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Abstract. This work presents two new score functions based on the
Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian
network structures. They consider the sensitivity of BDeu to varying pa-
rameters of the Dirichlet prior. The scores take on the most adversary
and the most beneficial priors among those within a contamination set
around the symmetric one. We build these scores in such way that they
are decomposable and can be computed efficiently. Because of that, they
can be integrated into any state-of-the-art structure learning method
that explores the space of directed acyclic graphs and allows decom-
posable scores. Empirical results suggest that our scores outperform the
standard BDeu score in terms of the likelihood of unseen data and in
terms of edge discovery with respect to the true network, at least when
the training sample size is small. We discuss the relation between these
new scores and the accuracy of inferred models. Moreover, our new cri-
teria can be used to identify the amount of data after which learning
is saturated, that is, additional data are of little help to improve the
resulting model.

Keywords: Bayesian networks, structure learning, Bayesian Dirichlet
score

1 Introduction

A Bayesian network is a versatile and well-known probabilistic graphical model
with applications in a variety of fields. It relies on a structured dependency
among random variables to represent a joint probability distribution in a com-
pact and efficient manner. These dependencies are encoded by an acyclic di-
rected graph (DAG) where nodes are associated to random variables and con-
ditional probability distributions are defined for variables given their parents in
the graph. Learning the graph (or structure) of Bayesian networks from data is
one of its most challenging problems.

The topic of Bayesian network learning has been extensively discussed in
the literature and many different approaches are available. In general terms,
the problem is to find the structure that maximizes a given score function that
depends on the data [1]. The research on this topic is very active, with numerous
methods and papers [2, 3, 4, 5, 6, 7, 8, 9, 10]. The main characteristic tying
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together all these methods is the score function. Arguably, the most commonly
used score function is the Bayesian Dirichlet (likelihood) equivalent uniform
(BDeu), which derives from BDe and BD [11, 12, 1] (other examples of score
functions are the Bayesian Information Criterion [13], which is equivalent to
Minimum Description Length, and the Akaike Information Criterion [14]). There
are also more recent attempts to devise new score functions. For example, [15]
presents a score that aims at having its maximization computationally facilitated
as the amount of data increases.

The BDeu score aims at maximizing the posterior probability of the DAG
given data, while assuming a uniform prior over possible DAGs. In this work
we propose two new score functions, namely Min-BDeu and Max-BDeu. These
scores are based on the BDeu score, but they consider all possible prior proba-
bility distributions inside an ε-contaminated set [16] of Dirichlet priors around
the symmetric one (which is the one used by the original BDeu). Min-BDeu is
the score obtained by choosing the most adversary prior distributions (that is,
those minimizing the score) from the contaminated sets, while Max-BDeu is the
score that uses the most beneficial priors to maximize the resulting value. We
demonstrate that Min-BDeu and Max-BDeu can be efficiently calculated and
are decomposable. Because of that, any structure learning solver can be used
to find the best scoring DAG with them. We empirically show that Min-BDeu
achieves better predictive accuracy (based on the likelihood of held-out data)
than the original BDeu for small sample sizes, and performs similarly to BDeu
when the amount of data is large. On the other hand, Max-BDeu achieves better
edge accuracy (evaluated by the Hamming distance between the set of edges of
true and learned moralized graphs).

A very important question regarding structure learning is whether the result
is accurate, that is, whether it produces a network that will give accurate results
on future unseen data. In this regard, we empirically show an interesting corre-
lation between accuracy obtained with a given training sample size and the gap
between Max-BDeu and Min-BDeu. This correlation might be used to identify
the amount of data that is necessary to obtain an accurate network, as we will
discuss later on.

The paper is divided as follows. Section 2 defines Bayesian networks, intro-
duces our notation and the problem of structure learning. Section 3 presents our
new score functions and demonstrates the existence of efficient algorithms to
compute them. Section 4 describes our experimental setting and discusses two
experiments regarding the accuracy of Min-BDeu and the use of Max-BDeu and
Min-BDeu to help in predicting the amount of data needed to achieve a desired
learning accuracy. Finally, Section 5 concludes the paper and discusses future
work.

2 Learning Bayesian Networks

A Bayesian network represents a joint probability distribution over a collection
of random variables, which we assume to be categorical. It can be defined as a
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triple (G,X ,P), where G .
= (VG , EG) is an acyclic directed graph (DAG) with VG

a collection of n nodes associated to random variables X (a node per variable,
which might be used interchangeably to denote each other), and EG a collection
of arcs; P is a collection of conditional mass functions p(Xi|Πi) (one for each
instantiation of Πi), where Πi denotes the parents of Xi in the graph (Πi may
be empty), respecting the relations of EG . In a Bayesian network every variable
is conditionally independent of its non-descendant non-parent variables given its
parent variables (Markov condition).

We use uppercase letters such as Xi, Xj to represent variables (or nodes of
the graph), and xi to represent a generic state of Xi, which has state space ΩXi

.
=

{xi1, xi2, . . . , xiri}, where ri
.
= |ΩXi | ≥ 2 is the number of (finite) categories of

Xi (| · | is the cardinality of a set or vector). Bold letters are used to emphasize
sets or vectors. For example, x ∈ ΩX

.
= ×X∈XΩX , for X ⊆ X , is an instantiation

for all the variables in X. rΠi
.
= |ΩΠi | =

∏
Xt∈Πi rt is the number of possible

instantiations of the parent set Πi of Xi, and θ = (θijk)∀ijk is the entire vector of
parameters with elements θijk = p(xik|πij), for i ∈ {1, . . . , n}, j ∈ {1, ..., rΠi},
k ∈ {1, ..., ri}, and πij ∈ ΩΠi . Because of the Markov condition, the Bayesian
network represents a joint probability distribution by the expression p(x) =
p(x1, . . . , xn) =

∏
i p(xi|πij), for every x ∈ ΩX , where every xi and πij are

consistent with x.

Given a complete data set D
.
= {D1, . . . , DN} with N instances, where Du

.
=

xu ∈ ΩX is an instantiation of all the variables, the goal of structure learning is
to find a DAG G that maximizes a given score function, that is, we look for G∗ .=
argmaxG∈G sD(G), with G the set of all DAGs with nodes X , for a given score
function sD (the dependency on data is indicated by the subscript D).1 In this
paper, we consider the Bayesian Dirichlet equivalent uniform (BDeu) [11, 12, 1].
The BDeu score idea is to compute a function based on the posterior probability
of the structure p(G|D). In this work we use p(D|G), which is equivalent to the
former (in the sense of yielding the same optimal graphs) if one assumes p(G) to
be uniform over DAGs:

sD(G)
.
= log p(D|G) = log

∫
p(D|G,θ) · p(θ|G)dθ ,

where the logarithm is used to simplify computations, p(θ|G) is the prior of θ
for a given graph G, assumed to be a Dirichlet with parameters α

.
= (αi)∀i with

αi
.
= (αijk)∀jk (which are assumed to be strictly positive and whose dependence

on G, or more specifically on Πi, is omitted unless necessary in the context):

p(θ|G) =

n∏
i=1

rΠi∏
j=1

Γ (
∑
k

αijk)

ri∏
k=1

θ
αijk−1
ijk

Γ (αijk)
.

1 In case of many optimal DAGs, then we assume to have no preference and argmax
returns one of them.



4 Scanagatta et al.

From now on, we denote the Dirichlet prior by its defining parameter α. Under
these assumptions, it has been shown [12] that

sD(G) = log

n∏
i=1

rΠi∏
j=1

Γ (
∑
k αijk)

Γ (
∑
k(αijk + nijk))

ri∏
k=1

Γ (αijk + nijk)

Γ (αijk)
, (1)

where nijk indicates how many elements of D contain both xik and πij (the
dependence of nijk on Πi is omitted too). The BDe score assumes the prior
α to be such that αijk

.
= α∗ · p(θijk|G), where α∗ is the parameter known

as the Equivalent Sample Size (or the prior strength), and p(θijk|G) is the prior
probability for (xik∧πij) given G (or simply given Πi). The BDeu score assumes

further that p(θijk|G) is uniform and thus αijk
.
= α∗

rΠiri
and α∗ becomes the only

free parameter.
An important property of BDeu is that its function is decomposable and can

be written in terms of the local nodes of the graph, that is, sD(G) =
∑n
i=1 si(Πi)

(the subscript D is omitted from now on), such that

si(Πi) =

rΠi∑
j=1

(
log

Γ (
∑
k αijk)

Γ (
∑
k(αijk + nijk))

+

ri∑
k=1

log
Γ (αijk + nijk)

Γ (αijk)

)
. (2)

3 Min-BDeu and Max-BDeu Scores

In order to study the sensitivity of the BDeu score to different choices of prior α,
we define an ε-contaminated set of priors. Let β denote α∗

rΠi
, 1 denote the vector

[1, . . . , 1] with length ri, and S denote the set of the ri distinct degenerate mass
functions of dimension ri. Then

∀ij : Aεij
.
= CH

{
β

(
(1− ε)
ri

1 + εv

)
| v ∈ S

}
=

{
∀k : αijk ∈

[
β

(1− ε)
ri

, β

(
ε+

(1− ε)
ri

)]
,

ri∑
k=1

αijk = β

}
,(3)

where CH means the convex hull operator. Equation (3) defines a set of priors for
each i, j by allowing the Dirichlet parameters to vary “around” the symmetric
Dirichlet with sum of parameters β. To accommodate possible different choices
of priors, we rewrite the score function for each node to take into account the
value of α:

si(Πi,αi) =

rΠi∑
j=1

si,j(Πi,αij),

si,j(Πi,αij) = log
Γ (
∑
k αijk)

Γ (
∑
k(αijk + nijk))

+ s′i,j(Πi,αij), and

s′i,j(Πi,αij) =

ri∑
k=1

log
Γ (αijk + nijk)

Γ (αijk)
=

∑
k∈{1,...,ri}:
nijk 6=0

log
Γ (αijk + nijk)

Γ (αijk)
. (4)
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where αij ∈ Aεij for a given 0 < ε ≤ 1. Using this extended parametrization of
the score, we can define our new score functions Min-BDeu s and Max-BDeu s.

s(G)
.
= min

α

n∑
i=1

si(Πi,αi) and s(G)
.
= max

α

n∑
i=1

si(Πi,αi) ,

where maximization and minimization are taken with respect to the sets Aεij , for
every i, j. The names Max-BDeu and Min-BDeu represent the fact that a max-
imization (or minimization) of the Bayesian Dirichlet equivalent uniform score
over the ε-contamination set is performed. However, we note that Min-BDeu
and Max-BDeu scores as defined here do not necessarily respect the likelihood
equivalence property of BDeu. These scores can be seen as a sensitivity analysis
of the structure under different prior distributions [17]. It is possible to maintain
likelihood equivalence by enforcing constraints among the Dirichlet parameters,
but decomposability would be lost and the score computation would become
very expensive [18]. Arguments about varying priors and likelihood equivalence
are given in [19].

We devote the final part of this section to demonstrate that Min-BDeu and
Max-BDeu can be efficiently computed. The first important thing to note is that
the maximization can be performed independently for each i, j (the same holds
for the minimization):

s(G) = max
α

n∑
i=1

si(Πi,αi) =

n∑
i=1

max
αi

si(Πi,αi) =

n∑
i=1

rΠi∑
j=1

max
αij∈Aεij

si,j(Πi,αij) ,

where

max
αij∈Aεij

si,j(Πi,αij) = log
Γ (β)

Γ (β +
∑
k nijk)

+ max
αij∈Aεij

s′i,j(Πi,αij) .

Expanding the Gamma functions of s′i,j(Πi,αij) by repeatedly using the equality
Γ (z + 1) = zΓ (z), we obtain the following convex optimization problem with
linear constraints:

max
(αijk)∀k

∑
k∈{1,...,ri}:
nijk 6=0

nijk−1∑
w=0

log(αijk + w)

subject to

ri∑
k=1

αijk = β and ∀k : αijk ∈
[
β

(1− ε)
ri

, β

(
ε+

(1− ε)
ri

)]
.

Hence, the solution of maxαi si(Πi,αi) to obtain the local score of parent set
Πi of Xi can be done with rΠi calls to a convex programming solver, each of
which runs in worst-case time cubic in ri [20].

The solution for the minimization minαij∈Aεij s
′
i,j(Πi,αij) is even simpler: it

is enough to find k∗ = argminnijk and take as optimal solution the prior with

αijk∗ = β

(
ε+

(1− ε)
ri

)
and ∀k 6= k∗ : αijk = β

(1− ε)
ri

.
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In order to compute the score of parent set Πi, we simply repeat this procedure
for every j and compute the associated scores. While much easier to solve, the
proof of correctness is slightly more intricate. We do it in three steps. The first
step considers the case when at least one nijk = 0. In this case, we can safely
choose any k∗ such that nijk∗ = 0 and the solution value is trivially minimal,
because the corresponding term does not appear in the objective function defined
by (4) and each function

g(η, αijk) =

η−1∑
w=0

log(αijk + w)

appearing in (4) is monotonically increasing with η > 0, hence we cannot do

better than choosing the minimum possible value (that is, β (1−ε)
ri

) for each αijk
associated to non-zero nijk.

Now we can assume that nijk ≥ 1 for every k. The second step of the proof
is by contradiction and its goal is to show that only one αijk will be different

from β (1−ε)
ri

. So, suppose that the optimal solution is attained at a point αij

such that there are k1 6= k2 with αijk1 >
(1−ε)β
ri

, αijk2 >
(1−ε)β
ri

, nijk1 ≥ 1 and
nijk2 ≥ 1. Let µ = αijk1 + αijk2 . Take the terms of the objective function in (4)
that correspond to k1 and k2:

f(µ, αijk1) =

nijk1−1∑
w=0

log(αijk1 + w) +

nijk2−1∑
w=0

log(µ− αijk1 + w) .

While keeping µ constant, we can decrease αijk1 until β (1−ε)
ri

, or increase it until

αijk2 = β (1−ε)
ri

. The second derivative of f(µ, αijk1) with respect to αijk1 is

−
nijk1−1∑
w=0

1

(αijk1 + w)2
−
nijk2−1∑
w=0

1

(µ− αijk1 + w)2
< 0 ,

so the function is concave in αijk1 . Because of that, the minimum is attained at

one of its extremes, that is, either at αijk1 = β (1−ε)
ri

or at αijk2 = β (1−ε)
ri

. If we
take such a new solution α′ij , it achieves value strictly smaller than that of αij ,
which is a contradiction.

Hence we can assume that all k 6= k∗ must have αijk = β (1−ε)
ri

and we only

need to choose the k∗ whose αijk∗ will be β
(
ε+ (1−ε)

ri

)
. The third step of the

proof is straightforward: the best choice for k∗ in order to minimize s′i,j(Πi,αij)
is such that

k∗ = argmin
k

g

(
nijk, β

(
ε+

(1− ε)
ri

))
,

that is, the one of smallest nijk, simply because the function g is monotonically
increasing with η, as described previously, and also with αijk.
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4 Experimental Setup

We begin this section by describing data and settings that are used in the ex-
periments. Our goals are to assess the accuracy of the new proposed scores and
to understand the relation between them and the quality of inferred networks.
The experimental procedure is performed in steps, as explained in the following.

In order to allow for a comparison against the true model, we generate data
from pre-defined Bayesian networks. We experiment both with networks from
the literature and with random-generated networks. In the former case, we use
the well-known networks named child (20 nodes) [21], insurance (27 nodes) [22],
water (32 nodes) [23], and alarm (37 nodes) [24]. In the latter case, we employ
the BNGenerator package v0.3 of [25] to obtain random Bayesian networks. The
options passed to the program are the desired number of nodes in the randomly
generated network and the maximum degree (sum of number of parents and
children) allowed for each node in the graph (to avoid excessively dense graphs,
which would require a too large amount of data for learning because of their
complexity). The maximum degree (sum of incoming and outgoing arcs) is fixed
to six in all the experiments, while the number of nodes varies from 20 to 50
nodes. The number of states is 2 for every node. For each different number of
nodes, ten networks are randomly generated.

From each one of these networks, data sets are sampled with ten different
sample sizes N = 10 · 2i,∀i ∈ {1, . . . , 10} using the R package bnlearn v3.5 [26].
These data sets are then used to compute the BDeu scores for each node, as well
as Min-BDeu and Max-BDeu, with equivalent sample size α∗ set to one, ε set to
one half, and upper limit of three parents per node (because of decomposability,
scores are always computed per node and stored in some data structure for later
querying). We point out that we have not tuned these values, but instead we
chose values that are common in the literature. In spite of that, the results
presented in this work remain unaltered under small modifications of α∗ around
the chosen value (data not shown). We leave for future work a thorough analysis
of different values for α∗. Limiting the number of parents per node is a common
practice and has the purpose of avoiding a large computational cost of evaluating
the scores of a great number of parent sets per node (this number increases
exponentially with the limit). We discuss the implications of this decision later
on. After the scores are computed and pruned [27], we call the structure learning
solver Gobnilp v1.4.1 [2, 3] to infer the Bayesian network in an optimal way (that
is, we wait until the solver finds the globally optimal structure for the given local
scores). With that network, parameter estimation is performed using the same
Dirichlet prior parameters and the same data as used for structure learning.

In order to check the accuracy of the inferred networks, from each true net-
work we generate an additional data set with 10000 samples that is not available
to the learning procedure. On these data we compute the log-likelihood function
using both the true network and the inferred network, and to make the outputs
comparable we take the percentage difference between them, which we call like-
lihood accuracy. Lower values of this measure indicate that the inferred network
evaluates the log-likelihood of the held-out data in a more similar way to the
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evaluation done by the true network. The evaluation of the log-likelihood using
the inferred network over unseen data sampled from the true network approx-
imates the Kullback-Leibler (KL) divergence and converges to the latter when
the amount of data goes to infinity. We refrained from a direct use of KL diver-
gence or other measure of distance between the true distribution (represented
by the true network) and the inferred one because of the computational cost
of evaluating KL, given that true and inferred networks have (almost always)
different structures.

In summary, each execution (i) generates a network (or picks a known one)
of a given number of nodes; (ii) generates a data set for accuracy evaluation; (iii)
generates a data set for training of a given number of samples; (iv) computes the
local scores for each variable using the training data set, for a given decomposable
score function; (v) calls the learning procedure using the just calculated local
scores; (vi) evaluates the likelihood accuracy with learned/true networks using
the held-out data.

4.1 Comparison among Scores

In this experiment, we compare the likelihood accuracy obtained by our proposed
scores and the original BDeu. Figure 1 show the average results of the experiment
for random networks ranging from 20 to 50 nodes. Min-BDeu achieves better
accuracy with respect to the original BDeu on held-out data for training sample
size smaller than 100 to 200 samples, and performs similar to the others for
larger sample sizes. On the other hand, Max-BDeu achieves worse accuracy than
BDeu. Results are consistent across different true networks and network sizes.
We conjecture that Min-BDeu has been able to produce better networks by
reducing the amount of fitting to the training data when sample size was small,
and by transparently increasing this fitting with the increase of the sample size.
For the same reason, we further conjecture Max-BDeu produced worse results
than BDeu when given few training data because of its increase in fitness. The
evaluation for well-known Bayesian networks is presented in Fig. 2. The same
overall behavior as with random networks is observed.

We also compare the similarity between learned and true networks. We obtain
a measure of dissimilarity by computing the moral graph of both true and learned
networks, and by counting the total number of mismatches over all pairs of
nodes. Figure 3 shows average results for random networks ranging from 20 to
50 nodes. Max-BDeu achieves a better similarity than others for training sample
size smaller than 100 to 200 samples, and performs similarly for larger sample
sizes. On the other hand, Min-BDeu achieves worse similarity than BDeu. Results
are consistent across different network sizes. To analyze further these findings,
we show the average total number of arcs produced by the different scores on the
same experiments (Fig. 4). Notably, Max-BDeu yields denser inferred networks,
while Min-BDeu prefers sparser networks.

The results obtained so far suggest that Min-BDeu and Max-BDeu aim at
different goals. Min-BDeu has better likelihood accuracy, which is achieved by
using sparser graphs than original BDeu’s. Max-BDeu has better edge accuracy,
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(a) 20 nodes. (b) 30 nodes.

(c) 40 nodes. (d) 50 nodes.

Fig. 1. Average likelihood accuracy among networks learned from different score func-
tions. The graphs feature BDeu (square points), Max-BDeu (cross points), Min-BDeu
(circle points), Empty net (bullet points). Each curve of the graph corresponds to the
average over random networks used for sampling the data. The points in those curves
correspond to the accuracy for different training data sample size.

computed as the learned graph similarity to the true one, which is achieved by
using denser graphs than BDeu’s. These results suggest that with small amount
of data, better likelihood accuracy is obtained with networks that are simpler
than the true network, probably because the data are not enough to learn good
parameters if a denser network were used. This might explain the reason why
Max-BDeu has poorer performance in terms of log-likelihood of held-out data.
In fact, we further analyzed this situation by learning the parameters of inferred
graphs using a large data set of 5000 samples (the graphs themselves were learned
with the appropriate varying sample sizes). Figure 5 shows average results for
random networks of 20 nodes and different training sample sizes for structure
learning, while using 5000 samples for parameter learning. In this scenario, Max-
BDeu performed better than the others did even in terms of likelihood accuracy,
suggesting that its poorer performance was related to poorer parameter esti-
mation. When training sample size becomes large enough, the behavior of all
different methods becomes similar.
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(a) Child network. (b) Insurance network.

(c) Water network. (d) Alarm network.

Fig. 2. Likelihood accuracy among networks learned from different score functions
using data generated with well-known Bayesian networks. The graphs feature BDeu
(square points), Max-BDeu (cross points), Min-BDeu (circle points), Empty net (bullet
points). The points in the curves correspond to the accuracy for different training data
sample size.

4.2 Relation between Scores and Learning Saturation

The proposed scores Min-BDeu and Max-BDeu have an interpretation as the pes-
simistic and optimistic scenarios with respect to unknown “ideal” prior Dirichlet
distributions. The set of priors that we employ can be seen as a way to take into
account the sensitivity of the score to variations of the local priors. Min-BDeu
is aimed at finding the structure that maximizes the BDeu score under the most
adversary prior, that is, learning with Min-BDeu is done by a maximin approach.
Because of that, the fitting of Min-BDeu is less aggressive than that of BDeu.
On the other hand, Max-BDeu is a maximax approach: it yields the structure
that maximizes BDeu under the most beneficial prior, so it tends to fit more
aggressively than BDeu.

With these considerations in mind, one may define a measure of “sensitivity”
for an inferred graph G as the difference between s(G) and s(G) (note that these
values are logarithms of probabilities, so imprecision here is defined as the ratio
between upper and lower probabilities log(p(D|G)/p(D|G))). We have performed
experiments using only the BDeu score for learning, but whose result is later
evaluated in terms of this measure. That is, we execute experiments with only



Min-BDeu and Max-BDeu Scores for Learning Bayesian Networks 11

(a) 20 nodes. (b) 30 nodes.

(c) 40 nodes. (d) 50 nodes.

Fig. 3. Comparison on average computed dissimilarity between true and learned moral
graphs using different score functions. The graphs feature BDeu (square points), Max-
BDeu (cross points), Min-BDeu (circle points), Empty net (bullet points). The points
in the curves correspond to the total number of mismatches between the moral graph
of true and learned networks.

the BDeu score using randomly generated networks to sample training and held-
out data. The curves in the upper graph of Fig. 6 show the average likelihood
accuracy (over ten runs) obtained by the original BDeu for domains with different
number of nodes, as done before. Such accuracy can only be computed because
(for testing) we have available the true networks, thus we can generate samples
from it to create the held-out test data. Such curves decrease with the amount
of data used for learning, as expected. On the other hand, the same Fig. 6
(lower graph) displays the average sensitivity measure (score ratio) of the optimal
networks that have been found by BDeu (because of scale differences, we divided
them by the lower score so as to have them displayed in the same graph), which
does not depend on knowing the true network and thus can be computed in the
moment of learning. These curves of the lower graph of Fig. 6 also decrease as
the amount of data increases, an expected phenomenon as the importance of
the prior reduces with the increase in sample size. We can see in the figure a
relation between likelihood accuracy and the sensitivity measure. This suggests
that one can use the measure to determine (approximately) the amount of data
after which structure learning will not benefit anymore (or will benefit very little)
from additional data. In these tests, this saturation point happens around one
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(a) 20 nodes. (b) 30 nodes.

(c) 40 nodes. (d) 50 nodes.

Fig. 4. Comparison on average total number of arcs in the learned networks from
different score functions. The graphs feature BDeu (square points), Max-BDeu (cross
points), Min-BDeu (circle points), true network (bullet points). The points in the curves
correspond to the total number of arcs in the graphs of learned networks.

thousand samples. Previous to the saturation point, the likelihood accuracy of
the inferred networks greatly increases from the provision of more training data.
Past this saturation point, this increase becomes small and might not be cost-
effective in many situations. We note that the score alone could not be used for
this task, as it does not usually converge with the increase in the amount of data
(recall that we use the logarithm of the probability of data given the structure).

One might have noticed that the accuracy curves in Fig. 6 do not converge
to zero with the increase in the amount of data. This can be explained as an
effect of the restricted maximum number of parents per node during learning
(defined as three in our simulations). Figure 7 shows the likelihood accuracy
of original BDeu for varying limits on the number of parents (from 1 to 6) for
learned networks from data of randomly generated Bayesian networks with 20
nodes (true networks have no such limit in the number of parents, but have a
total degree limit of six). It is also very interesting to note the shape of the
accuracy curves. With small training sample size, it is seems better to force
stronger limits, as the inferred networks with greater number of parents might
be unreliable (recall that the number of training data and number of parents per
node are very related in terms of learning accuracy). This indicates, at least in
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Fig. 5. Average likelihood accuracy among networks learned from different score func-
tions. The graphs feature BDeu (square points), Max-BDeu (cross points), Min-BDeu
(circle points) for networks with 20 nodes. The structure of the networks is learned
with the given training data sample size, while the network parameters are learned
with a training data set of 5000 samples.

these experiments, that the original BDeu score was not able to control well the
complexity of the learned network with small sample sizes, given that the limit
on the number of parents was able to improve learning accuracy. This empirical
result corroborates with our previous results about Min-BDeu outperforming
the original BDeu when sample size is small.

5 Conclusions

In this paper we presented two new score functions for learning the structure
of Bayesian networks from data. They are based on allowing the Dirichlet prior
parameters of the Bayesian Dirichlet equivalent uniform (BDeu) to vary inside
a contamination set around the symmetric Dirichlet priors, while keeping its
strength fixed. Over this set of priors we choose the most adversary and the most
beneficial priors to construct the Min-BDeu and the Max-BDeu, respectively.
Learning with Min-BDeu is equivalent to a maximin approach, as one must find
the graph that maximizes the minimum score (over BDeu scores with priors
in the contaminated set). Min-BDeu prefers sparser graphs than the original
BDeu does when sample size is small, and converges to the original BDeu as the
amount of data increases. Max-BDeu is analogous, but using the most beneficial
prior, that is, a maximax approach.

We demonstrate that these new score functions can be efficiently computed
and are decomposable just like the original BDeu, so they can be used within
most of the current state-of-the-art structure learning solvers. In our experi-
ments, Min-BDeu has led to networks with higher accuracy than that of the
original BDeu score, in terms of fitting the true model. On the other hand, Max-
BDeu has led to better edge accuracy, that is, has fit the graph structure better.
We also employ a combination of Max-BDeu and Min-BDeu as a measure of sen-
sitivity. This measure visually correlates with the accuracy of inferred networks
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Fig. 6. Curves for likelihood accuracy (upper graph) and sensitivity measure as ratio
of Max- and Min-BDeu (lower graph) for inferred networks learned from training data
of different sizes using randomly generated Bayesian networks with 10 to 40 nodes.

and might be used to identify the amount of data that saturates the learning,
that is, the amount of data after which the accuracy of the inferred network
does not considerably improve anymore if additional data were made available.
Finally, an analysis of the BDeu accuracy with respect to the restriction on
the maximum number of parents per node helps to explain the better accuracy
of Min-BDeu against the original BDeu score when the training sample size is
small. Scenarios of small sample size are particularly important in applied fields
such as biomedicine and bioinformatics.

As future work we intend to expand our experiments, including the study of
the sensitivity of the parameters that define the size of the contamination and
the strength of the prior, as well as a deeper analysis about the consequences of
limiting the number of parents of each variable, in order to better understand
the properties of Min-BDeu and Max-BDeu. We also want to further study the
characteristics of the original BDeu and to investigate other score functions, for
instance using entropy as criterion to select priors.

Acknowledgments

Work partially supported by the Swiss NSF grants Nos. 200021 146606 / 1
and 200020 137680 / 1, and by the Swiss CTI project with Hoosh Technology.

References

1. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the
combination of knowledge and statistical data. Machine Learning 20 (1995) 197–



Min-BDeu and Max-BDeu Scores for Learning Bayesian Networks 15

Fig. 7. Average likelihood accuracy curves of learned networks from data of randomly
generated Bayesian networks with 20 nodes and maximum degree of six. Different
curves represent the result of inferred networks under different parent set size limits
during learning: maximum of one parent up to maximum of six parents.

243
2. Barlett, M., Cussens, J.: Advances in Bayesian network learning using integer

programming. In: Proceedings of the 29th Conference on Uncertainty in Artificial
Intelligence. UAI’13 (2013) 182–191

3. Cussens, J.: Bayesian network learning with cutting planes. In: Proceedings of
the 27th Conference on Uncertainty in Artificial Intelligence. UAI’11, Barcelona,
AUAI Press (2011) 153–160

4. de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using
constraints. Journal of Machine Learning Research 12 (2011) 663–689

5. de Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks using
constraints. In: Proceedings of the 26th International Conference on Machine
Learning. ICML’09, Montreal, Omnipress (2009) 113–120

6. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian Network
Structure using LP Relaxations. In: Proceedings of the 13th International Confer-
ence on Artificial Intelligence and Statistics. AISTATS’10 (2010) 358–365
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