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Path Similarity Skeleton Graph Matching
Xiang Bai and Longin Jan Latecki, Member, IEEE

Abstract— This paper proposes a novel graph matching algo-
rithm and applies it to shape recognition based on object silhou-
ettes. The main idea is to match skeleton graphs by comparing
the geodesic paths between skeleton endpoints. In contrast to
typical tree or graph matching methods, we do not consider the
topological graph structure. Our approach is motivated by the
fact that visually similar skeleton graphs may have completely
different topological structures. The proposed comparison of
geodesic paths between endpoints of skeleton graphs yields
correct matching results in such cases. The skeletons are pruned
by contour partitioning with Discrete Curve Evolution, which
implies that the endpoints of skeleton branches correspond to
visual parts of the objects. The experimental results demonstrate
that our method is able to produce correct results in the presence
of articulations, stretching, and contour deformations.

Index Terms— skeleton, skeleton graph, graph matching, shape
recognition, geodesic path.

I. INTRODUCTION

SKeleton (or medial axis), which integrates geometrical and
topological features of the object, is an important shape

descriptor for object recognition [1]. Shape similarity based
on skeleton matching usually performs better than contour or
other shape descriptors in the presence of partial occlusion and
articulation of parts [2][3][4][5]. However, it is a challenging
task to automatically recognize objects using their skeletons
due to skeleton sensitivity to boundary deformation [6][46].
Usually, the skeleton branches have to be pruned for recognition
[6][28][33][34][35][50]. Moreover, another major restriction of
recognition methods based on skeleton is a complex structure of
obtained tree or graph representations of the skeletons. Graph
edit operations are applied to the tree or graph structures, such
as merge and cut operations [7][8][9][10][11], in the course of
the matching process. Probably the most important challenge for
skeleton similarity is the fact that the topological structure of
skeleton trees or graphs of similar objects may be completely
different. This fact is illustrated in Fig. 1. Although the skeletons
of the two horses (a) and (b) are similar, their skeleton graphs (c)
and (d) are very different. This example illustrates the difficulties
faced by approaches based on graph edit operations in the context
of skeleton matching. To match skeleton graphs or skeleton trees
like the ones shown in Fig. 1, some nontrivial edit operations (cut,
merge, et al.) are inevitable. On the other hand, skeleton graphs
of different objects may have the same topology as shown in Fig.
2. The skeletons of the brush in Fig. 2(a) and the pliers in Fig.
2(b) have the same topology as shown in Fig. 2(c).

This paper presents a novel scheme for skeleton-based shape
similarity measure. The proposed skeleton graph matching is
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Fig. 1. Visually similar shapes in (a) and (b) have very different skeleton
graphs in (c) and (d).

based on similarity of shortest paths between each pair of end-
points of the pruned skeletons, e.g., see the shortest paths (in
red) in Fig. 3. The shortest paths between every pair of skeleton
endpoints are represented as sequences of radii of the maximal
disks at corresponding skeleton points. We also benefit from the
fact that the skeleton endpoints inherit a cyclic order from the
contours. This is possible, since the skeletons are pruned based
on contour partitioning with discrete curve evolution (DCE) [34],
which guarantees that all endpoints of skeleton branches lie on
the contour. For example in Fig. 4, all the endpoints (denoted
by 1, 2, . . . , 6) of the horse’s skeleton are vertices of the DCE
simplified polygon (in red). The DCE was introduced in [30][31].
An important property of the DCE-based pruning in [34] is its
stability in that it is able to remove spurious branches while
preserving structurally relevant branches.

The proposed skeleton graph matching method is described
in Section 4. In contrast to the existing approaches to skeleton
similarity, we do not explicitly consider the topological structure

Fig. 2. Dissimilar shapes in (a) and (b) can have the same skeleton graphs
(c).
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(a) (b)

Fig. 3. (a) The horse’s skeleton. (b) The shortest paths (in red) between the
pairs of endpoints on the skeleton.

Fig. 4. The skeleton pruned with contour partitioning by DCE [34].

of the skeleton trees or graphs. Instead we focus on the similarity
of paths connecting the skeleton endpoints. We use the similarity
of the shortest paths between each pair of skeleton endpoints to
establish a correspondence relation of the endpoints in different
graphs. For example, vertex 1 in Fig. 1(a) corresponds to vertex
1 in Fig. 1(b) since their shortest paths to vertices 2, 3, 4, 5
and 6 are similar. Finally, the dissimilarity value between graphs
is easily estimated by the distances between the corresponding
endpoints. Thus, the basic idea of our method is to determine the
similarity of complex structures (graphs or trees) by examining
shortest paths between their endpoints. As we will show in Section
7, the proposed method yields successful recognition results, and
is faster than the existing graph and tree matching methods.

The usage of shortest geodesic paths in skeleton graph and in
shape similarity is not new; in particular, many-to-many matching
in Demirci et al. [27] and the inner-distance in Ling and Jacobs
[47] use shortest paths. However, there are substantial differences
in our approach. [27] considers shortest paths between all skeleton
nodes and [47] considers shortest paths between all contour
points. We only consider shortest skeletal paths between skeleton
end nodes, which allows us to avoid the problem of the instability
of the skeleton junction points (in comparison to [27]) and makes
our approach more robust to contour deformations (in comparison
to [47]). Moreover, we use skeletal shortest paths in a different
and novel way to define shape similarity. In our approach, we
use a two-layer structure. In the first layer, skeletal shortest
paths emanating from a given skeleton endpoint form its shape
descriptor. In the second layer, we compute the similarity of
two shapes by matching the shape descriptors of the skeleton
endpoints.

Since similar skeletons may have different number of end-
points, we have to allow for a partial correspondence of the
endpoints. This is possible with a recently introduced method for
partial similarity of sequences [36], which we extend and describe
in Section 5. By employing this method, we are able to also match

skeletons of object parts to the skeletons of complete objects, and
match parts to parts, which is a necessary requirement for robust
object recognition.

The proposed skeleton graph matching is based on the as-
sumption that similar skeletons have similar structure of their
end nodes (measured by similarity of shortest paths to other end
nodes). This assumption is significantly weaker than a standard
assumption that a structure of the whole skeleton graph (based
on both end nodes and junction nodes) is similar. Usually, the
structure of both end nodes and junction nodes is weighted and
edited since, as pointed out above (Fig. 1), it is common that
skeletons of similar shapes have a different structure of junction
nodes. Moreover, as described in Section 2, many approaches to
match skeleton graphs require that the graphs are converted to
trees prior to finding the correspondence. However, as we will
illustrate in Section 7.3, such a conversion may result in lost
of important structural information, and consequently negatively
influence the object recognition result. The proposed method
computes dissimilarity values for graphs that do not have to be
trees.

The geodesic skeletal paths are represented as sequences of
radii of maximal disks in our approach. Although we do not
explicitly consider the topological structure of the skeleton graphs,
we do not completely ignore this structure. It is implicitly
represented by the fact that overlapping parts of the geodesic
skeletal paths are similar, since their overlapping parts have the
same subsequences of radii. For our example in Fig. 1(a, b), it
means that paths from 6 to 1 and from 5 to 2 overlap. The fact
that the overlapping segments are slightly different in (a) and
(b) does not affect the similarity of corresponding sequences of
radii in (a) and (b). Therefore, our approach is flexible enough
to perform extremely well on articulated shapes, but it is not too
flexible to confuse dissimilar shapes. This fact is also confirmed
by our experimental results in Section 7.

II. RELATED WORK

The skeleton-based recognition methods are usually based on
the graph or tree representation of the skeletons. Compared with
contour matching or other methods, skeleton matching has a lower
sensitivity to articulation or rearrangement of parts. However, it
involves a higher degree of computational complexity [2][15][37].
Since the skeleton or medial axis is always organized into an ARG
(Attributed-Relation Graph), the similarity between two objects
can be measured by matching their ARGs. Graph matching
is an NPC problem, thus, some efforts have been made to
obtain approximate solutions. We review now the most influential
solutions proposed in the context of shape similarity.

Zhu et al. match the skeleton graphs of objects using a branch-
bounding method that is limited to motionless objects [7]. Liu et
al. match ARGs with the A* algorithm. Before matching the axis
trees, the merge or cut operation is essential [8][9]. In contrast,
the proposed approach does not require any editing of the skeleton
graph.

Shock graph is a kind of ARG proposed by Siddiqi et al.,
which is based on Shock Grammar [16][17][18][19]. Later, Shok-
oufandeh et al. successfully extend these approaches to structural
indexing in a large database [25]. The distance between subgraphs
is measured by comparing the eigenvalues of their adjacency
matrices. Thus, this method is based on graph topology. It is time
consuming because of the complexity of the Shock Grammar and
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the calculation of eigenvalues. Sebastian et al. have presented a
scheme to compute the edit distance between the shock graphs
[14][15], but because of the expensive computation due to the
complex operation on shock graphs, the method may fail to deal
with occlusion and scene clutter. Torsello et al. use the length
of the corresponding boundary segments to edit the similarity of
shock trees [23][24].

A different framework is presented in Pelillo et al. [11][12],
where hierarchical trees are matched based on finding maximal
cliques of the association graphs. Aslan and Tari posit an un-
conventional approach to shape recognition using unconnected
skeletons in the course level [21]. Di Ruberto uses another kind
of ARG, called ASG (Attributed Skeleton Graph) [10]. The
ASGs are matched with a graduated assignment algorithm, which
converts the match matrix (0-1 matrix) into a continuous matrix.
This method can deal well with the occlusion problem, however
since the matching matrix is obtained using a heuristic rule,
the graduated assignment algorithm can find only a suboptimal
matching solution.

In recent work, Demirci et al. transform weighted graphs into
metric trees for accurate matching [26][27]. However, a heuristic
rule is essential to transform graphs to trees (loops need to be
removed). An additional problem for this tree matching method
is how to select an optimal node as the root, since different root
points may have completely different topologies for the same
skeleton.

Most of the existing approaches cannot deal with loops. One
of few approaches that can deal well with the loop structure is
presented in Hilaga et al. [20]. It is a method based on topological
matching of Reeb graphs representing 3D models. However, this
method distinguishes different shapes only based on topological
structure. The proposed method is able to match graphs containing
loops, and it yields intuitive results that reflect both geometric and
topological shape features.

III. SKELETON GRAPHS

This section describes the initial steps for building the skeleton
graphs. The following definitions apply to continuous skeletons
as well as to skeletons in digital images (composed of pixels).

Definition 1 A skeleton point having only one adjacent point is
an endpoint (the skeleton endpoint); a skeleton point having three
or more adjacent points is a junction point. If a skeleton point
is not an endpoint or a junction point, it is called a connection
point. (Here we assume the skeleton curve is one pixel wide.)

Definition 2 The sequence of connection points between two
directly connected skeleton points is called a skeleton branch. A
standard way to build a skeleton graph is as follows: both the
endpoints and junction points are chosen as the nodes for the
graph and all the skeleton branches between the nodes are the
edges between the nodes. For example, Fig. 1(c) and Fig. 1(d)
are graphs representing the skeletons in Fig. 1(a) and Fig. 1(b),
respectively.

Definition 3 The endpoint in the skeleton graph is called an
end node, and the junction point in the skeleton graph is called
a junction node.

IV. MATCHING THE SKELETON-GRAPHS

We match skeleton graphs by establishing a correspondence of
their end nodes only, since these nodes are the salient points on
the contour and all skeleton branches ending on the contour can

be seen as visual parts of the original shape. Thus, the proposed
representation does not involve any junction nodes.

A. The shape-path representation

Definition 4 The shortest path between a pair of end nodes
on a skeleton graph is called a skeleton path, e.g., see Fig. 3(b).
Subsection text here.

Suppose there are N end nodes in the skeleton graph G to be
matched, and let vi (i = 1, 2, . . . , N ) denote the ith end node
along the shape contour in a clockwise direction. Let p(vm, vn)

denote the skeleton path from vm to vn. We sample p(vm, vn)

with M equidistant points, which are all skeleton points. Let
Rm,n(t) denote the radius of the maximal disk at the skeleton
point with index t in p(vm, vn). A vector of the radii of the
maximal disks centered at the M sample points on p(vm, vn) is
denoted as

Rm,n = (Rm,n(t))t=1,2,...,M = (r1, r2, . . . , rM ). (1)

In this paper, the radius Rm,n(t) is approximated with the values
of the distance transform DT (t) at each skeleton point with index
t. Suppose there are N0 pixels in the original shape S. To make
the proposed method invariant to the scale, we normalize Rm,n(t)

in the following way:

Rm,n =
DT (t)

1
N0

PN0
i=1 DT (si)

(2)

where si(i = 1, 2, . . . , N0) varies over all N0 pixels in the shape.

Definition 5 The shape dissimilarity between two skeleton
paths is called a path distance. If R and R′ denote the vectors
of radii of two shape paths p(u, v) and p(u′, v′) respectively, the
path distance is defined as:

pd(p(u, v), p(u′, v′)) =

MX

i=1

(ri − r′i)
2

ri + r′i
+ α

(l − l′)2

l + l′
. (3)

where l and l′ are the lengths of p(u, v) and p(u′, v′) respectively,
and α is the weight factor. In order to make our representation
scale invariant, the path lengths are normalized. We include the
path lengths in formula (3), since the path length is not reflected
in the sequences of radii (all paths are sequences of M radii).
This way our path representation and the path distance are scale
invariant.

In order to deal with the similarity of articulated shapes, the
path distance in (3) does not penalize path deformations (e.g.,
deformations from straight to curved paths) that do not change
the vectors of radii and path lengths. This allows us to recognize
as similar two deformable objects such as snakes. It may appear
that not penalizing path deformations can lead to a danger of
recognizing as similar different shapes. However, while it is
possible to deform a given shape (e.g., a snake) so that the vectors
of radii and path lengths are constant, it is extremely unlikely to
have two different shapes with differently deformed skeletal paths
having identical vectors of radii and path lengths. Our excellent
experimental results in Section 7 confirm this fact in that we never
classified as similar objects of different shapes.

B. Matching end nodes using skeleton paths

In the skeleton graph, each end node has the skeleton paths to
all other end nodes in the graph. As we will show the skeleton
paths are a useful shape descriptor.
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Let G and G′ denote two graphs to be matched, and let vi

and v′j be some end nodes in G and G′, respectively. Let the
numbers of the end nodes in G and G′ be K + 1 and N + 1,
respectively, and K ≤ N . The matching cost c(vi, v

′
j) between vi

and v′j is estimated based on the paths to all other vertices in G

and G′ that emanate from vi and v′j , correspondingly. First we
order all end nodes in G following the clockwise contour with the
starting node being vi which we denote as vi0. (Here we benefit
from the fact that all skeleton endpoints lie on the contour.) We
obtain a sequence of ordered end nodes vi0, vi1, . . . , viK in G,
and similarly vj0, vj1, . . . , vjN in G′. Then we compute the path
distances between the two sequences (They represent the paths
emanating from vi = vi0 in G and v′j = v′j0 in G′). We obtain a
matrix of the path distances computed with formula (3):

pd(vi, v
′
j) =

0
BB@

pd(p(vi0, vi1), p(v′j0, v′j1)) pd(p(vi0, vi1), p(v′j0, v′j2))
pd(p(vi0, vi2), p(v′j0, v′j1)) pd(p(vi0, vi2), p(v′j0, v′j2))

...
...

pd(p(vi0, viK), p(v′j0, v′j1)) pd(p(vi0, viK), p(v′j0, v′j2))

. . . pd(p(vi0, vi1), p(v′j0, v′jN ))

. . . pd(p(vi0, vi2), p(v′j0, v′jN ))

...
...

. . . pd(p(vi0, viK), p(v′j0, v′jN ))

1
CCA

(4)

To compute the dissimilarity value between the two end nodes
vi and v′j , we extended the partial similarity of sequences method
introduced in [36]. The extended method, which is described in
Section 5, is called optimal subsequence bijection (OSB). The
main property of OSB is the fact that it can skip outlier elements
of matched sequences, which in our case means skipping some
of the skeleton endpoints. For example, endpoint 7 in Fig. 5 must
be skipped in order to establish the correct correspondence of the
other skeleton endpoints. By applying OSB to the matrix in (4),
we obtain the dissimilarity of two end nodes vi and v′j :

c(vi, v
′
j) = OSB(pd(vi, v

′
j)). (5)

For two graphs G and G′, with end nodes vi(i = 0, 1, 2, . . . , K)

and v′j(j = 0, 1, 2, . . . , N), we compute all the dissimilarity costs
between their end nodes and obtain a new matrix:

C(G, G′) =

0
BBB@

c(v0, v′0) c(v0, v′1) . . . c(v0, v′N )

c(v1, v′0) c(v1, v′1) . . . c(v1, v′N )
...

...
...

...
c(vK , v′0) c(vK , v′1) . . . c(vK , v′N )

1
CCCA (6)

Finally, we compute the total dissimilarity c(G, G′) between
G and with the Hungarian algorithm on C(G, G′). For each end
node vi in G, the Hungarian algorithm can find its corresponding
end node v′j in G′. Since G and G′ may have different numbers of
end nodes, the total dissimilarity value should include the penalty
for end nodes that did not find any partner. To achieve this, we
simply add additional rows with a constant value const to (6) so
that C(G, G′) becomes a square matrix. The constant value const
is the average of all the other values in C(G, G′). The intuition for
using the Hungarian algorithm is that we want to have a globally
consistent one-to-one assignment of all end nodes with possibly
assigning some end nodes to const, which represents a dummy
node. This means that we seek a one-to-one correspondence of
the end nodes in the skeleton graphs (with possibly skipping some
nodes by assigning them to a dummy node).

Observe that our approach does not require any correspondence
of junction nodes. This is extremely important, since as illustrated
in Fig. 1, in many cases the correspondence of junction nodes
is impossible to establish directly, and therefore, graph or tree
editing approaches are needed if the correspondence of junction
nodes is required. It is also important to observe that it is
impossible to change the structure of junction nodes with skeleton
pruning without eliminating some important end nodes. On the
other hand, skeleton pruning is able to reduce the set of end nodes
to structurally relevant nodes by eliminating spurious end nodes,
see [34]. To summarize, the proposed skeleton graph matching
is based on the assumption that similar skeletons have a similar
structure of their end nodes that is measured by the similarity of
shortest paths to other end nodes. This assumption is significantly
weaker than the standard assumption that a structure of both end
nodes and junction nodes is similar. Usually, the structure of both
end nodes and junction nodes is weighted and edited, since as
pointed out above (Fig. 1) it is common that skeletons of similar
shapes have a different structure of junction nodes.

The fact that the Hungarian algorithm does not preserve the
order of matched sequences does not influence the final score,
since we can change the order only for similar end nodes.
However, the similarity of end nodes is computed in the context
of all other end nodes. Therefore, changing the order is likely due
only to symmetry, in which case the final dissimilarity score is
unaffected. The Hungarian algorithm has a computational advan-
tage in comparison to order preserving assignment algorithms.
When using an order preserving algorithm, we would need to
enumerate over different starting nodes, while this is not necessary
for the Hungarian algorithm. The Hungarian algorithm is the most
popular for finding a maximum matching in a bipartite graph
and is a common formulation for globally optimal matching.
Examples include Kim and Kak [49], Siddiqi et al. [18] and, more
recently, Belongie et al. [5], to name just a few; these techniques
are also unable to enforce global ordering and are confused by
object symmetries. A different way to approach the matching
problem by allowing many-to-many mapping as proposed in [27]
is also possible.

We give now a simple example illustrating our matching
approach. Fig. 5 shows skeletons of two different horses with the
corresponding end nodes linked by lines. We indexed the nodes
so that the corresponding nodes have the same index except for
node 7 that does not have a partner, and consequently corresponds
to a dummy node with the correspondence value of const. The
matrix C(G, G′) is shown in Table 1. The matching costs between
most similar end nodes are marked with red numbers. The last
row represents the dummy node.

V. OPTIMAL SUBSEQUENCE BIJECTION

The new algorithm, called Optimal Subsequence Bijection
(OSB), works for elastic matching of two sequences of different
lengths m and n. More specifically, for two finite sequences of
end nodes of skeletons a = (a1, . . . , am) and b = (b1, . . . , bn)

in this paper. The goal is to find subsequences a′ of a and
b′ of b such that a′ best matches b′. Skipping (not matching)
some elements of a and b is necessary, because both sequences
may contain some outlier elements. However, skipping too many
elements of sequence a increases a chance of accidental matches.
To prevent this from happening, we introduce a penalty for
skipping elements. The penalty can be expressed as matching
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TABLE I
THE MATRIX C(G, G′) OF THE DISSIMILARITY VALUES BETWEEN ALL END NODES OF THE TWO HORSES IN FIG. 5. THE LAST ROW IS ADDED TO MAKE

C(G, G′) A SQUARE MATRIX. THE VALUES IN RED ARE BETWEEN THE MOST SIMILAR END NODES.

1 2 3 4 5 6 7

1 0.912 4.331 8.805 4.317 7.132 6.165 8.841

2 3.926 0.628 2.740 3.603 2.413 5.870 13.36

3 6.110 1.027 0.512 4.285 1.994 4.295 11.77

4 4.735 4.050 5.783 1.264 3.067 6.592 15.56

5 6.334 2.810 3.407 3.093 0.952 4.040 10.53

6 4.308 4.242 3.908 4.514 3.862 0.605 5.656

7 const const const const const const const

Fig. 5. The corresponding end nodes between the two skeleton graphs are
linked with lines.

to some additional element b∞ . Hence we extend sequence b by
one more element b∞ .

Our goal is to find the best possible correspondence of sequence
a to a subsequence b′ of b. We define a correspondence f :

{1, . . . , m} → {1, . . . , n,∞} as a monotonic injection for the
restricted range of function f : {1, . . . , m} → {1, . . . , n} i.e., a
function f such that f(i) < f(i + 1) < ∞, where ai is mapped
to bf(i) for all i ∈ {1, . . . , m}, and we allow a many-to-one
mapping to ∞ . The assignment f(i) = ∞ means that we skip
the element i in the sequence a. The sets of indices (ik) and
(f(ik)) such that f(ik) < ∞ for ik ∈ {1, . . . , m} define the
subsequences a′ of a and b′ of b, such that f restricted to (ik) is
a bijection. This explains the phrase ”subsequence bijection” in
Optimal Subsequence Bijection (OSB). However, we still need
to define what optimal means here. We assume that the distance
function d is given that can compute the dissimilarity value
between any elements of a and b, i.e., d(ai, bj) is given for (i, j) ∈
{1, . . . , m} × {1, . . . , n,∞} . We do not have any restrictions on
the distance function d, and therefore any distance function is
possible. In this paper we use the path distance pd defined in
formula (3) as the distance d. While in most applications d(ai, bj)

is given for (i, j) ∈ {1, . . . , m}×{1, . . . , n} , the distances to the
additional element d(ai, b∞) should be carefully selected. Usually
d(ai, b∞) is a constant for all i ∈ {1, . . . , m} that determines
the cost of skipping any given element in sequence a. We call
this constant jumpcost. In this paper, d(ai, b∞) = jumpcost is
computed as

jumpcost = meani(minj(d(ai, bj))+stdi(minj(d(ai, bj)). (7)

Thus, every element ai finds the closest element bj , and then

we take mean plus one standard deviation (std) of the distances
to the closest elements. For example, if sequences a and b are
similar with the exception of one outlier element, call it ak, then
every ai for i 6= k finds an element bj with a small distance
d(ai, bj). Consequently the jumpcost will be small, so that the
distance to the closest element in b for ak will be greater than the
jumpcost, and the element ak will be excluded from the matching
with a relatively small penalty, i.e., we jump over it. For any
given correspondence, we can define the distance between two
sequences as:

d(a, b, f) =
1

m

mX

i=1

d(ai, bf(i))
2. (8)

Our goal is to find a correspondence f so that d(a′, b′, f) is min-
imal. More precisely, an optimal correspondence bf of elements
in sequence a to elements in sequence b is defined as the one
that yields the global minimum of d(a, b, f) over all possible
correspondences f :

bf = arg min{d(a, b, f) : f is a correspondence}. (9)

Finally, the optimal distance is given by formula (8) for f = bf .
The optimal correspondence can be found with a shortest path
algorithm on a DAG (directed acyclic graph). We denote the
optimal distance d(a, b) in (10) with OSB(a, b) for the Optimal
Subsequence Bijection distance. The nodes of the DAG are all
index pairs (i, j) ∈ {1, . . . , m}×{1, . . . , n} and the edge costs w

are defined as

w((i, j), (k, l)) =

(
d(ai, bj) if i + 1 = k and j + 1 ≤ l
(k − i− 1) · jumpcost if i + 1 < k and j + 1 ≤ l
∞ otherwise

(10)
Observe that there is no explicit penalty for skipping an element

of sequence b. The intuition is that we expect all elements of
sequence a to find a partner element in sequence b with possibly
skipping some elements of b. An interesting situation occurs if
both sequences a and b have an equal number of elements or
sequence a is longer. Since each correspondence f is a injection
on a, skipping an element of b implies skipping an element of
a (with a penalty), and consequently, there is an implied penalty
for skipping any element of b.

The OSB differs from the method in [36] in that it allows
penalized skipping of outliers in the query sequence in addition
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(a) (b)

Fig. 6. The links illustrate corresponding elements obtained with the proposed
method OSB in (b) compared to the classical Dynamic Time Warping (DTW)
in (a). Observe how outliers corrupt the result of DTW.

to skipping outliers in the target sequence. The method in [36]
allows only skipping outlier elements in the target sequence.

To illustrate the benefit of the proposed one-to-one matching
with skipping the outliers, consider the matching of the two real
sequences shown in Fig. 6. Both the query sequence on top
and the target sequence at the bottom have two outlier elements
(shown as spikes). The proposed OSB method is able to skip them
as illustrated in Fig. 6(b). For comparison, the correspondence
obtained with Dynamic Time Warping (DTW) [39] shown in Fig.
6(a) is significantly corrupted by the outliers.

VI. RELATION OF OSB TO OTHER SEQUENCE SIMILARITY

MEASURES

The Dynamic Time Warping (DTW) distance has been shown
to be superior to the Euclidean distance of sequences in many
cases [40][41][42][43]. But, as illustrated in Fig. 6, DTW is par-
ticularly sensitive to outliers, since all elements of both sequences
must participate in the correspondence.

The Longest Common Subsequence (LCSS) measure has been
used in time series [44][45] to deal with the alignment and outliers
problem. Given a query and a target series, LCSS determines their
longest common subsequence, i.e., LCSS finds subsequences of
the query and target (of the same length) that best correspond
to each other. The distance is based on the ratio between the
length of longest common subsequence and the length of the
whole sequence. The subsequence does not need to consist of
consecutive points, the order of points is not rearranged, and
some points can remain unmatched. When LCSS is applied to
sequences of numeric values, one needs to set a threshold that
determines when values of corresponding points are treated as
equal [45]. The performance of LCSS depends heavily on the
correct setting of this threshold, which may be a particularly
difficult problem for some applications.

The proposed OSB computes the distance value between two
sequences based directly on the distances of corresponding el-
ements, just as DTW does, and it allows the query sequence
to match to only a subsequence of the target sequence, just as
LCSS does. The main difference between LCSS and OSB is
that LCSS optimizes over the length of the longest common
subsequence (which requires a distance threshold), while OSB
directly optimizes the sum of distances of corresponding ele-
ments. The main difference between DTW and OSB is that OSB
can skip some elements of the target sequence when computing
the correspondence while DTW requires that each point of the

Fig. 7. The correspondence between a horse and a cat.

Fig. 8. The correspondence between a horse and a horse ridden by a person.

query sequence be matched to a point in the target sequence and
vice versa. The main difference between OSB and the Hungarian
algorithm is that the Hungarian algorithm does not preserve the
order of sequences.

VII. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method in two parts: (Section 7.1) matching the end nodes in the
skeleton graphs, and (Section 7.2) the recognition performance of
our method on standard shape databases. We illustrate in Section
7.3, the importance of matching skeleton graph structures as
opposed to matching only tree structures.

A. Correspondence matching

Besides the matching of the two horses in Fig. 1, we tested the
matching process on several other examples. In Fig. 7, we match
a horse from Fig. 1 to a cat. Since the articulations of the horse
are similar to the ones of the cat, our matching process finds
the correct correspondences. Fig. 8 shows the correspondence
between the end nodes of a horse in Fig. 5 and an outline of
horse ridden by a person, which is similar to an example in
[7]. Observe that the skeleton branch representing the person on
the horse does affect the performance of the proposed approach.
Fig. 8 demonstrates that the proposed method is able to establish
a correct correspondence if parts are substantially altered. The
two persons in the left part of Fig. 9 are taken from Kimia’s
dataset [14] while the silhouette on the right hand side is manually
modified. Fig. 9 illustrates that the proposed approach works
correctly if object parts are significantly altered (shortened in
this case). We also show another matching result on hands
from Kimia’s dataset in Fig. 10. The obtained correspondence
demonstrates that our matching process has strong performance
in the presence of occlusion.
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Fig. 9. The correspondence between the persons with different numbers of
legs.

Fig. 10. The correspondence between a hand and another hand with
occlusion.

B. Robustness of recognition

To evaluate the recognition performance of our method, we
tested it on four standard datasets: Aslan and Tari database [21],
Kimia’s two databases [15] and Rutgers tools database [16]. The
Aslan and Tari database is used for testing the performance on
non-rigid objects. As shown in Fig. 11, it includes 14 classes
of articulated shapes with 4 shapes in each class. We use each
shape in this database as a query. Several representative results
are shown in Fig. 12, where six most similar shapes are shown
for the queries. For each query, a perfect result should have the
three most similar shapes in the same class as the query. The red
squares mark all the results where this was not the case. Since
there are only 5 errors in 168 query results, the recognition rate on
this dataset (using the standard percent measure) is 97.0%. Using
the bulls-eye test [32], the recognition rate is 99.4%. Moreover,
we can easily observe that the wrong results are very similar to the
query. For this dataset, we use parameters M = 50 and α = 40.
Although this database was introduced in Aslan and Tari [21],
their paper does not present results on the whole database, as we
do. ([21] illustrates only a few example dissimilarities between
pairs of shapes). Since no recognition rate on the whole dataset
is provided in [21], we cannot directly compare the recognition
rate of our method to [21]. We were able to compare our method
to the inner distance [47] on this dataset. We compared it to the
best performing version in [47], which is the inner distance shape
context with dynamic programming, denoted by IDSC + DP. The
retrieval results are summarized as the number of correct shapes

Fig. 11. Aslan and Tari database [21] with 56 shapes.

Fig. 12. Selected results of the proposed method on Aslan and Tari database
[21]. Since each class is composed of 4 shapes, the query and the first 3 most
similar shapes should be in the same class. Red boxes mark the results where
this is not the case.

for all 56 queries among the 1st, 2nd and 3rd closest matches.
IDSC + DP obtained 53, 51, 38 while our method achieved 55, 55,
53. The perfect result would be 56, 56, 56. We found that inner
distance has problems with non-rigid deformations like bending
of an arm. In contrast, the proposed method is designed to perform
well in the presence of non-rigid deformations.

We also tested our algorithm on two shape databases provided
by Kimia [15]. The first database as shown in Fig. 13 contains 216
images from 18 classes, which is a subset of MPEG-7 database
[32]. For each shape, we check whether the 11 closest matches
are in the same class as the query. In Table 2, we compare our
result to two typical shape classification methods, and the number
of correct matches in each rank is summarized. Our algorithm
performs better than Shock-Edit [16] and Shape Context [5]. We
use parameters M = 50 and α = 70.

Fig. 14 shows another Kimia’s dataset with 99 images from 9
classes. In this dataset, some images have protrusions or missing
parts. Table 3 compares our results to several other methods in

Fig. 13. Sample shapes from Kimia’s 216 shape database [15]. We show
two shapes for each of the 18 classes.
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TABLE II
RETRIEVAL RESULTS ON KIMIA’S 216 SHAPE DATABASE.

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

SC [5] 214 209 205 197 191 178 161 144 131 101 78

Shock Edit [15] 216 216 216 215 210 210 207 204 200 187 163

Our method 216 216 215 216 213 210 210 207 205 191 177

Fig. 14. Sample shapes from Kimia’s 216 shape database [15]. We show
two shapes for each of the 18 classes.

Fig. 15. Sample shapes in Rutgers Tools Database.

a way similar to Table 2. Our results are acceptable but are not
the best, which is due to the presence of protrusions. While small
protrusions do not present any problems, significant ones do. We
illustrate the limitation of our method on the example in Fig. 10,
where both shapes are taken form this dataset. We are able to
compute the correct correspondence but the dissimilarity value
is relatively large due to the necessity of skipping five skeleton
endpoints in the protrusion. We use parameters M = 50 and
α = 30.

To compare our method to other typical skeleton-based ap-
proaches, we use the Rutgers Tools Database [16], which consists
of 25 shapes grouped into 8 classes. Several sample shapes from
the Rutgers Tools Database are shown in Fig. 15. Here we use
parameters M = 50 and α = 40. The results of the proposed
method on the Rutgers Tools Database are shown in Fig. 16. We
only have two mismatched entries, which are highlighted with red
squares in the class ‘Pliers’ and the class ‘Screwdriver’. Compared
with other skeleton based methods, our method outperforms
Shock Tree [11] (5 mismatched entries), Graph-Edit Distance
[15] (5 mismatched entries), and Many-to-Many Matching [27] (3
mismatched entries). It is important to observe that skeleton-based
methods significantly outperform contour-based methods on this
dataset. As reported in [15], one of the most popular contour-
based methods, Shape Contexts [5], misclassified 21 entries on
this dataset.

C. Matching skeleton graphs that are not trees

This section illustrates the advantage of matching directly
skeleton graphs as opposed to matching skeleton trees. Many ap-
proaches presented in the literature (e.g., Shock Tree [11], Many-
to-Many Matching [27]) are unable to match skeleton graphs.
They require first converting skeleton graphs to trees. However,
as we illustrate now, this may result in losing important structural
information. Fig. 17(a) shows two binary masks of keys. Observe
that the holes are a characteristic shape feature of most keys.

Fig. 16. The results of the proposed method on Rutgers Tools Database. We
only have two mismatched entries which are highlighted with red squares.

Fig. 17(b) shows their skeleton graphs and the correspondence
between their end nodes computed by our algorithm.

For algorithms that are able to match only tree structures, it
is necessary to convert the key graphs to trees by removing
one of the edges in the loop. If, for example, the top edge
in the loop is removed, the obtained tree structure becomes
very similar to the skeleton of the wrenches shown in Fig. 18.
Therefore, converting graphs to trees may result in the loss of
important structural information, and consequently in the inability
to correctly differentiate shapes.

To evaluate the performance of our algorithm on distinguishing
the topological difference, we use a small database that contains
five shapes: the two keys in Fig. 17, the two wrenches in Fig.
18 and the broken key in Fig. 19 (its skeleton is very similar
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TABLE III
RETRIEVAL RESULTS ON KIMIA’S 99 SHAPE DATABASE.

Algorithm 1rd 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [5] 97 91 88 85 84 77 75 66 56 37

Gen. Model [48] 99 97 99 98 96 96 94 83 75 48

Our method 99 99 99 99 96 97 95 93 89 73

Shock Edit [15] 99 99 99 98 98 97 96 95 93 82

IDSC + DP [47] 99 99 99 98 98 97 97 98 94 79

(a) (b)

Fig. 17. The holes in the keys leads to skeletons that are graphs but not
trees. The lines between end nodes illustrate the correspondence computed by
our algorithm.

(a) (b)

Fig. 18. Two wrenches and their skeletons. The lines between end nodes
illustrate the correspondence computed by our algorithm.

to the wrenches). The parameters for this database are M = 50

and α = 30. Since the shortest paths between end nodes change
dramatically when a loop is broken, we are able to distinguish
the structural difference between a closed loop and a broken loop.
Consequently, the broken key (without hole) is more similar to
the wrenches than the keys (with holes) as shown in Fig. 20(a).
It seems to be impossible for tree matching methods to capture
this difference since they need to cut the loops on the skeletons
before matching (in order to convert a graph to a tree structure).
Therefore, we do not see how they could capture the topological
difference between the broken key and the two unbroken keys. In
analogy, we expect contour-based methods (e.g., [5][31][47][48])
to be unable to capture this difference too. To verify this claim
we evaluated one of the best performing contour-based methods
on this dataset. The results of IDSC + DP [47] on this database
are shown in Fig. 20(b). In particular, the last row in Fig. 20(b)
shows that IDSC + DP can not properly capture this topological
difference.

It is important to mention that the proposed method requires the
existence of end branches, which is always the case for polygonal
shapes. However, ideal mathematical shapes like a doughnut may
not have any end branches in which case the proposed method is

Fig. 19. A broken key and its skeleton.

not applicable.

VIII. IMPLEMENTATION AND COMPUTATIONAL COMPLEXITY

We briefly describe all the implementation steps: First, we
compute skeletons with the algorithm in [28]. An important next
step is proper skeleton pruning. We prune the skeletons with the
algorithm in [34]. Then we find all the shape paths with Dijkstra’s
shortest path algorithm on the pruned skeleton graph. Finally,
the total costs between skeleton graphs are computed with the
proposed method.

We now analyze the computational complexity of the proposed
graph matching approach. Let ni be the number of end nodes
in the skeleton graphs Gi(i = 1, 2), and let mi be the number
of all nodes (including junction nodes) in Gi. Observer that
ni < mi, since the number of end nodes is significantly smaller
than the number of all nodes in the skeleton graph. Since in our
experiment ni and mi are usually no more than 20, the time cost
for comparing the similarity of two graphs is very small. The
average time is approximately 0.015 seconds in our tests.

The time for Dijkstra’s algorithm used to find the shortest path
between two end modes on Gi is O(milogmi), thus the time
for computing all shape paths on Gi is O(n2

i milogmi), since
we have n2

i pairs of end nodes. The complexity for computing
a shape distance between a pair of shape paths is O(M), so the
complexity for computing a path matrix is O(n1n2M). Since the
complexity of OSB is O(n1n2) [36], the time for computing the
matrix C(G1, G2) is O(n2

1n2
2) . Since we assume n1 < n2, the

time cost for the Hungarian algorithm in our paper is O(n3
2).

Thus, the total complexity for our method is O(n2
i milogmi) +

O(n1n2M) + O(n2
1n2

2) + O(n3
2). Recalling that ni < mi, for i =

1, 2, by substituting the larger number mi for all occurrences of
ni, our time complexity is bounded by O(m2

1m2
2). For example,

this is two orders of magnitude smaller than the complexity of
the Graph-Edit Distance, which is O(m3

1m3
2) [15].

IX. CONCLUSIONS

A novel object recognition method based on similarity of
skeleton graphs is presented. The most significant contribution of
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(a) (b)

Fig. 20. The results of the proposed method on a small database. Since we are able to distinguish the structural difference between a closed and open loop,
the broken key (without hole) is more similar to the wrenches than the keys (with holes) in (a). Inner-Distance [47] can not capture this difference as shown
in (b).

this paper is the novel approach to skeleton graph matching. We
represent a skeleton as a set of geodesic paths between skeleton
endpoints. The paths are compared using sequence matching. The
proposed approach does not require any complicated strategies for
tree/graph matching based on editing of topological structures and
complicated weighting of branches/nodes. In addition to superior
performance, the proposed method also reduces the time cost.
Moreover, the fact that our representation of skeletons is based
on their endpoints opens a possibility of new applications. We
demonstrated one such application. We are able to compute the
main symmetry axes of articulated objects by computing self
similarity of skeleton divisions induced by pairs of endpoints.

The performance of our method is limited in the presence of
large protrusions, since they require skipping a large number
of skeleton endpoints. However, we believe this limitation can
be solved with partial matching, e.g., when the dissimilarity is
computed only for the pair of subgraphs that are most similar.

Our method is not limited to skeleton graphs. Our future
work will also focus on matching any weighted graphs. In the
case of planar graphs, we can still benefit from the cyclic order
of end nodes. In the case of non-planar graphs, it appears to
be possible to replace the cyclic order with the order of end
nodes induced by the geodesic distance. We will also work on
an efficient indexing scheme that is needed for fast, sub-linear
database retrieval. Although our method is significantly faster than
other skeleton graph matching approaches in direct comparison
of two shapes, some of the existing methods allow for sub-linear
database retrieval [15][25].
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