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Abstract

We derive a closed-form asymptotic expansion formula for option implied volatility under a

two-factor jump-diffusion stochastic volatility model when time-to-maturity is small. Based

on numerical experiments we describe the range of time-to-maturity and moneyness for

which the approximation is accurate. We further propose a simple calibration procedure

of an arbitrary parametric model to short-term near-the-money implied volatilities. An

important advantage of our approximation is that it is free of the unobserved spot volatility.

Therefore, the model can be calibrated on option data pooled across different calendar dates

in order to extract information from the dynamics of the implied volatility smile. An example

of calibration to a sample of S&P500 option prices is provided. We find that jumps are

significant. The evidence also supports an affine specification for the jump intensity and

Constant-Elasticity-of-Variance for the dynamics of the return volatility.
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1 Introduction

The choice of an option pricing model is typically a tradeoff between its flexibility and its

analytical tractability. It has long been noted that the Black-Scholes formula does not fully

explain actual option prices. The phenomenon of implied volatility smile has led to numerous

generalizations of the Black-Scholes model via the introduction of stochastic volatility and

jumps. Nowadays, most of the analytically tractable specifications used in practice belong

to the class of affine jump-diffusion models (Duffie et al. (2000)). The vast majority of the

empirical literature employs two-factor affine models (see e.g. Andersen et al. (2002), Bates

(2000a,b), Bates (2003), Broadie et al. (2004), Eraker et al. (2003), Eraker (2004), Pan

(2002)).

The affine models admit closed-form option pricing at the expense of imposing strong

parametric restrictions. In the context of the two-factor model, the variance follows a square

root process (the so-called Heston (1993) specification), and the jump intensity is a linear

function of the variance. The affine specification is typically assumed on the ground of its

analytical tractability, but has been challenged on the empirical ground. Indeed, papers

attempting to go beyond the affine specification by considering more flexible models tend

to reject the Heston specification against the more general Constant-Elasticity-of-Variance

(CEV) specification (see e.g. Jones (2003), Aït-Sahalia and Kimmel (2004)).

Several approximations has been introduced to deal with analytically non-tractable mod-

els. They aim at avoiding the need to solve complex partial differential equations (PDEs)

or running lengthy Monte-Carlo simulations. Lewis (2000) derives the asymptotic expansion

of implied volatility assuming small volatility of volatility. Lee (2001) obtains a similar re-

sult assuming slow mean-reversion of the volatility. Alternatively, Fouque et al. (2000) study

fast mean-reverting volatility. Hagan et al. (2000) derive an approximate formula for implied

volatilities in the context of a CEV-type model assuming small volatility. Backus et al. (1997)

and Zhang and Xiang (2006) develop pricing formulae using a quadratic approximation of

the implied volatility smile.

This paper contributes to this literature by proposing a new closed-form approximation

for implied volatility based on its asymptotic expansion under a two-factor jump-diffusion

stochastic volatility model. The approximation is similar in spirit to the formulas obtained

in Lewis (2000) and Lee (2001). Both authors deal with stochastic volatility but without

jumps. The extension of their approaches to the jump-diffusion case is not clear. The main
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advantage of our result is that it is derived under a more general specification incorporating

jumps.

Alternative approximations of implied volatilities are proposed by Backus et al. (1997)

and Zhang and Xiang (2006). Using asymptotics for the density function and assuming a

quadratic implied volatility smile they establish relationships between the return distribution

and the implied volatility. The advantage of their approaches is that they do not depend on

model specification. However, they only allow to identify risk-neutral conditional distribution

of returns and not the process governing their dynamics.

After deriving the asymptotic expansion of implied volatility we focus on its application

to calibration and model testing. The calibration formula is free of any latent (unobserved)

variable in the sense that we do not need to estimate the value of the unobserved spot

volatility. Hence it can be applied on implied volatility data pooled across different calendar

dates in order to extract information from the dynamics of the implied volatility smile. We

run several numerical experiments to determine the range of option characteristics where

the formula yields an accurate approximation. Then we provide an example of calibration

to a sample of S&P500 option price data. We find that jumps are significant. The evidence

also supports CEV specification of the volatility of volatility and an affine specification of

the jump intensity. These empirical results agree with the literature that tends to reject

the affine specification for the volatility of volatility (Jones (2003), Aït-Sahalia and Kimmel

(2004)), and advocates introducing jumps in returns (Bakshi et al. (1997), Bates (2000a)

e.g.). We obtain these results however with a totally different approach.

The paper is organized as follows. Section 2 recalls the concept of implied volatility, and

outlines the model setup. In Section 3 we develop the main theoretical results. In Section 4

we assess the accuracy of the calibration formula. In Section 5 we perform the calibration

to S&P500 option prices. Section 6 contains some concluding remarks. Appendices gather

proofs and technical details.

2 Black-Scholes implied volatility

Throughout the paper we deal with a two-factor jump-diffusion stochastic volatility model.

The joint dynamics of the stock price and its volatility under the pricing measure is given
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by:

dSt = (r − δ − µ (σt))Stdt+ σtStdW
(1)
t + StdJt, (1)

dσt = a(σt)dt+ b(σt)
³
ρdW

(1)
t +

p
1− ρ2dW

(2)
t

´
,

where W (1)
t and W

(2)
t are two independent standard Brownian motions, and Jt is an inde-

pendent Poisson jump process. The risk-free interest rate r, the dividend yield δ, and the

correlation ρ are assumed constant. The expected jump size E(∆J) is constant, but the jump

intensity λt = λ(σt) may depend on the volatility in a deterministic way. Hence, the expected

jump µ(σt) = λ(σt)E(∆J) may depend on the volatility as well. All functions are assumed

to be differentiable. The time-homogeneous specification (1) is general enough to host most

parametric models actually used in practice. We do not allow for jumps in volatility since

they do not impact the asymptotics used in this paper (see the proof of Proposition 3).

The Black-Scholes implied volatility (or simply the implied volatility) IVt(K,T ) of, let

say, a European call option with maturity date T > t and strike price K > 0 is defined as the

value of the volatility parameter in the Black-Scholes formula such that the Black-Scholes

price coincides with the actual option price Ct(K,T ):

Ct(K,T ) ≡ CBS(Xt,K, τ , IVt) (2)

= Ke−rτ
£
eXtN(d1)−N(d2)

¤
,

where

d1 =
Xt

IVt
√
τ
+
1

2
IVt
√
τ , d2 =

Xt

IVt
√
τ
− 1
2
IVt
√
τ , N(d) =

1√
2π

dZ
−∞

e−
s2

2 ds,

while τ = T − t is the option time-to-maturity, Xt = log
¡
Ste

(r−δ)τ/K
¢
is the option money-

ness.

To further characterize the implied volatility, recall that the price of a European con-

tingent claim is equal to the risk-neutral expectation of its final payoff discounted at the

risk-free rate r. In the case of the call option we have:

Ct(K,T ) = e−r(T−t)Et [ST −K]+ . (3)
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Using the definition of the implied volatility and moneyness we can rewrite (3) as:

eXtN (d1(Xt, IVt, τ))−N (d2(Xt, IVt, τ)) = Et

£
eXT − 1

¤
+
, (4)

Under Model (1) the joint dynamics of Xt and σt is a time-homogeneous Markov process.

Hence, the expectation on the right hand side of (4) is a deterministic function of Xt, τ , and

σt. As a consequence, the implied volatility can be characterized by:

IVt(K,T ) = I (Xt, τ ;σt) , (5)

where I is a deterministic function.

It is important to note that the function I(X, τ ;σ) does not depend on the risk-free rate

and the dividend yield. Hence we can safely assume r = δ = 0 when working with implied

volatilities instead of option prices. This point is easily deduced from (4) taking into account

that the dynamics of Xt does not depend neither on r nor on δ. In applications we should

however take into account both the interest rate and the dividend yield to convert strike

price K into moneyness X.

The function I(X, τ ;σ) is generally not available in closed-form except for few special

cases. In the case of the stochastic volatility model (1) without jumps it is known that the

at-the-money implied volatility converges to the spot volatility as time-to-maturity shrinks

to zero (see e.g. Ledoit et al. (2002)):

σ = lim
τ→0
I(0, τ ;σ) = I(0, 0;σ).

Taking into account that the implied volatility is known in the limit it is reasonable to

consider its Tailor series expansion of I(X, τ ;σ) around X = τ = 0 :

I(X, τ ;σ) = σ +
∂I(0, 0;σ)

∂X
X +

∂I(0, 0;σ)

∂τ
τ +

1

2

∂I2(0, 0;σ)

∂X2
X2 + ... (6)

This power series is defined only if the function I is well-behaved for small X and τ , which is

not the case if jumps are present (see more about this in the next section). This difficulty can

be overcome by introducing an alternative parameterization of implied volatility. Indeed, let
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us define the moneyness degree θ by scaling the moneyness:

θ ≡ X

σ
√
τ
, and I(θ, τ ;σ) ≡ I(σθ

√
τ , τ ;σ).

Then by substituting X = σθ
√
τ in (6) we can rewrite I(σθ

√
τ, τ ;σ) as:

I(θ, τ ;σ) = σ +

∙
σθ

∂I(0, 0;σ)

∂X

¸√
τ +

∙
σ2θ2

2

∂I2(0, 0;σ)

∂X2
+

∂I(0, 0;σ)

∂τ

¸
τ + ...

= σ + I1(θ;σ)
√
τ + I2(θ;σ)τ + ... (7)

To interpret Expansion (7) observe first that under the model without jumps the moneyness

degree θ is a natural measure of the option moneyness for small τ . Indeed, ignoring terms

of order τ and higher, log(ST/K) is approximately normally distributed with mean Xt and

standard deviation σt
√
τ under the risk-neutral measure. Therefore the moneyness degree

θ, being the ratio of the mean to the standard deviation, measures the likelihood of, let say,

a call option to be in-the-money at the expiration.

Expansion (7) can be viewed as a short-maturity expansion of the implied volatility with

moneyness degree θ being fixed. A measure similar to θ with at-the-money implied volatility

or average volatility instead of the spot volatility is widely used in the empirical literature

as a measure of option moneyness (see Bates (2000a), Carr and Wu (2003b)).

To conclude this section, we can see that in the absence of jumps the terms Im, m =

1, 2, .., in Expansion (7) are polynomials in θ. Under the general version of Model (1) with

jumps Expansion (7) appears to be also valid; however, the asymptotic terms are no longer

polynomials. This will be shown in the next section.

3 Asymptotic expansion of implied volatility

In this section we present the main theoretical result of the paper, namely the asymptotic

expansion of implied volatility. We begin with a pure diffusion stochastic volatility model

without jumps before turning our attention towards jump-diffusion models.
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3.1 Pure diffusion case

The next proposition contains our expansion result for implied volatilities in the pure diffu-

sion case.

Proposition 1 In Model (1) without jumps assume that for any level of σ the implied volatil-
ity function admits a Taylor series representation in some neighborhood of X = τ = 0:

I(X, τ ;σ) =
∞X

n,m=0

∂(n+m)

∂Xn∂τm
I(0, 0;σ)Xnτm , (8)

then the implied volatility function I has the following asymptotics:

I(θ, τ ;σ) = σ + I1(θ;σ)
√
τ + I2(θ;σ)τ +O(τ

√
τ), (9)

where I1 and I2 are functions of the moneyness degree θ and the spot volatility σ only:

I1(θ;σ) = −
ρbθ

2
, (10)

I2(θ;σ) =

µ
− 5
12

ρ2b2

σ
+
1

6

b2

σ
+
1

6
ρ2bb0

¶
θ2 (11)

+
a

2
+

ρbσ

4
+
1

24

ρ2b2

σ
+
1

12

b2

σ
− 1
6
ρ2bb0,

with a = a(σ), b = b(σ), and b0 denotes the derivative of b w.r.t. σ.

Proof. See Appendix A.
In the statement of the proposition we have made the assumption that the implied volatil-

ity is "well-behaved" near maturity. In particular, this induces that the implied volatility

does not explode as time-to-maturity shrinks to zero. This is typically assumed in the lit-

erature dealing with diffusion type models of option prices; Schönbucher (1999) refers to it

as the no-bubble constraint; Brace et al. (2001), and Brace et al. (2002) call it the feedback

condition.

Proposition 1 states that the asymptotics are such that the implied volatility is equal

to the spot volatility plus two correction factors whose forms are explicit functions of the
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moneyness degree θ and the spot volatility σ. If we limit ourselves to the first order approx-

imation we can see that a non-zero volatility of volatility b induces a linear structure in the

moneyness degree θ (see (10)). This structure is independent of the choice of the risk-neutral

measure since the volatility drift a does not turn up in I1. This is quite intuitive. Indeed, if

time-to-maturity is small enough then the volatility "does not have time to change much".

Hence, the volatility risk cannot have a first order effect on the option price.

Proposition 1 delivers asymptotics of implied volatilities, which are nothing else but prices

of options quoted on the volatility scale. The next proposition shows how asymptotics of

option prices themselves can be obtained from the asymptotics of implied volatilities.

Proposition 2 Let us assume that we can write the implied volatility function I as:

I(θ, τ ;σ) = σ + I1(θ;σ)
√
τ + I2(θ;σ)τ + I3(θ;σ)τ

√
τ +O(τ 2) (12)

for some functions I1, I2, I3 of the moneyness degree θ and the spot volatility σ, then the

price of the call option has the following asymptotics:

C(θ, σ, τ) = K
£
Λ1(θ;σ)

√
τ + Λ2(θ;σ)τ + Λ3(θ;σ)τ

√
τ +O(τ 2)

¤
, (13)

where the explicit relationships between Λ1, Λ2, Λ3, and I1, I2 are given at the end of Appendix

B.

Proof. See Appendix B.
Observe that although the Λ0s do not depend on I3, assuming that the expansion of I

has the form (12) is necessary. Indeed, if we replace the sum of the last expansion term

I3(θ;σ)τ
√
τ and the error O(τ 2) with O(τ

√
τ) in (12) then we obtain a weaker assumption

not strictly sufficient to justify (13).

3.2 Jump-diffusion case

In this section we derive the expansion for the jump-diffusion stochastic volatility model (1).

3.2.1 Constant intensity

Let us first assume that the jump intensity is constant. In that framework it is easier to

first characterize the asymptotics of option prices (see the proof of the next proposition for
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further explanations) before characterizing the asymptotics of implied volatilities.

Proposition 3 Assume Model (1) with constant jump intensity. If the implied volatility
under the pure diffusion model (µ ≡ 0) satisfies (8), then the price of the call option has the
following asymptotics:

C(θ, τ ;σ) = K
£
Γ1(θ;σ)

√
τ + Γ2(θ;σ)τ + Γ3(θ;σ)τ

√
τ +O(τ 2)

¤
, (14)

where Γ1, Γ2, Γ3 are explicit functions defined at the end of Appendix C.

Proof. See Appendix C.
Now let us compare Equation (14) with that of Proposition 2. By equalizing correspond-

ing asymptotic terms we may directly obtain the asymptotics of implied volatilities. The

result is summarized in Proposition 4.

Proposition 4 Assume Model (1) with constant jump intensity. If the implied volatility
under the pure diffusion model (µ ≡ 0) satisfies (8), then the implied volatility under the
jump-diffusion model has the following asymptotics:

I(θ, τ ;σ) = σ + I1(θ;σ)
√
τ + I2(θ;σ)τ +O(τ

√
τ), (15)

where

I1 = −
bρ

2
θ − µg + ηh, (16)

I2 = −µ2

2σ
θ2g2 − η2

2σ
θ2h2 +

µη

σ
θ2gh (17)

+

∙
−µbρ
2σ

θ3 − µσ

2
θ − σλθ

¸
g

+

∙
ηbρ

2σ
θ3 +

ησ

2
θ + σχθ

¸
h+ P (θ;σ),
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and P is a quadratic function in θ:

P (θ;σ) =

µ
− 5
12

ρ2b2

σ
+
1

6

b2

σ
+
1

6
ρ2bb0 − 1

2

µbρ

σ

¶
θ2 +

+
a

2
+

ρbσ

4
+

ρbµ

2σ
+
1

24

ρ2b2

σ
+
1

12

b2

σ

−1
6
ρ2bb0 +

µ2

2σ
− σµ

2
− λσ,

with g = N(θ)/n(θ), h = 1/n(θ), η = λE∆J+, χ = λPr(∆J > 0), and where n = n(θ),

N = N(θ) are pdf and cdf of the standard normal distribution.

Let us observe that in the limit as τ → 0 and θ being fixed the implied volatility converges

to spot volatility σ. The fact that the jump component does not contribute to short-term

implied volatilities might look surprising. Indeed, for small τ the variance of returns is

approximately given by (σ2 + λE∆J2) τ , where both components have an impact of the

same order. Nevertheless the contributions of these two components are totally different if

we consider implied volatilities. To illustrate this let us compare the pure jump model with

the pure diffusion model. In the pure Poisson jump model the at-the-money call option price

has the leading term (λSE∆J+) τ (cf. Formula (3)), whereas in the pure diffusion model

the leading term is given by
¡
σS/
√
2π
¢√

τ (cf. Black-Scholes formula). This means that

the implied volatility under the pure Poisson jump model converges to zero with the leading

term
¡
λ
√
2πE∆J+

¢√
τ contrary to the pure diffusion case where the implied volatility is

equal to the spot volatility in the limit.

General results on the short-term behavior of the option prices under different process

specifications can be found in Carr and Wu (2003a). In the same spirit they investigate the

short-term behavior of at-the money and out-of-the-money option prices suggesting a means

of testing the presence of jumps. Their approach does not allow detecting the presence

of jumps using at-the-money option prices (except for the pure jump case). Proposition 4

suggests that it can be done using at-the-money implied volatilities instead. Indeed, in the

pure diffusion model at-the-money implied volatilities converge to σ at the rate of τ . On the

contrary, in the jump-diffusion model the rate of convergence is
√
τ .
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3.2.2 General case

In this section we extend the results obtained in the previous section to the general case of

Model (1) when the intensity and the jump size distribution depend on the spot volatility.

Proposition 5 In Model (1) if the implied volatility under the pure diffusion model (µ ≡ 0)
satisfies (8), then the implied volatility under the jump-diffusion model has the following

asymptotics:

I(θ, τ ;σ) = σ + I1(θ;σ)
√
τ +

µ
I2(θ;σ)−

1

2
ρbµ0

¶
τ +O(τ

√
τ), (18)

where I1 and I2 are the same as in Proposition 3, and µ0 stands for the derivative of µ w.r.t.

σ.

Proof. see Appendix D.
Proposition 5 shows that the dependence of the parameters of the jump process on spot

volatility manifests itself only via the derivative µ0 of the expected jump µ. As it might have

been expected, it has only a second order effect as it was true for the volatility of volatility

b.

3.3 Calibration of the implied volatility smile

An important application of Approximation (18) is the calibration of jump-diffusion stochas-

tic volatility models. Furthermore since the formula is valid for all jump-diffusion models of

the type (1) it can be used to test different parametric specifications on market data. This

application, however, may be limited for the following reasons. Expression (18) for the im-

plied volatility involves the unobserved spot volatility σ which, by the nature of the model,

is changing over time. As a result the formula needs to be calibrated day by day. Such a

calibration obviously requires a reasonably large number of short-term options quoted daily.

In practice this is not always the case. As an example, S&P500 options are issued only once

in a month. To overcome this difficulty we propose a formula that is free of latent variables

by replacing the unobserved spot volatility in (18) with an observed implied volatility. This

will yield a feasible and simple calibration procedure of arbitrary parametric specifications

to option data pooled across different calendar dates.
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Let us assume that we observe the at-the-money implied volatility bσ = I(0, τ ;σ) for some

τ . Consider the modified moneyness degree bθ obtained by the substitution of the unobserved
σ with the observed implied volatility bσ:

bθ ≡ Xbσ√τ . (19)

It is now possible to express implied volatility for the same τ as a function of bθ and bσ. Indeed,
from (18) the asymptotic expansion of bσ = I(0, τ ;σ) is:

bσ = σ + I1(0;σ)
√
τ +

µ
I2(0;σ)−

1

2
ρb(σ)µ0(σ)

¶
τ +O(τ

√
τ). (20)

For small τ this function can be inverted to express the spot volatility σ = σ (τ , bσ). To
derive its asymptotics we first write it in a general form:

σ(τ , bσ) = bσ + Σ1(bσ)√τ + Σ2(bσ)τ +O(τ
√
τ). (21)

Then we substitute (21) in (20) to obtain the identity:

bσ = bσ + [I1(0; bσ) + Σ1]
√
τ

+

∙
∂I1(0; bσ)

∂σ
Σ1 + I2(0; bσ)− 1

2
ρb(bσ)µ0(bσ) + Σ2

¸
τ +O(τ

√
τ).

Solving for Σ1 and Σ2 we obtain:

σ(τ , bσ) = bσ − I1(0; bσ)√τ
+

∙
I1(0; bσ)∂I1(0; bσ)

∂σ
− I2(0; bσ) + 1

2
ρb(bσ)µ0(bσ)¸ τ +O(τ

√
τ). (22)

Finally let us replace θ with bσbθ/σ, and σ with (22) in (18) to eliminate σ from the pricing

formula.

Proposition 6 Let bσ be the at-the-money implied volatility corresponding to time-to-maturity
τ , and let σ(τ, bσ) be the inverse function of bσ = I(0, τ ;σ). Then under the assumptions made
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in Proposition 5 the modified implied volatility function:

bI(bθ, τ ; bσ) ≡ I

Ã bσbθ
σ(τ , bσ) , τ ;σ(τ , bσ)

!
.

has the following asymptotics:

bI(bθ, τ ; bσ) = bσ + hI1(bθ; bσ)− I1(0; bσ)i√τ
+

"
I1(0; bσ)Ã∂I1(0; bσ)

∂σ
− ∂I1(bθ; bσ)

∂σ
+
bθbσ ∂I1(bθ; bσ)∂θ

!
+ I2(bθ; bσ)− I2(0; bσ)i τ +O(τ

√
τ). (23)

where I1 and I2 are defined in Proposition 4.

An important remark is in order. Proposition 6 could be easily written in a more general

form by letting any implied volatility to serve as an input into the approximation formula

and not only the at-the-money one. This would however complicate the expression without

adding any practical value to the result. Indeed, in available datasets we always observe

prices of options sufficiently close-to-the-money, which can be reasonably considered as being

at-the-money.

Formula (23) suggests a means to compute the implied volatility smile using at-the-money

implied volatility as an input. The expression avoids the presence of a latent variable. As a

consequence, it can be used to calibrate any parametric specification of Model (1) to a set

of option prices across calendar dates simultaneously and not day by day. This means that

we are able to fit the implied volatility smile and its dynamics in a single step. Of course,

this does not come without a sacrifice. Now the volatility drift does not appear in (23) and

cannot be inferred from data. However, this seems to be a justified loss since, in any case,

the volatility drift cannot be fully identified on the set of short maturity options where our

approximation works.

Approximation (23) is likely to be accurate only for near-the-money options. Therefore

we can safely use quadratic expansions of the asymptotic terms in (23) around θ = 0 to

avoid the possibility of large numerical errors due to highly nonlinear functions g(θ) and h(θ).

Zhang and Xiang (2006) take a similar approach by considering the quadratic approximation
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(not expansion) of implied volatilities. They establish an approximate relationship between

implied volatilities and the risk-neutral density function, but this does not allow to recover

a state variable model specification from option prices. Another important difference is that

the method of Zhang and Xiang (2006) cannot be used to capture the information contained

in the dynamics of the implied volatility smile since it cannot free itself from a calibration

day by day.

Proposition 7 summarizes the final result, which is most relevant for the calibration

procedure. For convenience, the approximation formula is now written directly in terms of

X rather than θ.

Proposition 7 Under the assumptions made in Proposition 5:

IV ' bσ − ∙ bρ
2bσ + µbσ

¸
X +

∙
π

4
(−µ+ 2η)

µ
− µbσ3 + 2ηbσ3 + µ0bσ2 − 2η0bσ2

¶
−
µ

µ

2bσ + λbσ
¶

+

µ
−5ρ

2b2

12bσ3 + b2

6bσ3 + ρ2bb0

6bσ2 − µbρ

2bσ3
¶¸

X2

+

√
2π

2

∙
(−µ+ 2η)

µ
b0ρ

2bσ + µ0bσ − bρ

2bσ2 − µbσ2 + 12
¶
− λ+ 2χ

¸
X
√
τ

+

√
2π

4

−µ+ 2ηbσ2√τ X2, (24)

where bσ is at-the-money implied volatility corresponding to time-to-maturity τ , η = η(bσ),
χ = χ(bσ), b = b(bσ), µ = µ(bσ), λ = λ(bσ).
Let us conclude this section by making several observations. Formula (24) is a quadratic

approximation of the implied volatility smile with a correction for time-to-maturity (the last

two lines in (24)). The structure of the approximation formula suggests that its accuracy

should strongly depend on the extent to which the shape of the implied volatility smile

is dependent on time-to-maturity. Note also that the correction term appears only when

there are jumps in returns. This fact does not mean that the shape of implied volatility is

independent of time-to-maturity in the absence of jumps. Indeed, it depends on τ indirectly

via the at-the-money implied volatility bσ. Finally observe that −µ + 2η = λE |∆J | > 0

meaning that the curvature of the implied volatility smile diminishes as time-to-maturity

increases. This is consistent with empirical facts.
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4 Accuracy of the calibration formula

To determine the domain of application of our approximation we will study its performance

in pricing options based on realistic model parameters. For the first numerical exercise we

consider an affine jump-diffusion model with parameter values borrowed from Pan (2002).

Model (1) becomes using vt = σ2t :

dSt = (r − δ − µ (
√
vt))Stdt+

√
vtStdW

(1)
t + StdJt,

dvt = κ(v − vt)dt+ σv
√
vt
³
ρdW

(1)
t +

p
1− ρ2dW

(2)
t

´
,

where λ(vt) = λ0 + λ1vt.

Assuming a normal distribution of the jump size with mean µJ and standard deviation σJ
Pan (2002) obtains the following parameter estimates: λ0 = 0, λ1 = 12.3, κ = 6.4, v = .015,

σv = .3, µJ = −.21, σJ = .04, ρ = −0.53.
We have used both Approximations (23) and (24). As expected the quadratic approx-

imation is not significantly different from (23) whenever the latter is accurate. Moreover

it performs much better in other cases where (23) produces large numerical errors due to

exponential terms. Taking this into account we have decided to continue with using Formula

(24) both in the numerical experiments and in the empirical calibration2.

Figure 1 plots the implied volatilities and their approximations based on (24). Three levels

of the spot volatility are considered: 8% (low), 16%(medium) and 24%(high) on an annual

basis, which approximately correspond to daily levels of 0.5%, 1% and 1.5%. In accordance

with the typical definition of short-term options (Bakshi et. al. (1997), Chernov and Ghysels

(2000), Pan (2002) e.g.) we consider options with a time-to-maturity of maximum 60 days.

We also exclude very short-term options since, in practice, their prices are very noisy. For

the same reason empirical studies also tend to exclude these options from the analysis since

their unreliability might affect the results significantly (Jones (2003), Pan (2002)). Here we

follow Pan (2002) by considering only options expiring at least after 15 days.

Let us observe from Figure 1 that for moneyness X ∈ [−0.05, 0.05] the approximation
is reasonably accurate for different levels of volatility and time-to-maturity. Figure 1 also

suggests that the accuracy slightly diminishes at low levels of volatility. To explain this

2We would like to thank the anonymous referee for suggesting us to use the quadratic approximation.
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fact recall the discussion at the end of the previous section. The lower the volatility the

stronger the dependence of the shape of implied volatility on time-to-maturity. As a result,

our approximation becomes less accurate with lower levels of volatility.

To make the numerical analysis more complete let us perform another exercise using a

model with a CEV-type specification. For this purpose we select the CEV model without

jumps estimated by Aït-Sahalia and Kimmel (2004):

St = (r − δ)Stdt+
√
vtStdW

(1)
t ,

dvt = κ(v − vt)dt+ σvv
φ
t

³
ρdW

(1)
t +

p
1− ρ2dW

(2)
t

´
,

with κ = 3, v = .052, σv = 1.37, φ = .85, ρ = −.77.
To compute option prices we use a Monte-Carlo simulation engine employing two variance

reduction techniques: antithetic variables and conditional simulation (see Jones (2003) for

details). Figure 2 plots the implied volatilities and their approximations for the same different

levels of volatility and time-to-maturity. We observe that the picture is largely the same,

and that the remark on the effect of low levels of volatility remains valid.

To conclude the section let us summarize our findings. Approximation (24) seems to be

reasonably accurate for near-the-money options (|X| ≤ 0.05) with short time-to-maturity
(maximum 60 days to expiration). Therefore the formula can be safely calibrated to a set

of option prices satisfying these restrictions pooled across different calendar dates to extract

the information contained in the dynamics of the implied volatility smile.

5 Empirical calibration to S&P500 option prices

In this section we take the Approximation (24) to S&P500 option price data. We use data on

implied volatilities of S&P500 options constructed in Aït-Sahalia and Lo (1998) and covering

a period of one year. This database contains implied volatilities and forward prices so that

moneyness X can be easily computed. The formula is calibrated to implied volatilities

by minimizing the sum of squared errors (nonlinear least squares). Implied volatilities are

calibrated by means of (24) with bσ corresponding to the implied volatility of the option
closest-to-the-money.

Following the analysis of the accuracy of our approximation we deal only with options
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with time-to-maturity between 15 and 60 days and strike price within 5% of the forward

price. Recall that our approximation becomes less accurate when the spot volatility is too

low. To make sure that the analysis is reliable we drop the observations of implied volatility

smile with the closest-to-the-money implied volatility bσ < 8%. The sample of option prices

satisfying all the restrictions is fairly large consisting of 2537 observations. Note that here

we do not count those observations that are used as inputs in the approximation formula.

The dataset represents a collection of implied volatility smiles observed at different calen-

dar dates and time-to-maturity. In all the cases the moneyness of the closest-to-the-money

option does not exceed 0.006 in absolute value, which seems to be sufficiently close to zero.

On average, we have 9 points per implied volatility smile with moneyness X almost uni-

formly distributed in the range [−0.05, 0.05]. Pooling data across calendar dates allows
observations of implied volatility smiles with near time-to-maturity and near at-the-money

implied volatility complement each other (see Figure 3c).

We calibrate the following general CEV-type model:

dSt = (r − δ − µ (σt))Stdt+ σtStdW
(1)
t + StdJt, (25)

dσt = (...)dt+ βσφt

³
ρdW

(1)
t +

p
1− ρ2dW

(2)
t

´
,

with the expected jump being a power function of the volatility µ(σ) ≡ λ(σ)E(∆J) =

λ0E(∆J)σψ. Here the parameter ψ measures the elasticity of the jump intensity λ with

respect to σ. For the sake of parsimony we assume η = χ = 0 meaning that the risk neutral

probability of a positive jump is negligible. This assumption is reasonable for the model

parameters considered in the previous section and encountered in the available empirical

literature. Note also that positive jumps under the risk-neutral measure are typically much

less likely than under the historical measure due to a significant risk premium that investors

demand for the risk of a market crash.

Six model parameters are calibrated: βρ, φ, λ0E(∆J), ψ, ρ, E(∆J). The first four param-

eters determine the leading term I1 in Expansion (18); so we expect them to be inferred

accurately. Table 1 reports the estimates of the six parameters for the CEV-type model

(25) and three particular cases: the affine specification (φ = 0, ψ = 2), the CEV-type model

without jumps (λ0 = 0), and the Heston model (λ0 = 0, φ = 0). The calibration results are

largely consistent with those obtained in the empirical literature. Indeed, the volatility of
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variance in the Heston model σv = 2β ' .37 (see the first column in Table 1) is close to .36

obtained in Jones (2003) and .43 found in Aït-Sahalia and Kimmel (2004)). The estimate

of the expected jump size −.14 in the affine model agrees with the value obtained in Pan
(2002) (−.19). Observe that the estimate of the correlation ρ in the affine model reaches the
lower boundary −1 of the constrained parameter space [−1, 1], and that usual inference on
that parameter does not apply.

Based on the standard errors given in parenthesis we conclude that jumps in index return

are significant (λ0E(∆J) < 0). This fact has long been firmly established in the empirical

literature using parametric models (see Bakshi et al. (1997), Bates (2000a) e.g.) and model

free approaches (Carr and Wu (2003a)). The estimate of the elasticity of the jump intensity

with respect to volatility suggests that the affine specification (ψ = 2) is statistically rejected.

However we cannot reject the hypothesis that the actual specification is close to the affine

one.

On the contrary, the affine specification for the volatility of volatility is firmly rejected

(φ >> 0). This result remains valid also if we assume a pure diffusion model, where an affine

specification of the volatility of volatility corresponds to the Heston model. This result is

consistent with the recent literature which tends to reject the Heston model when testing

against a CEV-type one (Jones (2003), Aït-Sahalia and Kimmel (2004)). We contribute to

this literature by observing that the affine specification of the volatility of volatility is also

rejected in the model with jumps in returns.

Let us examine the effect of the model restrictions on the pricing errors. For this purpose

we compute the goodness-of-fit criterion in terms of relative errors denoted by
√
ASE. The√

ASE is defined as the square root of the Average of Squared Errors in implied volatilities.

The magnitude of the fitted errors indicates that the affine restrictions do not impact the

accuracy of the model fit dramatically. Indeed, the average error in implied volatility in-

creases only by 0.02% from 0.35% to 0.37% for jump-diffusion models and by 0.03% from

0.43% to 0.46% for pure diffusion models. On the other hand, the introduction of jumps

allows reducing the error by 0.09% for affine models and 0.08% for CEV models.

We conclude this section by verifying the robustness of our estimates. Recall that in the

calibration we use implied volatilities with moneyness restricted to −0.05 ≤ X ≤ 0.05 to
guarantee that there is no impact of the approximation error. To make sure that our results

are robust we compare our estimates with those obtained by imposing stricter restrictions
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on the moneyness. In Figure 5 we plot the inferred shapes of expected jump µ(σ) and

the volatility of volatility b(σ)ρ based on three samples of option data corresponding to

moneyness restrictions −0.05 ≤ X ≤ 0.05, −0.04 ≤ X ≤ 0.04, and −0.03 ≤ X ≤ 0.03 of
sizes 2537, 2012, and 1439, respectively. We can see that results are not much different across

the three samples. This provides indeed good evidence of the robustness of our results since

the number of observations in the smallest sample is less then half the number of observations

initially used in the model calibration.

6 Concluding remarks

In this paper we have derived an asymptotic formula for implied volatilities of European

options under a two-factor jump-diffusion stochastic volatility model. The asymptotics cor-

respond to the short-term behavior of implied volatilities under parameterization widely used

in practice. The calibration formula appears to be simple and useful for practical purposes.

It allows testing parametric model specifications using option data pooled across calendar

dates, moneyness and time-to-maturity. An interesting empirical result is the rejection of

an affine specification of the volatility of volatility in favor of a CEV-type specification even

if jumps are taken into account. The other interesting empirical result is that an affine

specification of the jump intensity seems to be adequate.

Possible areas of future applications include the use of the asymptotic formula in "speedy"

pricing of very short-term options typically traded in foreign exchange markets. We also

believe that the asymptotic analysis can be further extended to American options where

analytical approximations of this type are not yet available. This is on our research agenda.
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Appendix A. Proof of Proposition 1.
The steps of the proof are as follows. First we start with deriving a PDE for the implied

volatility and then identify terms I0, I1, I2 in the generic asymptotic representation:

I(θ, τ ;σ) = I0(θ;σ) + I1(θ;σ)
√
τ + I2(θ;σ)τ +O(τ

√
τ). (26)

The terms I1 and I2 will be characterized through two second order ODEs, whose solutions

are taken in the class of polynomials. The call option price under Model (1) is determined

by the strike price K, maturity date T , two stochastic factors S and σ, and time t. It

is convenient to pass from T to time-to-maturity τ = T − t, and from S to moneyness

Xt = log
¡
Ste

(r−δ)τ/K
¢
. Let us denote the call option price by C(X,K, τ, σ). Its associated

PDE under Model (1) with no jumps can be written as:

−Cτ +
1

2
σ2 (CXX − CX) + a(σ)Cσ +

1

2
b2(σ)Cσσ + σb(σ)ρCσX = 0, (27)

where subscripts refer to differentiation.

By the definition of implied volatility, we have C = CBS(X,K, τ, I(X, τ, σt)), where CBS

denotes the Black-Scholes formula (see (2)). After plugging this expression into Equation

(27) the PDE for the implied volatility can be obtained after some simplifications. We skip

these technical details since such a derivation is in Ledoit et al. (2002). Our model (without

jumps in the price) is a particular case of their setting, and the PDE of the implied volatility

is here:

ρbσ

I
√
τ
d2Iσ −

1

2

b2

I
d1d2 (Iσ)

2 − bρσIXσ +
I2 − σ2

2Iτ
+ Iτ

+
σ2

I
√
τ
d2IX −

ρbσ

I
d1d2IXIσ −

1

2

σ2

I
d1d2 (IX)

2 (28)

−1
2
σ2 (IXX − IX)− aIσ −

1

2
b2Iσσ = 0,

where d1 =
X

I
√
τ
+
1

2
I
√
τ , and d2 =

X

I
√
τ
− 1
2
I
√
τ .

Ledoit et al. (2002) also show that I(0, 0;σ) = I0(0;σ) = σ.

Let us now pass from X to θ = X/(σ
√
τ) and from I(X, τ ;σ) to I(θ, τ ;σ). We have to
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make the following replacements for the function I in (28):

I → σ + I1
√
τ + I2τ +O

¡
τ
√
τ
¢
,

I2 → σ2 + 2σI1
√
τ + (I21 + 2σI2)τ +O

¡
τ
√
τ
¢
,

I3 → σ3 + 3σ2I1
√
τ +O (τ) ,

and its derivatives:

IX →
1

σ
I1θ +

1

σ
I2θ
√
τ +O (τ) ,

IXX →
1

σ2
I1θθ

1√
τ
+
1

σ2
I2θθ +O

¡√
τ
¢
,

Iσ → 1 +

µ
I1σ −

1

σ
θI1θ

¶√
τ +O

¡√
τ
¢
,

Iσσ → 0 +O
¡√

τ
¢

IXσ →
1

σ
I1σθ −

1

σ2
I1θ −

1

σ2
θI1θθ +O

¡√
τ
¢
,

Iτ →
µ
1

2
I1 −

1

2
θI1θ

¶
1√
τ
+ I2 −

1

2
θI2θ +O

¡√
τ
¢
,

also setting d1 =
θσ

I
+
1

2
I
√
τ , and d2 =

θσ

I
− 1
2
I
√
τ .

Using these expressions and (28) we get after some algebra:

A
1√
τ
+B +O(

√
τ) = 0,

where A = ρbθ +
3

2
I1 +

1

2
θI1θ −

1

2
I1θθ,

B = ρbθI1σ −
ρbθ2

σ
I1θ −

2ρbθ

σ
I1 −

ρbσ

2
− b2θ2

2σ
− ρbI1σϑ +

ρb

σ
I1θ

+
ρbθ

σ
I1θθ −

I21
2σ
− 2θI1

σ
I1θ −

ρbθ2

σ
I1θ −

θ2

2σ
(I1θ)

2 − a

+2I2 +
1

2
θI2θ −

1

2
I2θθ. (29)
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After putting A equal to zero, we arrive at the following ODE for I1:

−3
2
I1 −

1

2
θI1θ +

1

2
I1θθ = ρbθ.

Taking into account the assumption made in the proposition and (7), we select the linear

solution:

I1(θ, σ) = −
ρbθ

2
. (30)

Now setting the second asymptotic term B equal to zero and taking into account (30),

we get the ODE for I2:

−2I2 −
1

2
θI2θ +

1

2
I2θθ =

µ
5

4

ρ2b2

σ
− 1
2

b2

σ
− 1
2
ρ2bb0

¶
θ2

−a− ρbσ

2
− ρ2b2

2σ
+
1

2
ρ2bb0,

where b0 denotes the derivative of b w.r.t. σ. Using again (7), we select the quadratic solution

to this ODE:

I2 =

µ
− 5
12

ρ2b2

σ
+
1

6

b2

σ
+
1

6
ρ2bb0

¶
θ2

+
a

2
+

ρbσ

4
+
1

24

ρ2b2

σ
+
1

12

b2

σ
− 1
6
ρ2bb0.
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Appendix B. Proof of Proposition 2
Let us use N = N (z) and n = n (z) to abbreviate the Gaussian cdf and pdf evaluated at

z. The proof of this proposition uses the definition of implied volatility underlying Expression

(2), which can be written as:

C ≡ Ke−rτ(eθσ
√
τN1 −N2), (31)

with N1 = N

µ
σθ

I
+
1

2
I
√
τ

¶
, N2 = N

µ
σθ

I
− 1
2
I
√
τ

¶
, and I a shorthand for I(θ, τ ;σ).

Given the asymptotic expansion (12), we can write:

σθ

I
+

I

2

√
τ = θ +

µ
−θI1

σ
+

σ

2

¶√
τ +

µ
−θI2

σ
+

θI21
σ2
+

I1
2

¶
τ

+

µ
−θI3

σ
+
2θI1I2
σ2

− θI31
σ3
+

I2
2

¶
τ
√
τ +O(τ 2),

and

σθ

I
− I

2

√
τ = θ +

µ
−θI1

σ
− σ

2

¶√
τ +

µ
−θI2

σ
+

θI21
σ2
− I1
2

¶
τ

+

µ
−θI3

σ
+
2θI1I2
σ2

− θI31
σ3
− I2
2

¶
τ
√
τ +O(τ 2).

Substituting these expressions in (37) and using the Taylor series expansion:

N(y +∆y) = N(y) + n(y)∆y − 1
2
yn(y) (∆y)2 +

1

6
(y2 − 1)n(y) (∆y)3 +O((∆y)4),

allow us to compute the expansion of the call option price. After some simple but tedious

algebra we finally obtain:

CK−1 = e−rτ(eθσ
√
τN1 −N2) = Λ1

√
τ + Λ2τ + Λ3τ

√
τ +O(τ2),

where

Λ1 = σ (n+ θN) ,

Λ2 =
θ2N

2
σ2 +

θn

2
σ2 + nI1,
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Λ3 =
θ3N

6
σ3 +

θ2n

6
σ3 − n

24
σ3 +

nθ2I21
2σ

+
σ

2
θnI1 + nI2 − σr(n+ θN),

and n = n(θ), N = N(θ) are the pdf and cdf of the standard normal distribution evaluated

at θ.
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Appendix C. Proof of Proposition 3
Using the representation of the option price as an expectation of its discounted future

payoff, we can write:

Ct = e−rτEt (ST −K)+ = e−rτ
∞X
i=0

Pr(i jumps)Et

©
(ST −K)+ | i jumps

ª
.

From the properties of the Poisson process we have:

Pr(no jumps) = 1− λτ +O(τ 2),

Pr(one jump) = λτ +O(τ 2),

Pr(i jumps) = O(τ 2) for i ≥ 2.

This means that we may ignore the possibility of multiple jumps during the lifetime of

the option since we are looking for an asymptotic expansion of option prices up to O(τ
√
τ).

Using this we can write:

Ct = e−rτEt (ST −K)+

= λτe−rτEt

©
(ST −K)+ |jump

ª
+ (1− λτ)e−rτEt

©
(ST −K)+ |no jump

ª
+O(τ 2)

= λτEt

©
(ST −K)+ |jump

ª
(32)

+(1− (λ+ µ)τ)e−(r−µ)τEt

©
(ST −K)+ |no jump

ª
+O(τ 2).

Let us first evaluate the conditional expectation Et

©
(ST −K)+ |jump

ª
of the option payoff

up to the term of order
√
τ given that a jump occurs. From (1), the log of the ratio of the

price to the strike given that a jump occurs is equal to:

log (ST/K) = log(St/K) +

µ
r − δ − µ− σ2

2

¶
τ +

Z T

t

σsdWs + log(1 +∆J)

= σtθ
√
τ + σt(WT −Wt) + log(1 +∆J) +O(τ).
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Note that (WT −Wt) is of order
√
τ . Hence:

Et

©
(ST −K)+ |jump

ª
= KEt

n¡
elogST /K − 1

¢
+
|jump

o
= KEt {[(1 +∆J)

×
¡
1 + σtθ

√
τ + σt(WT −Wt)

¢
− 1
¤
+
|jump

o
+O(τ)

= KEt {[∆J + (1 +∆J)

×
¡
σtθ
√
τ + σt(WT −Wt)

¢¤
+
|jump

o
+O(τ)

= KE (∆J)+

+Kσtθ(Pr (∆J > 0) +E (∆J)+)
√
τ +O(τ). (33)

The last equality is easy to understand intuitively: for small τ , the event

{[∆J + (1 +∆J)(σtθ
√
τ + σt(WT −Wt))] > 0}

happens "approximately" if and only if the event {∆J > 0} happens 3.
The rigorous argument is the following. We have

Et

©
(ST −K)+ |jump

ª
= KEt

n¡
elogST /K − 1

¢
+
|jump

o
= KEt {(∆J + (1 +∆J)ξ)

×1{(∆J+(1+∆J)ξ)>0}|jump
ª
+O(τ).

where ξ ∼ N(σθ
√
τ , σ
√
τ) - independent of the jump. Now let us write the expectation

3Note, that in the model with contemporaneous jump in returns and volatility there appears an additional
term ∆σ(WT −Wt0), where t0 is the time of the jump and ∆σ - the size of the jump in volatility. This term is
also of order

√
τ but has zero expectation (conditional on the jump occurence). Hence, using the same logic,

we conclude that the introduction of a contemporaneous jump in volatility does not affect the analytical
result.
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explicitly (for ease of notation we omit conditioning):

E
©
(∆J + (1 +∆J)ξ)1{(∆J+(1+∆J)ξ)>0}

ª
=

∞Z
−1

f(x)
1√

2π(σ
√
τ)

∞Z
−x/(1+x)

(x+ (1 + x)y)e
− 1
2
(y−σθ

√
τ)2

(σ
√
τ)2 dydx

=

∞Z
−1

xf(x)N(θ +
x

σ(1 + x)
√
τ
)dx (34)

+
√
τ

∞Z
−1

(1 + x)f(x)[σn(θ +
x

σ(1 + x)
√
τ
) + θσN(θ +

x

σ(1 + x)
√
τ
)]dx,

where f is the density of the jump size distribution defined on the domain of possible jump

values between −1 and +∞ 4.

The first integral on the right hand side of (34) can be transformed using standard

integration by parts with subsequent change of variable y = x/(σ
√
τ). Denoting G(x) =

xZ
0

sf(s)ds we obtain:

∞Z
−1

xf(x)N(θ +
x

σ(1 + x)
√
τ
)dx = G(∞)N

µ
θ +

1

σ
√
τ

¶

− 1

σ
√
τ

∞Z
−1

G(x)

(1 + x)2
n(θ +

x

σ(1 + x)
√
τ
)dx

= G(∞)N
µ
θ +

1

σ
√
τ

¶
−

∞Z
−1/(σ√τ)

G(yσ
√
τ)

(1 + yσ
√
τ)
2n(θ +

y

1 + yσ
√
τ
)dy

= E (∆J)+ +O(τ).

4Recall, that we deal with jumps in percentage points. Since stock price is always non-negative, jump
cannot take value less than −1.

27



The last equality follows from the fact that N
³
θ + 1

σ
√
τ

´
= 1 + o(τk) for any k > 0,

G(0) = G0(0) = 0 and G(∞) = E (∆J)+. In a similar way we approximate the other two

integrals on the right hand side of (34):

σ
√
τ

∞Z
−1

(1 + x)f(x)n(θ +
x

σ(1 + x)
√
τ
)dx = O(τ),

θσ
√
τ

∞Z
−1

(1 + x)f(x)N(θ +
x

σ(1 + x)
√
τ
)dx = θσ

√
τ
¡
Pr (∆J > 0) +E (∆J)+

¢
+O(τ).

The other term e−(r−µ)τEt

©
(ST −K)+ |no jump

ª
on the right hand side of (32) can be

evaluated using the asymptotics of the call option price obtained for the pure diffusion case.

Indeed, conditional on no jump, we have a joint dynamics of price and volatility analogous

to the diffusion case except that r should be replaced by r − µ. We can use Propositions

1 and 2 to obtain asymptotics corresponding to a slightly different definition of moneyness

degree: eθ = log(Ste
(r−µ−δ)τ/K)

σ
√
τ

.

That is, we have:

e−(r−µ)τEt

©
(ST −K)+ |no jump

ª
= Kσ

hen+ eθ eNi√τ +KΛ2τ +KΛ3τ
√
τ +O(τ 2), (35)

where Λ2 =
eθ2 eN
2
σ2 +

eθen
2
σ2 + eneI1,

Λ3 =
eθ3 eN
6

σ3 +
eθ2en
6

σ3 − σ3en
24

+
eneθ2eI21
2σ

+
σ

2
eθeneI1 + eneI2 − σ(r − µ)(en+ eθ eN),

and eI1 = I1(eθ;σ), eI2 = I2(eθ;σ) are the same as in Proposition 1, en = n(eθ), eN = N(eθ). To
obtain the asymptotics corresponding to θ we use the following relationship:

eθ = θ − µ

σ

√
τ ,
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which should be plugged in (35). Using a Taylor series expansion, we can write:

n(eθ) + eθN(eθ) = n(θ) + θN(θ)−N(θ)
µ

σ

√
τ +

1

2
n(θ)

³µ
σ

´2
τ +O(τ

√
τ),

N(eθ) = N(θ)− n(θ)
µ

σ

√
τ +O(τ), n(eθ) = n(θ) + θn(θ)

µ

σ

√
τ +O(τ).

After substitution of these expressions in (35) and collecting terms of the same order, we

arrive at:

e−(r−µ)τEt

©
(ST −K)+ |no jump

ª
= σ (n+ θN)

√
τ +KΛ∗2τ +KΛ∗3τ

√
τ +O(τ 2), (36)

where η = λE (∆J)+ , Λ∗2 =
θ2N

2
σ2 +

θn

2
σ2 − µN + nI1,

Λ∗3 =
θ3N

6
σ3 +

θ2n

6
σ3 − σ3n

24
+

µ2n

2σ
+

σµn

2
+

nθ2I21
2σ

+
µbρn

2σ

+
³σ
2
+

µ

σ

´
θnI1 + nI2 − σr(n+ θN),

and I1 = I1(θ;σ), I2 = I2(θ;σ), n = n(θ), N = N(θ).

Let us now substitute (33) and (36) in (32), which yields (14) with:

Γ1 = σ (n+ θN) ,

Γ2 =
θ2N

2
σ2 +

θn

2
σ2 − µN + nI1 + η,

Γ3 =
θ3N

6
σ3 +

θ2n

6
σ3 − σ3n

24
+

µ2n

2σ
+

σµn

2
+

µbρn

2σ
+

nθ2I21
2σ

+
³σ
2
+

µ

σ

´
θnI1 + σθ(χ+ η) + nI2 − σ(λ+ µ+ r) (n+ θN) ,

where we have denoted the expected positive jump by η = λE(∆J)+, and the probability

of positive jump by χ = λ Pr (∆J > 0). Functions I1(θ;σ) and I2(θ;σ) are the same as

in Proposition 1, while n = n(θ), N = N(θ) are the pdf and cdf of the standard normal

distribution evaluated at θ.
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Appendix D. Proof of Proposition 5
Let us use N = N (z) and n = n (z) to abbreviate the Gaussian cdf and pdf evaluated at

z. We can safely assume r = δ = 0 since the implied volatility as a function of moneyness,

time-to-maturity and volatility is independent of the risk-free rate and the dividend yield.

The fundamental PDE for option price under the general setting of Model (1) is:

−Cτ +
1

2
σ2 (CXX − CX) + a(σ)Cσ +

1

2
b2(σ)Cσσ + σb(σ)ρCσX (37)

+λE [C(X + log(1 +∆J))− C(X)]− µCX = 0.

Equation (37) differs from (27) by the last two terms on the left hand side. Similarly the

PDE for the implied volatility in the general case differs from (28) in the following term on

the left hand side:

D =
−λE [C(X + log(1 +∆J))− C(X)] + µCX

CBS
σ

, (38)

where CBS
σ = CBS

σ (X,K, τ, I(X, τ, σt)) is the derivative of the Black-Scholes formula with

respect to volatility evaluated at the corresponding implied volatility.

Let us now derive asymptotics of the additional term (38). First, we find that:

C(X + log(1 +∆J)) = CBS(X + log(1 +∆J), K, τ , I+) (39)

= S(1 +∆J)N1 −KN2 = S
h
(1 +∆J)N1 − e−θσ

√
τN2

i
,

where N1 = N

µ
σθ

I+
+
log(1 +∆J)

I+
√
τ

+
1

2
I+
√
τ

¶
, N2 = N

µ
σθ

I+
+
log(1 +∆J)

I+
√
τ

− 1
2
I+
√
τ

¶
,

and I+ and I+ denote the implied volatility right after the jump:

I+ = I

µ
θ +

log(1 +∆J)

σ
√
τ

, τ ;σ

¶
.

If ∆J < 0, respectively ∆J > 0, then both N1 and N2 converge exponentially to zero,

respectively to one. So, intuitively, when looking for asymptotics of the expectation, we may
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set N1 and N2 equal to their limits and, using (39), write:

λE {C(X + log(1 +∆J))} = λS
£
E(∆J)+ +Pr(∆J > 0)θσ

√
τ +O(τ)

¤
= S

£
η + χθσ

√
τ +O(τ)

¤
. (40)

This intuition is not entirely correct. However, it yields correct expression for the first

order asymptotics (40). The rigorous argument is the following. Using integration by parts,

we have

E(1 +∆J)N1 =

∞Z
−1

(1 + x)N

µ
σθ

I+
+
log(1 + x)

I+
√
τ

+
I+
√
τ

2

¶
f(x)dx

= G(∞)−
∞Z
−1

G(x)n

µ
σθ

I+
+
log(1 + x)

I+
√
τ

+
I+
√
τ

2

¶

×
µ
− σθ

I+2
I+x −

log(1 + x)

I+2
√
τ

I+x +
1

(1 + x)I+
√
τ
+ I+x

√
τ

2

¶
dx,

where G(x) =

xZ
0

(1 + s)f(s)ds, I+ = I

µ
θ +

log(1 + x)

σ
√
τ

, τ ;σ

¶
, and f(x) denotes the pdf of

the jump-size distribution. Here we have also used lim
x→∞

N
³
σθ
I+
+ log(1+x)

I+
√
τ
+ I+

√
τ

2

´
= 1, which

follows from the fact that the call option will be exercised for sure if the jump is very large

(see (39)).

After the change of variable y = log(1 + x)/(σ
√
τ) we get:

E(1 +∆J)N1 = G(∞)−
∞Z
−1

G(eσy
√
τ − 1)n

µ
σθ

I+
+

σy

I+
+

I+
√
τ

2

¶

×
µ
− σθ

I+2
I+y −

σy

I+2
I+y +

σ

I+
+

√
τ

2
I+y

¶
dy (41)

= E(∆J)+ + P (∆J > 0)−
√
τf(0)σ

∞Z
−1

yn (θ + y) dy +O(τ),

where we have used G(0) = 0, G0(0) = f(0), I+ = σ +O(
√
τ), and I+y = Iθ = O(

√
τ).
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In a similar way, we obtain:

EN2 = P (∆J > 0)−
√
τf(0)σ

∞Z
−1

yn (θ + y) dy +O(τ). (42)

Now using (39) and Expressions (41) and (42), we arrive at (40).

Proposition 2 suggests that:

C(S) = Kσ [n+ θN ]
√
τ +O(τ) = Sσ [n(θ) + θN(θ)]

√
τ +O(τ). (43)

Let us further denote by bI1 and bI2 the new asymptotic terms in the expansion of the
implied volatility function I(θ, τ ;σ). It is left to find the relationship between these terms,

and I1, I2 obtained in Proposition 4. The partial derivative of the Black-Scholes formula

with respect to the volatility can be written as:

CBS
σ (I) = S

√
τn

µ
σθ

I
+

I

2

√
τ

¶
(44)

= S
√
τn(θ)

"
1 + θ

Ã
θbI1
σ
− σ

2

!
√
τ +O(τ)

#
.

Now putting (43), (44) and (40) together, we obtain:

−λE [C(X + log(1 +∆J))− C(X)]

CBS
σ

= −η
n

1√
τ
+
1

n

"
χθσ − θη

Ã
θbI1
σ
− σ

2

!
− σ [n+ θN ]

#
+O(

√
τ), (45)

where n = n(θ), N = N(θ).

Similarly we obtain:

µCX

CBS
σ

= µ
N

n

1√
τ
− µ

1

n

Ã
θbI1
σ
− σ

2

!
(n+ θN) +O(

√
τ). (46)
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The substitution of (45) and (46) in (38) yields:

D =

∙
µ
N

n
− η

n

¸
1√
τ
+
1

n

"
χθσ − θη

Ã
θbI1
σ
− σ

2

!
− σ [n+ θN ]

− µ

Ã
θbI1
σ
− σ

2

!
(n+ θN)

#
+O(

√
τ).

After adding this term to (28) we deduce the following asymptotics of the PDE for the

implied volatility: bA 1√
τ
+ bB +O(

√
τ) = 0,

with bA = µ
N

n
− η

n
+A,

bB = 1

n

"
(χ+ η/2)θσ − η

θ2bI1
σ
− σ [n+ θN ]− µ

Ã
θbI1
σ
− σ

2

!
(n+ θN)

#
+B,

and where A,B are the same as in the proof of Proposition 1 except for bI1 and bI2 replacing
I1 and I2.

By proceeding as in the proof of Proposition 1, we derive the ODE for bI1:
−3
2
bI1 − 1

2
θbI1θ + 1

2
bI1θθ = ρbθ + µ

N(θ)

n(θ)
− η

n(θ)
. (47)

We can easily verify that

bI1 = I1 = −
ρbθ

2
− µ

N(θ)

n(θ)
+

η

n(θ)
(48)

is the solution of (47) (see Proposition 4).

The ODE for bI2 has the same homogeneous part as in the pure diffusion case since bI2 does
not enter D. However, the non-homogeneous part of this ODE in the jump-diffusion case is,

of course, different. Let us denote it as Q(θ, σ) in the particular case of a jump process with

time invariant parameters, the case considered in Proposition 4. The non-homogeneous part

in the general case differs from Q due to terms with partial derivative of bI1 with respect to
σ in B. Indeed, µ and η depend on σ, so the partial derivative

∂bI1
∂σ

will include µ0 =
∂µ

∂σ
and
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η0 =
∂η

∂σ
.

Using the expression for bI1 (48) and the expression for B (29), we obtain the ODE:

−2bI2 − 1
2
θbI2θθ + 1

2
bI2θθ = Q(θ, σ) + ρbµ0. (49)

From Proposition 4 we know that −2I2 −
1

2
θI2θ +

1

2
σ2I2θθ = Q(θ, σ).

So the natural candidate for the solution to (49) is:

bI2 = I2 −
1

2
ρbµ0,

which gives the stated result.
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 Heston  CEV SV  Affine SVJ CEV SVJ 

βρ -.09 (.00) -1.94 (.07) -.03 (.00) -33.3 (10.6) 

ρ -.46 (.00) -.54 (.00) -1.0* -0.81 (.08) 

φ 0 1.30 (.13) 0 2.61 (.13) 

λ0 E(∆J) 0 0 -4.98 (.11) -.92 (.39) 

E(∆J) … … -.14 (.00) -.09 (.01) 

ψ … … 2 2.32 (.16) 

     

ASE  .0046 .0043 .0037 .0035 
*  the lower boundary for the correlation parameter is reached. 
 
Table 1. The results of the calibration to quoted S&P500 option prices.  
Four models are calibrated on 2537 observations: the Heston (1993) model, the CEV-type stochastic volatility model without 
jumps, the affine jump-diffusion stochastic volatility (SVJ) model, and the CEV-type jump-diffusion stochastic volatility 
model. ASE  denotes the square root of the average of squared errors in implied volatilities. Standard errors are given in 
parentheses.    
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Figure 1. Actual implied volatilities and their approximations for the jump-diffusion model. 
The model parameters are borrowed from from Pan (2002): 
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Figure 2. Actual implied volatilities and their approximations for the CEV diffusion model. 
The model parameters are borrowed from Aït-Sahalia and Kimmel (2004): 
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Figure 3.   The distribution of observations in the dimensions of moneyness, time-to-maturity and 
at-the-money implied volatility. 
The first two scatter plots are built for 2537 observations showing how dense the observations of implied volatilities are 
across moneyness. The third scatter plot is based on 324 observations of implied volatility smile. The at-the-money implied 
volatility is the implied volatility which is the closest-to-the-money.  
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Figure 4. Robustness of model parameter estimates 
 The two graphs show the inferred shapes of the volatility of volatility and the 

expected  jump size as functions of volatility based on datasets corresponding to 
three restrictions on the option moneyness -0.05 ≤ X ≤ 0.05, -0.04 ≤ X ≤ 0.04 and -
0.03 ≤ X ≤ 0.03.  
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