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Abstract

In event-driven workflow execution, events and event-condition-action rules are the funda-
mental metaphors for defining and enforcing workflow logic. Processing entities enact
workflows by reacting to and generating new events. The foundation on events also eases
the integration of processing entities into coherent systems.

In this paper, we present an event engine, called EVE, implementing event-driven execu-
tion of distributed workflows. Its functionality includes event registration, detection and
management, as well as event notification to distributed, autonomous, reactive software
components which represent workflow processing entities. EVE also maintains a history of
all event occurrences in the system used for the monitoring and analysis of executing
workflows. We describe the distributed, multi-server, multi-client architecture of EVE and
illustrate its usage for workflow execution.
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1 Overview

Currently, many enterprises optimize and streamline their business processes. Examples in-
clude insurance claim handling, credit card applications, etc. These business processes can
be—completely or partially—automated when represented@akflow specifications. Work-

flow management systerl& FMS) are software systems providing workflow definition and
implementation functionality (scheduling, execution, and control) [13]. Workflow specifica-
tions—or workflow types—consist of subworkflows and atomic work steps, data flows be-
tween them, execution order constraints, as well as assignment of tasks to PE. Productive use
of WFMS requires that they effectively support the integration of heterogeneous information
resources, people and applications (called processing entities—PE). The resulting integrated
system is called workflow systeniWws).

Current commercial WS architectures do not effectively address problems related to the
representation, control, and coordination of PE that operate in environments distributed across
multiple organizational entities, that are heterogeneous with respect to their automation degree
and interfaces, that evolve over time, and that operate both independently and as part of a WS
(e.q., [3]). Several research efforts address various aspects of these problems (e.g., [4], [16],



[27], [32]), especially those pertaining to distribution and heterogeneity. The proposed solu-
tions, however, do not effectively support flexible representation/integration of PE and runtime
evolution of the WS architecture; they also propose a rather strongly coupled integration
framework and rigid task structure.

Although event-based systems are recognized as the architectural style of choice for loose-
ly coupled systems [6], to the best of our knowledge, no other approach so far uses events as
the only integration and coordination mechanism for distributed, heterogeneous, and dynami-
cally configurable WS. Several researchers—including ourselves—[7, 9, 12, 14] have pro-
posed the use oévent-condition-action rules (ECA-rulegls provided by active database
management systems (ADBMS, [2]) for workflow execution. These approaches, however, use
a centralized ADBMS, which renders distribution, openness, and scalability hard to achieve.
Event services (as, e.g., specified in CORBA Services [22]) also support the notion of event,
but these services are restricted to primitive events and, typically, are hybrid in the sense that
they rely on both, messages and events as coordination paradigms.

In [28, 29], we propose kayered event-based architectumd WS. The WS is described in
a domain-specific architecture model which represents PE by autonomous reactive compo-
nents communicating through parameterized events. The behavior of these components is ex-
pressed by ECA-rules. In this paper, we propose an event-based middleware layer and
execution platform—called EVE—able to integrate these reactive components and make the
WS-architecture description executable. Event-based WS-architectures and workflow execu-
tion have various advantages:

» The event-based coordination model allows complete process specification without impos-
ing any limiting assumptions about the concrete process architecture. Complex process situ-
ations are expressed by composite events, and coordination is accomplished by defining the
appropriate reactive behavior for PE.

» The architecture of the WS can be changed during workflow execution (subject to process
restrictions). Interaction patterns are dynamically administered by EVE.

* A powerful and uniform mechanism to express component behavior is provided; the use of
this mechanism for failure and exception handling is straightforward.

* The correct execution (with respect to the specification) and the monitoring of the work-
flows is guaranteed based on formal semantics [30].

» The logging of workflow situations (events) is done at practically no extra cost compared to
a message-based architecture.

This paper presents an architecture for WS focusing on the distributed event engine, EVE. In

section 2 we position EVE and survey related work. The WS-architecture model is presented

in section 3 for the sake of comprehensiveness. We describe the architecture and functionality
of EVE in section 4 and its approach to distributed event detection and workflow execution in

section 5.

2 Related Work

ECA-rules have been proposed by several authors for workflow execution, e.g., [5, 7, 9, 12].
Some of these systems [5, 12] use composite events to detect complex workflow situations.
EVE, however, is the first system using ECA-rules for workflow management addressing the
problem of distributed event-based workflow execution.



Current commercial WFMS (e.g., ActionWorks Metro [1], or XSoft's InConcert [19]) are
typically built around a centralized process engine and relational database server. Two event-
based coordination systems, Yeast [17] and CoopWARE [20], have a purpose similar to EVE;
both have, however, a centralized event-detection and rule execution architecture. Additionally,
Yeast supports only event-action rules.

A number of research systems consider distributed workflow execution. ObjectFlow [16]
uses a graph-based workflow definition model. Steps are executed by agents coordinated by a
(potentially) distributed workflow engine which however accesses a centralized DBMS to store
workflow states. WIDE [10] proposes a distributed hierarchical workflow engine which
through a basic access layer stores process state in a centralized relational DBMS. In
METEOR, [27], process scheduling is distributed among various task managers. The distribu-
tion of the task managers is implemented through CORBA [21]. In Mentor [32], workflows are
modeled using state-charts which are partitioned to each involved PE. Each PE-specific state-
chart is executed locally on the PE workstation.

CORBA event service EVE
Communication model push/pull push
Typed events yes yes
Composite events no yes

Event parameters

one of type any

multiple, typed

Event filtering yes yes
Disconnected consumers and suppliers yes yes
Multicasting yes yes
ECA-rules not yet yes

Table 1. Comparison of CORBA event-related functionality and EVE

Various aspects of the implementation of EVE (e.g., naming services) can be facilitated by
the functionality of CORBA [21] or other distributed object technologies. The emphasis of our
research in EVE however, is to complement these efforts by concentrating on a reactive event-
based coordination and integration architecture—with its accompanying advantages for hetero-
geneous system integration—instead of a message-based approach. Event-specific functional-
ity in EVE is richer than in CORBA Event Services [22] (see Table 1). OMG is currently in the
process of specifying a workflow management facility [23]. This facility uses the event service
for communicating state changes of workflow execution elements (activities). Since the event
service is restricted to primitive events, complex workflow situations cannot be detected and
communicated. Also, EVE fully supports ECA rule services, the standardization of which, is
still only under consideration by O

3 A Model for Workflow System Architectures

In this section, we briefly introduce the model we propose for the description of workflow sys-
tem architectures. In general, workflow types can be specified in a more abstract way (and e.g.,

1. [18] for example discusses the integration of ECA-rules in a CORBA environment.
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using a graph-based formalism) and mapped onto the architecture model level. Here we do not
presume any particular workflow modeling approach, but simply assume that the basic ele-
ments of a workflow can be specified in some way (i.e., workflow structure in terms of atomic
activities and subworkflows, dependencies between the steps of a workflow, etc.). This specifi-
cation is subsequently mapped to the behavior of processing entities which compose a WS ar-
chitecture. Note however, that the event-based coordination layer we propose is independent
from the modeling formalism used. This section serves to illustrate the purpose of an abstract-
level specification layer in the overall event-based architecture.

3.1 A Workflow Example

In order to better illustrate the concepts we introduce, we use as an example workflow the pro-
cessing of a health insurance claim (HIC) (Fig. 1). The workflow is initiated once a HIC arrives
at an insurance agency. An insurance agent creates a file containing the diagnosis, treatments,
cost (from the HIC), and the insurance number (teiandleHIC ). If the claimed amount

does not exceed 300 CHF the claim is directly accepted, a corresponding entry is made in the
customer database\Z:LogClaim ), and a check is prepared3PrepAccept ) and printed
(A4:Print ). Otherwise, various controls have to be made: a control in the local database
whether the prescribed treatment is covered by the patient’s insursdcet(Coverage ). A

request to a central clearing house to control whether equivalent but less expensive medication
Is available. This is done in subworkflasw1 consisting of the stef6:CntrIMedication .On

the other hand, in subworkflogw2executed at the insurance company headquarter, a medical
expert controls whether the treatment actually suits the diagnagiSnriTreatment)

When all controls are completed, a corresponding entry is made in the customer database
(A3:LogClaim ), and either a rejection letteng:PrepReject ) or a payment checkaé:Pre-

pAccept ) is prepared by the insurance agent and primte@r{nt ).

3.2 Brokers and Services.

The BROKER/'SERVICES MODEL (B/SM [28, 29]) is used to describe the software and process
architecture of the resulting WS. Workflow type specifications are mapped to elements of the
B/SM in a way described in detail elsewhere [29]. In general, each atomic step corresponds to
the execution of a service. ECA-rules define when and how services are executed in the context
of workflows. From the perspective of B/SM, a WS consists of interacting, reactive compo-
nents calledrokersrepresenting PE. Broker behavior is defined by ECA-rules describing their
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Figure 1:Structure of the example workflow type




reaction to simple events (e.g., service requests) or composite events (e.g., a request within a
specific time interval) in the action-part of the rules. Different types of brokers represent hu-
man user interfaces, organizational groups, external applications, and WFMS-components.

Primitive event types represent atomic happenings. Two kinds of primitive event types are
distinguished: broker interaction events (requesis) replies RPL), and exceptions=xQ for
services and workflows) and time event types. Time events can be absolute, relative, or period-
ical. Composite event types represent complex, process-specific situations by combining prim-
itive or further composite events. They are constructed using one of the following type
constructors. Asequenc€SEQ occurs when the two component events occur in the respective
order. Anexclusive disjunctiofDEX occurs when either one of the component events occur. A
conjunction(CoN occurs when both component events occur, regardless of their orcegyeA
tition (REP occurs when the component event occurs a predefined number of timegafion
(NEQ of an event occurs when the component event has not occurred within an interval. Final-
ly, two events occuctoncurrently(CCR when both occur at the same point in time.

An event type definition can be restricted by a time interval, defined by two events; events
are considered as relevant only if they occur within the interval. Finally, further restrictions can
be specified for composite events. Particularly, it can be required that the component events
have to occur within the same workflow. The formal semantics of distributed composite events
are described in [30].

Broker functionality is described bgervicesspecified by a signature (i.e., the service
name, its request parameters, and resulting replies or exceptions). Broker interaction is based
on broadcasting parameterized events. Service execution is started by a request event from the
client broker and is terminated when a reply or one of the exceptions defined for the service is
generated by its server broker. The server is dynamically determined based on service parame-
ters, organizational relationships, or the workflow execution history in ways not further speci-
fied here. A workflow instance starts executing when its initiation request event occurs.
Workflows are thus executed by the provision of the services requested. Services and their pro-
viders are associated yn relationships ¢apabilities)implying a predefined behavior for a

broker whenever the service is requested, i.e. ECA-rules of the form:

ON service-request-event (service parameters)
[IF condition on parameters or broker state is true]
DO execute service provision actions;

generate reply event;

Workflow production data (manipulated by PE in workflow steps) is generally stored in exter-
nal systems which might not be accessible to the WFMS. Brokers may, however, provide ac-
cess to some of the production data to the WFMS-engine by providing interfaces as part of
their state. The broker state can be manipulated in the action parts of their ECA-rules. The bro-
kers and services of the example are shown in Table 2.

Broker Type Services Location
MEDICHECK application CntrIMedication clearing house
Medical Expert |user interface | CntrlTreatment headquarter
DBCL Oracle client LogClaim agency
Insurance Agent |user interface | HandleHIC, CntriCoverage, PrepAccept, agency

PrepReject
LPF printer frontend | Print agency

Table 2. Brokers and services of the example



The main advantages of using the B/S model to describe workflow system architectures
consist in the simplification of the system integration task and in the provision of powerful
general purpose definition mechanisms for functional, informational, and behavioral aspects of
workflow systems. Various aspects of workflow specifications as well as heterogeneous pro-
cessing entities can be mapped to a relatively simple and homogeneous representation layer,
which can then be directly transformed into an executable form.

4 EVE: A Middleware Component for Workflow Execution

From a point of view of the software architecture model, a runtime system and workflow en-
gine is needed to make a B/SM system executable. This runtime system forms the middleware
allowing brokers to execute workflows. A straightforward mapping between the event-based B/
SM and the execution engine is achieved by providingeaent-based middleware layén

other words, workflows are executed by brokers reacting to (and generating new) events. This

approach implies that the following groups of services are provided by EVE:

1. Distribution . Since processing entities typically are distributed over a network and work-
flows should be executable in a distributed manner, EVE must support distribution. This re-
quires distributed event detection and communication facilities between EVE(-servers) and
its clients (i.e., brokers).

2. Runtime repository. In order to maintain the necessary meta information to operate a
workflow system, naming, persistence, and retrieval services are needed. This is accom-
plished by the runtime repository which stores and provides information about brokers,
event types, ECA-rules, etc. This information can be altered at runtime and evolution of a
WS is thus possible without shutting down and recompiling the whole system.

3. Workflow execution. In order to execute workflows (in an event-driven style), event detec-
tion, event notification, and task assignment services are needed. These services should
also allow to execute workflows on remote sites. These tasks are accomplished by leverag-
ing event-based systems and services (such as active database systems or notification) to
workflow execution.

4. Event history management In order to facilitate maintenance of workflow systems, log-
ging, monitoring, and analysis services have to be provided. These services rely on event
histories maintained by EVE. The event history is made persistent and recoverable by us-
ing the corresponding services of the underlying object manager (Shore [8]).

5. Failure handling. In general, two types of failures can be distinguished: system failures
and failure at the workflow execution level. EVE provides exception event notification
mechanisms which combined with ECA-rules are used in the definition of reactions to
workflow execution errors (as proposed e.g., in [12]). Furthermore, by communicating with
brokers via special adapters and persistent event queues, EVE is able to handle temporary
unavailability and failures in the connectivity of brokers.

The execution of a workflow starts (or proceeds) as soon as some event is generated by a bro-

ker. The local EVE-server then performs event detection and rule execution. Within the execu-

tion of each rule, task assignment determines responsible brokers, which are then notified and
subsequently react as defined by their ECA-rules. Particularly, brokers can generate new
events, which again are handled by EVE-servers, and so on transitively (see Fig. 2). The ad-
vantage of this approach is that—due to the event-driven style—brokers do not have to know
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Figure 2: The workflow execution process in EVE

the providers of the requested services. Furthermore, once events are forwarded to responsible
PE, they can be handled asynchronously by the PE.

Brokers can also request the execution of (sub-)workflows by generating workflow request
events in one of their ECA-rules. Such subworkflows can be executed at the same or a remote
server. We however require that all the atomic steps directly contained in the same workflow
are executed on the same site, i.e., on any machine of the LAN managed by a particular EVE-
server. This site is called theme siteof the workflow. Subworkflows can be executed at sites
other than the home site of their parent workflows, and different instances of the same work-
flow type can also have different home sites. This is not a limitation as the required distribution
can be achieved by appropriately specifying subworkflows, whereas it significantly eases syn-
chronization of servers and leads to better synchronization performance (see section 5.2).

4.1 Multi-Server Architecture and Communication

Brokers involved in workflows typically reside on different machines, which results in work-
flow systems that are physically distributed to a varying degree (e.g., on different machines
within the same domain/LAN, or on different organizational subnets). EVE supports the dis-
tributed execution of workflows throughraulti-server/multi-client architecturdBy means of
the provided middleware services, this distribution is kept transparent for brokers (and the PE
they represent), which in general should not be required to know the physical location of their
service providers.

Workflow systems distributed over large areas, consist of mulEplE-serversThey pro-
vide all the aforementioned required services. The most important ones of these are described
in more detail in the following sections, while we immediately address EVE’s client/server ar-
chitecture and communication. EVE-servers communicate directly with their local brokers and
with remote servers. Thus, each broker communicates solely with its local EVE-server. Bro-
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kers interact transparently with each other by forwarding the events they generate through plat-
form-specificEVE-adaptergo their local server.

EVE-servers control the progress of workflows. Control is defined in terms of ECA-rules,
which determine what has to happen when a particular (composite) event occurs. They accept
and handle client connection requests over a “well-known” network address. Brokers may log
in into and logout from the system, whereby each logged-in broker establishes its own commu-
nication channel with its server. EVE-servers exchange administration information about the
current location and connectivity of brokers. They also provide persistent queues of events to
be forwarded to disconnected brokers. Workflow monitoring is achieved by using special-pur-
pose brokers which provide event monitoring services.

Brokers communicate with their local EVE-server through an EVE-adapter. EVE-adapters
—normally a library linked to the broker code—thus provide the interface of the EVE-system
to brokers. They provide communication transparency for server login as well as for event gen-
eration and notification. Adapters also handle temporary server unavailability by keeping per-
sistent queues of client-generated events. Brokers are informed of the occurrence of interesting
events by callbacks from their adapter which provides a listening port to the EVE-server.

An EVE-server forwards over the network event occurrences to the adapters of brokers
that are registered in the runtime repository as interested in these events. During the execution
of broker actions, new events may be generated by the broker. The broker then informs its local
EVE-server about the occurrence of these events again through its EVE-adapter. The EVE-
server in turn performs event detection, logs these events as well as eventual resulting compos-
ite events in the event history, and forwards the occurrences to other interested local brokers
and to the servers of interested remote brokers. An overview of the architecture of EVE and the
example brokers is presented in Fig. 3. EVE-servers reside at the insurance agency (site sl), at
the company headquarter (site s2), and the clearing house (site s3).

The communication infrastructure is implemented usingAtiaptive Communication En-
vironmentframework [24]. EVE-servers are implemented on Solaris 2.5 through extensions to
the acceptor pattern [25] that dispatches a handler for each connecting broker. This handler is
responsible for incoming events and initiates the appropriate actions in the workflow engine
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(i.e., triggers the event detection process). The adapter implementation is client-platform spe-
cific. Currently, Java and C++ versions have been implemented.

4.2 The EVE Runtime Repository

The runtime repository implements naming, persistence, and querying services and thus con-

tains information needed to execute workflow instances. The explicit representation of this

meta-information in the runtime repository leads to a higher degree of flexibility (compared to

approaches that use hard-wired, interpretive techniques for workflow execution) and better

maintainability of workflow systems (compared to compilation-based approaches). The repos-

itory is managed by EVE-servers on top of the object-oriented database system Shore [8]. The

runtime repository contains the following information:

» workflow types (name, initiation and termination events, active and terminated instances),

» specification of the participating brokers including their context-specific behavior and re-
sponsibilities,

» organizational relationships among brokers and between brokers and groups,

» event types corresponding to those defined in the event part of broker-ECA-rules, and

» ECA-rules defining the structure of workflows.

ECA-rules. ECA-rules in EVE—not to be confused with broker-ECA-rules—implement pro-
cesses and broker interactions. An EVE-rule is defined as a taplet type, condi-
tion, action) . Whenever an instance of the event type occurs and the condition holds, the
action is executed. Conditions return a set of object references, they are thus considered to hold
if they return a non-empty result. The resulting set of references is passed to the action part.
Conditions can, e.g., be used to implemisk assignmenthe condition computes the set of
eligible brokers for a request and selects one based on the task assignment strategy specified
for the request (event type). Possible task assignment strategies are:
* random (any eligible broker is chosen),
» load-based (the broker with the minimal number of pending requests is chosen),
» responsibility-based (the effectively chosen broker must fulfill further requirements as spec-
ified in the current request),
* a combination of these strategies.
Actions are arbitrary code fragments, typically including notifying a broker of a service re-
guest. EVE-rules reside on EVE-servers; they are compiled and stored in dynamically linkable
libraries and loaded upon execution time whenever the corresponding rule fires.
The execution of the serviamgClaim for example, can start when the execution of the
subworkflowsswi sw2 and the servic&€ntriCoverage is completed. This is expressed by
rule R1 residing on serves 2
ON CON(RPL(CntriCoverage.OK, HIC),

CON(RPL(SW1.Done, Result),RPL(SW2.Done, Result)))
DO raise(REQ, LogClaim, HIC, SW1.Done.Result, SW2.Done.Result)

and a further rule falask assignmenesiding orsi:

ON REQ(LogClaim,HIC))
IF br =assign(LogClaim) /I filter: returns assigned broker
DO  br->notify(REQ, LogClaim, HIC, SW1.Done.Result, SW2.Done.Result)

2. The checks for equality of workflow ids and broker ids are not shown here
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5 Workflow Execution

In order to allow event-driven workflow execution, EVE has to implement detection and sig-
naling of primitive and composite events to interested brokers. Composite event detection is an
iIssue extensively considered in centralized ADBMS [e.g., 11]. However, the semantics of com-
posite events are different in a distributed system. This fact renders the concepts and tech-
niques used in centralized ADBMS unfeasible or inadequate for distributed environments and
thus need to be extended.

5.1 Event Occurrences and Event Detection

Event occurrences are tlaetual happeningsf interest at some point in time and are consid-
ered as instances of event types. Each occurrence has several attributes:

» theeventtype of the occurrence

» the occurrenceite

* a unique site-specifi@currence identifier

» thetimestamp Wwhen the event occurred (see section 5.2 and [30])

» the name of the requestsslvice

* arequest identifier (in case of request, confirmation and reply events)

* aworkflow identifier within which the event has occurred

 the identifier of theéroker which raised the event

 a list of component occurrences in case of composite events

 alist of typed parameters (i.e., production data).

Events are detected by persistent event detector (ED) objects residing in EVE-servers. In order
to generate a new primitive event, a broker notifies its server about the occurrence via its adapt-
er. The server then forwards the event occurrence to the appropriate event detector. Time events
are detected based on the system clock. After primitive event detection, composite event detec-
tion takes place. For that matter, we adapted the approach originally proposed for the central-
ized ADBMS Sentinel [11]. A composite ED is a graph (see Fig. 4), where nodes are event
types and edges represent event composition. Nodes are marked with references to not-yet-
consumed component occurrences. Whenever an event is detected, the parent nodes are in-
formed and check whether the new event together with already obtained component events can
form a new event composition. This check is performed in an event type-dependent way. If
multiple instances of a component event type exist, the oldest adequate one is chosen (this is
the chronicle  consumption mode [11], which is the appropriate one for workflow manage-
ment). In case the new event cannot be consumed, the ED stores a reference to it until a com-

E1 AND (E2 AND E3)) - - - - - - .. I true

DO /I request the log service
/

PL(CntrICoverage O> C RPL(SWl Done) RPL(SW2.Done)
E3

Figure 4:Event detector graph with its attached rule(s) for the event in rule R1
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position is possible (i.e., until new sibling component occurrences have been received). Event
detection is recursive; whenever a parent node can compose a new occurrence, it in turn in-
forms its parents, a.s.o. in a bottom-up manner.

In addition to event composition edges, event nodes reference rule objects. If a (primitive
or composite) event occurrence is detected which has a rule attached to it, then the rule is add-
ed to the list of rules to be fired. This firing actually takes place as soon as the event detection
cycle has been terminated.

5.2 Distributed Composite Event Detection and Server Synchronization

Timestamps play a crucial role in defining semantics of composite events and define the order-
ing of event occurrences. In centralized environments a global time can be assumed for this or-
dering, whereas it does not exist in distributed environments. In EVE we thus adopt the
approach of [26] to deal with distributed event ordering. We assume that each site has a local
clock. Local clocks are synchronized with a precision p. Event occurrences can be globally or-
dered, provided that the granularity g of the global time-base is larger than p. In the 2g-prece-
dence model [31], two events occurring at different sites are ordered whenever the timestamp
of one event is at least 2g larger than that of the other one. If the difference of the timestamps is
less than 2g, then the events are considered to occur concurrently. If two events occur at the
same site, then they can be ordered whenever they are at least one clock tick apart. For details
on timestamp computation with the 2g-precedence model, see [26].

Correct event composition in the chronicle consumption mode [11] relies on the ordering
of component occurrences using timestamps. Upon event composition, the oldest eligible in-
stance is chosen whenever there are multiple candidates. Thus, new events can only be com-
posed if no older adequate component event has occurred at some site. This poses a special
problem in distributed environments, since the signaling of events from remote sites typically
takes different amounts of time or may even be temporarily impossible due to a detector site
crash, and the order of arrival of events from different remote sites may not be the same as their
order of occurrence. Thus, an ED can correctly compose new events out of components origi-
nating from multiple sites only if it is synchronized with the detectors of its components and so
on recursively. Furthermore, efficiency considerations dictate that the effort to synchronize
servers and their event detectors should not overly burden the workflow execution process
(e.g., with respect to the number of affected detectors and the number of messages needed to
exchange synchronization information).

Only servers cooperating within some specific workflow instance need to be synchronized,
because events generated within instances of unrelated workflow types are neither temporally
nor causally related. Thus, synchronization is needed for event detectors that detect workflow
termination events or directly or indirectly contain such events as components.

The detector synchronization works as follows (see Fig. 5). Whenever a broker attached to
a server $requests a (sub) workflow and $rwards this request to another servegr then
the affected detectors are informed that they need to synchronize wiith&s, each detector
maintains the information on which servers it needs to synchronizesythehronization sgt
with. For each server;$1 such a set, a reference counter records the number of workflow in-
stances requested by & S. S; also records for each server in the set when the last event was
received. From this set the global time can be derived until which the local server is synchro-
nized with the involved remote servers (thgnchronization pointwhich is the minimum of
the events’ timestamps least recently received from the remote servers). The server which has

11
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Figure 5:Synchronization of Servers and Event Detectors

signalled this event is called thmost recently synchronized sitdRS. Since it is guaranteed
that all events with timestamps earlier than the synchronization point have been received, it is
safe for an ED to consume these events for composite event detection.

Whenever one of the affected detectors atéeives an event or a component event, the
timestamp of this event will be larger (i.e., later) than the synchronization point. In case the
event washotsent by the MRS, the received event is queued and not further processed. Other-
wise, the new MRS is determined (which then also determines the new synchronization point),
and all queued events that occurred prior to the new synchronization point are flushed (i.e.,
processed as in centralized event detection).

Two kinds of events exchanged between servers are relevant for synchronization: synchro-
nization events and workflow termination events. Synchronization events do not bear any spe-
cific meaning, but only indicate that the sending server is still alive. They are sent out at
predefined synchronization intervals to all servers from which request events for still executing
(sub) workflow instances have been received. In case a server receives such an event, it knows
that it has received all previous workflow termination events from the remote server, and can
exploit this information for synchronization of its detectors.

Workflow termination events indicate the completion of a workflow instance; they are pro-
cessed by ED. In case such an event is received (i.e., a workflow reply or exception), the refer-
ence counter of the respective server in the corresponding synchronization set is decremented.
If the new value of the reference counter is 0, then no more instances of the corresponding
workflow type are active at the remote server. This server can thus be deleted from the synchro-
nization set of the respective detectors (and their ancestors).

This procedure allows to minimize for each server and workflow type the number of re-
mote servers it has to be synchronized with. Consequently, detectojsae¢ Snly then syn-
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chronized with $if S; in fact currently executes on behalf of 8ne or more instances of the
workflow type.

The event detection locations for the execution of the example workflow are shown in
Table 3. In our example, note that the detector of the e®R{RPL(CntriCoverage.OK, HIC),
CON(RPL(SW1.Done, Result), RPL(SW2.Done, Result))) has to be synchronized with the
ED for its component events.

Agency site (s1) Headquarter site (s2) Clearing house site (s3)

REQ(HandleHIC);
RPL(HandleHIC.Done);

REQ(CntrICoverage) REQ(SW1); REQ(SW2)
REQ(CntrlTreatment); REQ(CntrIMedication)
RPL(CntrITreatment.Done); RPL(CntrIMedication.Done)

RPL(SW1.Done); RPL(SW2.Done);
RPL(CntrICoverage.OK)

CON(RPL(CntrICoverage.OK),
CON(RPL(SW1.Done),
RPL(SW2.Done)))

REQ(LogClaim);
RPL(LogClaim.Done);
REQ(PrepAccept);
RPL(PrepAccept.Done);
REQ(Print);
RPL(Print.JobCompleted);

Table 3. Event detection sites for a sample workflow execution (time precedence is depicted by the
horizontal table lines, event parameters are omitted for simplification)

5.3 Event History

At a specific point in time, the sequence of event occurrences describes what has happened in
the past. These occurrences form éwent historyFirst, the elements of the history together

with other events occurring subsequently constrain what will happen in the future. This is the
case for an occurrence if its type is a component of a composite event type and has not yet been
consumed for an occurrence of that type. Second, (parts of) the entire event history may pro-
vide important information about broker actions and the course the single workflows have tak-
en. The event history thus is a database for monitoring and analysis (and successive
optimization) of workflows [15]. It is maintained by EVE-servers and is physically distributed
among them. Each server maintains a consistent view of the global event history because com-
posite events are inserted in it only after detector synchronization has taken place meaning that
no earlier candidate component events have occurred. A logically integrated view of the global
event history is possible based on the partial ordering of the timestamps of events. The history
also forms the basis for the formal definition of workflow execution correctness [30].

5.4 Summary

Based on the services described above, EVE is a middleware layer that allows distributed reac-
tive components to cooperate in a way that renders distribution transparent. The event-based
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style of EVE eases the integration and coordination of these reactive components and the
maintenance and evolution of workflow systems. EVE’s multi-server architecture along with
distributed event detection and detector synchronization avoids a centralized architecture; it is
therefore potentially more efficient and less vulnerable to functionality degradation in case of
site crashes (depending of course on the workflow specifications currently executing).

Special-purpose services in EVE (such as task assignment) enable reactive components to
execute workflows in an event-driven style; workflow systems described in terms of an event-
based model can thus be made executable in a seamless way.

6 Conclusions

A proper software architecture of workflow systems is crucial in order to adequately structure
the entire environment (including PE, not only the coordination system) and to fulfill further
requirements such as flexible integration of PE, reusability of PE-definitions, etc. We use a lay-
ered event-based architecture for workflow systems. Specifically, we have introduced the dis-
tributed event engine EVE serving as the underlying execution platform for workflows. An
event-based approach to workflow execution combines runtime efficiency with flexibility. The
contributions of this paper can be summarized as follows:
» a novel architecture for a distributed WS is presented providing the functionality for event-
driven workflow execution,
» an integrated framework addresses problems relevant to the distributed execution of work-
flows (e.g., event-detection, global event history).
Further work remains to be done on how to specify and implement semantic recovery mecha-
nisms in EVE based on ECA-rules. Ultimately, we will address workflow type evolution, par-
ticularly with respect to long running workflows and organizational change. The capabilities in
this area obviously depend on the semantics of workflows, and we will rely on our previous
work on rule-base evolution in object-oriented ADBMS.
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