
Practical Threshold Signatures�Victor ShoupIBM Zurich Research Lab, S�aumerstr. 4, 8803 R�uschlikon, Switzerlandsho@zurich.ibm.comJune 24, 1999AbstractWe present an RSA threshold signature scheme. The scheme enjoysthe following properties:1. it is unforgeable and robust in the random oracle model, assumingthe RSA problem is hard;2. signature share generation and veri�cation is completely non-interactive;3. the size of an individual signature share is bounded by a constanttimes the size of the RSA modulus.1 IntroductionA k out of l threshold signature scheme is a protocol that allows any subset ofk players out of l to generate a signature, but that disallows the creation of avalid signature if fewer than k players participate in the protocol. This non-forgeability property should hold even if some subset of less than k playersare corrupted and work together. For a threshold scheme to be useful whensome players are corrupted, it should should also be robust, meaning thatcorrupted players should not be able to prevent uncorrupted players fromgenerating signatures.The notion of a threshold signature scheme has been extensively studied.However, all previously proposed schemes su�er from at least one of thefollowing problems:�This is a revision of IBM Research Report RZ 3121 (April 19, 1999).1

1. the scheme has no rigorous security proof, even in the random oraclemodel;2. signature share generation and/or veri�cation is interactive, moreoverrequiring a synchronous communications network;3. the size of an individual signature share blows up linearly in the num-ber of players.To correct this situation, we present a new threshold RSA signaturescheme that enjoys the following properties:1. it is unforgeable and robust in the random oracle model, assuming theRSA problem is hard;2. signature share generation and veri�cation is completely non-interactive;3. the size of an individual signature share is bounded by a small constanttimes the size of the RSA modulus.Moreover, the resulting signature is a standard RSA signature.Our scheme is exceedingly simple, and it is truly amazing that such ascheme has apparently not been previously proposed and analyzed.We also consider a more re�ned notion of a threshold signature scheme,where there is one threshold t for the maximum number of corrupt players,and another threshold k for the minimum quarum size. The fact that aparticular message has been signed means that at least k � t uncorruptedplayers have authorized the signature.Previous investigations into threshold signature schemes have always as-sumed (explicitly or implicitly) that k = t+1. We also investigate the moregeneral setting where k � t + 1. This generalization is useful in situationswhere the uncorrupted parties do not necessarily agree on what they aresigning, but one wants to be able to prove that a large number of themhave authorized a signature. Indeed, threshold signatures with k � 2l=3and t � l=3 can be exploited to reduce the sizes of the messages sent inByzantine agreement protocols in an asynchronous network.We work with a \static corruption model": the adversary must choosewhich players to corrupt at the very beginning the attack. This is in linewith previous investigations into threshold signatures, which also (explicitlyor implicitly) assume static corruptions.2

Our basic scheme, Protocol 1, can be proven secure when k = t + 1 inthe random oracle model under the RSA assumption.We present another scheme, Protocol 2, for use in the more generalsetting k � t+1. Protocol 2 can be be proven secure|again, in the randomoracle model|when k = t + 1 under the RSA assumption, and when k >t+1 under an additional assumption, namely, an appropriate variant of theDecision Di�e-Hellman assumption.As already mentioned, our proofs of security are valid in the so-called\random oracle model," where cryptographic hash functions are replaced bya random oracle. This model was used informally by Fiat and Shamir [9],and later was rigorously formalized and more fully exploited in Bellare andRogaway [1], and thereafter used in numerous papers.For Protocol 1, we only need random oracles for robustness, if we assumethat ordinary RSA signatures are secure. In fact, Gennaro et al. [13] presenta non-interactive share veri�cation scheme that can be analyzed withoutresorting to random oracles. One could use their veri�cation scheme inplace of the one we suggest, thus avoiding random oracles in the analysis, butthis would have certain practical drawbacks, requiring a special relationshipbetween the sender and recipient of a share of a signature.The analysis of Protocol 2 makes use of the random oracle model ina more fundamental way. Since this seemed inevitable, we took severalliberties in the design of Protocol 2, so that it is actually a bit simpler andmore e�cient than Protocol 1. Thus, even if k = t + 1, Protocol 2 may bean attractive practical alternative to Protocol 1.We view a proof of security in the random oracle model as a heuristicargument that provides strong evidence that a system cannot be broken.All things being equal, a proof of security in the random oracle model is notas good as a proof of security in the \real world," but is much better thanno proof at all. Anyway, it does not seem unreasonable to use the randomoracle model, since that is the only way we know of to justify the securityof ordinary RSA signatures.Previous WorkDesmedt [4] introduces the more general notion of threshold signatures.Desmedt and Frankel [5] present a non-robust threshold ElGamal scheme[7] based on \secret sharing," [19] i.e., polynomial interpolation over a �-nite �eld. Their scheme has small share size, but requires (synchronous)interaction. Harn [15] presents a robust threshold ElGamal scheme with3

small share size, but again requires interaction. It seems that the securityof both of the above schemes can be rigorously analyzed in a satisfactoryway, although neither paper does this. Gennaro et al. [14] present a robustthreshold DSS scheme with small share size that again requires interaction;they also give a rigorous security analysis.All of the above-mentioned schemes are interactive. Indeed, any thresh-old signature scheme based on discrete logarithms appears doomed to beinteractive, since all such signature schemes are randomized, and so thesigners have to generate random values jointly, which apparently requiresinteraction.In [5], Desmedt and Frankel also brie
y address the problem of designinga threshold RSA [18] signature scheme, noting that there are some technicalobstructions to doing this arising from the fact that polynomial interpolationover the coe�cient ring Z�(n), where n is the RSA modulus and � the Eulertotient function, is somewhat awkward. Later, Desmedt and Frankel [6]return again to the problem of threshold RSA, and present a non-robustthreshold RSA scheme that is non-interactive and with small share size,but with no security analysis. Frankel and Desmedt [10] present resultsextending those in [6], giving a proof of security for a non-robust thresholdRSA scheme with small share size, but which requires interaction. Later, DeSantis et al. [3] present a variation (also non-robust) on the scheme in [10]that trades interaction for large share size (growing linearly in the number ofplayers). Both [10] and [3] avoid the problems of polynomial interpolationover Z�(n) by working instead with over Z�(n)[X]=(�q(X)), where where�q(X) is the qth cyclotomic polynomial (taken mod �(n)), and q is a primegreater than l. This is convenient, as standard secret sharing techniques canthen be directly applied, but it leads to a much more complicated schemesthat also require either interaction or large share sizes.Gennaro et al. [13] give a few general techniques that allow one to makeRSA threshold systems robust.Later, Frankel et al. [12, 11] and Rabin [17] propose and rigorously an-alyze robust threshold RSA schemes that have small share size, but requireinteraction. These papers take a di�erent approach to the \interpolationover Z�(n) problem," sidestepping it by introducing an extra layer of \se-cret sharing" and much more interaction and complexity. These schemeshave other features as well, namely they provide a type of security knownas \pro-active security," a topic we do not address here at all.As we shall see, the \interpolation over Z�(n) problem" is not reallya problem at all|it is entirely trivial to work around the minor technical4

di�culties to obtain an extremely simple and provably secure threshold RSAscheme. We do not even need a random oracle if we do not require robustnessand we are willing to assume that the RSA signature scheme is itself secure.OrganizationIn x2 we describe our system model and security requirements for thresholdsignatures. In x3 we describe Protocol 1. In x4 we analyze Protocol 1 inthe case k = t+ 1. In x5 we present Protocol 2, and analyze it in the moregeneral case k � t+ 1.2 System model and security requirementsThe participants. We have a set of l players, indexed 1; : : : ; l, a trusteddealer, and an adversary. There is also a signature veri�cation algorithm, ashare veri�cation algorithm, and a share combining algorithm.There are two parameters:t|the number of corrupted players;k|the number of signature shares needed to obtain a signature.The only requirements are that k � t+ 1 and l � t � k.The action. At the beginning of the game, the adversary selects a subsetof t players to corrupt.In the dealing phase, the dealer generates a public key PK along withsecret key shares SK1; : : : ;SKl, and veri�cation keys VK;VK1; : : : ;VKl. Theadversary obtains the secret key shares of the corrupted players, along withthe public key and veri�cation keys.After the dealing phase, the adversary submits signing requests to theuncorrupted players for messages of his choice. Upon such a request, a playeroutputs a signature share for the given message.Robustness and combining shares. The signature veri�cation algorithmtakes a input a message and a signature, along with the public key, and de-termines if the signature is valid. The signature share veri�cation algorithmtakes as input a message, a signature share on that message from a playeri, along with PK, VK, and VKi, and determines if the signature share isvalid. The share combining algorithm takes as input a message and k validsignature shares on the message, along with the public key and (perhaps)the veri�cation keys, and outputs a valid signature on the message.5

Non-forgeability. We say that the adversary forges a signature if at theend of the game he outputs a valid signature on a message that was notsubmitted as a signing request to at least k� t uncorrupted players. We saythat the threshold signature scheme is non-forgeable if it is computationallyinfeasible for the adversary to forge a signature.Discussion. Notice that our model explicitly requires that the generationand veri�cation of signature shares is completely non-interactive.Also notice that we have two independent parameters t and k. As men-tioned in the introduction, previous investigations into threshold signatureshave only dealt with the case k = t+1. In this case, the non-forgeability re-quirement simply says that a signature is forged if no uncorrupted player wasasked to sign it. As we shall see, achieving non-forgeability when k > t+ 1is harder to do than when k = t+ 1. For simplicity, we shall start with thecase k = t+ 1.3 Protocol 1: a very simple RSA threshold schemeWe now describe Protocol 1, which will be analyzed in the next section whenk = t+ 1.The dealer. The dealer chooses at random two large primes of equal length(512 bit, say) p and q, where p = 2p0 +1, q = 2q0 + 1, with p0, q0 themselvesprime. The RSA modulus is n = pq. Let m = p0q0. The dealer also choosesthe RSA public exponent e as a prime e > l.The public key is PK = (n; e).Next, the dealer computes d 2 Z such that de � 1 mod m. The dealersets a0 = d and chooses ai at random from f0; : : : ;m� 1g for 1 � i � k� 1.The numbers a0; : : : ; ak�1 de�ne the polynomial f(X) =Pk�1i=0 aiXi 2 Z[X].Let L(n) be the bit-length of n. For 1 � i � l, the dealer computessi = f(i) mod m: (1)This number si is the secret key share SKi of player i.We denote by Qn the subgroup of squares in Z�n.Next, the dealer chooses a random v 2 Qn, and for 1 � i � l computesvi = vsi 2 Qn. These elements de�ne the veri�cation keys: VK = v, andVKi = vi.Some preliminary observations. Note that Z�n ' Zm�Z2�Z2: If we letJn denote the subgroup of elements x 2 Z�n with Jacobi symbol (xjn) = 1,6

then we have Qn � Jn � Z�n; moreover, Qn is cyclic of order m and Jn iscyclic of order 2m. Also, �1 2 JnnQn.Generally speaking, we shall ensure that all group computations are donein Qn, and corresponding exponent arithmetic in Zm. This is convenient,since m = p0q0 has no small prime factors.Since the dealer chooses v 2 Qn at random, we may assume that vgenerates Qn, since this happens with all but negligible probability. Becauseof this, the values vi completely determine the values si mod m.For any subset of k points in f0; : : : ; lg, the value of f(X) modulo mat these points uniquely determines the coe�cients of f(X) modulo m, andhence the value of f(X) modulo m at any other point modulo in f0; : : : ; lg.This follows from the fact the corresponding Vandermonde matrix is invert-ible modulo m, since its determinant is relatively prime to m.From this, it follows that for any subset of k� 1 points in f1; : : : ; lg, thedistributions of the value of f(X) modulom at these points are uniform andmutually independent.Let � = l!. For any subset S of k points in f0; : : : ; lg, and for anyi 2 f0; : : : ; lgnS, and j 2 S, we can de�ne�Si;j = �Qj02Snfjg(i� j0)Qj02Snfjg(j � j0) 2 Z: (2)These values are derived from the standard Lagrange interpolation formula.They are clearly integers, since the denominator divides j!(l � j)! which inturn divides l!. It is also clear that these values are easy to compute. Fromthe Lagrange interpolation formula, we have:� � f(i) �Xj2S �Si;jf(j) modm: (3)Valid signatures. We next describe what a valid signature looks like. Weneed a hash function H mapping messages to elements of Z�n. If x = H(m),then a valid signature on m is y 2 Z�n such that ye = x. This is just aclassical RSA signature.Generating a signature share. We now describe how a signature shareon a message m is generated. Let x = H(m). The signature share of playeri consists of xi = x2�si 2 Qn; (4)along with a \proof of correctness." 7

The proof of correctness is basically just a proof that the discrete loga-rithm of x2i to the base ~x = x4� (5)is the same as the discrete logarithm of vi to the base v. For this, we caneasily adapt a well-known interactive protocol, due to Chaum and Pedersen[2]. We \collapse" the protocol, making it non-interactive, by using a hashfunction to create the challenge|this is where the random oracle model willbe needed. We also have to deal with the fact that we are working in agroup Qn whose order is not known. But this is trivially dealt with by justworking with su�ciently large integers.Now the details. Let H 0 be a hash function, whose output is an L1-bit integer, where L1 is a secondary security parameter (L1 = 128, say).To construct the proof of correctness, player i chooses a random numberr 2 f0; : : : ; 2L(n)+2L1 � 1g, computesv0 = vr; x0 = ~xr; c = H 0(v; ~x; vi; x2i ; v0; x0); z = sic+ r:The proof of correctness is (z; c).To verify this proof of correctness, one checks thatc = H 0(v; ~x; vi; x2i ; vzv�ci ; ~xzx�2ci):The reason for working with x2i and not xi is that although xi is supposed tobe a square, this is not easily veri�ed. This way, we are sure to be workingin Qn, where we need to be working to ensure soundness.Combining shares. We next describe how signature shares are com-bined. Suppose we have valid shares from a set S of players, whereS = fi1; : : : ; ikg � f1; : : : ; lg.Let x = H(m) 2 Z�n, and assume that x2ij = x4�sij . Then to combineshares, we compute w = x2�S0;i1i1 � � � x2�S0;ikik ;where the �'s are the integers de�ned in (2). From (3), we have we = xe0 ,where e0 = 4�2: (6)Since gcd(e0; e) = 1, it is easy to compute y such that ye = x, using astandard algorithm: y = waxb where a and b are integers such that e0a+eb =1; which can be obtained from the extended Euclidean algorithm on e0 ande. 8

4 Security analysis of Protocol 1Theorem 1 For k = t + 1, in the random oracle model for H 0, Protocol 1is a secure threshold signature scheme (robust and non-forgeable) assumingthe the standard RSA signature scheme is secure.We show how to simulate the adversary's view, given access to an RSAsigning oracle which we use only when the adversary asks for a signatureshare from an uncorrupted player.Let i1; : : : ; ik�1 be the set of corrupted players. Recall si � f(i) modmfor all 1 � i � l, and d � f(0) mod m.To simulate the adversary's view, we simply choose the sij belonging tothe set of corrupted players at random from the set f0; : : : ; bn=4c � 1g. Wehave already argued that the the corrupted players' secret key shares arerandom numbers in the set f0; : : : ;m� 1g. We haven=4�m = (p0 + q0)=2 + 1=4 = O(n1=2);and from this a simple calculation shows that the statistical distance betweenthe uniform distribution on f0; : : : ; bn=4c � 1g and the uniform distributionon f0; : : : ;m� 1g is O(n�1=2).Once these sij values are chosen, the values si for the uncorrupted playersare also completely determined modulo m, but cannot be easily computed.However, given x; y 2 Z�n with ye = x, we can easily compute xi = x2�si foran uncorrupted player i asxi = y2(�Si;0+e(�Si;i1 si1+���+�Si;ik�1sik�1));where S = f0; i1; : : : ; ik�1g. This follows from (3).Using this technique, we can generate the values v; v1; : : : ; vl, and alsogenerate any share xi of a signature, given the standard RSA signature.This argument shows why we de�ned the share xi to be x2�si , insteadof, say, x2si . This same idea was used by Feldman [8] in the context of thedi�erent but related problem of veri�able secret sharing.With regard to the \proofs of correctness," one can invoke the randomoracle model for the hash function H 0 to get soundness and statistical zero-knowledge. This is quite straightforward, but we sketch the details.First, consider soundness. We want to show that the adversary cannotconstruct, except with negligible probability, a proof of correctness for an9

incorrect share. Let x and xi be given, along with a valid proof of correctness(z; c). We have c = H 0(v; ~x; vi; x2i ; v0; x0), where~x = x4�; v0 = vzv�ci ; x0 = ~xzx�2ci :Now, ~x; vi; x2i ; v0; x0 are all easily seen to lie in Qn, and we are assuming thatv generates Qn. So we have~x = v�; vi = vsi ; x2i = v�; v0 = v
 ; x0 = v�;for some integers �; �;
; �: Moreover,z � csi �
 mod m and z�� c� � � modm:Multiplying the �rst equation by � and subtracting the second, we havec(� � si�) � �
 � � modm: (7)Now, a share is correct if and only if� � si� mod m: (8)If (8) fails to hold, then it must fail to hold mod p0 or mod q0, and so (7)uniquely determines c modulo one of these primes. But in the random oraclemodel, the distribution of c is uniform and independent of the inputs to thehash function, and so this even happens with negligible probability.Second, consider zero-knowledge simulatability. We can construct a sim-ulator that simulates the adversary's view without knowing the value si.This view includes the values of the random oracle at those points wherethe adversary has queried the oracle, so the simulator is in complete chargeof the random oracle. Whenever the adversary makes a query to the randomoracle, if the oracle has not been previously de�ned at the given point, thesimulator de�nes it to be a random value, and in any case returns the value tothe adversary. When an uncorrupted player is supposed to generate a proofof correctness for a given x, xi, the simulator chooses c 2 f0; : : : ; 2L1 � 1gand z 2 f0; : : : ; 2L(n)+2L1 � 1g at random, and for given values x and xi,de�nes the value of the random oracle at (v; ~x; vi; x2i ; vzv�ci ; ~xzx�2ci) to be c.With all but negligible probability, the simulator has not de�ned the randomoracle at this point before, and so it is free to do so now. The proof is just(z; c). It is straightforward to verify that the distribution produced by thissimulator is statistically close to perfect.10

From soundness, we get the robustness of the threshold signature scheme.From zero-knowledge, and the above arguments, we get the non-forgeabilityof the threshold signature scheme, assuming that the standard RSA sig-nature scheme is secure, i.e., existentially non-forgeable against adaptivechosen message attack. This last assumption can be further justi�ed (see[1]): in the random oracle model for H, this assumption follows from theRSA assumption|given random x 2 Z�n, it is hard to compute y such thatye = x.5 Protocol 2: a modi�cation and security analysiswhen k � t+ 1We now present Protocol 2 and analyze its security when k � t+ 1. In ouranalysis of Protocol 2, we need to make use of the random oracle model ina fundamental way. As such, we fully exploit the random oracle model toget a scheme that is a bit simpler and more e�cient that Protocol 1.Protocol 2 is obtained by modifying Protocol 1 as follows.Instead of computing the secret key share si as in (1), the dealer com-putes it as si = f(i)��1 mod m:We add to the veri�cation key VK an element u 2 Z�n with Jacobi symbol(ujn) = �1. Note that the Jacobi symbol can be e�ciently computed, andsuch a u can be found just by random sampling.We then modify the share generation algorithm as follows. Let x̂ =H(m). We set x = (x̂ if (x̂jn) = 1;x̂ue if (x̂jn) = �1.This forces the Jacobi symbol of x to be 1. The share generation, veri�cation,and combination algorithms then run as before, using this new value of x,except that we make the following simpli�cations: we rede�ne xi, ~x, and e0(de�ned in (4), (5), and (6)) asxi = x2si ; ~x = x4; e0 = 4:Thus, we eliminate the somewhat \arti�cial" appearances of � in the sharegeneration and combination algorithms.11

The original share combination algorithm produces y such that ye = x.If x = x̂ue, then we can divide y by u, obtaining an eth root of H(m), sowe still obtain a standard RSA signature.That completes the description of Protocol 2.To analyze the security of Protocol 2, we will need to work in the randomoracle model for H. The intractability assumptions we will need to makeare then as follows:� The RSA assumption|it is hard to compute y such that ye = x, givenrandom x 2 Z�n;� The Decision Di�e-Hellman (DDH) assumption|given random g; h 2Qn, along with ga and hb it is hard to decide if a � b mod m.We make our DDH assumption a bit more precise. For h 2 Qn, a; b 2 Zm,and c 2 f0; 1g, de�ne F (h; a; b; c) = (ha if c = 0;hb if c = 1.The DDH assumption states that for random g 2 Qn, and random h; a; b; cas above, it is hard to compute|with negligible error probability|c giveng; h; ga; F (h; a; b; c).Note that this is an average-case complexity assumption. It is equivalentto a worst-case complexity assumption, by a standard \random self reduc-tion" argument [21, 16], provided the inputs are restricted in the followingway: g and h should generate Qn, and gcd(a� b;m) =2 fp0; q0g.Note that the DDH is a reasonable assumption here, since the group Qnhas no small prime factors [20].By a standard \hybrid" argument (see [16]), the above DDH assumptionis equivalent to the following: the distributions(g; ga1 ; : : : ; gas ; h; ha1 ; : : : ; has)and (g; ga1 ; : : : ; gas ; h; hb1 ; : : : ; hbs)are computationally indistinguishable. Here s is any (small) number, g andh are random elements of Qn, and the ai's and bi's are random numbersmodulo m. 12

Theorem 2 In the random oracle model for H and H 0, under the RSA andDDH assumptions Protocol 2 is a secure threshold signature scheme (robustand non-forgeable) for k � t+ 1; moreover, when k = t+ 1, the same holdsunder the RSA assumption alone.The proof of the robustness property goes through as before. We focushere in the proof of non-forgeability.The random oracle model for H will allow the simulator to choose theoutputs ofH as it wishes, so long as these outputs have the right distribution.We now describe a series of simulators.The �rst simulator. The simulator chooses the shares for the corruptedplayers si1 ; : : : ; sit as random numbers chosen from f0; : : : ; bn=4c � 1g, justas it did in the previous section.Let g; git+1 ; : : : ; gik�1 be random elements in Qn. Here, it+1; : : : ; ik�1 arearbitrary indices of uncorrupted players. We assume that all of these groupelements are generators for Qn, which is the case with all but negligibleprobability. The values g; git+1 ; : : : ; gik�1 implicitly de�ne sit+1 ; : : : ; sik�1modulo m by the equation gij = gsij .We next show how to sample from the distributionx̂; x1; : : : ; xl:We choose r 2 f0; : : : ; bn=4c � 1g at random, and b1; b2 2 f0; 1g at random.We set x̂ = (gr)�2eu�b1e(�1)b2 , thus de�ning the corresponding value x tobe (gr)�2e(�1)b2 . For one of the uncorrupted players ij 2 fit+1; : : : ; ik�1g,we have xsj = (grij)2�2e. For other uncorrupted players i, we can computexi asxi = (gr)2(�Si;0+�e(�Si;i1si1+���+�Si;itsit))(grit+1)2�e�Si;it+1 � � � � � (grik�1)2�e�Si;ik�1 ;where S = f0; i1; : : : ; ik�1g. Again, this follows from (3).We can generate values in this way so that x̂ is the output of the randomoracle H. We can also generate the veri�cation keys v; v1; : : : ; vl in basicallythe same way.This simulator generates x̂ in this way for every random oracle query, sowe will not be able to break the RSA problem with this simulator (this isonly the �rst step).It is easy to see that this simulation is statistically close to perfect. Theone thing to notice is that x̂ is nearly uniformly distributed in Z�n. The proofof this utilizes the fact that every element in Z�n can be expressed uniquelyas gau�eb1(�1)b2 , for a 2 f0; : : : ;m� 1g, and b1; b2 2 f0; 1g.13

The second simulator. This simulator is the same as the �rst, except asfollows. Let g; git+1 ; : : : ; gik�1 and h; hit+1 ; : : : ; hik�1 be random elements inQn. This simulator \guesses" which message will be forged by the adversary;that is, we can assume that the forged message is an input to the randomoracle, and the simulator just guesses one of these queries is the \target"message.Everything is the same as before, except that when generatingx̂; x1; : : : ; xl for the target message, the simulator performs the same cal-culations using the values h; hit+1 ; : : : ; hik�1 instead of gr; grit+1 ; : : : ; grik�1 inthe calculation.This simulation is no longer statistically indistinguishable from fromthe real game, but this is where we use the DDH assumption. On thisassumption, with non-negligible probability, the adversary will still forge amessage, and that message will be the selected target.Notice that the \correctness proofs" of the shares can be still be simu-lated using the random oracle model for H 0 just as before|the fact that thestatement being \proved" is false is interesting, but irrelevant.The third simulator. This simulator is the same as the �rst, except asfollows. Let z be a random element in Z�n. For the target message hashvalue, the simulator sets x̂ = z. Also, whenever the adversary asks for asignature share xi on the target message from any uncorrupted player, theadversary simply outputs a random quadratic residue. The \correctnessproofs" can still be simulated, just as before. If the adversary ever asks formore than k � t � 1 signature shares on the target message, the simulatorsimply halts and reports an error.It is easy to see that the distribution of this simulation is identical tothat of the second simulation, provided the adversary does not ask for toomany shares of the target message. Indeed, because of the way the secondsimulator constructs the signature shares xi from the uncorrupted players onthe target message, any subset of k� t� 1 of them is uniformly distributedin Qn, and independent of all other variables in the adversary's view. Sowith non-negligible probability, the adversary will forge a signature on thetarget message, which means, in particular, the he does not ask for too manyshares. Moreover, if he forges this signature, then he has computed an ethroot of z in Z�n, thus contradicting the RSA assumption.To complete the proof of the theorem, we simply note that when k = t+1,the DDH is not needed at all in the above arguments.14

AcknowledgementsThanks to Rosario Gennaro for suggesting improvements to a previous ver-sion of the paper.References[1] M. Bellare and P. Rogaway. Random oracles are practical: a paradigmfor designing e�cient protocols. In First ACM Conference on Computerand Communications Security, pages 62{73, 1993.[2] D. Chaum and T. Pedersen. Wallet databases with observers. In Ad-vances in Cryptology{Crypto '92, pages 89{105, 1992.[3] A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to sharea function securely. In 26th Annual ACM Symposium on Theory ofComputing, pages 522{533, 1994.[4] Y. Desmedt. Society and group oriented cryptography: a new concept.In Advances in Cryptology{Crypto '87, pages 120{127, 1987.[5] Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances inCryptology{Crypto '89, pages 307{315, 1989.[6] Y. Desmedt and Y. Frankel. Shared generation of authenticators andsignatures. In Advances in Cryptology{Crypto '91, pages 457{569, 1991.[7] T. El Gamal. A public key cryptosystem and signature scheme basedon discrete logarithms. IEEE Trans. Inform. Theory, 31:469{472, 1985.[8] P. Feldman. A practical scheme for non-interactive veri�able secretsharing. In 28th Annual Symposium on Foundations of Computer Sci-ence, pages 427{437, 1987.[9] A. Fiat and A. Shamir. How to prove yourself: practical solutionsto identi�cation and signature problems. In Advances in Cryptology{Crypto '86, Springer LNCS 263, pages 186{194, 1987.[10] Y. Frankel and Y. Desmedt. Parallel reliable threshold multisignature.Technical Report TR-92-04-02, Univ. of Wisconsin{Milwaukee, 1992.15

[11] Y. Frankel, P. Gemmall, P. MacKenzie, and M. Yung. Optimal-resilience proactive public-key cryptosystems. In 38th Annual Sym-posium on Foundations of Computer Science, 1997.[12] Y. Frankel, P. Gemmall, P. MacKenzie, and M. Yung. Proactive RSA.In Advances in Cryptology{Crypto '97, 1997.[13] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust and e�-cient sharing of RSA functions. In Advances in Cryptology{Crypto '96,pages 157{172, 1996.[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust thresholdDSS. In Advances in Cryptology{Eurocrypt '96, pages 354{371, 1996.[15] L. Harn. Group-oriented (t; n) threshold digitial signature scheme anddigital multisignature. IEE Proc.-Comput. Digit. Tech., 141(5):307{313, 1994.[16] M. Naor and O. Reingold. Number-theoretic constructions of e�cientpseudo-random functions. In 38th Annual Symposium on Foundationsof Computer Science, 1997.[17] T. Rabin. A simpli�ed approach to threshold and proactive RSA. InAdvances in Cryptology{Crypto '98, 1998.[18] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtainingdigital signatures and public-key cryptosystems. Communications ofthe ACM, pages 120{126, 1978.[19] A. Shamir. How to share a secret. Communications of the ACM, 22:612{613, 1979.[20] V. Shoup. Lower bounds for discrete logarithms and related problems.In Advances in Cryptology{Eurocrypt '97, 1997.[21] M. Stadler. Publicly veri�able secrete sharing. In Advances inCryptology{Eurocrypt '96, pages 190{199, 1996.
16

