3, 2) two-way relay system.

Fig. 8. Performance of the proposed precoding designs over imperfect CSI.

designs over imperfect CSI is also shown in Fig. 8, where
N% means the elements of each channel error following the
distribution of CN (0, 1 ·N%). The plots in Fig. 8 show that
the nonlinear precoding is sensitive to the CSI error, and system
performance can be greatly degraded if the CSI error is large.

Next, we aim to compare the performance of proposed
nonlinear precoding designs with the linear precoding designs
proposed in [7] and [8]. Overall, five schemes are simulated.

1) Scheme I: nonlinear source precoding for a
fixed-relay precoder, which is simply set as

P =
√

PR/Tr(P1H1HH
1 + P2H2HH

2 + σ2
RIM )IM ;4

2) Scheme II: nonlinear joint precoding;

4Using this relay precoder implies that the relay node does not need to know
which precoders have been used at two source nodes. Moreover, since the
designed source precoders in Scheme I satisfy the relay power constraint, the
relay does not need to scale the received signal in each data transmission, which
can reduce the relay processing complexity.

Fig. 9. Performance comparison for different precoding schemes at N = 2.

Fig. 10. Performance comparison for different precoding schemes at N = 4.

3) Scheme III: linear source precoding for a fixed-relay
precoder P as in Scheme I;

4) Scheme IV: linear relay precoding for fixed-source pre-
coders F1 =

√
P1/NIN and F2 =

√
P2/NIN ;

5) Scheme V: linear joint precoding.

For the linear precoding Schemes III, IV, and V, we apply
the iterative precoding designs proposed in [7] and [8]. Note
that we do not consider the nonlinear relay precoding since the
nonlinear precoding design needs to jointly design the precod-
ing matrix at the source node and the decoding matrices at the
destination. It is not feasible to only design the relay precoding
matrix and destination decoding matrices in the considered two-
way relay system.

In Figs. 9 and 10, we consider two cases with N = 2
and N = 4, respectively. From the plots, we find that, for
the nonlinear precoding, Scheme II significantly outperforms
Scheme I, as expected, since the relay precoding is incorpo-
rated in Scheme II. Furthermore, when increasing the relay
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antenna number, the improved performance gain of Scheme I is
obviously less than Scheme II. On the other hand, for the
linear precoding schemes, we find that source-only precoding
(Scheme III) performs much worse than relay-only precoding
(Scheme IV), which can get most of the performance gain of
the joint precoding scheme. This observation means that, in
the two-way relay system, precoding at the relay node is very
effective. For the comparison between nonlinear precoding and
linear precoding, we observe that the joint nonlinear precoding
scheme (Scheme II) significantly outperforms the joint linear
precoding scheme (Scheme V). This observation is expected
due to applying more advanced successive interference cancela-
tion receivers for the nonlinear precoding. The more interesting
comparison is between the nonlinear source precoding and the
linear relay precoding. We find that, when N = 2, although
Scheme I (2,2,2) outperforms Scheme IV (2,2,2), when equip-
ping one more antenna at the relay node, Scheme IV (2,3,2)
begins to outperform Scheme I (2,3,2), which means that, in
this case, applying linear precoding at the relay node is more
efficient than applying complex nonlinear source precoding.
However, this observation does not occur if we equip one
more relay antenna for the case N = 4 in Fig. 10. The main
reason is that, when more data streams are transmitted from two
sources, Scheme I can obtain more performance gain by using
the nonlinear MMSE-DFE receiver.

V. CONCLUSION

In this paper, we have considered the nonlinear precoding
design for MIMO AF two-way relay systems. We have first
studied the nonlinear source precoding design for a fixed-relay
precoder. This problem has been proven to be convex, and an
efficient algorithm has been proposed to get the optimal solu-
tion. We have then studied the more complex nonlinear joint
precoding design. Due to the nonconvexity of this problem, we
have proposed two iterative algorithms to find the final solution.
Simulation results have verified the efficiency of the proposed
nonlinear joint precoding design over the existing linear joint
precoding design.

APPENDIX A
PROOF OF LEMMA 1

Since the feasible set of (15) is convex, to prove the convexity
of (15), we only need to verify that the objective function is
convex. To achieve this goal, we first show that fi(Qi) = |IN +
MiQi|1/N , for i = 1, 2, is concave. For brevity, we next take
f1(Q1) as an example. According to [21], we can prove the
concavity of f1(Q1) by considering an arbitrary linear, given
by Q1 = Z+ tV, where Z ∈ S

N
+ , V ∈ S

N and Z+ tV ∈ S
N
+ .

By defining g(t) = f1(Z+ tV), we have

g(t) = |IN +M1(Z+ tV)|
1
N

=
∣∣∣IN +M

1
2
1 ZM

1
2
1 + tM

1
2
1 VM

1
2
1

∣∣∣ 1
N

= |A+ tB| 1
N

where A = IN +M
1/2
1 ZM

1/2
1 , and B = M

1/2
1 VM

1/2
1 . Then,

we obtain

d2g(t)

dt2
=

1
N2

|A+ tB| 1
N

[
Tr2

{
(A+ tB)−1B

}
−NTr

{
(A+ tB)−1B(A+ tB)−1B

}]
.

We next show that Tr2{(A+ tB)−1B} −NTr{(A+
tB)−1B(A+ tB)−1B} ≤ 0. Since

Tr2
{
(A+ tB)−1B

}
=Tr2

{
(A+ tB)−

1
2B(A+ tB)−

1
2

}
=

(
r∑

i=1

λi

)2

where r is the rank of (A+ tB)−1/2B(A+ tB)−1/2 and
satisfies r ≤ N , λi is a eigenvalue of (A+ tB)−1/2B(A+
tB)−1/2, and

Tr
{
(A+ tB)−1B(A+ tB)−1B

}
= Tr

{
(A+ tB)−

1
2B(A+ tB)−

1
2

×(A+ tB)−
1
2B(A+ tB)−

1
2

}
=

r∑
i=1

λ2
i

based on Cauchy-Schwarz inequality, it is not hard to get
(
∑r

i=1 λi)
2 ≤ r

∑r
i=1 λ

2
i ≤ N

∑r
i=1 λ

2
i . Thus, we have

d2g(t)

dt2
=

1
N2

|A+ tB| 1
N

[
Tr2

{
(A+ tB)−1B

}
−NTr

{
(A+ tB)−1B(A+ tB)−1B

}]
≤ 0

which further indicates that f1(Q1) is concave. Next, we show
that g1(Q1) = |IN +M1Q1|−1/N is convex. By introducing
new variables X and Y, we have

g1 (αX+ (1 − α)Y) =
1

f1 (αX+ (1 − α)Y)

≤ 1
αf1(X) + (1 − α)f1(Y)

≤α
1

f1(X)
+ (1 − α)

1
f1(Y)

where the first inequality is obtained by using the concavity
of f1(Q1), and the second inequality is obtained by using the
fact that f(x) = x−1, x ≥ 0 is a convex function. Thus, we
conclude that g1(Q1) is convex. After extending this result to
f2(Q2), we complete the proof of Lemma 1.

APPENDIX B
PROOF OF LEMMA 2

To prove Lemma 2, we first give the following lemma:
Lemma B.1: The optimal objective value of (15) is lower

bounded by

q(λ1, λ2, λ3) = min
Q1,Q2	0

2∑
i=1

|IN +MiQi|−
1
N

s.t. Tr{(λ1I+λ3N1)Q1}+Tr {(λ2I+λ3N2)Q2}
≤ λ1P1 + λ2P2 + λ3P

′
R (41)
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where λ1, λ2, and λ3 are three nonnegative scalars.
Moveover, this lower bound is tight and can be achieved by
maxλ1,λ2,λ3

q(λ1, λ2, λ3).
Since we have proven that the problem (15) is convex, the

KKT conditions are sufficient and necessary for deriving the
optimal solution. Then, the proof of Lemma B.1 is similar
to the proof provided in [17, Props. 4 and 5]; thus, it is
omitted for brevity. It is easy to verify that, in (41), the optimal
solution must make the constraint active. We assume that the
term Tr{(λ1I+ λ3N1)Q1} consumes power t and that the
term Tr{(λ2I+ λ3N2)Q2} consumes the remaining power of
λ1P1 + λ2P2 + λ3P

′
R. To derive the optimal structure of Q1,

we only need to consider the following problem:

max
Q1	0

|IN +M1Q1|
1
N

s.t. Tr{Z1Q1} ≤ t. (42)

Since Q1 = Flb
1 Flb

1
H

, solving (42) is equivalent to solving the
following problem:

max
Flb

1

∣∣∣IN + Flb
1

H
M1F

lb
1

∣∣∣ 1
N

s.t. Tr
{
Flb

1

H
Z1F

lb
1

}
≤ t1. (43)

For (43), without loss of generality, we assume that the optimal
Flb

1 makes the term Flb
1

H
M1F

lb
1 diagonal. Otherwise, we can

always multiply Flb
1 with a unitary matrix (the eigenvector

matrix of Flb
1

H
M1F

lb
1 ) at the right side to make Flb

1
H
M1F

lb
1

diagonal, and this new precoding matrix does not affect the
value of the objective function and the power constraint. Thus,
by assuming Flb

1
H
M1F

lb
1 = Σ1, where Σ1 is a diagonal ma-

trix with the diagonal elements being arranged in the increasing
order, we have M

1/2
1 Flb

1 = U1Σ1, where U1 is a unitary
matrix, which will be determined later. Then, we have

Flb
1 = M

− 1
2

1 U1Σ1. (44)

Substituting (44) into the power constraint (43) yields

Tr
{
Flb

1

H
Z1F

lb
1

}
=Tr

⎧⎪⎪⎨
⎪⎪⎩Σ1U

H
1 M

− 1
2

1 Z1M
− 1

2
1︸ ︷︷ ︸

Ũ1Σ̃1ŨH
1

U1Σ1

⎫⎪⎪⎬
⎪⎪⎭

=Tr
{
Σ2

1U
H
1 Ũ1Σ̃1Ũ

H
1 U1

}
≥Tr

{
Σ2

1Σ̃1

}
(45)

where the inequality is obtained by using the fact that
Tr(AB) ≥ Tr(ΛAΛB), where ΛA is a decreasing-ordered
diagonal matrix with eigenvalues of A as its diagonal elements,
and ΛB is an increasing-ordered diagonal matrix with eigen-
values of B as its diagonal elements. Note that the equality
in (45) holds when U1 = Ũ1. Thus, we conclude that the
optimal structure of Flb

1 is M
−1/2
1 Ũ1Σ1, which further yields

the optimal structure of Q1 as in (16). After extending this
result to Q2, we complete the proof of Lemma 2.
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