
Swiss Workflow Management in Distributed Environments
Event-based Distributed Workflow Execution with
EVE
 A. Geppert, D. Tombros
Database Technology Research Group, University of Zurich
Research Group Information Engineering, University of Bern

CSS Insurance Company

 Leica Corporation
 Integral Process AG

SWORDIES Report

Nr. 17

September 1998

les in-
es can

d
ca-
be-

ive use
ation
grated

to the
across
egree

f a WS
], [16],

Published in N. Davies, K. Raymond, J. Seitz (eds.), Proceedings IFIP Inter-
national Conference on Distributed Systems Platforms and Open Distributed
Processing Middleware ‘98 . Springer 1998.
Event-based Distributed Workflow Execution with EVE

Andreas Geppert, Dimitrios Tombros

Department of Computer Science, University of Zurich
Winterthurerstr. 190, CH-8057 Zurich, Switzerland

Phone: +41-1-635 4576
Fax: +41-1-635 6809

Email: {geppert | tombros}@ifi.unizh.ch

Abstract

In event-driven workflow execution, events and event-condition-action rules are the funda-
mental metaphors for defining and enforcing workflow logic. Processing entities enact
workflows by reacting to and generating new events. The foundation on events also eases
the integration of processing entities into coherent systems.
In this paper, we present an event engine, called EVE, implementing event-driven execu-
tion of distributed workflows. Its functionality includes event registration, detection and
management, as well as event notification to distributed, autonomous, reactive software
components which represent workflow processing entities. EVE also maintains a history of
all event occurrences in the system used for the monitoring and analysis of executing
workflows. We describe the distributed, multi-server, multi-client architecture of EVE and
illustrate its usage for workflow execution.

Keywords: event-based systems, workflow management, distributed workflow execution

1 Overview

Currently, many enterprises optimize and streamline their business processes. Examp
clude insurance claim handling, credit card applications, etc. These business process
be—completely or partially—automated when represented asworkflow specifications. Work-
flow management systems(WFMS) are software systems providing workflow definition an
implementation functionality (scheduling, execution, and control) [13]. Workflow specifi
tions—or workflow types—consist of subworkflows and atomic work steps, data flows
tween them, execution order constraints, as well as assignment of tasks to PE. Product
of WFMS requires that they effectively support the integration of heterogeneous inform
resources, people and applications (called processing entities—PE). The resulting inte
system is called aworkflow system (WS).

Current commercial WS architectures do not effectively address problems related
representation, control, and coordination of PE that operate in environments distributed
multiple organizational entities, that are heterogeneous with respect to their automation d
and interfaces, that evolve over time, and that operate both independently and as part o
(e.g., [3]). Several research efforts address various aspects of these problems (e.g., [4
 1

solu-
time
ation

loose-
nts as

nami-
pro-

e
r, use
ieve.
vent,
e that

ompo-
s is ex-
r and

ke the
xecu-

pos-
s situ-
ing the

ocess

se of

ork-

ed to

E. In
ented
onality
on in

, 12].
tions.
g the
[27], [32]), especially those pertaining to distribution and heterogeneity. The proposed
tions, however, do not effectively support flexible representation/integration of PE and run
evolution of the WS architecture; they also propose a rather strongly coupled integr
framework and rigid task structure.

Although event-based systems are recognized as the architectural style of choice for
ly coupled systems [6], to the best of our knowledge, no other approach so far uses eve
theonly integration and coordination mechanism for distributed, heterogeneous, and dy
cally configurable WS. Several researchers—including ourselves—[7, 9, 12, 14] have
posed the use ofevent-condition-action rules (ECA-rules)as provided by active databas
management systems (ADBMS, [2]) for workflow execution. These approaches, howeve
a centralized ADBMS, which renders distribution, openness, and scalability hard to ach
Event services (as, e.g., specified in CORBA Services [22]) also support the notion of e
but these services are restricted to primitive events and, typically, are hybrid in the sens
they rely on both, messages and events as coordination paradigms.

In [28, 29], we propose alayered event-based architecturefor WS. The WS is described in
a domain-specific architecture model which represents PE by autonomous reactive c
nents communicating through parameterized events. The behavior of these component
pressed by ECA-rules. In this paper, we propose an event-based middleware laye
execution platform—called EVE—able to integrate these reactive components and ma
WS-architecture description executable. Event-based WS-architectures and workflow e
tion have various advantages:
• The event-based coordination model allows complete process specification without im

ing any limiting assumptions about the concrete process architecture. Complex proces
ations are expressed by composite events, and coordination is accomplished by defin
appropriate reactive behavior for PE.

• The architecture of the WS can be changed during workflow execution (subject to pr
restrictions). Interaction patterns are dynamically administered by EVE.

• A powerful and uniform mechanism to express component behavior is provided; the u
this mechanism for failure and exception handling is straightforward.

• The correct execution (with respect to the specification) and the monitoring of the w
flows is guaranteed based on formal semantics [30].

• The logging of workflow situations (events) is done at practically no extra cost compar
a message-based architecture.

This paper presents an architecture for WS focusing on the distributed event engine, EV
section 2 we position EVE and survey related work. The WS-architecture model is pres
in section 3 for the sake of comprehensiveness. We describe the architecture and functi
of EVE in section 4 and its approach to distributed event detection and workflow executi
section 5.

2 Related Work

ECA-rules have been proposed by several authors for workflow execution, e.g., [5, 7, 9
Some of these systems [5, 12] use composite events to detect complex workflow situa
EVE, however, is the first system using ECA-rules for workflow management addressin
problem of distributed event-based workflow execution.
 2

re
event-
EVE;
nally,

[16]
d by a

store
ich
S. In

tribu-
are
state-

ed by
f our
event-
etero-
ctional-
the
rvice
event
d and
h, is

sys-
d e.g.,
Current commercial WFMS (e.g., ActionWorks Metro [1], or XSoft's InConcert [19]) a
typically built around a centralized process engine and relational database server. Two
based coordination systems, Yeast [17] and CoopWARE [20], have a purpose similar to
both have, however, a centralized event-detection and rule execution architecture. Additio
Yeast supports only event-action rules.

A number of research systems consider distributed workflow execution. ObjectFlow
uses a graph-based workflow definition model. Steps are executed by agents coordinate
(potentially) distributed workflow engine which however accesses a centralized DBMS to
workflow states. WIDE [10] proposes a distributed hierarchical workflow engine wh
through a basic access layer stores process state in a centralized relational DBM
METEOR2 [27], process scheduling is distributed among various task managers. The dis
tion of the task managers is implemented through CORBA [21]. In Mentor [32], workflows
modeled using state-charts which are partitioned to each involved PE. Each PE-specific
chart is executed locally on the PE workstation.

Various aspects of the implementation of EVE (e.g., naming services) can be facilitat
the functionality of CORBA [21] or other distributed object technologies. The emphasis o
research in EVE however, is to complement these efforts by concentrating on a reactive
based coordination and integration architecture—with its accompanying advantages for h
geneous system integration—instead of a message-based approach. Event-specific fun
ity in EVE is richer than in CORBA Event Services [22] (see Table 1). OMG is currently in
process of specifying a workflow management facility [23]. This facility uses the event se
for communicating state changes of workflow execution elements (activities). Since the
service is restricted to primitive events, complex workflow situations cannot be detecte
communicated. Also, EVE fully supports ECA rule services, the standardization of whic
still only under consideration by OMG1.

3 A Model for Workflow System Architectures

In this section, we briefly introduce the model we propose for the description of workflow
tem architectures. In general, workflow types can be specified in a more abstract way (an

CORBA event service EVE

Communication model push/pull push

Typed events yes yes

Composite events no yes

Event parameters one of type any multiple, typed

Event filtering yes yes

Disconnected consumers and suppliers yes yes

Multicasting yes yes

ECA-rules not yet yes

Table 1. Comparison of CORBA event-related functionality and EVE

1. [18] for example discusses the integration of ECA-rules in a CORBA environment.
 3

do not
c ele-
mic

pecifi-
S ar-

endent
stract-

e pro-
ives
tments,

in the

base

ication

dical

tabase

ess
of the
nds to
ontext
po-

heir
using a graph-based formalism) and mapped onto the architecture model level. Here we
presume any particular workflow modeling approach, but simply assume that the basi
ments of a workflow can be specified in some way (i.e., workflow structure in terms of ato
activities and subworkflows, dependencies between the steps of a workflow, etc.). This s
cation is subsequently mapped to the behavior of processing entities which compose a W
chitecture. Note however, that the event-based coordination layer we propose is indep
from the modeling formalism used. This section serves to illustrate the purpose of an ab
level specification layer in the overall event-based architecture.

3.1 A Workflow Example

In order to better illustrate the concepts we introduce, we use as an example workflow th
cessing of a health insurance claim (HIC) (Fig. 1). The workflow is initiated once a HIC arr
at an insurance agency. An insurance agent creates a file containing the diagnosis, trea
cost (from the HIC), and the insurance number (stepA1:HandleHIC). If the claimed amount
does not exceed 300 CHF the claim is directly accepted, a corresponding entry is made
customer database (A2:LogClaim), and a check is prepared (A3:PrepAccept) and printed
(A4:Print). Otherwise, various controls have to be made: a control in the local data
whether the prescribed treatment is covered by the patient’s insurance (A5:CntrlCoverage). A
request to a central clearing house to control whether equivalent but less expensive med
is available. This is done in subworkflowSW1, consisting of the stepA6:CntrlMedication . On
the other hand, in subworkflowSW2executed at the insurance company headquarter, a me
expert controls whether the treatment actually suits the diagnosis (A7:CntrlTreatment) .
When all controls are completed, a corresponding entry is made in the customer da
(A3:LogClaim), and either a rejection letter (A8:PrepReject) or a payment check (A4:Pre-

pAccept) is prepared by the insurance agent and printed (A4:Print).

3.2 Brokers and Services.

The BROKER/SERVICES MODEL (B/SM [28, 29]) is used to describe the software and proc
architecture of the resulting WS. Workflow type specifications are mapped to elements
B/SM in a way described in detail elsewhere [29]. In general, each atomic step correspo
the execution of a service. ECA-rules define when and how services are executed in the c
of workflows. From the perspective of B/SM, a WS consists of interacting, reactive com
nents calledbrokersrepresenting PE. Broker behavior is defined by ECA-rules describing t

A1

A3

A8

A6

+

||

∨
∨

||

∧

+

subworkflow

(atomic) step

OR-join AND-join

AND-split 1-in-N-split

 Figure 1:Structure of the example workflow type

SW1

A4∨

A7

SW2

A2∧ +

A5

∨

 4

ithin a
t hu-
nts.
s are

eriod-
prim-

type
tive
r. A

Final-

vents
can

events
vents

e
based

rom the
ice is
arame-
peci-
curs.
ir pro-

xter-
e ac-
art of
e bro-
reaction to simple events (e.g., service requests) or composite events (e.g., a request w
specific time interval) in the action-part of the rules. Different types of brokers represen
man user interfaces, organizational groups, external applications, and WFMS-compone

Primitive event types represent atomic happenings. Two kinds of primitive event type
distinguished: broker interaction events (requests (REQ), replies (RPL), and exceptions (EXC) for
services and workflows) and time event types. Time events can be absolute, relative, or p
ical. Composite event types represent complex, process-specific situations by combining
itive or further composite events. They are constructed using one of the following
constructors. Asequence(SEQ) occurs when the two component events occur in the respec
order. Anexclusive disjunction(DEX) occurs when either one of the component events occu
conjunction(CON) occurs when both component events occur, regardless of their order. Arepe-
tition (REP) occurs when the component event occurs a predefined number of times. Anegation
(NEG) of an event occurs when the component event has not occurred within an interval.
ly, two events occurconcurrently (CCR) when both occur at the same point in time.

An event type definition can be restricted by a time interval, defined by two events; e
are considered as relevant only if they occur within the interval. Finally, further restrictions
be specified for composite events. Particularly, it can be required that the component
have to occur within the same workflow. The formal semantics of distributed composite e
are described in [30].

Broker functionality is described byservicesspecified by a signature (i.e., the servic
name, its request parameters, and resulting replies or exceptions). Broker interaction is
on broadcasting parameterized events. Service execution is started by a request event f
client broker and is terminated when a reply or one of the exceptions defined for the serv
generated by its server broker. The server is dynamically determined based on service p
ters, organizational relationships, or the workflow execution history in ways not further s
fied here. A workflow instance starts executing when its initiation request event oc
Workflows are thus executed by the provision of the services requested. Services and the
viders are associated bym:n relationships (capabilities)implying a predefined behavior for a
broker whenever the service is requested, i.e. ECA-rules of the form:

ON service-request-event (service parameters)
[IF condition on parameters or broker state is true]
DO execute service provision actions;

generate reply event;

Workflow production data (manipulated by PE in workflow steps) is generally stored in e
nal systems which might not be accessible to the WFMS. Brokers may, however, provid
cess to some of the production data to the WFMS-engine by providing interfaces as p
their state. The broker state can be manipulated in the action parts of their ECA-rules. Th
kers and services of the example are shown in Table 2.

Broker Type Services Location

MEDICHECK application CntrlMedication clearing house

Medical Expert user interface CntrlTreatment headquarter

DBCL Oracle client LogClaim agency

Insurance Agent user interface HandleHIC, CntrlCoverage, PrepAccept,
PrepReject

agency

LPF printer frontend Print agency

Table 2. Brokers and services of the example
 5

tures
rful
cts of
s pro-
n layer,

en-
leware
ed B/

. This

ork-
is re-
) and

te a
ccom-
kers,
of a

ec-
should
verag-
tion) to

g-
event
y us-

res
tion
s to
with
porary

a bro-
xecu-
ed and
e new
e ad-
know
The main advantages of using the B/S model to describe workflow system architec
consist in the simplification of the system integration task and in the provision of powe
general purpose definition mechanisms for functional, informational, and behavioral aspe
workflow systems. Various aspects of workflow specifications as well as heterogeneou
cessing entities can be mapped to a relatively simple and homogeneous representatio
which can then be directly transformed into an executable form.

4 EVE: A Middleware Component for Workflow Execution

From a point of view of the software architecture model, a runtime system and workflow
gine is needed to make a B/SM system executable. This runtime system forms the midd
allowing brokers to execute workflows. A straightforward mapping between the event-bas
SM and the execution engine is achieved by providing anevent-based middleware layer. In
other words, workflows are executed by brokers reacting to (and generating new) events
approach implies that the following groups of services are provided by EVE:
1. Distribution . Since processing entities typically are distributed over a network and w

flows should be executable in a distributed manner, EVE must support distribution. Th
quires distributed event detection and communication facilities between EVE(-servers
its clients (i.e., brokers).

2. Runtime repository. In order to maintain the necessary meta information to opera
workflow system, naming, persistence, and retrieval services are needed. This is a
plished by the runtime repository which stores and provides information about bro
event types, ECA-rules, etc. This information can be altered at runtime and evolution
WS is thus possible without shutting down and recompiling the whole system.

3. Workflow execution. In order to execute workflows (in an event-driven style), event det
tion, event notification, and task assignment services are needed. These services
also allow to execute workflows on remote sites. These tasks are accomplished by le
ing event-based systems and services (such as active database systems or notifica
workflow execution.

4. Event history management. In order to facilitate maintenance of workflow systems, lo
ging, monitoring, and analysis services have to be provided. These services rely on
histories maintained by EVE. The event history is made persistent and recoverable b
ing the corresponding services of the underlying object manager (Shore [8]).

5. Failure handling. In general, two types of failures can be distinguished: system failu
and failure at the workflow execution level. EVE provides exception event notifica
mechanisms which combined with ECA-rules are used in the definition of reaction
workflow execution errors (as proposed e.g., in [12]). Furthermore, by communicating
brokers via special adapters and persistent event queues, EVE is able to handle tem
unavailability and failures in the connectivity of brokers.

The execution of a workflow starts (or proceeds) as soon as some event is generated by
ker. The local EVE-server then performs event detection and rule execution. Within the e
tion of each rule, task assignment determines responsible brokers, which are then notifi
subsequently react as defined by their ECA-rules. Particularly, brokers can generat
events, which again are handled by EVE-servers, and so on transitively (see Fig. 2). Th
vantage of this approach is that—due to the event-driven style—brokers do not have to
 6

onsible

quest
emote
kflow
EVE-

es
work-
ution
s syn-
).

rk-
hines
dis-

e PE
their

cribed
r ar-
and
Bro-
the providers of the requested services. Furthermore, once events are forwarded to resp
PE, they can be handled asynchronously by the PE.

Brokers can also request the execution of (sub-)workflows by generating workflow re
events in one of their ECA-rules. Such subworkflows can be executed at the same or a r
server. We however require that all the atomic steps directly contained in the same wor
are executed on the same site, i.e., on any machine of the LAN managed by a particular
server. This site is called thehome siteof the workflow. Subworkflows can be executed at sit
other than the home site of their parent workflows, and different instances of the same
flow type can also have different home sites. This is not a limitation as the required distrib
can be achieved by appropriately specifying subworkflows, whereas it significantly ease
chronization of servers and leads to better synchronization performance (see section 5.2

4.1 Multi-Server Architecture and Communication

Brokers involved in workflows typically reside on different machines, which results in wo
flow systems that are physically distributed to a varying degree (e.g., on different mac
within the same domain/LAN, or on different organizational subnets). EVE supports the
tributed execution of workflows through amulti-server/multi-client architecture. By means of
the provided middleware services, this distribution is kept transparent for brokers (and th
they represent), which in general should not be required to know the physical location of
service providers.

Workflow systems distributed over large areas, consist of multipleEVE-servers. They pro-
vide all the aforementioned required services. The most important ones of these are des
in more detail in the following sections, while we immediately address EVE’s client/serve
chitecture and communication. EVE-servers communicate directly with their local brokers
with remote servers. Thus, each broker communicates solely with its local EVE-server.

ED
eventbroker ED

ED

ED

ED

EVE

E-C-A rule
E-C-A rule

ED

ED

ED

E-C-A rule
E-C-A rule

1. event 2. event detection & logging 3. rule execution

broker

broker

broker

event history

4. service execution

 Figure 2:The workflow execution process in EVE

E-C-A rule

generation
 7

h plat-

les,
accept
y log

mmu-
t the
nts to
l-pur-

pters
tem
t gen-

per-
resting
.
okers
cution

s local
EVE-
mpos-
rokers
d the
s1), at

ns to
dler is

ngine
kers interact transparently with each other by forwarding the events they generate throug
form-specificEVE-adapters to their local server.

EVE-servers control the progress of workflows. Control is defined in terms of ECA-ru
which determine what has to happen when a particular (composite) event occurs. They
and handle client connection requests over a “well-known” network address. Brokers ma
in into and logout from the system, whereby each logged-in broker establishes its own co
nication channel with its server. EVE-servers exchange administration information abou
current location and connectivity of brokers. They also provide persistent queues of eve
be forwarded to disconnected brokers. Workflow monitoring is achieved by using specia
pose brokers which provide event monitoring services.

Brokers communicate with their local EVE-server through an EVE-adapter. EVE-ada
—normally a library linked to the broker code—thus provide the interface of the EVE-sys
to brokers. They provide communication transparency for server login as well as for even
eration and notification. Adapters also handle temporary server unavailability by keeping
sistent queues of client-generated events. Brokers are informed of the occurrence of inte
events by callbacks from their adapter which provides a listening port to the EVE-server

An EVE-server forwards over the network event occurrences to the adapters of br
that are registered in the runtime repository as interested in these events. During the exe
of broker actions, new events may be generated by the broker. The broker then informs it
EVE-server about the occurrence of these events again through its EVE-adapter. The
server in turn performs event detection, logs these events as well as eventual resulting co
ite events in the event history, and forwards the occurrences to other interested local b
and to the servers of interested remote brokers. An overview of the architecture of EVE an
example brokers is presented in Fig. 3. EVE-servers reside at the insurance agency (site
the company headquarter (site s2), and the clearing house (site s3).

The communication infrastructure is implemented using theAdaptive Communication En-
vironmentframework [24]. EVE-servers are implemented on Solaris 2.5 through extensio
the acceptor pattern [25] that dispatches a handler for each connecting broker. This han
responsible for incoming events and initiates the appropriate actions in the workflow e

EVE-Server

LPF

EVE-Adapter

Oracle 7
DBMS

Agency

Clearing houserepository

 Figure 3:Architecture of EVE and the example workflow system

Event historyRuntime
repository

event communication

Agent GUI

EVE-Adapter

MEDICHECK

EVE-Adapter

Shore

EVE-Server

Shore

DBCL

EVE-Adapter

Headquarter

EVE-Server

Shore

Expert GUI

EVE-Adapter
 8

spe-

s con-
f this
d to

better
epos-
]. The

es),
re-

ro-

, the
to hold

part.
f
pecified

pec-

re-
kable

e
y

(i.e., triggers the event detection process). The adapter implementation is client-platform
cific. Currently, Java and C++ versions have been implemented.

4.2 The EVE Runtime Repository

The runtime repository implements naming, persistence, and querying services and thu
tains information needed to execute workflow instances. The explicit representation o
meta-information in the runtime repository leads to a higher degree of flexibility (compare
approaches that use hard-wired, interpretive techniques for workflow execution) and
maintainability of workflow systems (compared to compilation-based approaches). The r
itory is managed by EVE-servers on top of the object-oriented database system Shore [8
runtime repository contains the following information:
• workflow types (name, initiation and termination events, active and terminated instanc
• specification of the participating brokers including their context-specific behavior and

sponsibilities,
• organizational relationships among brokers and between brokers and groups,
• event types corresponding to those defined in the event part of broker-ECA-rules, and
• ECA-rules defining the structure of workflows.

ECA-rules. ECA-rules in EVE—not to be confused with broker-ECA-rules—implement p
cesses and broker interactions. An EVE-rule is defined as a triple(event type, condi-

tion, action) . Whenever an instance of the event type occurs and the condition holds
action is executed. Conditions return a set of object references, they are thus considered
if they return a non-empty result. The resulting set of references is passed to the action
Conditions can, e.g., be used to implementtask assignment: the condition computes the set o
eligible brokers for a request and selects one based on the task assignment strategy s
for the request (event type). Possible task assignment strategies are:
• random (any eligible broker is chosen),
• load-based (the broker with the minimal number of pending requests is chosen),
• responsibility-based (the effectively chosen broker must fulfill further requirements as s

ified in the current request),
• a combination of these strategies.
Actions are arbitrary code fragments, typically including notifying a broker of a service
quest. EVE-rules reside on EVE-servers; they are compiled and stored in dynamically lin
libraries and loaded upon execution time whenever the corresponding rule fires.

The execution of the serviceLogClaim for example, can start when the execution of th
subworkflowsSW1, SW2, and the serviceCntrlCoverage is completed. This is expressed b
rule R1 residing on servers1 2:

ON CON(RPL(CntrlCoverage.OK, HIC),
CON(RPL(SW1.Done, Result),RPL(SW2.Done, Result)))

DO raise(REQ, LogClaim, HIC, SW1.Done.Result, SW2.Done.Result)

and a further rule fortask assignment residing ons1 :

ON REQ(LogClaim,HIC))
IF br = assign(LogClaim) // filter: returns assigned broker
DO br->notify(REQ, LogClaim, HIC, SW1.Done.Result, SW2.Done.Result)

2. The checks for equality of workflow ids and broker ids are not shown here.
 9

sig-
is an

com-
tech-

s and

d-

order
adapt-
events
detec-
entral-
vent
ot-yet-
are in-

nts can
ay. If
(this is
ge-
a com-
5 Workflow Execution

In order to allow event-driven workflow execution, EVE has to implement detection and
naling of primitive and composite events to interested brokers. Composite event detection
issue extensively considered in centralized ADBMS [e.g., 11]. However, the semantics of
posite events are different in a distributed system. This fact renders the concepts and
niques used in centralized ADBMS unfeasible or inadequate for distributed environment
thus need to be extended.

5.1 Event Occurrences and Event Detection

Event occurrences are theactual happeningsof interest at some point in time and are consi
ered as instances of event types. Each occurrence has several attributes:
• theevent type of the occurrence
• the occurrencesite

• a unique site-specificoccurrence identifier

• the timestamp when the event occurred (see section 5.2 and [30])
• the name of the requestedservice

• a request identifier (in case of request, confirmation and reply events)
• a workflow identifier within which the event has occurred
• the identifier of thebroker which raised the event
• a list of component occurrences in case of composite events
• a list of typed parameters (i.e., production data).
Events are detected by persistent event detector (ED) objects residing in EVE-servers. In
to generate a new primitive event, a broker notifies its server about the occurrence via its
er. The server then forwards the event occurrence to the appropriate event detector. Time
are detected based on the system clock. After primitive event detection, composite event
tion takes place. For that matter, we adapted the approach originally proposed for the c
ized ADBMS Sentinel [11]. A composite ED is a graph (see Fig. 4), where nodes are e
types and edges represent event composition. Nodes are marked with references to n
consumed component occurrences. Whenever an event is detected, the parent nodes
formed and check whether the new event together with already obtained component eve
form a new event composition. This check is performed in an event type-dependent w
multiple instances of a component event type exist, the oldest adequate one is chosen
the chronicle consumption mode [11], which is the appropriate one for workflow mana
ment). In case the new event cannot be consumed, the ED stores a reference to it until

RPL(CntrlCoverage.OK)

 Figure 4:Event detector graph with its attached rule(s) for the event in rule R1

RPL(SW1.Done)

IF ... // true

DO // request the log service

E1 E2

E2 AND E3

E1 AND (E2 AND E3)

RPL(SW2.Done)
E3
 10

Event
urn in-

itive
is add-
ection

order-
his or-
t the
local

lly or-
rece-
stamp

ps is
at the
details

ering
le in-
e com-
special

ically
r site
s their
origi-
d so

onize
ocess
eded to

ized,
porally
rkflow

ed to

in-
was
chro-

ch has
position is possible (i.e., until new sibling component occurrences have been received).
detection is recursive; whenever a parent node can compose a new occurrence, it in t
forms its parents, a.s.o. in a bottom-up manner.

In addition to event composition edges, event nodes reference rule objects. If a (prim
or composite) event occurrence is detected which has a rule attached to it, then the rule
ed to the list of rules to be fired. This firing actually takes place as soon as the event det
cycle has been terminated.

5.2 Distributed Composite Event Detection and Server Synchronization

Timestamps play a crucial role in defining semantics of composite events and define the
ing of event occurrences. In centralized environments a global time can be assumed for t
dering, whereas it does not exist in distributed environments. In EVE we thus adop
approach of [26] to deal with distributed event ordering. We assume that each site has a
clock. Local clocks are synchronized with a precision p. Event occurrences can be globa
dered, provided that the granularity g of the global time-base is larger than p. In the 2g-p
dence model [31], two events occurring at different sites are ordered whenever the time
of one event is at least 2g larger than that of the other one. If the difference of the timestam
less than 2g, then the events are considered to occur concurrently. If two events occur
same site, then they can be ordered whenever they are at least one clock tick apart. For
on timestamp computation with the 2g-precedence model, see [26].

Correct event composition in the chronicle consumption mode [11] relies on the ord
of component occurrences using timestamps. Upon event composition, the oldest eligib
stance is chosen whenever there are multiple candidates. Thus, new events can only b
posed if no older adequate component event has occurred at some site. This poses a
problem in distributed environments, since the signaling of events from remote sites typ
takes different amounts of time or may even be temporarily impossible due to a detecto
crash, and the order of arrival of events from different remote sites may not be the same a
order of occurrence. Thus, an ED can correctly compose new events out of components
nating from multiple sites only if it is synchronized with the detectors of its components an
on recursively. Furthermore, efficiency considerations dictate that the effort to synchr
servers and their event detectors should not overly burden the workflow execution pr
(e.g., with respect to the number of affected detectors and the number of messages ne
exchange synchronization information).

Only servers cooperating within some specific workflow instance need to be synchron
because events generated within instances of unrelated workflow types are neither tem
nor causally related. Thus, synchronization is needed for event detectors that detect wo
termination events or directly or indirectly contain such events as components.

The detector synchronization works as follows (see Fig. 5). Whenever a broker attach
a server S1 requests a (sub) workflow and S1 forwards this request to another server S2, then
the affected detectors are informed that they need to synchronize with S2. Thus, each detector
maintains the information on which servers it needs to synchronize (thesynchronization set)
with. For each server Si in such a set, a reference counter records the number of workflow
stances requested by S1 at Si. S1 also records for each server in the set when the last event
received. From this set the global time can be derived until which the local server is syn
nized with the involved remote servers (thesynchronization point, which is the minimum of
the events’ timestamps least recently received from the remote servers). The server whi
 11

d, it is

he
e the

ther-
oint),
(i.e.,

nchro-
y spe-
ut at
uting

t knows
d can

pro-
refer-
ented.
nding
nchro-

f re-
signalled this event is called themost recently synchronized site,MRS. Since it is guaranteed
that all events with timestamps earlier than the synchronization point have been receive
safe for an ED to consume these events for composite event detection.

Whenever one of the affected detectors at S1 receives an event or a component event, t
timestamp of this event will be larger (i.e., later) than the synchronization point. In cas
event wasnot sent by the MRS, the received event is queued and not further processed. O
wise, the new MRS is determined (which then also determines the new synchronization p
and all queued events that occurred prior to the new synchronization point are flushed
processed as in centralized event detection).

Two kinds of events exchanged between servers are relevant for synchronization: sy
nization events and workflow termination events. Synchronization events do not bear an
cific meaning, but only indicate that the sending server is still alive. They are sent o
predefined synchronization intervals to all servers from which request events for still exec
(sub) workflow instances have been received. In case a server receives such an event, i
that it has received all previous workflow termination events from the remote server, an
exploit this information for synchronization of its detectors.

Workflow termination events indicate the completion of a workflow instance; they are
cessed by ED. In case such an event is received (i.e., a workflow reply or exception), the
ence counter of the respective server in the corresponding synchronization set is decrem
If the new value of the reference counter is 0, then no more instances of the correspo
workflow type are active at the remote server. This server can thus be deleted from the sy
nization set of the respective detectors (and their ancestors).

This procedure allows to minimize for each server and workflow type the number o
mote servers it has to be synchronized with. Consequently, detectors at S1 are only then syn-

ED2

CED2

WFD2 ED4

CED4

ED3

CED3 CED5

{(S1,4), (S2,1), {(S2,1), (S3,2)}

ED1

CED1

WFD1

{(S1,4), (S2,2), (S3, 2), (S4,2)}

 Figure 5:Synchronization of Servers and Event Detectors

S1 S2 S3 S4

(S4,2)}

S0

S2 server

detector structure

event exchange

{(Si,n)} synchronization set

synchronized detectors
 12

n in

ened in
r

s the
t been

y pro-
tak-

essive
ted
e com-
ng that
lobal
istory

reac-
-based

y the
chronized with Si if Si in fact currently executes on behalf of S1 one or more instances of the
workflow type.

The event detection locations for the execution of the example workflow are show
Table 3. In our example, note that the detector of the eventCON(RPL(CntrlCoverage.OK, HIC),

CON(RPL(SW1.Done, Result), RPL(SW2.Done, Result))) has to be synchronized with the
ED for its component events.

5.3 Event History

At a specific point in time, the sequence of event occurrences describes what has happ
the past. These occurrences form theevent history. First, the elements of the history togethe
with other events occurring subsequently constrain what will happen in the future. This i
case for an occurrence if its type is a component of a composite event type and has not ye
consumed for an occurrence of that type. Second, (parts of) the entire event history ma
vide important information about broker actions and the course the single workflows have
en. The event history thus is a database for monitoring and analysis (and succ
optimization) of workflows [15]. It is maintained by EVE-servers and is physically distribu
among them. Each server maintains a consistent view of the global event history becaus
posite events are inserted in it only after detector synchronization has taken place meani
no earlier candidate component events have occurred. A logically integrated view of the g
event history is possible based on the partial ordering of the timestamps of events. The h
also forms the basis for the formal definition of workflow execution correctness [30].

5.4 Summary

Based on the services described above, EVE is a middleware layer that allows distributed
tive components to cooperate in a way that renders distribution transparent. The event

Agency site (s1) Headquarter site (s2) Clearing house site (s3)

REQ(HandleHIC);

RPL(HandleHIC.Done);

REQ(CntrlCoverage) REQ(SW1); REQ(SW2)

REQ(CntrlTreatment); REQ(CntrlMedication)

RPL(CntrlTreatment.Done); RPL(CntrlMedication.Done)

RPL(SW1.Done); RPL(SW2.Done);
RPL(CntrlCoverage.OK)

CON(RPL(CntrlCoverage.OK),
CON(RPL(SW1.Done),

RPL(SW2.Done)))

REQ(LogClaim);

RPL(LogClaim.Done);

REQ(PrepAccept);

RPL(PrepAccept.Done);

REQ(Print);

RPL(Print.JobCompleted);

Table 3. Event detection sites for a sample workflow execution (time precedence is depicted b
horizontal table lines, event parameters are omitted for simplification)
 13

nd the
with
e; it is
se of

ents to
vent-

cture
ther
a lay-
e dis-
. An
The

ent-

work-

echa-
ar-

es in
ious

er-

o: A

nt
ve

alone

ic
t of

are

ent
style of EVE eases the integration and coordination of these reactive components a
maintenance and evolution of workflow systems. EVE’s multi-server architecture along
distributed event detection and detector synchronization avoids a centralized architectur
therefore potentially more efficient and less vulnerable to functionality degradation in ca
site crashes (depending of course on the workflow specifications currently executing).

Special-purpose services in EVE (such as task assignment) enable reactive compon
execute workflows in an event-driven style; workflow systems described in terms of an e
based model can thus be made executable in a seamless way.

6 Conclusions

A proper software architecture of workflow systems is crucial in order to adequately stru
the entire environment (including PE, not only the coordination system) and to fulfill fur
requirements such as flexible integration of PE, reusability of PE-definitions, etc. We use
ered event-based architecture for workflow systems. Specifically, we have introduced th
tributed event engine EVE serving as the underlying execution platform for workflows
event-based approach to workflow execution combines runtime efficiency with flexibility.
contributions of this paper can be summarized as follows:
• a novel architecture for a distributed WS is presented providing the functionality for ev

driven workflow execution,
• an integrated framework addresses problems relevant to the distributed execution of

flows (e.g., event-detection, global event history).
Further work remains to be done on how to specify and implement semantic recovery m
nisms in EVE based on ECA-rules. Ultimately, we will address workflow type evolution, p
ticularly with respect to long running workflows and organizational change. The capabiliti
this area obviously depend on the semantics of workflows, and we will rely on our prev
work on rule-base evolution in object-oriented ADBMS.

References

1. ActionWorks. The ActionWorks Metro Solution (http://www.actiontech.com/Metro/ov
view/index.html).

2. The ACT-NET Consortium. The Active Database Management System Manifest
Rulebase of ADBMS FEatures.ACM SIGMOD Record 25:3, September 1996.

3. G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan. Functionality and Limitations of Curre
Workflow Management Systems.IEEE-Expert(to appear in a special issue on Cooperati
Information Systems), 1997.

4. G. Alonso, C. Hagen, H.-J. Schek, M. Tresch. Distributed Processing over Stand-
Systems and Applications. InProc. 23rd VLDB, Athens, Greece, August 1997.

5. D. Barbará, S. Mehrota, M. Rusinkiewicz. INCAS: A Computation Model for Dynam
Workflows in Autonomous Distributed Environments. Technical Report, Departmen
Computer Science, University of Houston, May 1994.

6. D.J. Barrett, L.A. Clarke, P.L. Tarr, A.E. Wise. A Framework for Event-Based Softw
Integration.ACM Trans. on Software Engineering and Methodology 5:4, October 1996.

7. C. Bussler, S. Jablonski. Implementing Agent Coordination for Workflow Managem
Systems Using Active Database Systems.Proc. 4th RIDE-ADS, Houston, February 1994.
 14

T.
Up

ent.

-

tive

nd

rom

Ac-

ons

truc-

tem.

ra-
s,

. The

ttp://

ust

ica-

es.

ys-
uary

, I.
ork-
8. M.J. Carey, D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F. Naughton, D.
Schuh, M.H. Solomon, C.K. Tan, O.G. Tsatalos, S.J. White, M.J. Zwilling. Shoring
Persistent Applications.Proc. ACM SIGMOD, Minneapolis, May 1994.

9. F. Casati, S. Ceri, B. Pernici, G. Pozzi. Deriving Active Rules for Workflow Managem
Proc. 7th DEXA, Zurich, Switzerland, September 1996.

10. S. Ceri, P. Grefen, G. Sanchez. WIDE - A Distributed Architecture for Workflow Manage
ment.Proc. RIDE, 1997.

11. S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim. Composite Events for Ac
Databases: Semantics, Contexts, and Detection.Proc. 20th VLDB, Santiago, Chile, Sep-
tember 1994.

12. U. Dayal, M. Hsu, R. Ladin. Organizing Long-Running Activities with Triggers a
Transactions.Proc. SIGMOD, Atlantic City, NJ, May 1990.

13. D. Georgakopoulos, M. Hornick, A. Sheth. An Overview of Workflow Management: F
Process Modeling to Workflow Automation Infrastructure.Distributed and Parallel Data-
bases, Kluwer Academic Publishers, September 1994.

14. A. Geppert, M. Kradolfer, D. Tombros. Realization of Cooperative Agents Using an
tive Object-Oriented Database Management System. InProc. 2nd Intl. Workshop on Rules
in Database Systems, Athens, Greece, September 1995.

15. A. Geppert, D. Tombros. Logging and Post-Mortem Analysis of Workflow Executi
based on Event Histories.Proc. 3rd Intl. Workshop on Rules in Database Systems, Sko-
evde, Sweden, June 1997.

16. M. Hsu, C. Kleissner. ObjectFlow: Towards a Distributed Process Management Infras
ture.Distributed and Parallel Databases, 4:2, April 1996.

17. B. Krishnamurthy, D.S. Rosenblum. Yeast: A General Purpose Event-Action Sys
IEEE Transactions on Software Engineering, 21:10, October 1995.

18. H. Lam, S.Y.W. Su. ECAA Rules and Rule Services in CORBA.
19. R. Marshak. InConcert Workflow.Workgroup Computing Report 20:3, 1997.
20. J. Mylopoulos, A. Gal, K. Kontogiannis. A Generic Integration Architecture for Coope

tive Information Systems. InProc. 1st Int’l Conf. on Cooperative Information System
Brussels, Belgium, June 1996.

21. The Common Object Request Broker: Architecture and Specification. Revision 2.0
Object Management Group, July 1995.

22. CORBA Services: Common Object Services Specification. OMG, July 1997 (h
www.omg.org/corba/sectran1.htm).

23. Workflow Management Facility. Joint Submission to the Workflow RFP, OMG, Aug
1997.

24. D.C. Schmidt. ACE: an Object-Oriented Framework for Developing Distributed Appl
tions.Proc. 6th USENIX C++ Technical Conf., Cambridge, MA, April 1994.

25. D.C. Schmidt. Acceptor A Design Pattern for Passively Initializing Network Servic
C++ Report, November 1995.

26. S. Schwiderski, A. Herbert, K. Moody. Monitoring Composite Events in Distributed S
tems. Technical Report 387, Computer Laboratory, Cambridge University, UK, Febr
1996.

27. A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch
Shevchenko. Supporting State-wide Immunization Tracking using Multi-Paradigm W
flow Technology.Proc. 22nd VLDB, Bombay, India, September 1996.
 15

nted
H.-J.

iron-
puter

riv-
er-

To-
28. D. Tombros, A. Geppert, K.R. Dittrich. Design and Implementation of Process-Orie
Environments with Brokers and Services. In B. Freitag, C.B. Jones, C. Lengauer and
Schek (eds.),Object-Orientation with Parallelism and Persistence, Kluwer Academic
Publishers, 1996.

29. D. Tombros, A. Geppert, K.R. Dittrich. Design of Coopearive Process Oriented Env
ments Using Reactive Components. Technical Report 97.06, Department of Com
Science, University of Zurich, June 1997.

30. D. Tombros, A. Geppert, K.R. Dittrich. Semantics of Reactive Components in Event-D
en Workflow Execution.Proc. 9th Intl. Conf. on Advanced Information Systems Engine
ing, Barcelona, Spain, June 1997.

31. P. Verissimo. Real-Time Communication. In S. Mullender (ed):Distributed Systems. 2nd

ed., Addison-Wesley 1993.
32. D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz-Dittrich. The Mentor Project: Steps

wards Enterprise-Wide Workflow Management.Proc. 12th ICDE, New Orleans, February
1995.
 16

	Event-based Distributed Workflow Execution with EVE
	Andreas Geppert, Dimitrios Tombros Department of Computer Science, University of Zurich Winterthu...
	Abstract
	1 Overview
	2 Related Work
	Table 1. Comparison of CORBA event-related functionality and EVE

	3 A Model for Workflow System Architectures
	3.1 A Workflow Example
	Figure 1: Structure of the example workflow type

	3.2 Brokers and Services.
	Table 2. Brokers and services of the example

	4 EVE: A Middleware Component for Workflow Execution
	1. Distribution. Since processing entities typically are distributed over a network and workflows...
	2. Runtime repository. In order to maintain the necessary meta information to operate a workflow ...
	3. Workflow execution. In order to execute workflows (in an event-driven style), event detection,...
	4. Event history management. In order to facilitate maintenance of workflow systems, logging, mon...
	5. Failure handling. In general, two types of failures can be distinguished: system failures and ...
	Figure 2: The workflow execution process in EVE

	4.1 Multi-Server Architecture and Communication
	Figure 3: Architecture of EVE and the example workflow system

	4.2 The EVE Runtime Repository

	5 Workflow Execution
	5.1 Event Occurrences and Event Detection
	Figure 4: Event detector graph with its attached rule(s) for the event in rule R1

	5.2 Distributed Composite Event Detection and Server Synchronization
	Figure 5: Synchronization of Servers and Event Detectors
	Table 3. Event detection sites for a sample workflow execution (time precedence is depicted by th...

	5.3 Event History
	5.4 Summary

	6 Conclusions
	References
	1. ActionWorks. The ActionWorks Metro Solution (http://www.actiontech.com/Metro/overview/index.ht...
	2. The ACT-NET Consortium. The Active Database Management System Manifesto: A Rulebase of ADBMS F...
	3. G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan. Functionality and Limitations of Current Workfl...
	4. G. Alonso, C. Hagen, H.-J. Schek, M. Tresch. Distributed Processing over Stand-alone Systems a...
	5. D. Barbará, S. Mehrota, M. Rusinkiewicz. INCAS: A Computation Model for Dynamic Workflows in A...
	6. D.J. Barrett, L.A. Clarke, P.L. Tarr, A.E. Wise. A Framework for Event-Based Software Integrat...
	7. C. Bussler, S. Jablonski. Implementing Agent Coordination for Workflow Management Systems Usin...
	8. M.J. Carey, D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F. Naughton, D.T. Schuh, ...
	9. F. Casati, S. Ceri, B. Pernici, G. Pozzi. Deriving Active Rules for Workflow Management. Proc....
	10. S. Ceri, P. Grefen, G. Sanchez. WIDE - A Distributed Architecture for Workflow Management. Pr...
	11. S. Chakravarthy, V. Krishnaprasad, E. Anwar, S.-K. Kim. Composite Events for Active Databases...
	12. U. Dayal, M. Hsu, R. Ladin. Organizing Long-Running Activities with Triggers and Transactions...
	13. D. Georgakopoulos, M. Hornick, A. Sheth. An Overview of Workflow Management: From Process Mod...
	14. A. Geppert, M. Kradolfer, D. Tombros. Realization of Cooperative Agents Using an Active Objec...
	15. A. Geppert, D. Tombros. Logging and Post-Mortem Analysis of Workflow Executions based on Even...
	16. M. Hsu, C. Kleissner. ObjectFlow: Towards a Distributed Process Management Infrastructure. Di...
	17. B. Krishnamurthy, D.S. Rosenblum. Yeast: A General Purpose Event-Action System. IEEE Transact...
	18. H. Lam, S.Y.W. Su. ECAA Rules and Rule Services in CORBA.
	19. R. Marshak. InConcert Workflow. Workgroup Computing Report 20:3, 1997.
	20. J. Mylopoulos, A. Gal, K. Kontogiannis. A Generic Integration Architecture for Cooperative In...
	21. The Common Object Request Broker: Architecture and Specification. Revision 2.0. The Object Ma...
	22. CORBA Services: Common Object Services Specification. OMG, July 1997 (http:// www.omg.org/cor...
	23. Workflow Management Facility. Joint Submission to the Workflow RFP, OMG, August 1997.
	24. D.C. Schmidt. ACE: an Object-Oriented Framework for Developing Distributed Applications. Proc...
	25. D.C. Schmidt. Acceptor A Design Pattern for Passively Initializing Network Services. C++ Repo...
	26. S. Schwiderski, A. Herbert, K. Moody. Monitoring Composite Events in Distributed Systems. Tec...
	27. A. Sheth, K. Kochut, J. Miller, D. Worah, S. Das, C. Lin, D. Palaniswami, J. Lynch, I. Shevch...
	28. D. Tombros, A. Geppert, K.R. Dittrich. Design and Implementation of Process-Oriented Environm...
	29. D. Tombros, A. Geppert, K.R. Dittrich. Design of Coopearive Process Oriented Environments Usi...
	30. D. Tombros, A. Geppert, K.R. Dittrich. Semantics of Reactive Components in Event-Driven Workf...
	31. P. Verissimo. Real-Time Communication. In S. Mullender (ed): Distributed Systems. 2nd ed., Ad...
	32. D. Wodtke, J. Weissenfels, G. Weikum, A. Kotz-Dittrich. The Mentor Project: Steps Towards Ent...

