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1 Introduction

Chemical reactions proceeding on time-scales comparable to or shorter than those of
internal rearrangements in the reaction system renewing the environment of reactants
(mixing) are, in general, dispersive. For dispersive kinetics, as for dispersive transport
and dispersive relaxation,1 many time-scales coexist, and the rate coefficients, termed
the specific reaction rates, depend on time.2,3

In classical kinetics, the concept of an energy profile along a reaction path helps one
to visualize the main features of a chemical reaction, including its mechanism. Along
the reaction path, the reactants are separated from the products by a potential energy
barrier. Specific reaction rates are related to thermally activated over-barrier
transitions or to quantum-mechanical tunneling through the barrier. For a constant
specific reaction rate a single potential energy barrier is envisaged for the whole
reaction course. For a time-dependent specific reaction rate the potential energy
barrier separating the reactants from products has to evolve during the reaction course.
Since the first half of the last century there have been many studies aimed toward a
mathematical description of barrier crossing processes in condensed-phase systems.
When the time-scale of the environmental fluctuations is short compared to the time
of the overall rate processes, the effect of the environments on the barrier crossing is
merely to ‘renormalize’ the rate coefficient. However, there are many cases, such as
electron transfer in viscous solvents, reactions of biomolecules, reaction in glasses and
femtosecond events in fluid environments, where the fluctuations of the environment
are slower than or comparable in time-scale to the overall barrier crossing. In this
situation the traditional theory of chemical kinetics breaks down and we enter the vast
areas of dispersive kinetics.4–7

In Section 2 some recent discussions on the basic concepts of kinetics and the
common features of dispersive rate processes in condensed media are presented.
Approximation of classical kinetics is discussed in Section 3. The extent to which the
models of dispersive kinetics and the approximation of classical kinetics conform to
reality is determined by testing them against experimental data. This is done in Section
4. Conclusions comprising Section 5 reflect to some extent the author’s personal point
of view and interest, which undoubtedly may be seen also in the choice of the subject
matter from this rapidly developing interdisciplinary field of research.
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2 Phenomenological approach to dispersive kinetics

In dispersive kinetics one has to account for the distribution in reactivity of reactants.
To illustrate the thesis that the distribution in reactivity is only seen when not
preserved during the reaction course it seems highly instructive to consider the simple
example of two states of the reactant, A1 and A2, giving the product P according to the
simple kinetic scheme:

For this reaction scheme, the solution of the pair of simultaneous differential
equations
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and g1 and g2 are negative roots of the algebraic equation
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For equal rates of transition between the states 1 and 2, i.e. for a, g1 and g2 reduce to
g1A and g2A given by
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Solution for this particular case was presented and discussed recently by Goldanskii et
al.8,9 It was shown that for lì k1,k2, in our notation,

A t A k k t( ) exp ( )= - +[ ]1

2 1 2 (16)

which follows from hA? 0 and g2A = 1/2 (k1 + k2) under this condition. It was also
shown that for l? 0

A t A k t k t( ) ( / ) exp( ) exp( )= - + -[ ]2 1 2 (17)

which results from hA = 1/2 and g1A = k1 and g2A = k2 in this case. For the more general
case, considered presently, of unequal rates of transitions between the states 1 and 2,
the solution was not shown. The authors restricted their attention to discussing the
most interesting special limiting cases corresponding to eqns. (16) and (17). Here these
special cases are shown to follow from the general solution, eqn. (11).

The first case is when the relaxation rate is high compared to the reaction rate, i.e.
l ì k1,k2. Instant relaxation of the matrix to the stationary distribution of states
occurs. Under this condition h? 0 and g2? 0 and g2? ak1/(1 + a) + k2/(1 + a), which
yields, cf. eqn. (11),
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i.e. monoexponential decay with the specific reaction rate equal to the weighted mean
of the specific reaction rates for states 1 and 2.

The second case is when relaxation is much slower than chemical reactions. No
relaxation of the matrix occurs during the time of conversion of the reagent. In our
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notation l ? 0 and from eqns. (7) and (8), respectively, g1 = k1 and g2 = k2;
furthermore, from eqn. (12) h = a/(1 + a), which yields, cf. eqn. (11),
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i.e. biexponential decay. For illustrative example see Fig. 1.
It is easy to generalize eqns. (18) and (19), cf. Plonka,2 for a given large number of

states or to use a continuous distribution of states. It is hard to generalize and use eqn.
(11) effectively. Instead, the stochastic model of reaction kinetics in renewing
environments is explored.

Reaction kinetics in renewing environments

We have to recall that, in the stochastic model of reaction kinetics in renewing
environments,10 the structural reorganization of the host matrix is included by
imposing upon the static disorder model the additional assumption that reinitialization
occurs at random instants. The reinitialization consists of random reassignment of
guest hopping rates with values having the same initial distribution.

Without renewals, in the three-dimensional disordered system, the number of
distinct sites, S(t), visited by a random walker was taken to be sublinear in time

S t t( ) ( / )= < <z aa
a , 0 1 (20)

where za is the scaling time and a is the dispersion parameter.
Renewals are described by the fractal set of renewal moments following from the

use of the Kohlrausch function

F t bb
b( ) exp[ ( / ) ]t t= - < £, 0 1 (21)

Fig. 1 Two-state kinetics. The solid curves depict the decay in time of A(t) according to eqn. (11) for
k1/k2 = 10, a = 2 and l = 0.1, 1 and 10. The asymptotes, eqns. (18) and (19), are depicted by dashed
lines. The inset shows the changes of the mean lifetime for A with l.
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to describe the internal rearrangements in the system. In eqn. (21), tb denotes the
effective relaxation time and b is the dispersion parameter for relaxation.

Averaging S(t) given by eqn. (20) over the renewal sequences following from
relation (21), one gets10
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For highly reactive species, for which the local reaction probability (when two
reactants collide) is equal to unity, the specific reaction rate was taken as
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where b denotes the volume of a site (cell) visited by the random walker. From eqns.
(22) and (25) one gets for k(t)
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It was shown2 that, when the rate of chemical reaction markedly exceeds the rates
of internal rearrangements, 1/zaì 1/tb, then formally b = 0, and, cf. eqn. (23), â =
a, which is the case of a highly dispersive reaction pattern. If, on the other hand, the
rates of internal rearrangements markedly exceed the rate of chemical reaction, 1/tbì
1/za, then b = 1, and, cf. eqn. (23), â = 1, which is the case of a classical reaction
pattern. For further improvement of renewal arguments see Sokolov and Blumen.11

See also Svare et al.12 for the temperature dependence of b, Das and Srivastava13 for
a discussion of relaxation exponents over various time-scales, and Ross and Vlad14 for
a more general discussion of the effect of a disordered system on a chemical reaction
in terms of environmental fluctuations.

Microscopic correlation-function expressions for the stochastic evolution observed
in single-molecule spectroscopy were derived by Chernyak et al.15 The kinetics of a
multilevel quantum system coupled to a single collective overdamped Brownian-
oscillator coordinate is exactly mapped onto a continuous-time random walk (CTRW)
involving the transition states. Classified expressions are derived for the stochastic
trajectories and the non-Poissonian distribution of number of flips. When the oscillator
relaxation is fast compared with the reaction rates, the waiting time distribution
becomes exponential and the standard Poisson kinetics is recovered. See also Kuno
et al.16 for a universal power-law behavior in non-exponential ‘blinking’ kinetics of
single CdSe quantum dots. It is stressed16 that, since its inception in 1989, single-
molecule spectroscopy has made significant progress towards elucidating the
photophysics of isolated species in the absence of ensemble averaging. Motivations
for such single-molecule studies include identifying individual contributions to the
ensemble averaging and understanding interactions with its environment. Quantum
dots are low-dimensional materials and are therefore interesting from both
fundamental and applied viewpoints. From a fundamental perspective, quantum dots
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represent an intermediate stage between a single molecule and the condensed phase,
and consequently allow one to study the evolution of bulk properties with sample size.
Practical interest in these materials arises from applications ranging from nanoscale
electronics to biological fluorescent labeling.

For a discussion of the fractional power dependence of the mean lifetime of a first-
order reaction on a time-scale of the environment relaxation, see Okada.17

Temperature dependence of rate parameters

It was recalled by Logan18 that in one of his papers from 1887 Arrhenius had put in
a plea for the adoption of the term ‘specific reaction rate’ rather than ‘rate constant’ on
the grounds that this parameter was not invariant. Had his view prevailed it would have
obviated the use of the apparently self-contradictory term, ‘time-dependent rate
constant’, which arose in connection with the behavior of pairs of reactive entities
produced in close proximity in solution19 and, of course, in the dispersive kinetics.

Logan18 quotes the classic paper of Arrhenius20 which appeared in 1889 under the
title ‘Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch
Säuren’. In the first section, Arrhenius considered eight sets of published data on the
effect of temperature on reaction rates and showed (using more currently conventional
symbols) that in each case he could choose a value of the constant C such that k(T1),
the rate constant at temperature T1, was represented adequately by the equation

k T k T C T T T T( ) ( ) exp[ ( ) / ]1 0 1 0 1 0= - (27)

where T1 and T0 are the relevant temperatures. This was tantamount to showing that
the rate constant could be represented as an explicit function of temperature,
namely

k T A C T( ) exp( / )= - (28)

where A = k(T0) exp(C/T0) and both A and C are constants for the particular
reaction.

Discussing this in relation to the inversion of sucrose, Arrhenius proposed20 that the
actual substance with which acids reacted to bring about the inversion process was not
simple cane sugar but a substance ‘active cane sugar’ which, to use more
contemporary terminology, he envisaged as being a tautomeric form of ordinary
‘inactive’ cane sugar, formed endothermically from it and in rapid equilibrium with it.
Thus, using the van’t Hoff reaction isochore, he deduced the equation

d

d

ln ( )k T

T

q

RT
= 2 (29)

where q represented what would now be called the standard molar enthalpy of the
‘active’ form less that of the much more abundant ‘inactive’ tautomer. (A further
implicit assumption made here was that the rate of reaction of the “active” form did not
vary with temperature.) Thus the empirical constant C in eqns. (27) and (28), with the
dimension of reciprocal temperature, was equated to q/R, where q has the dimension
of energy per mole.

Although this reaction model did not hold sway for long, as there evolved the more
familiar expression for the Arrhenius equation
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k T A E RT( ) exp( / )= - a (30)

the constant Ea was labeled the ‘action energy’ on the historical basis that it
represented, in the Arrhenius model, the energy required to convert the reacting
substance into the ‘active’ form.

It is now accepted that although, over a limited range of temperature, plots of ln k(T)
against T21 are acceptably linear and may quite reasonably be used for the purposes
of interpolation, eqn. (30) is not in general obeyed, even by elementary chemical
reactions, in the sense that unique constants A and Ea do not exist for each reaction.
Thus, it is now recognized that, even when the Arrhenius plot is apparently linear, Ea

is best regarded as an empirical or phenomenological quantity, defined as

E R
k T

Ta
d

d
= - ln ( )

( / )1
(31)

and, to minimize misunderstandings, termed ‘the Arrhenius activation energy’.
Logan18 concludes that in many instances Ea is a quantity with no (not even
approximate) physical significance. Others were less pessimistic, cf. the previous
report.7

The actual obstacle to interpretation of experimentally determined values of Ea and
A lies in the nature of experiments. The experimental techniques do not provide the
complete isolation of the elementary reaction (nucleation, nuclei growth) uncompli-
cated by diffusion, adsorption, desorption and other physical processes. In other
words, experimental techniques used in solid-state kinetics generally do not measure
the reaction rates of elementary steps but instead measure the overall rate of a process
which usually involves several steps with different activation energies. For this reason,
experimentally derived Arrhenius parameters of a solid-state process tend to have an
overall (effective) nature. By virtue of their effective nature, Arrhenius parameters of
solid-state reactions are difficult to interpret in terms of the transition-state theory.
Therefore, a sound way to settle the issue of the applicability of the Arrhenius equation
is to use it and to treat computed Arrhenius parameters as effective constants unless
mechanistic conclusions are justified by auxiliary data. See also Marsi and Seres,21

Urbanovici et al.,22 Wilburn,23 Ozawa24,25 and Suga.26

As recalled by Nakamura et al.,27 the Arrhenius equation cannot be extended to
extremely low temperatures, because the quantum states of any reactant molecules and
radicals at extremely low temperatures are confined to their ground states from which
reactions occur through tunneling. He has proposed a modified Arrhenius equation
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where T0 is an additional constant. If we denote by r the ratio of the rate constant taking
into account quantum-mechanical tunneling to that ignoring the contribution of
quantum tunneling, i.e.
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then the contribution of tunneling in the total reaction may be calculated by
h = -( ) /r r1 (34)

A number of results presented suggest that (1) most organic reactions, in which the
transfer of H, H+, or H2 is often the rate-determining step, mainly occur through
tunneling even at room temperature, and (2) the potential barrier heights estimated by
the ab initio calculations are probably 20–30% higher than the activation energies of
these reactions experimentally determined at around room temperature.

Talking about extension of the Arrhenius equation to low temperatures we have to
remember, however, that we have k(t) not k. Furthermore, åk(t)Å = H. As an example,
Barkatt et al.28 have measured the recombination of the charge pairs NO3 and NO3

22

in 3+2 KNO3–Ca(NO3)2 glass from 77 to 486 K and 1026 to 102 s for 4 3 1018 eV
electron pulses by observing NO3 at 615 nm. The decay patterns at high temperatures
were fitted with a model developed for diffusion in the presence of an electrostatic
field, cf. Rzad et al.,29 which leads to the dependence

G t G t t( ) ( ) exp( )  ( ) /= 0 1 2l lerfc (35)

where G denotes the radiation yield of charge pairs, per 100 eV, and l, s21, is the ionic
recombination parameter. This function, originally developed for the case of ion pair
recombination in nonpolar liquids, was known to fit the results obtained in oxide
glasses and in low-temperature aqueous glasses above the glass transition tem-
perature.30,31 In the case under discussion, deviations from eqn. (35) become larger as
the temperature is lowered towards and below the glass transition temperature. Below
297 K the decays become nearly linear with the logarithm of time over a wide range
of times. This behavior was thought28 to be typical of tunneling reactions between
species held at fixed distances when diffusion is frozen out. The very wide range of
recombination times results mainly from the strong, exponential dependence of the
tunneling rate on distance, cf. eqn. (97) below. These reactions are temperature-
dependent, even well below the glass transition temperature, where diffusion cannot
be invoked. The Arrhenius plots could not be constructed in an unambiguous way
mainly because of the complex nature of the kinetics. Barkatt et al.28 have plotted the
reciprocals of the times necessary to decay to two-thirds and one-third of the ‘initial’
absorbance, assumed to be equal at all temperatures to the absorbance at 1 ms at a
temperature of 77 K. For thus constructed Arrhenius plots the most striking feature is
their decided nonlinearity. The exact shapes of the true Arrhenius plots were uncertain,
but it was clear that the activation energy is small at low temperatures, about 3 kcal
mol21, and larger at higher temperatures, about 20 kcal mol21.

Hamill32 assumed the prolonged decay, with G(NO3) roughly linear with the
logarithm of time, to be quantitatively consistent with dispersive hole hopping by
electron transfer from NO3

2 to NO3. Expecting second-order kinetics with k(t), the
purpose was to examine the applicability of the equation

1 1 0/ / ( / )G G B t- = a a (36)

to recombination kinetics in nitrate ion glass as a simple model system and to consider
the temperature dependence. The results of his test are depicted in the inset in Fig. 2,
for G0 = 4.3. No Arrhenius plot was constructed. The lines in the inset in Fig. 2 were
claimed to converge at 10213 s. Therefore for k(t) in the form

k t A t E kT( ) ( / ) exp( / )= --
0

1
0t a (37)
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one has t = 10213 s, E0 = 0 and A0 independent of temperature. Activation energy
changes with time according to

E t E kT t( ) ( ) ln( / )= + -0 1 a t (38)

Reported are the values of E(1 s), changing from 0.18 eV ( ~ 4 kcal mol21) at 77 K
to 0.72 eV ( ~ 17 kcal mole21) in the temperature range 340–393 K.

There is no mean value of åk(t)Å for the reaction course. There is, however, the mean
value of the logarithm of k(t), åln k(t)Å, given by, cf. eqn. (26) for t · zâ and â · a,

ln ( ) ln( / ) ( ) ln( / )k t t= + -a t a t1 (39)

For the second-order equal-concentration kinetics, cf. Box 2 below, for t · aâ and a
· â, åln(t/t)Å = 0, and therefore

ln ( ) ln( / )k t = a t (40)

or

ln ( ) ln[ ( / ) ]/k t B= a a a1 (41)

for the notation used in eqn. (36).

Fig. 2 Analysis of data of Barkatt et al.28 on recombination of charge pairs in 3+2 KNO3–Ca(NO3)2

glass. Details in text.
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Using the tabulated values,32 the Arrhenius plot presented in Fig. 2 was constructed.
From this plot, the mean activation energy åE(t)Å changes from 2.3 kcal mol21 (0.10
eV) in the low-temperature region to 53.0 kcal mol21 (2.3 eV) in the high-temperature
region.

Rate constants for several reactions have been measured over a temperature range
exceeding 1000 K, with the largest class being gas-phase hydrogen abstraction by
radicals, cf. Zavitsas.33 Over extended temperature ranges, the experimental data are
often described by the three-parameter equation

k aT b RTn= -exp( / ) (42)

Curvatures of Arrhenius plots for different reactions vary widely, from minimal [n ~
0, in eqn. (42)] to quite pronounced (n = 6). For n = 1, eqn. (42) is equivalent to that
following from Eyring’s transition-state theory

k k h T S R H RT= -k( / ) exp( / ) exp( / )‡ ‡
B D D (43)

where kB and h are the Boltzmann and Planck constants and DS‡ and DH‡ are the
entropy and enthalpy of activation, respectively. For some recent extensions of
Kramers34 approach see e.g. Berezhkovskii et al.,35 Chaudhuri et al.,36 and Banik
et al.37

The Williams–Landel–Ferry (WLF)38 equation is one of the best-known equations
of polymer physics, and for a long time it was believed to describe an almost universal
non-Arrhenius effect of temperature on viscosities and relaxation times in polymer
systems. The equation is written as

log log[ ( ) / ( )]

( ) /[ ( )]

*

* *

a T T

C T T T T C

T =

= - - -

t t

1 2

(44)

where aT is called the shift factor, t(T) is the relaxation time at temperature T, t(T*) is
the relaxation time at some reference temperature T* within the range of measurement,
and C1 and C2 are constants. When the measurement range includes the glass transition
temperature Tg (from calorimetry or dilatometry), it has been natural to choose Tg as
the reference temperature T*. When Tg was defined in some consistent way by
measurement of thermal or volumetric changes at a fixed scan rate, usually ~ 1 K
min21, then the parameters Cg

1 and Cg
2 appeared to have universal values.39

For simple liquids and oxide melts, deviations from Arrhenius temperature
dependence have most commonly been described by the well-known Vogel–
Tammann–Fulcher (VTF) equation,6 which is exemplified by

h h= -0 0exp[ /( )]B T T (45)

or

t t= -0 0exp[ /( )]B T T (46)

Here h is the viscosity, t is a relaxation time, and h0, t0, B and T0 are constants. The
success of this equation for simple liquids seemed to be comparable with that of the
WLF equation for polymers.

As discussed by Rault40 all glass-forming materials, simple liquids and polymers
show the a–b bifurcation; above a cross-over temperature T*, the glass a transition and
the b secondary transition merge together. Below this bifurcation temperature the
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relaxation times t and tb of the cooperative (a) and non-cooperative (b) movements
verify, respectively, the Vogel–Fulcher–Tammann (VFT) and Arrhenius laws. This
temperature is of the order of 1.3Tg and in crystallizable materials T* is found to be
equal to the melting temperature; the frequency of the a and b motions at that
temperature is of the order of 107–109 s21 depending on the nature of the material. In
the domain Tg < T < Tg + 100 °C the cooperativity parameter n (Kohlrausch
exponent) of the a movements is of the form

n T T T T= - -( ) /( )*
0 0

where T0 is a temperature below Tg where the relaxation time t0 and the exponent n
extrapolate, respectively, to infinity and to zero. When the characteristic temperatures
T* and T0 increase linearly with pressure, then n at constant temperature is also a
decreasing function of pressure; 1/n can be considered as the number of individual
units (of b type) participating in the a motion, and therefore the relaxation time t
verifies the power law

t t t t= 0 0
1( / ) /

b
n

between T0 and T*, t0 being the phonon frequency and tb the frequency of the b
movements. This equation is not very different from the Ngai relation concerning the
relaxation time of complex systems, cf. eqn. (75) and the meaning of the parameter n
in both cases. Combining both relations n ~ T and t ~ t1/n

b
, one finds that the

relaxation time is given by the relation

log( / ) / ( )t t 0 0ª -A T T T

with A = Eb(T
*
2 T0)/2.3R, Eb being the activation energy of the bmotions. This law,

called the modified VFT law, fits the experimental results better than the other
phenomenological or theoretical models. This law, without an adjustable parameter, is
compared to the VFT law obtained if one assumes that the cooperativity parameter n
varies as 21/T. The relationships between the fragility index, capacity jump and the
ng value at Tg are discussed.

Bendler et al.41 have developed a model that describes dielectric relaxation, ionic
conductivity and viscosity of glass-forming liquids near the glass transition
temperature. The model is based on the theory of defect diffusion and predicts the
effects of pressure and temperature on dynamical phenomena according to

t t
c

=
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Ê
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ˆ
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˚
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˙

0
0

0

3 2

3

1

1
exp

( )

/
T

T T P (47)

where c denotes the compressibility and P stands for pressure.
According to the Adam and Gibbs equation42

t t
m=

È

Î
Í

˘

˚
˙0 exp

*s

k TS
c

B conf

D
(48)

where s*
c is the critical entropy, Dm is the energy barrier for reorientation of a monomer

group in the Adam–Gibbs theory, kB is the Boltzmann constant, and T is the
temperature. The ratio, (s*

cDm/kB), is a constant denoted by C. Thus
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t t=
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(49)

The configurational entropy of a liquid, Sconf, decreases on cooling and it is expected
to become zero for an equilibrium liquid at a temperature above 0 K. Therefore,
according to eqn. (49), t is expected to approach infinity. Adam and Gibbs used this
decrease in Sconf to explain why the temperature dependence of the viscosity and t of
a supercooled liquid was non-Arrhenius, and why it followed the Vogel–Fulcher–
Tammann type behavior.

In eqn. (49), neither Sconf nor C can be determined by experiments. Therefore, the
value of t0 in eqn. (49) cannot be deduced from the t data measured at different
temperatures. For this reason, eqn. (49) has been combined with the Vogel–Fulcher–
Tammann equation (46), where AVFT·t0, B and T0 are empirical constants, and all
three can be determined from the known variation of t with temperature. On that
assumption, cf. eqn. (49), the quantity Sconf becomes related to t by

S
C

T Aconf
VFT 

=
-(ln ln )t

(50)

To test the validity of eqn. (49) and (50), it is still required that Sconf be known. It has
been assumed that Sconf is the same as DS at Tg or at T close to Tg.

According to Huth et al.43 the Adam–Gibbs paper,42 one of the most cited works in
physics, has a continuing influence on research into the glass transition. This paper is
generally considered as the turning point from rare free volume to small
configurational entropy as the reason for slow molecular mobility in glass formers.
The reader, however, is confronted with a dilemma. The slowing down is conceptually
linked with increasing cooperativity, but in fact we find only a formula to link mobility
with configurational entropy. Neither the size of cooperativity nor its temperature
dependence can be calculated from Adam–Gibbs formulas. Huth et al.43 compare
predicted temperature dependences of cooperativity for two post-Adam–Gibbs
variants (the first via the configurational entropy and the second via a fluctuation
approach) with the temperature dependence of cooperativities determined by means of
heat capacity spectroscopy (HCS) data for polystyrene, polyisobutylene and a random
copolymer (SBR 1500). The data yield a strong increase of cooperativity with lower
temperature and, taking previous HCS data into account, indicate a cooperativity onset
about 100 K above the Vogel temperature for these polymers. An acceptable fit of the
cooperativity data can formally be reached by both post-Adam–Gibbs variants only
upon the condition that this onset is included. The problem of a final decision between
both variants and the conceptional differences between the configurational entropy
approach and the fluctuation approach to glass transition are discussed. For application
of the Adam–Gibbs equation to the non-equilibrium glassy state see Hutchinson
et al.44

An analysis of the heat capacity data of 21 materials by Johari45 shows that a glass
loses 17–80% of its entropy on cooling from its Tg to 0 K, and that the entropy
difference between a glass and crystal phase at Tg, DS(Tg), is 1.2–4.9 times the entropy
difference at 0 K. This is contrary to the premise that the vibrational entropy of a glass
is the same as the entropy of its crystal phase, or that DS(Tg) is equal to Sconf (Tg), the
configurational entropy at Tg. The excess entropy of a glass over the crystal phase is
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attributed to (i) the relatively lower frequency and greater anharmonicity of lattice
vibrations, which contribute to their vibrational entropy, (ii) the kinetically unfrozen
modes corresponding to the tail of the distribution of the a-relaxation times, which
contribute to the configurational entropy, and (iii) localized relaxations of molecular
groups, which also contribute to the configurational entropy. These contributions
vanish or become negligible at 0 K. Therefore, DS(Tg) cannot be used in place of Sconf

(Tg) in the Adam–Gibbs equation. An upper bound Sconf may be estimated at Tg by
extrapolation of the vibrational entropy of a glass and used in the Adam–Gibbs
equation to estimate roughly Sconf of a supercooled liquid from the dielectric relaxation
time data.

Literature data on the entropy and heat capacity of 33 glass-forming liquids have
been used by Johari46 to examine the validity of the Adam–Gibbs relation between a
liquid’s configurational entropy, Sconf, and its molecular kinetics. The critical entropy,
s

*
c, of kB ln 2 ( = 0.956 3 10223 J molecule21 K21) in the equation is less than even

the residual entropy per molecule in a glass at 0 K, and this creates difficulties in
determining the size of the cooperativity rearranging region, z*, in the liquid. It is
argued that z* = [1 2 (T0/T)]21, and the temperature-invariant energy term, Dm, is
equal to RB, which has been determined from the knowledge of the Vogel–Fulcher–
Tammann parameters B and T0, with R being the gas constant, and on the basis of the
argument that the pre-exponential term of this equation is identical to that of the
Adam–Gibbs relation. As the lattice modes in a glass are lower in frequency and more
anharmonic than in its crystal, its vibrational entropy, Svib, would be higher than that
of the crystal phase. Therefore, Sconf of a glass (and liquid) is significantly less than the
difference between the entropy of the glass (and liquid) and the entropy of its
completely ordered crystal phase. Both quantities, Svib and Sconf, have been estimated
without reference to the vibrational spectra. The conclusions can be tested by
determining z* and Dm from measurements of the dielectric spectra of a liquid
confined to nanometre-sized pores. This was elaborated by a calculation for
3-bromopentane.

In order to investigate whether the anomalous decrease in the net entropy of water
on supercooling indicates a structural change, its entropy and relaxation time data have
been examined by Johari47 by equating the Adam–Gibbs expression with the Vogel–
Fulcher–Tammann equation. This gave values of the minimum size of the
cooperatively rearranging region as 4.7 molecules at 150 K, and the temperature-
invariant energy as 7.42 kJ mol21. On the premise that a liquid’s configurational
entropy, Sconf, differs from its excess entropy over the ordered crystal state, Sconf of
water has been estimated over the 150–273 K range by using the available value of its
excess entropy at ~ 150 K. Water’s Sconf at 273 K is found to be less than half of its
entropy of fusion and to further decrease continuously on supercooling. This puts into
question the conjecture that water structurally transforms near 228 K, as deduced by
assuming that water’s configurational entropy is equal to its excess entropy.

Finally Johari48 stressed that, in our current discussion of the thermodynamics and
molecular kinetics of glass-forming liquids, the entropy is extrapolated below a
liquid’s vitrification temperature Tg along a curve of progressively increasing slope
until a temperature Tk is reached. Here the entropy and heat capacity, Cp, of the
equilibrium liquid become equal to those of its crystal. Several observations have
indicated fundamental difficulties with this extrapolation, thus suggesting the need for

Annu. Rep. Prog. Chem., Sect. C, 2001, 97, 91–147 103



an alternative. Johari48 proposes an alternative, in which Cp of an equilibrium liquid
decreases along a sigmoid-shaped path stretching over a broad temperature range from
above Tg to 0 K. Its heat capacity Cp becomes equal to that of its crystal at 0 K, as
required by the third law of thermodynamics, and the enthalpy and volume remain
higher. To elaborate, the available Cp data of 12 supercooled liquids have been
interpolated between T > Tg and 0 K, and the enthalpy of their equilibrium state at 0
K, as well as the Gibbs free energy and enthalpy at T < Tg, determined. The enthalpy
of the equilibrium liquid state at 0 K is 17–37% of the enthalpy of melting, and for
eight out of 12 liquids the Kauzmann extrapolation and interpolation yield values
within 5% of the average.

The deviation from Arrhenius behavior may be quantified by the parameter D in a
modified form of eqn. (46), i.e.

t t= -0 0 0exp[ /( )]DT T T (51)

where D is a ‘strength’ parameter, or by the fragility index, m, cf. Plonka,6 i.e.

m
T T

T T

=
=

d

d g
g

log

( / )

t
(52)

A convenient parameterization of fragility would be F = D21, which varies
between 0 and 1. An alternative parameterization related more closely to the WLF
parameter, C2, comes out of the analysis presented by Angell.39 In theoretical efforts
to account for the form of the VTF temperature dependence, t0 is seen as a
microscopic quantity related to the frequency of attempts to cross some barrier
opposing the rearrangement of particles involved in relaxation, or the time a molecule
needs to move into some free space, and it is expected to have phonon-like time-scales,
10214 s. The scaling temperature Tg was chosen as the temperature at which t = 102

s. The assignment is consistent with the common observation, usually by an
extrapolation of eqn. (46), that tdielectric = 102 s (or fmax = 1023 Hz) at the 10 K min21

calorimetric Tg (onset definition).
The number of orders of magnitude between the relaxation time at Tg and the

inverse attempt frequency (t at 1/T = 0) is ~ 16. From the temperature dependence of
viscosity the corresponding number is 17. There is mathematical equivalence of the
WLF and VTF equations. The well-known identities are, cf. Plonka,6

C T T2 0= -* (53)

2 303 1 2. C C B= (54)

Identification of Cg
1 with (log tg2 log t0), hence with the number ~16, is shown from

eqns. (46), (53) and (54) by simple algebra. Yet for reasons that are not very obvious,
the relation

C1 0
g

g= log( / )t t (55)

was overlooked for a long time. For viscosity, one obtains

C1 0
g

g= log( / )h h (56)

Since tg has the value 102 s by assignment, the approximately universal value of Cg
1

= 17 found empirically for ‘well-behaved’ polymers [implying t0 of eqns. (46) and
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(51) equal to 10214 s] can be seen as support within the polymer class of materials for
the theoretical supposition that the VTF pre-exponent is a microscopic dynamical
quantity, such as an inverse attempt frequency for barrier crossing. See also Johari.49

For a discussion on the origin of the VTF equation near the liquid–glass transition see
Kitamura,50 and for the changes of conductivity behavior from Arrhenius to WLF type
see Carvalho et al.51

Time-scale invariance of dispersive rate processes

Dispersive kinetics, like dispersive transport and relaxation, is time-scale-invariant, cf.
the above-mentioned presentation by Scher et al.1 of dispersive transport and
relaxation, and the author’s account of the early developments of dispersive chemical
kinetics.2

In the familiar continuous-time random walk (CTRW) model, the time-scale
invariance was attributed to the long-tailed distribution

Y a( )t t ~  - -1 (57)

of time between events that limit the motion. Then Hilfer and Anton,52 cf. the previous
report,7 have shown that there is a precise and rigorous relation between the theory of
continuous-time random walks and the fractional master equation, i.e. a master
equation in which the time derivative is replaced with the derivative of fractional
order. Comparison of the models exhibits the form of Y(t),

Y w
G w w

w w
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The series in eqn. (58) was recognized as a generalized Mittag–Leffler53 function,
denoted as Ew,w(x), and thus one has alternatively
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ˆ
¯̃

-1

(59)

The series representation (58) shows that the waiting time density is a natural
generalization of an exponential waiting time density to which it reduces for w =
1,

Y ( ; , ) ( / )  exp( / )t C C t C1 = -1 (60)

For t? 0 one gets from eqn. (59)

Y w( )t t ~  - +1 (61)

and for t? H and 0 < w < 1

Y w( )t t ~  - -1 (62)

i.e. an algebraic tail considered previously, cf. eqn. (57). The fractional order w of the
time derivative in eqn. (46) is restricted to 0 < w 5 1 as the result of the general
theory, and special significance is attributed to the two limits w? 1, cf. eqn. (60), and
w? 0, for which Y(t) ? 1/t. See also Barkai et al.54–56 Recently fractional calculus
is encountering much success in the description of complex dynamics, cf. Kusnezov
et al.,57 Rocco and West58 and Schiessel et al.59
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According to Zaslavsky,60 short-memory dynamics is an important feature of the
randomness that particles should obey. It was demonstrated, however, that physical
processes do not satisfy the principle of short-memory randomness and that long
power-like tails in distributions of different time-scales frequently occur in
experimental systems. Long-tailed waiting time distributions give rise, cf. Metzler et
al.,61 to a time-fractional Fokker–Planck equation that describes systems close to
equilibrium. Using this equation, for the force-free case, the subdiffusive behavior is
recovered. The equation obeys the generalized Einstein relations and its stationary
solution is the Boltzmann distribution. The relaxation of single modes follows a
Mittag-Leffler decay, cf. Metzler et al.62 and Metzler and Klafter.63

Sokolov64 has recalled recently that the story of scaling concepts in turbulent flows
started from the seminal work of Richardson,65 who observed that the mean square
relative separation between two particles, initially in close vicinity, evolves in time
according to

R t r t t2 2 3( ) ( ) ~= (63)

Moreover, Richardson formulated a differential equation for the evolution of the
distribution function of the two-particle distances, being of the form of a diffusion
equation with the distance-dependent diffusion coefficient

K r r( ) ~ /4 3 (64)

giving a heuristic picture of particle separation. The problem of correct statistical
description of Richardson’s dispersion was continuously attacked for more than 70
years. Sokolov64 has considered the two-particle dispersion in a velocity field, where
the relative two-point velocity scales according to

v r r2 ( ) ~ a (65)

and the corresponding correlation time scales as
t b( ) ~r r (66)

He has shown that for a/2 + b < 1 the diffusion approximation holds, and the
increase in the interparticle distances is governed by the distance-dependent diffusion
coefficient

K r r( ) ~ a b+
(67)

The possible regimes outside of the validity of the diffusion approximation are also
discussed. See also Sokolov et al.66,67 The anomalous behavior of the mean square
displacement of hopping ions was investigated by Ishii68 in a random lattice system by
the relaxation model theory. It is made clear that its short-time behavior, which is
linear in time t, is contributed to by localized non-diffusive modes, and the long-time
behavior, also being linear in t, originates from the diffusive mode. In the intermediate
time domain, two anomalous regions exist which are universally expressed by

DR t C t Ctk k( )2 ª +A A (68)

typically with kA ≈ 0 and k ≈ 0.4; the localized non-diffusive modes result in CAtkA

dominating the shorter-time region, while the extended non-diffusive modes govern
the longer-time region of Ctk. See also Schulzky et al.69 for the similarity group and
anomalous diffusion equations.
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Non-exponential relaxation was one of the earliest studied and most often observed
properties of condensed matter, cf. Chamberlin.70 More than 130 years ago it was first
recognized that the observed response from many diverse substances may exhibit two
distinct types of non-exponential relaxation, and although the stretched exponential
and Curie–von Schweidler power law have since been used to characterize the
observed response from thousands of measurements, there is still no commonly
accepted explanation for these empirical formulas. This raises the theoretical
questions: why are there two types of non-exponential behavior, and why are they so
‘universal’?

A general equation for the susceptibility of disordered systems was proposed by
Bergman.71 It is based on the experimental observation of power laws at frequencies
far from the peak frequency of the imaginary part of the frequency-dependent
relaxation function, the susceptibility. The obtained general expression contains the
equations of other proposed relaxation functions as special cases and, thus, it might be
considered as a generalization of these. From this general equation he derives an
equation specially adapted for the a relaxation in glass-forming materials. This
equation contains only three fitting parameters and it is thus very suitable for fitting
real experimental data. It is shown that this equation is a good frequency domain
representation of the time domain Kohlrausch stretched exponential. From the general
equation he also derives a four-parameter ‘universal’ equation that describes most
types of responses and even inverted response data, i.e. response peaks more stretched
on the low-frequency side than on the (as is normal) high-frequency side. The physical
significance of the different parameters is qualitatively discussed and the proposed
functions are shown to satisfactorily describe typical experimental data. See also
Govindaraj and Murugaraj.72 For universality of ac conduction in disordered solids see
Dyre and Schrøder,73 and for ac conductivity dispersion in metaposphate glasses see
Sidebottom.74 See also Ishii and Abe.75–77

Although less common than the stretched exponential, the exponential with a fractal
exponent bigger than unity has been encountered in spectroscopy and in the study of
direct energy transfer in fractal systems with dynamic disorder, see also below. An
apparently unrelated field in which the modified exponential law has been used is the
study of life expectancy of humans in demography and health statistics, for instance,
for the study of survival functions of cancer patients. To that we have added the
survival statistics for microorganisms in a radiation field, cf. Plonka and Bogus.78 In
these fields both the stretched (0 < â < 1) and compressed (â > 0) exponentials have
been used. It is easy to indicate further applications of compressed exponentials. The
budding yeast Saccharomyces cerevisiae has a limited life span, defined by the
number of times an individual cell divides. Life spans were determined for 43
individual cells by Jazwinski.79 Buds were removed from ‘mother’ cells at maturity by
micromanipulation and deposited in isolated spots on an agar slab. These ‘virgin’ cells
that had never budded before were used to imitate the experiment. Every time the cell
budded, the ‘daughter’ was removed at maturity and the ‘mother’ was scored one
generation older, cf. inset in Fig. 3 depicting the cell spiral given in ref. 79. Fig. 3
presents the survival characteristics of Saccharomyces cerevisiae depicted from the
numerical values reported by Jazwinski.79 The solid line depicts the fit with a
compressed exponential, with b = 2.78 ± 0.09, cf. eqn. (21). See also the KJMA
equation (126) below.
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The once abstract notions of fractal space and time now appear naturally and
inevitably in chaotic dynamical systems and lead to strange kinetics and anomalous
transport properties, cf. the previous report.7 An understanding of this kind of
dynamical behavior should provide insight into particle random walk processes, see
Shlesinger et al.80 Already the theory of dynamical chaos has changed the view of the
possibility of statistical laws foundation, since dynamical trajectories, being the
solutions of the deterministic equations of motion, may resemble curves representing
random processes, see Zaslavsky.81

The phase space of a dynamical system is strongly non-uniform, cf. the previous
report.7 Within areas with chaotic dynamics there are islands which are not penetrated
by the trajectories from the chaotic area. The borders of the islands are sticky, i.e.
having arrived into a very narrow band at the border, the trajectory gets stuck there for
a long time. This property of trajectories crucially influences the large-time-scale
asymptotics for the survival time ts, namely
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In the case b 5 1 the average survival time ts is infinite. To avoid a seeming
discrepancy one should understand the difference between individual events
themselves and the frequencies of their occurrence (i.e. the probabilities). Although a
particle always returns to the initial area within a finite period of time (Poincaré

Fig. 3 Survival characteristics of Saccharomyces cerevisiae. Numerical data from Jazwinski.79

Details in text.
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theorem), the frequencies of recurrence times can be such that an average recurrence
time trec will be infinite (trec > ts = H).

We have also to recall that according to Shlesinger et al.80 the real orbits of
dynamical systems are always theoretically predictable because they represent
solutions of a simple system of equations (for example Newton’s equations). Under
conditions for dynamical chaos, however, these orbits are highly unstable. Generally
for chaotic motion the distance between two initially close orbits grows exponentially
with time as

d t d t( ) ( ) exp( )= 0 l (70)

where the rate l is called the Lyapunov exponent. This dependence holds for
sufficiently long times. Local instabilities, described by eqn. (70), lead to rapid mixing
of orbits within the time interval tl = 1/l. Nevertheless, some properties of the system
remain fairly stable and their evolution occurs at a significantly longer time-scale, tD
ì tl, as a result of averaging (possibly only partially) over the fast process of mixing,
caused by the instability in eqn. (70). Kinetic equations arise as a consequence of such
averaging. For a discussion of the hierarchical structures in phase space and fractional
kinetics see Zaslavsky and Edelman82 and Iomin and Zaslavsky.83 Chaotic dynamics
and superdiffusion in a Hamiltonian system with many degrees of freedom was
discussed by Latora et al.84

3 Approximation of classical kinetics

In the above model of reaction kinetics in renewing environments, to get the limit of
classical kinetics, i.e. the constant specific reaction rate, one has to use the long-time
approximation, tì tb, of the Kohlrausch relaxation function (21), cf. Majumdar85 and
Mohanty,86 with b = 1. This yields, cf. eqn. (23), â = 1, and then from eqn. (26)

k = -z 1
1

(71)

with

z z t za b a
a

1
1= -( / ) (72)

This constant specific reaction rate remains renormalized by the factor leading, see
below, to such phenomena as viscosity dependence of the rate constant and the
compensation law. To get rid of this factor one has to reconsider the implicit
assumption of a random walk modeling of reaction kinetics for very reactive
intermediates. The implicit assumption is this: we are modeling reactions with high
local reaction probability, P, when two reactants collide. Only for P? 1 is eqn. (72)
valid. The lower the numerical value of P, the closer to 1 is the apparent numerical
value of a seen in computer simulations performed by Shi and Kopelman87 for
bimolecular reactions in one dimension, on a two-dimensional square lattice, on a two-
dimensional critical percolation cluster, and in three-dimensional cubic lattices with
various local reaction probabilities. This is the way to get k = 1/za from eqns. (71) and
(72), which covers the result of usual theories.

In short time-scales, well below tb, one finds the classical kinetics in the coupling
model (CM) of Ngai88 who restated the fundamental results of his model. In the model,
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there exists a temperature-insensitive cross-over time, tc, before which (t < tc) the
basic units relax independently with correlation function

F
t

( ) expt
t= -

Ê
ËÁ

ˆ
¯̃0

(73)

characterized by the independent (primitive or non-cooperative) relaxation time, t0,
and afterwards (t > tc) with a slowed down non-exponential correlation function. A
particularly convenient function, which is compatible with both computer simulations
and experimental data, is the Kohlrausch function written in the form
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where n is the coupling parameter whose value lies within the range 0 5 n < 1 and
depends on the intermolecular interaction. What distinguishes the CM from other
models that may also have simple exponential decay at short times and later a slowed
down decay, is that in the other models the cross-over time tc is strongly dependent on
temperature. Realistically the cross-over occurs over a small neighborhood about tc,
where the actual relaxation function F(t) changes over smoothly from the exponential
function to the Kolrausch function, preserving continuity of the function and its
derivatives. When the width of the neighborhood is small as suggested by results of
simple models, the approximate continuity of the two pieces of the correlation function
at t = tc leads to the important relation

t t= - -( ) /( )t n n
c 0

1 1
(75)

which links the effective (i.e. after cooperative dynamical constraints between the
relaxing molecular units have been taken into account) relaxation time, t, to the
primitive (i.e. without taking into account the cooperative dynamical constraints)
relaxation time, t0.

The coupling model has been applied to a wide range of physical phenomena since
its inception; and it has been derived by several alternative approaches. According to
Macdonald89 over the years there have probably been well over a thousand pages,
published in scientific journals and in the reports of conferences and meetings, that
have been devoted to explicating and applying the model. Among the recent
applications one finds e.g. the discussion of the breakdown of the Debye–Stokes–
Einstein and Stokes–Einstein relations in glass-forming liquids,90 explanation of the
difference between translational diffusion and rotational diffusion in supercooled
liquids,91 discussion of the effects of confinement on relaxation in glass formers92 and
short-time and long-time relaxation dynamics of glass-forming substances.93

Most of the great body of work on the CM has directly involved Ngai and his
various coauthors, and only a relatively small amount of independent discussion of the
approach has appeared in the literature. Hence the importance of the critical review
presented by Macdonald.89 According to him the detailed examination and
generalization of the coupling model suggested the consideration of a related, yet
different, approach, the cutoff model (COM). Although both the CM and COM models
involve a shorter nonzero response time, tc, and lead to single-relaxation-time Debye
response at limiting short times and high frequencies, they involve different physical
interpretations of their low- and high-frequency response functions. The CM model
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leads to an appreciable slope discontinuity at the tc transition point between its two
separate response parts, while the COM model shows no such discontinuity because
it involves only a single response equation with a smooth transition at tc to limiting
single-relaxation-time response. See also Ngai.94

Viscosity dependence of specific reaction rate

Eqns. (71) and (72) enable us, cf. the previous report,7 to enter the discussion on
viscosity dependence of rate constants in fluids. It seems enough to recognize tb in
relation (72) as the relaxation time of the conformational fluctuation of the reactant
system. Then, if these fluctuations are driven and/or damped solely by thermal motions
of solvent molecules through friction, tb should simply be proportional to viscosity h.
Hence, from eqns. (71) and (72) one gets
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i.e. the form desired to fit the experimental data for the rate constant dependence on
solvent viscosity, cf. Asano and Sumi.95 See also Ansari96 for viscosity dependence of
the rate of conformational change in myoglobin.

As in dielectric relaxation, the distribution of the reaction rate constants may be a
manifestation of one or both of the following two occurrences:97 (i) The process occurs
at different rates in different regions of the material, as would be the case if the
structure was heterogeneous at a molecular level with the bulk homogenization time
being longer than the measurement period. (ii) The rate constant of the process itself
changes with time. In the addition polymerization process, which was of concern, new
and more sterically hindered reacting sites are produced, and two types of dynamics
control the polymerization rate. First is the diffusivity of the reacting groups or
molecules and second is the fluctuation of the surroundings of the reacting groups,
which is required to expose the reacting groups and allow them to react. Both
constitute the structural relaxation process, whose rate is inversely proportional to h.
In most cases h is equivalent to the average dielectric relaxation time, åtÅ.

It is recalled97 that when the reaction kinetics is mass-controlled, an increase in h
at a constant T has no effect on the chemical reaction rate, but when it is diffusion-
controlled an increase in h decreases the reaction rate. The situation is less
straightforward when T is also changed, because the effect of T on h depends upon the
magnitude of h itself. For example, when h of a liquid is low, a small change in T has
a negligible effect on h. But when h is already high, the same small change in T has
a very large effect on h, as is implicit in the Vogel–Fulcher–Tammann equation for
viscous flow. Therefore, when the reaction is mass-controlled, cooling would decrease
the rate constant mainly because the thermal energy decreases and not because h
increases, and when the reaction is diffusion-controlled, cooling would decrease the
average rate constant mainly because h increases, and not because the thermal energy
decreases.

McAnanama et al.97 have reported on the temperature-independent onset of
diffusion control during polymerization in a diepoxide–amine mixture followed by
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dielectric measurements. The kinetics of addition reactions in a polymerizing liquid
changes from mass-controlled to diffusion-controlled when the liquid’s viscosity, h, is
high or the temperature, T, is low. This change occurs when the probability of reaction,
initially controlled by the population of the reacting species, becomes controlled by the
diffusivity of the reacting species. Diffusion-controlled kinetics may be manifested as
a time-dependent reaction rate constant, which is equivalent to slow temporal decays.
This is an important and a well-recognized advance in chemical reaction kinetics that
has led to a discussion in terms of a distribution of the reaction rate constant instead
of the usual single rate constant. It is recalled that a dispersion of the reaction rates is
observed only when the reactivity of the material itself changes with reaction time, as
occurs at low temperatures. However, when T is high, the reactivity does not change
with time or else changes insignificantly. Its average leads to a single, time-dependent
reaction rate constant. This is analogous to the dielectric relaxation phenomenon,
where the distribution of relaxation rate is also broad when T is low or h is high, and
it is narrow and indistinguishable from a single Debye type relaxation when T is high
or h is low.

Compensation law

The compensation law or isokinetic relationship emerged after years of attempts to
correlate structure and reactivity for series of reactions. In terms of the Arrhenius
equation, the compensation law consists in a linear relationship between the logarithm
of the pre-exponential factor and the apparent activation energy; in terms of the Eyring
equation, it consists in a linear relationship between the activation entropy and the
activation enthalpy. For some early examples see e.g. Exner,98 and for more recent
ones see Vyazovkin and Wight.99

The variable factor in reaction series usually is a substituent change, although
solvent variation, variations of catalyst, ionic strength or pressure, and in some cases
temperature, can become the variable parameter if the kinetics has been followed over
a broad temperature range and the activation parameters are treated as varia-
bles.98,99

In classical kinetics, there is no apparent reason for the compensation law to hold.
As we have shown above, in dispersive kinetics, the constant specific reaction rate, or
rate constant, appears as an approximation valid to only a part of the kinetics: for
reactions at time-scales much longer than those of internal rearrangements in the
reaction system renewing (mixing) the environment of reactants. Even under these
conditions for species reacting with high local reaction probability (when two
reactants collide), the constant specific reaction rate is renormalized by a factor
containing the effective time of renewing (mixing) the reactant environment, cf. eqn.
(72). Because of this the compensation law holds, under classical approximation, for
reaction series with a variable factor such as substituent change, variation of solvent,
catalyst, ionic strength or pressure.

In what follows, the simple Arrhenius picture is used. Eqn. (72) is rewritten as

ẑ z ta
a
b
a

1
1= - (77)

and we take
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z za a za
= , exp( / )0 E RT (78)

and

t tb b t b
= , exp( / )0 E RT (79)

We have to remember, however, that the use of the Arrhenius equation for modeling
relaxation in a wide temperature range is justified only for strong glass formers, see
above, and therefore for fragile glass formers the parameters tb,0 and Etb may have no
direct physical meaning. For alternative use of the Williams–Landel–Ferry equation,
or Vogel–Tammann–Fulcher equations, for Tg/T < 1, see Angell.39

For ^^^^^^^ẑ1 given by eqn. (77) one can write the Arrhenius equation in the form

ˆ ˆ exp( / ), ˆz z
z1 1 0

1

= E RT (80)

where

ˆ ˆ
, , ,z z ta

a
b
a

1 0 0 0
1= - (81)

and

E E Eˆ ( )
z z ta a

a b1

1= + - (82)

In general, for reactive species, Etb > Eta and za,0 > tb,0. The relations (78) and (79)
intersect at the point

T
E E

Rc =
-

-
t z

a b

b a

z t(ln ln ), ,0 0

(83)

z t

z

b t

a z

b

a

c c

c

=

=

,

,

exp( / )

exp( / )

0

0

E RT

E RT
(84)

It is easy to check that one can rewrite eqn. (80) as

ˆ exp
ˆ

z z
z

1
1 1 1= -

Ê
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ˆ
¯̃
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Î
Í
Í

˘

˚
˙
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E
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or equivalently as

ˆ ˆ exp ln,
,

z z
z

za
1 1 0

0

=
Ê
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ˆ

¯̃

È

Î
Í
Í

˘

˚
˙
˙

T

T
c c (86)

to have the most popular forms used to present the compensation law. Also

ln ˆ ln,

ˆ
z z

z
1 0

1= -c
c

E

RT
(87)

which gives the desired linear relationship between the logarithm of the pre-
exponential factor and the activation energy in relation (80), and

ˆ exp( / ) exp( / )ˆ ˆz z
z z1

1 1

= -c cE RT E RT (88)
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In general, however, the specific reaction rate in condensed media depends on time, cf.
Plonka.100 The compensation law still holds. The numerical value of the dispersion
parameter â depends on temperature. This is the case for compensation analysis firmly
entrenched in the literature on thermally stimulated techniques.

Typically, when the compensation law is reported for kinetic studies in a broad
temperature range it is because of the increase of activation energy near a glass
transition or some other cooperative transition. In the glass transition region, taken as
a representative example, the slowing down of relaxation processes with temperature
decrease occurs. Therefore, well below the glass transition one may expect to be close
to the limit â = a, and on increasing the temperature towards glass transition one may
expect to approach the limit of classical kinetics â = 1. Accordingly, cf. eqn. (24), the
activation energy Eẑâ should approach at low temperature the limit

E Eˆ
ˆ

~
z z
a

a
(89)

and at high temperature the limit
E E Eˆ

ˆ

( )
z z t
a

a b
a= + -a 1 (90)

This phenomenon is modeled by the temperature dependence of b in eqn. (23). In the
temperature range of the glass transition, cf. Phillips,101 the numerical value of b
changes linearly with temperature from some constant value bg to 1.

For illustrative purposes Fig. 4 presents the Arrhenius plots of
ˆ min(ˆ , )ˆ ˆz z z
a a a= (91)

for â = 0.3 and 0.7 vs. Tc/T. The numerical value of b changes from 0.3 to 1 in the
glass transition region 1.1–1.3 in units of T/Tc, cf. inset in Fig. 4. Linear extrapolation
of the logarithm of ẑâ (dashed lines) shows the artificial compensation point at a
temperature higher than Tc.

On the apparent compensation effect observed for two consecutive reactions see
Budrugeac and Segal102 and Budrugeac.103 For parallel reaction model in decomposi-
tion kinetics see Burnham and Braun.104

Fig. 4 Illustration of the compensation law for the activation parameters in the region of the glass
transition. The dashed line intersection indicates the artificial compensation point. Details in text.

114 Annu. Rep. Prog. Chem., Sect. C, 2001, 97, 91–147



 

4 Kinetics in condensed media

For time-dependent specific reaction rate the potential energy barrier has to evolve in
time. Taking the most familiar Arrhenius picture to relate ẑâ from eqn. (26) to the
activation energy Eẑâ by

ˆ ˆ exp( / )ˆ ˆ , ˆ
ˆ

z z
a a z

a

= 0 E RT (92)

(where ẑâ,0 denotes the temperature-independent pre-exponential factor, T is
temperature and R is the gas constant) one finds that the form (26) of k(t) implies32 the
time-dependent activation energy E(t) given by

E t E t( ) ( ˆ ) ln( / ˆ )ˆ ˆ
ˆ

= + -
z a
a

a z1 (93)

in units of RT, cf. eqn. (38).
At a first look at relation (93) one might be worried by the limit E(t) ? 2H for

t? 0, but there are finite mean values åln(t/ẑâ)Å and higher moments of the distribution
of logarithms of lifetime for all schemes of elementary reactions, see Plonka and
Paszkiewicz.105 From these moments one gets the moments of activation energy
distributions during the reaction course

[ ( ) ] ( ˆ ) ln ( / ˆ )ˆ ˆ
ˆ

E t E tn n n- = -
z a
a

a z1 (94)

For further discussion, two kinetic schemes are of importance: first-order (or pseudo-
first-order) kinetics and second-order equal-concentration kinetics. For the first-order
kinetic equation with k(t) given by (26), i.e. for

c c t/ exp[ ( / ˆ ) ]ˆ
ˆ

0 = - z
a
a

(95)

the moments of activation energy distributions are given in Box 1. For the second-
order equal-concentration kinetic equation with k(t) given by (26), i.e. for

c c t/ [ ( / ˆ )]ˆ0
11= + -z

a (96)

the moments of activation energy distributions are collected in Box 2.
In a similar way one can use the Gamov formula for e.g. rectangular barrier

permeability

k = -exp( )qa (97)

with q = 2[2m*(V 2 E)]1/2 and a = r 2 R, where m* is the effective mass of the
tunneling particle, (V2 E) is the total energy and a is the barrier width, to find that the
form (26) implies the increase, cf. Plonka,106 of the tunneling distance a(t), i.e.

a t a q t( ) ( ˆ ) ( ˆ )ln( / ˆ )ˆ ˆ= + --z a z
a a

1 1 (98)

The kinetic equation (95) is identical, in mathematical form, with the Kohlrausch
relaxation function (21). For â? a it might be physically acceptable to represent eqn.
(95) in the form of a Laplace transform
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z z z

a
a d , or

= d

0

0

(99)

for g(z) = f(1/z)/z2, and to interpret eqn. (95), like the Kohlrausch relaxation function
(21) in some applications, in terms of the superposition of monoexponential decays
distributed continuously with density given by f(k) or g(z).

It follows from eqn. (99) that the density of f(k) can be found as an inverse Laplace
transform. Although the inverse transforms are known exactly only for numerical
values of a equal to 1/3, 1/2 and 2/3, there is no problem with other numerical values
of a, cf. the previous review.7 The problem is that f(k) is the density of a stable
distribution with no moments. No moments of f(k) and time dependence of the rate
coefficient for stretched exponential decay were always seen as some disadvantages in
this kind of interpretation of experimental results fitted with a Kohlrausch relaxation
function. However, for the cases when there are reasons to believe that distributions of

Box 1 First-order kinetics. Activation energy distributions.
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lifetime displayed by a Kohlrausch relaxation function originate from a prior
distribution of monoexponential decays, it is worth noting that there are moments of
g(z) for z = 1/k. Furthermore, these moments are directly related to those of g(t)
following from eqn. (95),

t nn n= ! z (100)

The moments of g(t), easy to calculate directly from eqn. (95), are given by

( / ˆ ) ( / )ˆt nz G a
a

= +1 (101)

where G denotes the Gamma function. Because of eqns. (100) and (101) one has

( / ) ( / !) ( / )z z G aa
n n n= +1 1 (102)

cf. Weron107 and Lindsey and Patterson.108

Even more remarkable is the existence of moments for g(ln z) and their simple
relationships to those of g(ln t),

ln lnt = -z g (103)

Box 2 Second-order equal-concentration kinetics. Activation energy distributions.
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and

D t D2 2 2 6(ln ) (ln ) /= +z p (104)

Making use of these findings, the results collected in Box 3 were obtained.105

In analogy to eqn. (99) one can write for the second-order equal-concentration
kinetic eqn. (96)

1

1 1
0

+
=

+

•

Ú( / )

( )

/t

g

tz

z

z
z

a
a d (105)

which leads105 to the results collected in Box 4.
See also Edholm and Blomberg109 for a discussion of stretched exponentials and

barrier distributions, and Skulski110,111 for the method of estimating the width of a
Gaussian-logarithmic distribution of relaxation times in relaxor materials.

Reaction course in fluids

We have to recall the statement of Edelstein and Agmon112 that much of current study
of chemical kinetics, from gas-phase dynamics to surface reactions, centers on
understanding the factors governing rate coefficients. While such studies are of

Box 3 First-order kinetics. Rigid-matrix approximation.
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fundamental interest and importance, the concomitant neglect of a more rigorous and
comprehensive study of the time course of chemical reactions is unjustified. This
statement finds little support as this area continues to develop rapidly.

Kim et al.113 presented efficient numerical methods for solving kinetic equations for
various diffusion-influenced bimolecular reactions. The finite difference method is
used to solve diffusion reaction equations for the pair distribution function, and the
Runge–Kutta method, with an adaptive time step, is used to evolve the kinetic equation
for the concentration. These methods were applied to the classical one- and three-
dimensional Smoluchowski approach for diffusion-influenced binary reactions, which
can be solved exactly, and therefore the numerical accuracy can be easily compared
with the analytical solutions. The reported results114 show remarkable accuracy and
speed. Exact solution of the reversible diffusion-influenced reaction for an isolated
pair in three dimensions was given by Kim and Shin.115 See also Nassif and Silva,116

Agmon and Gopich117 and Solc.118

Barzykin et al.119 have addressed the problem of diffusion-assisted reactions on
micelle surfaces. An exact matrix form solution for the pair survival probability
satisfying the diffusion equation with a distance-dependent reaction term has been
presented and analyzed together with several useful approximations. Matrix solution
is computationally superior to numerical integration of the partial differential

Box 4 Second-order equal-concentration kinetics. Rigid-matrix approximation.
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equation. For its use for the case of photoinduced electron transfer followed by back-
transfer see Barzykin et al.120 Solvation dynamics in micelles was discussed by Pal et
al.121

For irreversible fluorescence quenching in solution, it is shown by Naumann122 that
the kinetic prediction of the Smoluchowski approach, which is exact under target
model conditions, can also be alternatively formulated in terms of well-defined non-
Markovian rate equations. For the superposition approximation, it was demonstrated
that the definition of an approximate quenching constant can also be formally
transferred to the reversible quenching process if only the low-density limits of the net
forward rate kernels in the generalized rate equations are known. Fluorescence
quenching by reversible excimer formation and by reversible excitation transfer meets
this requirement.

In one dimension, Redner and Krapivsky123 have studied the capture of a diffusing
‘lamb’ by diffusing ‘lions’. The capture dynamics is exactly soluble by probabilistic
techniques when the number of lions is very small, and is tractable by extreme
statistical considerations when the number of lions is very large. However, the exact
solution for the general case of three or more lions is still not known. For the same,
one-dimensional system, Kuzovkov et al.124 have considered front propagation in the
autocatalytic scheme A + B ? 2A where A particles are allowed to decay, A ? 0, with
a constant decay rate. Tabata and Kuroda125 have discussed the diffusion-controlled A
+ A ? 0 reaction of non-equilibrium states on a disordered linear-chain lattice. The
problem of diffusion-influenced reversible trapping in one dimension was discussed
by Kim and Shin.126

Kipriyanov et al.127 presented a new approach to the derivation of binary non-
Markovian kinetic equations which was used subsequently for discussion of the
irreversible reactions A + B ? C and A + B ? C + D in spatially non-uniform
systems128 and of the effect of chemical displacement of B species,129 due to chemical
conversion events, on kinetics of reaction A + B ? B.

Sung and Lee130 introduced the non-equilibrium function formalism for diffusion-
influenced bimolecular reactions. This formalism was used for the kinetics of
reversible energy transfer reactions131 and relations among the modern theories of
diffusion-influenced reactions were discussed.132,133

Benichou et al.134 have studied the kinetics of diffusion-limited, pseudo-first-order
A + B ? B reactions in the situation in which the particles’ intrinsic reactivities are
not constant but vary randomly in time. The particles are supposed to bear ‘gates’
which fluctuate in time, randomly and independently of each other, between two
states—an active state, when the reaction may take place between A and B particles
appearing in close contact, and a blocked state, when the reaction is completely
inhibited. For the theoretical analysis of the influence of stochastic gating on the
transient effect in fluorescence quenching by electron transfer see Bandyopadhyay et
al.135

Graber136 introduced a reaction diffusion model on a lattice involving two particles
species, A and B. B particles initially fill the lattice, and A particles diffuse,
transforming B particles to A particles each time they meet. He keeps the number of
A particles constant, eliminating the oldest ones. The process builds empty clusters
whose short-time features are fractal (in the universality class of invasion percolation)
and whose long-time features are those of compact objects.
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Syutkin137 studied the A + B ?A reaction by computer simulation of random walks
of particles A on a simple cubic lattice with randomly removed bonds above the
percolation threshold. The B particles are immobile. It is shown that at low
concentration of walkers, the non-exponential decay of B particles originates mainly
from the rate constant distribution. At small times, the anomalous diffusion of walkers
contributes to the non-exponential kinetic behavior as well. The distribution of
specific reaction rates arises due to different configurations of removed bonds around
the B particles.

Model chemical reactions are very specific objects of study, since despite their
simply structured ‘rules of the game’ they display very rich temporal patterns of
behavior.138 From the point of view of simulations, model chemical reactions present
the important advantage that in several particular cases exact solutions (or at least,
asymptotic behaviors) are known; this provides then an excellent test for the
numerically obtained results. On the other hand, analytical approximations may be
quite misleading, when pushed beyond their (often poorly known) limits of validity.
In several, very important instances, computer simulations have played a decisive role
in showing that well-established patterns of thought were incorrect. In many cases the
plotted results of simulations are intuitively easy to grasp; this has helped very much
in establishing new ways of understanding the underlying phenomena. As an example,
Nechaev et al.139 have studied the dynamics of an isolated Rouse chain, which diffuses
in a three-dimensional space under the constraint that one of its extremities, the slip-
link, may move only along a line containing randomly placed immobile traps. For such
a model they have computed exactly the time evolution of the probability Psl(t) that the
slip-link will not encounter any of the traps until time t, i.e. that the chain will remain
completely mobile until this moment of time. They have shown that in the most
general case this probability is a succession of several stretched-exponential functions
of time, where the dynamical exponents depend on the time of observation and on
characteristic cross-over times. They have specified these cross-over times and have
determined explicitly the forms of Psl(t) in several particular situations. They expect
their results to serve as benchmarks in more complex situations, which are not
amenable to a fully analytical treatment. Thus programs involving realistic computer
simulations can be tested by comparing the results to their exact expressions. See also
Ilan and Loring.140

Kim and Shin141 have investigated the single-species diffusion-influenced reaction
A + A ? aA with a finite reactivity, in all dimensions. The reaction model includes
a pure coagulation (a = 1) or a pure annihilation (a = 0) model. They have applied
the hierarchical Smoluchowski approach to study the dimensional aspects of the
fluctuations, reactivity, particle size and a (0 5 a 5 1). The theoretical results were
compared with those of Monte Carlo simulations in one, two and three regular
dimensions. The simulation results revealed that the classical Smoluchowski approach
is exact in the short-time limit in all dimensions and in the long-time limit in three
dimensions. The hierarchical Smoluchowski approach was found to be numerically
exact at all times in two and three dimensions. For one dimension, a numerical method
is presented to obtain the exact results of the annihilation for a finite reactivity.

The kinetics and thermodynamics of folding a representative sequence of a
125-residue protein model subject to Monte Carlo dynamics on a simple cubic lattice
were investigated by Dinner and Karplus.142 The 125-mer folding reaction is
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particularly attractive in that it exhibits complexities comparable to those observed for
real proteins but it is still simple enough that its kinetics and thermodynamics can be
explored fully. Du et al.143 have considered a 48-mer lattice model in their study of the
effects of geometrical restrictions, including those of chain connectivity and steric
excluded volume, on protein folding. For the estimation of the minimum length of a
protein chain required for expeditious and robust folding into a specific target motif
see Fernández et al.144

Brownian dynamics simulations were used by Kim et al.145 to study the long-time
behavior of a reversible diffusion-influenced reaction perturbed by photolysis, and by
Yang et al.146 for calculation of the time-dependent rate coefficients of diffusion-
influenced reactions.

Fast events in protein folding were recently reviewed by Callender et al.147 and
Gruebele.148 Understanding how proteins fold up into their compact three-
dimensional forms is a central problem in modern structural biology.147 The reason is
that the particular structure of a protein governs its specific activity, and any biological
function is supported by a corresponding protein system. It is recognized that the
spatial structure of a protein molecule is determined completely by the sequence of
amino acids of its polypeptide chain, at least for small proteins and probably for all
proteins in a general sense. Moreover, the amino acid sequence also codes the way the
three-dimensional structure is reached efficiently, cf. Wang and Wang.149,150 Both
aspects are equally important for protein engineering purposes, because any
polypeptide sequence coding a new protein must not only offer some new function but
also ensure its efficient folding. Otherwise, the expressed protein might never
accumulate in large quantities because slow folding processes may permit the
accumulation of long-lived metastable non-functional folds. Besides, aggregation at
intermediate stages or digestion by the proteinases of the host will be high for long-
lived unfolded structures. The folding of a protein is a process both expeditious and
robust, cf. Fernández and Berry.151 Their analysis of this process uses a coarse
discretized representation of the evolving form of the backbone chain, based on its
torsional states. The properties expeditious and robust, imply that the folding protein
must have some tolerance to both torsional ‘frustrated’ and side-chain contact
mismatches which may occur during the folding process. See also Fernández et al.152

The role of the energy gap, between misfolded states and native state, in folding
dynamics is discussed by Pitard and Orland.153 It is stressed147 that for several decades
there has been much effort toward determining the kinetics of how a protein folds from
its extended unfolded conformation to its final compact form. Investigators have
sought to answer the questions of what types of structures form first and on what time-
scales. Of most importance are the early kinetics events. These events set up all that
are to follow in the guided pathway. However, the early kinetics of the folding
pathway occur generally on the submillisecond time-scale, and this has been a difficult
time-scale to access experimentally since the typical approach, stopped-flow devices
whereby two reactants are mixed and the chemical reaction launched, have been
limited to a resolution of 1–10 ms, and only recently has a rapid solution mixer with
a 100 ms deadtime been developed.154

For new approaches that are capable of initiating and monitoring the fast events in
protein folding with temporal resolution down to picoseconds see the above-
mentioned reviews147,148 and also Eaton et al.155
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Highly non-exponential folding kinetics in aqueous solution have been observed by
Sabelko et al.156 during temperature jump induced refolding of two proteins, yeast
phosphoglycerate kinase and a ubiquitin mutant. For phenylacetylene oligomer, which
is known to acquire a solvophobically driven helical structure at low temperatures,
Yang et al.157 have reported the transition from exponential to non-exponential
kinetics during helix formation at low temperatures. See also Parak and Achterhold158

and Prusakov et al.159

Volk et al.160 explored the early folding process involving local collapse and helix
formation of de-novo peptides with a disulfide bond between two modified tyrosines
(YA) linking the ends of a 17-amino-acid polypeptide chain YA(AAAAK)3YA (with A
· alanine and K · lysine), constraining it to a non-native, more randomly coiled
conformation. The ultrafast (subpicosecond) process triggering the folding constitutes
the photodissociation of the disulfide S–S bond. These experiments provide
information on the kinetics of a-helix formation, which is interrogated by the
recombination dynamics of the thiyl radical pair at the time-scale from 1 ps to 10 ms.
A significant novel result emerging from the studies of Volk et al.160 is the failure of
conventional kinetic schemes to describe this process. Over a time range of seven
orders of magnitude the radical concentration exhibits an extremely non-exponential
time dependence.

Volk et al.160 analyzed their data using the stretched exponential, eqn. (95). The
validity of this analysis was confirmed by Metzler et al.161 and the reported numerical
values of the parameters of eqn. (95) are ẑâ = 1.5 ± 1.2 fs for a = 0.086 ± 0.03.
Furthermore, the same set of experimental data was subjected to alternative analysis
in terms of a power law, eqn. (96). An equally good fit as with the use of eqn. (95) is
reported for eqn. (96) with ẑâ = 7 ± 1 ps and a = 0.331 ± 0.04.

Scanning the experimental data, fig. 1 in the paper of Metzler et al.,161 we have
confirmed the above results, finding the numerical values of the difference absorbance
corresponding to c(0) in eqn. (95) for ẑâ = 1.53 fs and â = 0.086 to be equal to
0.0586, and of the difference absorbance corresponding to c(0) in eqn. (96) for ẑâ =
7 ps and a = 0.331 to be equal to 0.0156. For these numerical values of parameters,
cf. upper part of Fig. 5, there is no marked difference between stretched exponential
(solid line) and power law (dashed line) in the range covered by the experimental data.
The reported fits, cf. insets, seem to be really equally good. A marked difference is
seen, however, when the fitting equations are used to calculate the distribution
functions for the logarithms of lifetimes in the form F = 1 2 (A/A0) vs. log t or their
densities given by f = dF/d ln t. According to the fit with the stretched exponential,
less than 20% of the transient absorption of the thiyl radicals is followed. According
to the power law, the value is about 70%, cf. middle part of Fig. 5.

The phenomenological description of the kinetics, which is characterized either by
the stretched exponential [eqn. (95)] or the power law [eqn. (96)], is not sufficient to
determine a particular mechanism for the folding reaction. In general, two classes of
mechanisms, i.e. inhomogeneous or homogeneous kinetics, can yield such non-
exponential long-tailed time dependence. Metzler et al.161 have focussed on the
inhomogeneous kinetics assuming that each peptide molecule recombines ex-
ponentially in time, with a characteristic time-independent rate, but each molecule is
characterized by a different rate. In their notation the total time evolution in the
inhomogeneous system is then given as a superposition of the simple individual
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decays with a distribution function of the lifetimes, fj(t), with j = 1 and j = 2 for the
stretched-exponential and the power law, respectively. The stretched exponential
description, cf. eqns. (95) and (99), was then given in terms of the Laplace transform
written as

exp[( / ) ] ( )exp( / )- = -

•

Út f tt t t ta d 1

0

(106)

and in a similar way

Fig. 5 Analysis of data of Volk et al.160 on peptide folding. Details in text.
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Taking g(t/t0) = C(t)/C(0) one gets, cf. eqn. (99),
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i.e. g(t/t0) is the Laplace transform of p22f(1/p), and f(t) is given by

f p p L g t p( / ) ( / );1 2 1
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and
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Introducing the Fox function representation, Metzler et al.161 calculated the inverse
transform in a closed form solution. The Fox functions are
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for the two above relaxation functions, respectively. Applying the inverse Laplace
transform they get
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Asymptotically, for tì t0,
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which differs from the expression given in the previous review2 by the prefactor,
and
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A model is outlined161 which leads to a stretched-exponential or to a power-law
recombination depending on the competition between energetic and entropic trends. It
is assumed that upon cleavage of the S–S bond each peptide starts recombining from
a ‘distance’ L of an unrecombined configuration. L is defined in some space of
possible configurations and the typical recombination time starting from L is t(L).
Therefore

C t

C
L f L t L

( )

( )
( ) exp[ / ( )]

0
0

= -

•

Ú d t (118)

where f(L) is the distribution of distances. Following Palmer et al.162 it is assumed
that

f L f f L( ) exp( ln )= = --
0

1
0l l (119)

For

t t( ) exp( )L aL= 0 (120)

one has

C t t a( ) ~ ln /- l (121)

where the constants l and a are independent of L and t.
For the scaling

t t h( )L L= 0 (122)

eqns. (118), (119) and (122) result in

C t Kt( ) ~ exp[ ( ) ]/( )- +1 1 h (123)

This somewhat oversimplified model might be nicely supplemented by Angell’s163

discussion of the energy landscape concepts and the folding transition in proteins, and
comments of Oliveberg164 on an alternative explanation for ‘multistate’ kinetics in
protein folding, namely transient aggregation and changing transition-state en-
sembles.

Analysis of a fractal Michaelis–Menten curve has been presented by Heidel and
Maloney.165
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Fluid–solid transition

A triumph of modern theoretical physics is the notion that rigidity and orderliness go
together, see Wolynes.166 A periodic array of atoms is recognizable and globally
different from a fluid. Pushing at it in one place causes no rearrangement because a
local disturbance will be met by a collective response of the whole. The rigidity of
glass, an amorphous solid, remains mysterious. Without any apparent order, a chaotic
jumble of atoms behaves as if rigidly frozen.

According to Suga167 our knowledge of amorphous solids is quite poor compared
with that of crystalline solids. Most pure substances can be obtained, in principle, in
crystalline as well as non-crystalline states by physical and chemical methods.
Destruction of three-dimensional periodicity in crystalline substances produces novel
properties which cannot be anticipated from knowledge of crystal sciences. One
direction of materials science in the coming century will surely be a new realm of
amorphous condensed matter science.

Crystallization. Kinetics in systems undergoing a first-order phase transition
are important in many scientific and technological disciplines, cf. Ramos et al.168 At
the end of the 1930s Kolmogorov, Johnson and Mehl, and Avrami (KJMA) introduced
a simple theory describing the decay of a metastable system towards a unique
equilibrium phase. To learn when, where and what the above-mentioned four scientists
have written about the model named after them, see Fanfoni and Tomellini169 and
Korobov.170 The basic assumptions are simple: negligible small ‘droplets’ of the
equilibrium phase nucleate from the metastable phase and subsequently grow without
substantial deformation. The growing droplets are assumed to be randomly placed and
overlap freely, with the result that the remaining volume fraction occupied by the
metastable phase decays as

V t V t( ) exp[ ( )]= - e (124)

where Ve is the so-called extended volume of the transformed phase, that is the volume
the transformed phase would acquire if the overlap among the growing nuclei were
disregarded. Typically, cf. Weinberg et al.,171 Ve(t) is given by

V t ktn
e ( ) = (125)

where k is a constant and n is an integer or half-integer. Introducing eqn. (125) into
eqn. (124) one gets

V t ktn( ) exp( )= - (126)

The exponent n is termed the Avrami exponent, and from eqn. (126) it can be seen that
this quantity is the slope in a plot of ln ln V(t)21 vs. ln t, termed an Avrami plot.

For the use of traditional Avrami analysis for crystallization kinetics of syndiotactic
polypropylene, see Supaphol and Spruiell.172 The same authors173 have compared the
use of Avrami analysis with three other macrokinetic models, namely those of
Tobin,174 Malkin,175 and the so-called simultaneous Avrami model. Judging from the
quality of fit only the Avrami, Malkin and simultaneous Avrami models were found
to describe the time dependence of the relative crystallinity well, resulting in the
rejection of the Tobin model in describing the isothermal crystallization of
syndiotactic polypropylene. See also Supaphol.176
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The original KJMA relation was derived for isothermal conditions and cannot be
used to fit experimental results obtained with variable temperature, cf. Frade,177

Lambrigger178,179 and Oliveira et al.180 All these authors assume the Nakamura181–183

approach as a convenient basis for interpreting the kinetics of crystallization with
constant rate of temperature change. Eqn. (126) is rewritten as
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and for a constant rate of cooling or heating, q, one gets
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or
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is the heating or cooling function, cf. e.g. Chuah et al.184 To get one of the most widely
used solutions for experiments performed on heating at constant rate q, i.e.

ln[ ln ( )] ln- = - - -V t n q
E

R
Tconst 1

(131)

one has to take the Arrhenius temperature dependence of k in eqn. (126) and to use the
formal relation k(T) = k1/n.

For the use of the Avrami equation for non-isothermal transformation kinetics see
also Lu et al.,185 Grong and Myhr,186 Málek et al.187 Martins and Cruz-Pinto188 and
Vázquez et al.189

The idealizations made in formulating the KJMA equation are under vivid
discussion, see e.g. Carter’s190 discussion of ion-irradiation-induced amorphization
processes in semiconductors, and Málek’s191,192 remarks on the autocatalytic
model.

The impingement among clusters has been taken into account in the framework of
Avrami’s statistical approach.193–195 At first the system has been considered in which
nucleation occurs at a given number of pre-existing sites randomly distributed
throughout the whole surface. The results obtained by numerical computations
indicate that particular conditions can indeed be realized for which the photoelectron
signal is chiefly related to the kinetics of the surface fraction that is covered by islands.
A more involved system has also been modeled where nucleation does not occur at
pre-existing sites but throughout the formation of stable dimers. Under this

128 Annu. Rep. Prog. Chem., Sect. C, 2001, 97, 91–147



circumstance, Avrami’s treatment of island impingement can still be retained although
now a system of integral differential equations has to be solved to get the kinetics.
Such a modeling should be suitable for describing the metallic film growth studied by
photoelectron signals. See also Fanfoni et al.196 and Tomellini and Fanfoni.197

The time evolution of the total perimeter of clusters growing on a surface has been
described by Tomellini and Fanfoni198 on the basis of the KJMA theory. A general
formula, which can be easily extended to any space dimension, was obtained. When
particular nucleation functions and the cluster growth law are considered the kinetics
of the perimeter can be explicitly calculated and, moreover, it can be expressed as a
function of the covered surface. Experimental data on the efficiency of a Cu/CuOx

model catalyst, towards imide formation, have been satisfactorily described by the
model. Moreover, the growth of Ag on a GaAs(110) surface studied via photoelectron
spectroscopy has been qualitatively explained by the proposed model. In the model
case of cylindrical clusters knowledge of the evolution of the total perimeter allows the
entire area of the film to be evaluated. Microstructure development in KJMA theory
and growth kinetics were discussed by Pineda and Crespo.199

For detailed discussion of rate equations and KJMA method for modeling the
coverage–time dependence in thin-film growth at solid surfaces, see Volpe et al.200

Vitrification. The glass transition remains to be considered as ‘the deepest and
most interesting unsolved problem in solid-state theory’, cf. Angell201 and Lunkenhei-
mer et al.202 However, we may be closer to a breakthrough in the understanding of the
glassy state than ever before in the long history of the glassy research.202–204 Most
recent studies focus on the dynamic behavior of glasses and their high-temperature
precursors, the supercooled liquids. Spatially heterogeneous dynamics in supercooled
liquids was reviewed by Ediger.205 As the liquid is cooled below its melting point,
dynamics slow dramatically, typically by more than 10 orders of magnitude before the
transition to a glass occurs. A qualitative change in the character of molecular motion
occurs with this slowing of dynamics. Near the glass transition, dynamics in one
region of supercooled liquid can be orders of magnitude faster than dynamics in
another region only a few nanometres away. This heterogeneity in dynamics has
important consequences for understanding transport properties and the kinetics of
chemical reactions in such materials.205

Dynamic heterogeneity is an active field of glass transition research. The length
scale of this heterogeneity is called the characteristic length. It can be calculated from
complex heat capacity curves in the equilibrium liquid or from dynamic calorimetry
curves corrected with regard to non-equilibrium. No molecular parameters or
microscopic models are necessary to obtain the length. Hempel et al.206 have reported
the characteristic length near the glass transition temperature for about 30 glass
formers including small-molecule liquids, polymers, silica glasses, a metallic glass, a
liquid crystal and a plastic crystal. The lengths are between 1.0 and 3.5 nm. See also
Donth et al.207 and Wang and Ediger.208 Russina et al.209 have presented experimental
evidence for fast heterogeneous collective structural relaxation in supercooled
Ca0.4K0.6(NO3)1.4 near the glass transition temperature. Wang and Ediger210 have
determined the lifetime of spatially heterogeneous dynamic domains in polystyrene
melts.
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It has long been debated2 whether the dynamical complexity described by the
stretched exponential is intrinsic, with all regions of the sample exhibiting a similar
non-exponential response, or whether it is the result of heterogeneity, with localized
degrees of freedom relaxing exponentially but with a distribution of relaxation time.
Several studies, cf. Schiener et al.,211 of supercooled liquids near their calorimetic
glass transition temperature have concluded that heterogeneity occurs on length scales
of 1 to 5 nm. These domains are not static but their distinct relaxation rates persist long
enough to cause the broadened response. Schiener et al.211 have shown that large-
amplitude, low-frequency electric fields can be used to burn spectral holes in the
dielectric response of supercooled propylene carbonate and glycerol. This ability to
selectively modify the dielectric response establishes that the non-Debye behavior
results from a distribution of relaxation times. Refilling of the spectral hole was
consistent with a single recovery time that coincided with the peak in the distribution.
Moreover, refilling occurred without significant broadening, which indicates
negligible direct exchange between the degrees of freedom that responded to the field.
Non-resonant spectral hole burning facilitates direct investigation of the intrinsic
response of systems that exhibit non-exponential relaxation.

Different kinds of static and dynamic heterogeneity at the glass transition, in
relation to recent experiments, were discussed by Sillescu.212 He states that during the
last few years a number of experimental methods have been developed whereby a
dynamically distinguishable sub-ensemble can be selected in a supercooled liquid
close to Tg and its return to the full equilibrium ensemble can be subsequently
monitored. These experiments provide a pragmatic way of quantifying heterogeneity
via the selection procedure. For example, one can decompose a relaxation function
F(t), approximated by a stretched exponential with bhom, into a superposition of
intrinsic stretched exponentials with bK. The ‘degree of heterogeneity’

h b b b= - -( ) /( )hom K K1 (132)

with 0 < bK5 1, bK5 bhom5 1 and 0 < h5 1, vanishes in the homogeneous limit
and is unity in the heterogeneous limit. Of course, h may depend upon how sub-
ensembles are filtered out in a particular selection experiment; however, it is of value
for comparing different systems studied by the same experimental procedure. It should
be noted that h has also been determined in studies of time-resolved solvation
spectroscopy where no selection procedure is involved.

During recent years, the mode-coupling theory has been developed as a model for
the dynamics of strongly interacting disordered matter. The mode-coupling theory for
the density fluctuation dynamics of simple liquids was developed originally in order
to deal with the cage effect, see Götze.213 This effect has been known for some time
as the essential feature distinguishing the dynamics of a liquid from that of a dense gas.
It is worth noting that the transition from the dynamics of isolated molecules to that of
a bulk liquid was observed for the first time by analyzing the dielectric relaxation
(1022–109 Hz) of ethylene glycol (EG) guest molecules confined to zeolitic host
systems of different topology. Beyond a threshold channel size the liquid character is
lost, indicated by a dramatically increased relaxation rate and an Arrhenius-like
temperature dependence. Computer simulations of the molecular arrangement in a
confining space prove that an ensemble as small as six molecules is sufficient to
exhibit the dynamics of a bulk liquid, see Huwe et al.214 and Kremer et al.215
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Molecular dynamics of glass-forming liquids speeds up dramatically, resulting in a
decrease in glass transition temperature, when the material is confined in pores of
nanometre scale, cf. Ngai.92,216 For dynamics of confined water see also Bellissent-
Funel.217

Returning to the mode-coupling theory,213 it was discovered that the derived
equations of motion, which deal with a self-consistent treatment of density-fluctuation
propagating and current relaxations, lead to a bifurcation of the long-time limit of the
density correlators. This bifurcation provided a model for an ideal liquid-to-glass
transition. The identification of this glass transition singularity opened up the
possibility for an analytic solution of the complicated nonlinear equations by means of
asymptotic expansions using the distance from the transition point as a small
parameter. It turned out that the bifurcation is connected with a novel dynamical
scenario. A set of predictions was produced concerning, e.g. fractal decay laws and
unconventional dynamical scaling. The crucial point was the suggestion that the
evolution of glassy dynamics manifests itself in a dynamical window of several-
orders-of-magnitude variations of time t or frequency w adjacent to the short-time or
high-frequency regime, respectively, where conventional condensed-matter dynamics
is observed. Thus the mode-coupling theory (MCT) for the evolution of glassy
dynamics provided motivation for studies of the dynamical regime indicated.

According to Götze213 the recent tests of the mode-coupling theory have shown that
the universal leading-order asymptotic results of the mode-coupling theory provide a
complete semi-quantitative description of the evolution of structural relaxation within
the GHz band for some extensively studied typical glass-forming systems. Also
according to Cummings218 a growing body of experimental data and computer
simulation results indicates that the essential features of the dynamics of liquids
approaching the liquid–glass transition are correctly contained in the mode-coupling
theory, at least for temperatures above Tc. Elaboration of the theory for T < Tc remains
to be pursued in the future. See also Baschnagel,219 Fuchs and Voigtmann,220

Kawasaki,221–224 Sellitto225 and Wiedersich et al.226

Interpretation of glass transition phenomena in the light of the strength–fragility
concept was recently discussed by Hutchinson.227 As it was shown above, near the
glass transition temperature the viscosity increases continuously but rapidly with
cooling. As the glass forms, the molecular relaxation time increases with an Arrhenius-
like (simple activated) form in some liquids, but shows highly non-Arrhenius behavior
in others. The former were said to be ‘strong’ liquids and the latter ‘fragile’, cf. Angell
et al.228 and Ito et al.229

According to Hutchinson227 an important aspect of the representation of the
behavior of glass-forming liquids is that fragile liquids, as a consequence of their non-
Arrhenius temperature dependence, can display very high apparent activation energies
at Tg. An extensive compilation of fragilities for many glass-forming systems,
evaluated by a wide variety of techniques, is given by Bohmer et al.230

This strength–fragility concept has captured the imagination of many workers in the
field of relaxation kinetics. It is stressed,227 however, that the concept relates to the
temperature dependence of the viscosity or average relaxation time in the equilibrium
liquid. The interpretation of glass-transition phenomena and of glassy-state relaxation
behavior within this framework requires, therefore, some extension of these ideas into
the non-equilibrium glassy state, cf. Hutchinson.227
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The phenomenological model discussed by Hutchinson227 is the one2 that has been
widely used over many years to characterize relaxation in amorphous materials. The
most important aspect of this model is that it includes the two essential features of
glassy relaxation behavior: non-linearity and non-exponentiality. The term ‘non-
linearity’ refers to the dependence of the relaxation time(s) on both temperature T and
the structure of glass. It is recalled that Tool231,232 defined the structure of a glass by
means of the fictive temperature Tf at which it would appear to be in equilibrium if
instantaneously placed there. Using this definition of the structure, a common
expression to describe the temperature and structure dependence of the relaxation
time(s) is:

t t= + -È
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RT

x h
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f
(133)

which is often referred to as the Tool–Narayanaswamy–Moynihan231-235 equation. In
this expression, t0 is the relaxation time at infinite temperature, Dh* is the apparent
activation energy, and x is the nonlinearity parameter (0 5 x 5 1), which determines
the relative contributions of temperature and structure to the relaxation time(s). For the
use of the model, see e.g. Sartor and Johari236 and Simon and McKenna.237 For
calculation of Adam–Gibbs ‘primary’ activation energies from published x and Dh*
parameters see Hodge and O’Reilly.238

It is also well known, particularly since the classic dilatometric work of Kovacs,239

that a single relaxation time is unrealistic; glassy relaxation behavior in practice
depends on a distribution of relaxation times. This may be described either, as in the
model of Kovacs et al.,240 as a discrete distribution or more commonly, because of its
greater mathematical simplicity, by means of the stretched-exponential function
(21).

Examination of the results collected by Hutchinson227 shows some clear
correlations. In particular, decreasing x is correlated with decreasing b and with
increasing Dh*. Because large values of apparent activation energy Dh* are
associated with fragile behavior, one may deduce from these correlations that small x
and small b are likewise associated with fragile behavior. In other words, fragile
liquids form glasses for which the relaxation is highly nonlinear (small x) and fragile
liquids have a wide distribution of relaxation times (small b). Hutchinson227 concludes
that the phenomenological model for the kinetics of glassy-state relaxation, based
upon eqn. (133) and a distribution of relaxation times, provides a good description of
the common phenomena associated with the glass transition. See also Hutchinson
et al.44

Characteristic temperatures of liquid–glass transition were discussed by Kok-
shenev.241 He treats the liquid-to-glass transition as a sequence of self-similar
‘smeared’ ideal transitions emerging at characteristic temperatures T0, Tg and Tc. The
characteristic temperatures (Vogel–Fulcher T0, calorimetric Tg and cross-over Tc

temperatures) are discussed through the Vogel–Fulcher–Tammann equation. It is
shown that their ratio is a measure of the degree of fragility mg observed near Tg.
Besides the known equation

T T m mg g/ ( / )0 1
11= - -
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with adjustable parameter m = 16 ± 2, the equation

T T m m m mc g g g= + -( ) /( / )1 12 2

with m2 = 7 ± 1, is shown to be in accord with experiment. Based on the continuous
curvature of the primary relaxation time-scale, related to mg, the equation involving all
the characteristic temperatures is introduced and the upper (√T0Tc) and the lower
(3√T0Tc

2) estimates for the calorimetrically established characteristic temperature Tg

are found. Predictions are given for characteristic temperatures Tc and fragilities mc for
a number of glass-forming liquids.

Sastry et al.242 report on potential energy landscape signatures of slow dynamics in
glass-forming liquids. They have studied the properties of local potential energy
minima (‘inherent structures’) sampled by liquids at low temperatures as an approach
to elucidating the mechanisms of the observed dynamical slowing down observed as
the glass transition temperature is approached. This onset of slow dynamics is
accompanied by the sampling of progressively deeper potential energy minima.
Further, evidence is found in support of a qualitative change in the inherent structures
sampled in a temperature range that includes the mode-coupling critical temperature
Tc, such that a separation of vibrational relaxation within inherent structure basins
from that due to inter-basin transitions becomes valid at temperatures T < Tc. Average
inherent structure energies do not show any qualitatively significant system size
dependence. See also Angell et al.243 Sellitto244 reports that kinetic lattice-gas models
display fragile-glass behavior in spite of their trivial Gibbs–Boltzmann measure. This
suggests that the nature of the glass transition might be, at least in some cases,
understood in purely kinetic or dynamical terms. For a discussion of the glass
transition within the framework of the thermodynamics of irreversible processes see
Baur245,246 and Gutzow et al.247

For thermal expansivity studies near the glass transition temperature see Bauer
et al.,248,249 and for time-dependent volume and enthalpy responses see Johari and
Shim250 and also McKenna and Simon.251

The most common situation in which physical aging is observed is when an
amorphous polymer is cooled from above to below its glass transition temperature, cf.
the previous review.7 A constitutive model for physical aging in amorphous glassy
polymers was presented by Drozdov.252,253 See also Araki et al.,254 Cerrada and
McKenna,255 and Sasaki and Nemoto.256–258

Reaction course in solids

Denoting by F the extent of conversion (crystallization) and using the above-
mentioned formal relation k(T) = k1/n one can rewrite eqn. (126) as

g F k T t( ) ( )= (134)

with

g F F n( ) [ ln( )] /= - -1 1 (135)

Furthermore, for

f F g F F( ) / ( ) / ]= 1 [d d (136)
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one has

d dF t k T f F/ ( ) ( )= (137)

the single-step kinetic equation used in kinetic analysis of solid-state decomposition,
cf. Vyazovkin and Wight,259 with f(F) termed ‘the reaction model’.

Several examples of reaction models, discussed by Vyazovkin and Wight260,261 and
Vyazovkin,262 are given in Table 1. For more examples of reaction models see
Dickinson and Heal263 and Burnham.264

In eqn. (137) the extent of conversion, 0 5 F 5 1, is a global parameter typically
evaluated from mass loss or reaction heat. Using the Arrhenius equation one gets from
eqn. (137)

d dF t A E RT f F/ exp( / ) ( )= - (138)

For experiments in which samples are heated at constant rate, q, the explicit time
dependence of eqn. (138) can be eliminated through the transformation

d dF T A q E RT f F/ ( / ) exp( / ) ( )= - (139)

where q = dT/dt is the heating rate.
For non-isothermal conditions there are several relationships used to complete the

Arrhenius equation, each of which is based on an approximate form of the temperature
integral that results from rearrangement and integration of eqn. (137), i.e.

g F A q E RT T

I E T q

T

F

F

( ) ( / ) exp( / )

( , ) /

= -

=

Ú d

0
(140)

According to Flynn265 this temperature integral I(E,TF) has played a somewhat
enigmatic role in the development of thermal analysis for reaction kinetics. It has
appeared to be a necessary evil to be dealt with whenever the Arrhenius equation was
integrated over time as a function of temperature. Many of the problems connected
with its application have resulted from the inability to approximate the temperature

Table 1 Reaction models applied to describe thermal transformation in solidsa

Reaction model f(F) g(F)

1. Power law 4F3/4 F1/4

2. Power law 3F2/3 F1/3

3. Power law 2F1/2 F1/2

4. Power law 2
3F
21/2 F3/2

5. One2dimensional diffusion 1
2F
21 F2

6. First order 1 2 F 2ln(1 2 F)
7. KJMA, n = 2 2(1 2 F)[2ln(1 2 F)]1/2 [2ln(1 2 F)]1/2

8. KJMA, n = 3 3(1 2 F)[2ln(1 2 F)]2/3 [2ln(1 2 F)]1/3

9. KJMA, n = 4 4(1 2 F)[2ln(1 2 F)]3/4 [2ln(1 2F)]1/4

10. Three2dimensional diffusion 2(1 2 F)2/3[1 2 (1 2 F)1/3]21 [1 2 (1 2 F)1/3]2

11. Contracting sphere 3(1 2 F)2/3 1 2 (1 2 F)1/3

12. Contracting cylinder 2(1 2 F)1/2 1 2 (1 2 F)1/2

a Adapted from Vyazovkin and Wight260,261 and Vyazovkin.262
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integral accurately by a simple closed-form expression that is suitable for use in
graphical form to determine the Arrhenius parameters. However, Flynn concludes that
now is an opportune time to reappraise the accuracy and utility of the equations used
to evaluate the temperature integral in thermal analysis kinetics. The sophistication of
thermal analysis kinetics methods has advanced considerably in the past few decades
and the use of computers has permitted the developments of methods for the rapid
testing of the fit of experimental data to wide selections of complex kinetic models.
See also Heal266 for the evaluation of the integral of the Arrhenius function by a series
of Chebyshev polynominals, and Amasaki et al.267 for a simple fitting method in
which, for a temperature-programmed process, instead of the equation

T T qt= +0 (141)

one uses the relation

1 1 10/ / ln( )T T t= - +h z (142)

where h and z are constants.
According to Vyazovkin and Wight260,261 comparison of model fitting results from

isothermal and non-isothermal experiments is practically meaningless. The use of
model-free isoconversional methods of kinetic analysis is strongly recommended by
Vyazovkin and Wight.268 See also Sbirrazzuoli et al.269

The basic assumption of the isoconversional method is that the reaction model, as
defined in eqn. (137), is not dependent on temperature or heating rate. Under
isothermal conditions, we may combine eqn. (134) and the Arrhenius equation to
obtain

- = -ln ln[ / ( )] /,t A g F E RTF i F i (143)

where EF is evaluated from the slope of the plot of 2ln tF,i against T21
i .

For non-isothermal experiments, a nonlinear isoconversional method has been
developed which avoids inaccuracies associated with analytical approximations of the
temperature integral. Because g(F) is independent of the heating rate, for any two
experiments conducted at different heating rates, the ratio of the temperature integral
I(E,TF) to the heating rate b is a constant, as shown by eqn. (140). For a set of n
experiments carried out at different heating rates, the activation energy can be
determined at any particular value of F by finding the value of EF for which the
function
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n
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,

,

b

b
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ÂÂ
11

is a minimum. The minimization procedure is repeated for each value of F to find the
dependence of activation energy on conversion. See also Baitalow et al.270 for the joint
use of the isoconversional method and nonlinear regression analysis, and Sempere et
al.271 for the progress in non-parametric kinetics. Popescu et al.272 have discussed the
validity of the steady-state approximation in non-isothermal kinetics, and Flammer-
sheim and Opfermann273 have presented the formal kinetic evolution of reactions with
partial diffusion control.

A detailed analysis of the applicability of several dependences commonly used for
the determination of activation energies from non-isothermal measurements was
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presented by Malecki et al.274 The general conclusion is that none of the examined
dependences should be used to determine the activation energy. However, for a rough
estimation of activation energy from differential thermal analysis (DTA) experiments,
the Kissinger equation can be applied according to Occam’s razor. This equation, in
the present notation and with Tm denoting the DTA peak, reads

ln( / ) /q T E RTm mconst2 = - (144)

For analysis of thermoluminescence glow curves see e.g. Kitis et al.275 or Sunta
et al.276,277

Kinetic descriptions of the simple bimolecular reactions in organic solids were
recently reviewed by Tolkatchev.278 According to Galwey and Brown279 formulating
chemical mechanisms for reactions of solids has turned out to be far more difficult than
was foreseen in early work. The information available e.g. about crystolysis reactions
seems to form no coherent pattern and there are no criteria for the classification of
reactivities of solid reactants. There is also no accepted basis for predicting the thermal
behavior of a hitherto untested solid reactant. Without some sort of theoretical
framework, the value of data already collected is difficult to assess and comparisons
with other branches of chemistry are difficult to make. For computational aspects of
kinetic analysis see e.g. Burnham,280 Roduit281 and Vyazovkin.282 Turukhin and
Gorokhovsky283 have suggested a practical approach for determination of the quantum
efficiency of persistent hole burning using dispersive kinetics. Long-time-scale
spectral diffusion in a polymer glass was discussed by Müller et al.284 Postnikov and
Vinogradov285 report on the dispersive kinetics of chemiluminescence decay in the
post-photooxidation of a polyamide.

The bimolecular kinetics of the addition of pyridine, benzofulvenone and
dibenzofulvenone in pyridine matrices at 15 to 70 K have been investigated by
Andraos286 by FTIR matrix isolation spectroscopy. A detailed kinetic analysis
revealed a one-to-one correspondence between the disappearance of ketenes and the
appearance of the corresponding ketene-pyridine zwitterions (‘ketene ylides’) formed
upon nucleophilic addition. Dispersive second-order kinetics were found to describe
the data adequately, whereas pseudo-first-order and strict second-order kinetics did
not. These results are thought to indicate that the bimolecular reaction examined takes
place in a heterogeneous medium with distributions of second-order rate constants.
The dispersion parameter varies from 0.35 to 0.56. These findings are thought to be
consistent with the matrix model proposed by Spath and Raff287 in which the structure
of the pyridine matrix is composed of inhomogeneous fast sites where the magnitude
of the true reaction rate for chemical reaction exceeds the diffusion rates of both ketene
and pyridine molecules. Arrhenius and Eyring thermokinetic parameters estimated
from these data reveal that the barrier for reaction under these conditions is very small
(less than 1 kcal mol21) with a very large negative entropy of activation (ca. 280 cal
K21 mol21). When compared with analogous solution-phase kinetic results from laser
flash photolysis experiments, it was concluded that the kinetics observed at these low-
temperature conditions is largely that of matrix reorganization. This sets a lower limit
for the rates and an upper limit for the activation parameters of the actual chemical
reactions. Furthermore, identical magnitudes for EA, DH‡ and DS‡ were found even
when they are calculated from second-order rate constants based on the incorrect
bimolecular model applicable to homogeneous media. It was suggested that the
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technique of dynamic matrix isolation spectroscopy is not adequate to obtain
chemically meaningful activation parameters in bimolecular reactions. Caveats are
also pointed out concerning the experimental interpretations of nonlinear Arrhenius
plots obtained in cryogenic matrices, implicit assumptions about the constancy of
medium properties in the construction of Arrhenius and Eyring plots, and the
calculation of thermokinetic parameters from data fits to linear forms of the Arrhenius
and Eyring equations.

Privalko et al.288 have studied the a relaxation of a series of ether-ketone model
compounds to quantity the effect of molecular stiffness on the dispersion parameter.
The obtained values decrease with increasing stiffness and are within the theoretical
bounds predicted for systems with spatial dimensionality varying from 2 to 1.

Some heterogeneous systems

Chemical reactions were traditionally treated in terms of three major parameters: the
nature of the chemical bond formed between the reacting molecules; the ster-
eochemical requirements or restrictions governing this molecular association; and the
energetic profile of the reaction, cf. Avnir et al.289 and the previous report.2

Heterogeneous chemistry introduced a fourth parameter: the structure and geometry of
the environment in which the reaction takes place. The geometry parameter is as
important as the other three parameters, to the extent that it alone can dictate whether
a reaction will take place at all. The geometry problem in chemistry had been
unapproachable in the past. This has been changed for good. Fractal geometry has
provided the proper language and the necessary vocabulary to reformulate some
classical problems in heterogeneous chemistry, and the crucial importance of being
able to do so for scientific progress cannot be underestimated. The origin of fractals is
a dynamical, not a geometrical, problem, see Bak and Creutz.290 The examples
collected by Avnir et al.289 seem to indicate that the promises of fractal geometry have,
at least in part, been fulfilled. See also Erdem-Senatalar and Tatlier.291

Agglomerations of matter which fall into the size range of clusters and ultrafine
particles play a prominent role in nature and technology. Chaiken and Goodisman292

have described a rigorous connection between a coalescence growth model employing
the Smoluchowski equation and the log-normal distribution which has been used for
decades to classify empirically small particle distributions. The model assumes that
only binary collisional events occur, there is conservation of monomers over the
lifetime of the process, the clusters can be represented using a mass fractal approach,
and there are no ‘magic numbers’. Numerically, it is easy to account for the effects of
evaporation, magic numbers, other inhomogeneities and possibly a non-conservative
process. The model correctly incorporates the existence of multiple kinetic pathways
for producing almost all cluster sizes. The properties of elemental cluster size
distributions can apparently be related to the nature of the monomers as represented by
the Periodic Table. The model classified cluster size distributions on the basis of a
single scaling parameter which itself is a function of the dimensionality of the space
in which the coalescence process occurs, the fractal dimensionality of the clusters, the
fractal dimensionality of the trajectories of the agglomerating species between
collisions, and the scaling of the cluster velocities with increasing cluster size. For
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stochastics of aggregation see Ben Naim and Krapivsky293 and Krapivsky and Ben-
Naim.294

Schaaf et al.295 have given a general view of irreversible deposition processes. It is
interesting to find that, for hard spheres, the random sequential adsorption kinetics
near the jamming limit (asymptotic regime) follows the power law296,297

Q Q( ) ( ) ~ /• - -t t d1 (145)

where Q is the surface coverage, d = 2 and Q(H) ~ 0.547, cf. Hinrichsen et al.298 The
power law is a consequence of the structure of the available surface near the jamming
limit, which is composed of extremely small isolated areas (much smaller than the area
covered by a particle), called targets. These targets disappear due to adsorption at a rate
which is proportional to their size, the larger ones disappearing first. Thus, this power
law is of purely statistical and geometric nature.

Extensive EPR studies on trapped hydrogen atoms in acidic ices upon g-irradiation
at low temperatures revealed that the reactivity of these atoms at a given temperature
decreases with time and depends upon the temperature at which they were formed.299

The following picture was considered.2,299 Immediately after irradiation, almost all
hydrogen atoms are located in shallow traps which are present in relatively large
numbers. Then, the hydrogen atoms move from trap to trap through the matrix until
they encounter some reactive species with which they react and disappear, or until they
encounter a relatively deep trap from which they are not able to escape quickly. The
problem with accepting the above picture was in the reported299 lack of isotope effects
in the decay of hydrogen and deuterium atoms in partly deuteriated acidic glasses at
temperatures 63–90 K. A check of this phenomenon resulted not only in the
confirmation of the lack of isotope effects around 77 K but also in the revelation of
inverse isotope effects at temperatures above 100 K, which is the onset temperature for
the rapid decay of hydrogen atoms trapped in acidic glasses.

The real interest in inverse isotope effects arose, however, with their disclosure in
metals for surface (Wang and Gomer,300 Lee et al.301) and bulk diffusion (Völkl and
Alefeld302), for bulk diffusion in metal hydrides (Dhawan and Prakesh303) and for the
dynamics of acceptor–hydrogen complexes in semiconductors (Stavola and
Cheng304).

Diffusion of atomic hydrogen on the surface and in the bulk of metals is nowadays
seen, cf. Miyake et al.,305 not only as a stimulating problem from a practical point of
view but also as a fundamental problem of quantum mechanics, since a significant
quantum effect is expected for the lightest element. At high temperature, diffusion
occurs classically by thermal activation following the Arrhenius equation. When the
temperature decreases down to around 100 K on metal surfaces, there is observed a
classical quantum cross-over into a tunneling region where the hopping rate shows less
temperature dependence. The inverse isotope effect is peculiar for the following
reason. When we consider the diffusion from a microscopic point of view, an
elementary process is thought to be the hopping of a particle (hydrogen) from a stable
site to a neighboring site. At high temperature the particle hops classically over the
potential barrier. Since the potential is the same for any isotope, mass (m) dependence
comes only from the attempt frequency, which leads to the hopping rate, G, being
proportional to m21/2. At low temperature, where the particle tunnels quantum-
mechanically, G is expected to increase exponentially with decreasing m; this is easily
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derived from the Wentzel–Kramers–Brillouin (WKB) approximation. Naively, we
expect that at around the cross-over temperature, the mass dependence of G will be
intermediate between the high-temperature m21/2 dependence and the low-tem-
perature exponential behavior. Thus, the inverse isotope effect is unlikely to exist at
any temperature. This is true if one does not take into account the dynamical effects
of the host matrix on the guest movements. Accounting for the dynamical effects of
host matrix within the general picture of dispersion kinetics, one finds the
rationalization of the inverse isotope effects, cf. Plonka.306

The experimental data of Auerbach et al.,307 depicted in the inset of Fig. 6, for
diffusion of hydrogen on the W(110) surface, display two features of special interest.
The first one is the transition from the so-called quantum regime, at low temperatures,
to the so-called classical or thermally activated regime, at high temperature, cf. Chen
and Ying.308 The second one is the shift of these transition regions for the isotopes.
The idea is that this shift is the origin of the inverse isotope effect, and, of course, of
a narrow temperature region in which experiments are not able to display any isotope
effect for a given pair of isotopes. The third feature, not displayed, i.e. silent in most
experiments of this kind, is that in the so-called quantum regime the rate coefficients
for reaction, diffusion or relaxation depend on time. The proper form for the specific
reaction rate, i.e. the rate coefficient for reactions, is given by eqn. (26). By analogy,
cf. Kakalios et al.,309 the proper form for the diffusion coefficient is

D D t= -
0

1( / ˆ )ˆ
ˆ

z
z

a
(146)

Fig. 6 Arrhenius plot of rate parameters for light, l, and heavy, h, isotopes in condensed media in the
vicinity of a cooperative transition. Inset: experimental data from Auerbach et al.307 Details in text.
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and one has to take the data in the inset of Fig. 6 as instantaneous ones, for some value
of t. They are quite adequate for illustrative purposes.

In condensed media the transitions from a low-temperature, dispersive, regime to
the high-temperature one, in which classical kinetics is a valid approximation, are
endemic for reactive species, cf. the previous review.2 In terms of eqns. (23) and (24)
these changes are rationalized by the increase of the numerical value of b from some
constant value, of about 0.3 in most cases, to 1 in the transition region which is located
in the vicinity of the point where za and tb intersect. To adapt this kinetic scheme for
a rationalization of the inverse isotope effect, of the kind presented in the inset of Fig.
6, one has to take za as a temperature-independent parameter, proper for quantum-
mechanical tunneling for light and heavy isotopes, za,l and za,h, respectively. Here,
‘proper’ means hindered to some substantial degree. The reason is the self-trapping
distortion, cf. Cheng and Stavola,310 that localizes the trapped species at specific sites,
and because the neighboring sites are inequivalent, it prevents simple tunneling.
Thermal fluctuations, to be recognized as t0, give rise to a coincidence geometry in
which tunneling from site to site can occur. These thermal fluctuations are to be
different for light, tb,l, and heavy, tb,h, isotopes, cf. Cannelli et al.311 Here, ‘different’
means a difference in both the pre-exponential factor and the activation energy.

The break points in the Arrhenius plot, depicted in Fig. 6, have been modeled in the
following way. For each isotope, light or heavy, there is some temperature, Tc,l and
Tc,h, at which, in the Arrhenius plot, the t21

b and z21
a lines intersect. In the temperature

range 1.1–1.3, in T/Tc units, the parameter b increases linearly with temperature within
the limits 0.3–1. To suppress the renewals, as rationalized above, these changes are
extrapolated to b = 0. With these changes of b, the numerical values of â, eqn. (23),
are in the range [a,1]. Taking a = 0.3 as a reasonable approximation for a hydrogen
atom reaction or diffusion, one can calculate

ˆ min(ˆ , )ˆ , ˆ , ,z z z
a a al l l= (147)

and
ˆ min(ˆ , )ˆ , ˆ , ,z z z
a a ah h h= (148)

which are depicted in Fig. 6 for some arbitrary sets of za,l, tb,l and za,h, tb,h values.
Thus, the break points in the Arrhenius plots do not manifest the transitions from a

quantum-mechanical tunneling to a thermal overbarrier crossing but rather show the
onset of host matrix dynamics that is thermally activated. Essentially, this is an onset
of thermally assisted tunneling which for heavier isotopes starts at lower temperatures,
cf. Auerbach et al.,307 Cheng and Stavola.310 See also Sun et al.312 for vibrational
energy relaxation rates of hydrogen isotope stretching modes.

Anomalous tracer diffusion in film-forming colloidal dispersions has been
discussed by Bartsch et al.313 Film-forming colloidal dispersions can be conceived as
a material composed of interpenetrating hydrophobic (polymer) and hydrophilic
(partially broken interfaces) phases where the transport of one phase is influenced by
the geometric confinement effect imposed by the other. They have studied the
transport of film-forming colloidal dispersions by introducing hydrophobic dye
molecules into the colloidal particles and determining their motion with forced
Rayleigh scattering as a function of length scale (grating distance L) and water
content. At water contents between 18 and 3 wt.% they have found signatures of
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anomalous tracer diffusion, namely stretched-exponential decay curves with relaxa-
tion times which deviate significantly from the q2 dependence (q2 = 4 p2/L2) of
Fickian diffusion. The form of the q dependence is contrary to what could be expected
from a simple confinement model. Analyzing the results in terms of a length-scale-
dependent effective diffusion coefficient they have found that diffusion on large length
scales proceeds faster than on small length scales by nearly one order of magnitude.
They have attempted to interpret their findings in a simple two-state model with
enhanced diffusion on large length scales due to the existence of interconnected
hydroplasticized regions.

5 Conclusions and future prospects

The research on dispersive rate processes in condensed media continues to expand in
scientific scope and in its impact on scientific activity in numerous areas of studies.

The concept of renewal turned out to be a powerful way to account for matrix
dynamics in reaction kinetics in condensed media. The idea to impose upon the static
disorder model the additional assumption that at certain random instants reinitializa-
tion occurs, consisting in a random reassignment of the initial conditions for the
reaction, results in a time-dependent specific reaction rate used in the vast areas of
dispersive kinetics. Its particular form introduces the fractal time into the kinetic
equation. So far, mainly stochasticity leading to fractal time equations was explored.
However, the once abstract notions of fractal space and time now appear naturally in
chaotic dynamic systems and there is a chance for a new insight into the dynamics of
chemical systems. This new insight is needed as the concept of reaction path seems to
be a somewhat artificial chemical instrument encountering troubles with formulation
of the theory of thermally activated crossing of the potential energy barrier. Also,
despite the great utility of the concept of renewals one may expect to have a proper
dynamical model giving directly the time-scale dependence of the dispersion
parameter. In such a model there might be also a place to account for the local
probability of reaction, when two reactants collide, the marked decrease of which is
needed to erase the effects of renewals on approaching the limit of classical kinetics.
For reactive species, even when classical kinetics is valid, one sees the persistent
effects of reactant reactivity restoration. These effects include viscosity dependence of
the specific reaction rate, numerous forms of the compensation law and the inverse
isotope effects.
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