
Evaluating Individual Contribution Toward
Group Software Engineering Projects

Jane Huffman Hayes

University of Kentucky
hayes@cs.uky.edu

Timothy C. Lethbridge
University of Ottawa
tcl@site.uottawa.ca

Daniel Port
University of Southern California

dport@almaak.usc.edu

Abstract

It is widely acknowledged that group or team projects
are a staple of undergraduate and graduate software
engineering courses. Such projects provide students with
experiences that better prepare them for their careers, so
teamwork is often required or strongly encouraged by
accreditation agencies. While there are a multitude of
educational benefits of group projects, they also pose
considerable challenge in fairly and accurately discerning
individual contribution for evaluation purposes. Issues,
approaches, and best practices for evaluating individual
contribution are presented from the perspectives of the
University of Kentucky, University of Ottawa, University of
Southern California, and others.

The techniques utilized within a particular course
generally are a mix of (1) the group mark is everybody's
mark, (2) everybody reports what they personally did, (3)
other group members report the relative contributions of
other group members, (4) pop quizzes on project details,
and (5) cross-validating with the results of individual work.

1. Introduction

Group or team projects are a staple of undergraduate and
graduate software engineering courses. Such projects
provide students with realistic experiences that better
prepare them for their careers. This is so widely
acknowledged as important that it is often required or
strongly encouraged by accreditation agencies.

In this paper, we will look at some of the issues
surrounding assessment of group work, since both
instructors and students complain of the difficulties of doing
this in a manner that is both fair and promotes educational
objectives.

 The authors of this paper come from several different
universities each of which has a variety of courses involving
group projects. The University of Kentucky requires group
projects in the CS 499 Senior Design Project course and CS
616 Software Engineering course; the University of Ottawa
assigns a group full-year capstone project (SEG 4000) [4]
as well as group projects in several other courses; and the
University of Southern California assigns group projects
both in its one semester undergraduate software engineering
course CS477 and its full year graduate level course CS577.

We note that although the project characteristics and
grading criteria vary in each institution and course, the
problems in grading group projects seem universal.
Specifically, it is very difficult to objectively determine an
individual student’s contribution to a group project. Various
approaches have been implemented with varying degrees of
success.

The paper is organized as follows: Section 2 presents
background information on group projects and challenges in
evaluating these for grades, Section 3 presents approaches
to grading individual effort, Section 4 presents grading
practices that the three universities feel worked well, and
Section 5 presents a summary and conclusions.

2. Background

In this section, we discuss the characteristics and
benefits of group projects as well as the challenges of
grading such projects.

2.1 Characteristics/benefits of group projects

The group project has become a staple of software

engineering courses at the graduate and undergraduate
level. Students are usually grouped into teams of three or
more and are required to perform the entire software
development lifecycle in one or more semesters. The
project may be “real” with a customer and/or end user who
will use the software product after its completion.
Generally, the teams are required to prepare artifacts
throughout the lifecycle, such as management plans,
concept documents, requirement specifications, design
specifications, test plans, etc. The end result of the project
is often a documented software product. Milestone reviews
may be held throughout the course to allow the instructor to
determine progress. Also, an acceptance test may be
required to assure successful completion of the project.

There are many benefits to group projects: They
encourage students to learn to work in groups (stressing co-
operation, teamwork, and negotiation); projects enable
better learning by having students learn from each other,
motivate each other, rely on each other, have to work at
agreed-upon times, etc. Projects enable students to develop
larger or more complex systems than would otherwise be
possible, due to division of labor; projects also allow

students to gain experience working as part of a team, as is
normally the case in industry.

Unfortunately, grading team projects is not an easy
undertaking, and has many inherent challenges. Some of
these, such as being fair, consistent and encouraging, apply
to all forms of grading and are discussed in the next section.
Group projects add additional challenges: the grading
scheme must accurately reflect each individual’s
contribution to the overall project, and must reflect the
difficulty of the project (if each group is allowed to select
their own project). Also there may need to be a mechanism
to account for situations where students drop out of groups
or are ‘fired.’

2.2 Existing literature

Literature on this topic has been relatively sparse; the
following summarizes some relevant work.

The question of how to manage group projects has been
studied in the field of education theory called “co-operative
learning”. This is discussed in some depth by Speck [7]; he
covers grading group work, among other issues, but doesn’t
give many useful guidelines.

Johnson et al [3] propose several essential factors that
must be present for effective co-operative learning in group
projects: Firstly, there must be “positive interdependence”
among the team members – i.e. the group members must
benefit from each others’ presence. Secondly, the group
members must possess and use effective inter-personal
skills. Thirdly, and of key relevance to this paper, the group
members must hold each other accountable for their share
of the work and analyze as a group how effectively they are
co-operating.

Schultz [6] performed a survey in which he asked teams
of students doing engineering projects what their greatest
difficulties were with respect to teamwork. 31% of them
cited “motivating slackers” as a concern; Schultz reports
that many students felt “a lot of bitterness” around this
issue.

The notion of accountability also appears in the work of
Gates et al [2]. They focus on motivating students to
contribute equally, so that the need for differentially
evaluating their contributions is lessened. They suggest two
strategies: First, students should maintain rough drafts of all
work they contributed, including emails etc. The intent of
this is to provide a body of evidence that students can use to
back up their claim to having contributed effectively.
Second, each group produces a statement describing what
each person did in detail. Each member of the team must
then sign that they agree with the statements made by each
member.

McKinney [5] has produced a well-referenced set of
guidelines for improving the functioning of groups, and
fostering fair and equal participation and evaluation. In a
manner similar to Gates et al she suggests requiring students
to prepare a systematic dossier of all their individual work,

which they must use as a “ticket” permitting them to
participate in group work. She also suggests assigning
individual grades based on a combination of the group
grade, an assessment of the individual's rough work, a
“division of labor” report produced by the group, and peer
ratings of the team members.

Layton and Ohland [17] found no gender effects but did
find race effects when students rated their peers as part of
group projects. In [18], they modified their peer-rating
instrument and added additional related instruction. Using
this approach, they found no race effects, but they did find
gender effects, indicating that their new approach was only
partially successful. Sims-Knight et al [19] examined the
effect that an assessment-based continuous improvement
process can have on team skills when team projects are
undertaken in software engineering courses. They found
that “self-assessments of both knowledge base and team
process plus team training reading and exercises were not
sufficient to promote improvement even in basic declarative
knowledge.”

A theme running through several of the above authors’
work is that whatever strategy you use, it must be explained
openly to the students and the students should be given a
say in assessing the effectiveness of the strategy. The well-
known book on college classroom teaching by Angelo and
Cross [1] provides some techniques for doing this.

3. Approaches to grading individual effort

This section will discuss grading criteria, grading
individual effort within groups, handling team breakdown,
and evaluating project-grading methods. Instructors should
be able to use this section to derive and evaluate their group
grading schemes. The points made in this section have been
synthesized from the literature as well as the experiences of
educators at our universities.

3.1 Criteria for good grading schemes

Many of the criteria for grading have been touched upon
in section 2; the grading scheme should:

• Be fair
• Be consistent
• Reflect achievement of educational objectives
• Provide good, understandable feedback
• Encourage students and avoid unnecessary

discouragement
• Not contribute to grade inflation or deflation
• Be easy (as regards workload) on the grader
• Control grading volatility, sensitivity, and risks
• Be accurate and unbiased across a wide range of

project types, and finally
• Discourage “risk managing” among students

towards grading criteria (e.g. minimizing effort).

Let us examine some of these more closely. First, for the
scheme to be fair and consistent means that grades
accurately reflect differences in accomplishment from
group to group and among members of a group. The grades
must take into account appropriate information (particular
presentations, reports, exams, etc.) so as not to
unreasonably penalize or reward particular students or
groups. For example, a grading scheme that rewarded only
the results of a “final product demonstration” might unfairly
benefit a group in which all the work was done by a single
programming guru, especially if the other team members
learned little and the resulting system was undocumented
and unmaintainable.

There should be no numerical anomalies caused by a
grading formula used; that is, an increase in skill or
knowledge should map to an increase in grade. Note that
anomalies can be caused by some kinds of “step functions”
or strong non-linearities. The scheme should be designed so
that it cannot be “manipulated” by students in any way to
thwart fairness, e.g. colluding with other groups, skipping
things that don’t count, etc. The scheme should minimize
opportunities for cheating and be as objective as possible,
so as not to introduce grader bias or arbitrariness.

Designing a scheme to ensure that grades reflect
achievement of educational objectives is challenging
because sometimes it is hard to avoid rewarding mere
volume of work or pure effort (assuming that actual
knowledge and skills are the real educational objectives).

Providing good, understandable feedback implies that
students and groups know what they have to do, why they
obtained their particular grade, and what they can or have to
do in the future.

Regarding discouragement, students may be given the
opportunity to make up for some bad early results if they do
well later. Also, a student who has trouble working in a
group through no fault of his/her own should still be able to
obtain a fair grade.

At the University of Southern California, we have found
that it is both practical and fruitful to utilize our real-
project, client-based CS577 course as a software
engineering “laboratory” to carry out software engineering
experiments and collect research data outside the course
educational objectives. The activities range from
observational studies such as of development processes and
effort distributions [11] and point interventions such as
perspective based reading techniques [12], to longitudinal
studies and fundamental process changes such as use of
COTS [13] or schedule as an independent variable [14]. As
a result, the last three items listed above have become
essential in ensuring the validity of the experimental data
and results in addition to expanded emphasis on the
previously listed criteria. The experiments often continue or
are repeated from semester to semester. While some of the
additional criteria are self evident, some elaboration is in
order. There are a multitude of uncontrollable factors within
software engineering project courses such as project size

and scope, quality of client, organizational politics,
technology changes, and so forth. Volatility and risks in
these factors are natural in real word projects and thus we
do not attempt to control them, which might invalidate our
experiments. Our grading must, however, be robust in the
face of these uncontrolled factors.

3.2 Techniques for grading individual contribution

There are numerous ways to approach evaluating
individual contribution, some of which were touched on in
Section 2. Some grading schemes follow:

1) The group mark is everybody's mark.
2) Everybody reports what they personally did, and

separate marks are given to those components by the
grader. As mentioned, McKinney [5] suggests that this
can be done by using either a dossier of rough work or
a division of labor report produced by team members.

3) Other group members report (confidentially or openly)
the relative contributions of other group members to
allow for an adjustment of the final grade.

4) Pop quizzes in class to ensure that students know the
intimate details of the project.

5) Cross-validating with the results of individual work
(possibly reducing the weight of group work for
students who perform poorly on exams or individual
assignments).

We will now examine some of these approaches. It

appears that 1) is probably the simplest approach, and
probably the most common. It certainly is easy on the
grader. However, it may be the least fair approach and may
discourage students who have a “poor” team. Scheme 2) is
more work for the marker and is not normally possible to
completely implement. Also, this scheme is somewhat
prone to manipulation (unless a dossier is presented,
students can protect their peers by lying about what they
and others did). For scheme 3), one way to combine the
grades would be to have each team member grade the other
members of the team on a scale of 100 and the average of
these scores could be used to adjust the final grade. In large
groups, it might be wise to drop the highest and lowest
grades assigned by peers to reduce opportunities for
collusion.

We have had interesting experiences with these
approaches at our three universities. As a variant of scheme
2), Jurek Jaromczyk of the University of Kentucky (UK)
requires each student to prepare and update a web log
weekly. He then monitors this web log to track progress.
This requires more effort for the grader, but is hard for the
student to manipulate.

Paul Piwowarski of UK also required each project to
have a web page. Among other things, the page provides the
weekly activity of the group and of individuals. This is
monitored during the semester. Despite using this scheme,

Piwowarski ended up giving the same project grade to all
team members: It was the first time he had taught the course
and he did not feel that he had enough justification and
proof to give disparate grades.

Tony Baxter, also of UK, uses the pop quiz method
(Scheme 4). This requires considerable effort on the part of
the grader, because he or she must be knowledgeable
enough and up to date enough on each team’s project to be
able to detect a student’s ineptitude.

The University of Southern California uses a
combination of these approaches. Grading scheme (1) is
utilized within the four major milestone reviews (LCO,
LCA, RLCA, IOC see [15]) of project artifacts (two per
semester). For scheme (2), there is weekly reporting of
individual effort and a heavily weighted final individual
project critique that asks a comprehensive set of questions.
The same individual project critique asks students to
discuss management and staffing issues for which low
performing team members are commonly accounted for as
does the bi-weekly project progress reports. We also ask the
students to assess their own individual contribution for
which a significant number of points are either applied on
behalf of the student or are in part redistributed to deserving
teammates. Finally, the various grading results are cross-
validated with each other and the individual effort due to
homework, project review presentations, and quizzes. A
particularly notable pattern we’ve identified is when a
student submits a poorly detailed individual critique, void
of any real content or even constructive criticism: of the
course, instructors, or teammates. When the answers are
“the project was good. I learned a lot,” we suspect that such
a student was not engaged with their team and likely not to
have contributed fully. We look at the entire team’s
individual critiques which often will indicate a low-
performing team member as the cause of project shortfalls.
We would then validate further by considering the students
individual effort. Generally there will be many missing or
low-scoring marks, further validating that this student was
not engaged with the project.

At the University of Ottawa, our standard approach in
the capstone project [4] is based on scheme 1), with scheme
3) being applied in exceptional circumstances. In a second-
year software engineering course requiring compulsory
group work [9], we apply approach 5), increasing the
weight of exams for any student whose exam grade drops
below 66%; exams are weighted at 100% of the mark if the
exam mark falls below 50%. One advantage of this is that it
requires absolutely no extra work on the part of the faculty
member. It reduces animosity against slackers since all
group members know that slackers will often do poorly on
exams. It is essential, however, that the project be
‘standard’ so that material learned doing the project can be
examined.

The University of Southern California used a hybrid of
schemes 1,2,3, and 5 and found that project reviews and
individual critiques worked very well. Each project team

prepares a structured 80-minute presentation for the
“architecture review board” reviewing their project based
on the lifecycle anchor points [15]. The rule is that each
team member must present something and they are
individually graded in regards to their preparation and
presentation content. Underperforming team members are
readily recognized as they are unable to present appropriate
detail on their project and are unable to answer questions
effectively. One of the particularly salient benefits of this
approach is that it serves as an early warning and
intervention process. Through direct feedback and
experience of their position in relation to their teammates
during the review, underperforming team members often
become motivated to improve before falling in to a tailspin
from which they cannot recover. As instructors, we can note
early on students that may require additional guidance and
can help their teams risk manage potential consequences of
an underperforming team member. The individual critique
serves as a final measure of how engaged a student was in
their team and applied material from the course. As noted
previously, underperformers are easily spotted as they tend
to respond with vagueness and generalities or muddled
details. By the time we note this in a student’s critique, it is
too late for that student to improve. A low score on a
critique assures a lower grade in the course than the
student’s more fully engaged teammates and we use critique
results as cross-validation in combination with their project
review presentation scores for allocating their individual
contribution points to teammates. When confronted with
overwhelming evidence from poor scores on review
presentations, critique, and (usually) homework,
underperformers generally confess their lack of
participation and are eager to provide restitution by
sacrificing their individual contribution points.

We have found that it does not work well to directly ask
students to evaluate their teammates (scheme 3) as students
are reluctant to provide details or “rat out” their teammates.
This is generally unnecessary, as noted earlier we have
multiple other means of spotting underperformers. What we
do instead is ask students to evaluate within their critique
the impact of problems they encountered, including team
personal. Rather than “name names” they are more
comfortable and candid with describing hardships such as
“we would have been able to implement all the high-priority
requirements if all the team members performed to the
expected level.” This provides critical information needed
to gauge how much of an underperforming students
individual contribution points should be allocated to the rest
of the team – that is, student evaluations of other students
are best used in assessing magnitude and not identification.

 The University of Kentucky used scheme 3) and found
that it worked very well [16], though this is contrary to the
experience at USC. It was used in several variations. In
one variation, an evaluation instrument was used. The
students evaluated themselves as well as each team
member. This instrument was used in three different

software engineering project
courses with undergraduate
students and graduate students.
Each semester there was at least
one team that felt that one or more
team members were not “pulling
their weight.” In all but one
instance, the instructor had to
serve as an intermediary. In two
incidences, the “idle” team
member acknowledged that they
were not doing their share and
their grade was lowered
appropriately. In one incidence,
the “idle” team member
“vanished” from class and did not
complete any further assignments or exams and received an
appropriately low grade. In one incidence, the “idle”
member “kicked it into high gear” and earned the respect of
the other team members by over-performing at the end of
the project. This pattern is not what we should promote as
instructors, but at least solves the unfairness problem.

The above scheme seemed to work well in that students
were not reluctant to comment on an “idle” member.
However, the instructor worried that the scheme may also
have encouraged team members to “gang up” on another
member. The scheme also did not allow frequent
monitoring of the teams as the forms were only turned in
three times throughout the semester. This scheme might be
improved by combining it with other schemes and
variations, such as having the students e-mail such
evaluations to the instructor weekly. This would require
more work on the part of the instructor, though.

The instructor found that one aspect of the project
assignment was very good at uncovering students who had
not contributed much: the project demonstration. The
instructor required all team members to participate in this
demonstration in the instructor’s office or student lab. The
instructor had developed an “acceptance plan” and asked
the team members to perform the tests and/or the instructor
performed some tests. The instructor also asked each
member questions about the project and asked for
demonstration of certain features. The demonstrations often
“rooted out” students who did not know much about their
projects (at the very end of the project schedule, no less).

Variations on this scheme such as weekly web logs,
periodic journals, and random quizzes were also used at
UK. It was found that the weekly web log and quizzes
worked well. The web log needs to be more formal though.
In the future, UK plans to tell all group members to review
the web log for accuracy (of all members’ accounts) as it
will affect their individual grades on the project. The
quizzes also need to contain more detailed, team-specific
project questions.

In Table 1, each of the above grading schemes has been
mapped to the grading criteria discussed earlier. Note that

no single scheme meets all the grading criteria. It seems
clear that using a combination of these schemes is the best
approach for achieving adequate criteria coverage. The
grading schemes may be combined in a number of ways:

• A fixed percentage of each person's grade is based on

scheme 2) or 3); the remainder on scheme 1), e.g.
S1*0.9 + S3*0.1.

• The group grade, scheme 1), is “multiplied” by a factor
from scheme 3), e.g. simply S1 * S3/100.

• A fixed number of grades are available to be
distributed among all the group members. The
members decide who gets what. For example, the
instructor grades a project (using scheme 1) as 90%.
For a 3-person group this means that there are 90 * 3 =
270 marks that the 3 students can distribute among
themselves in whatever manner they agree on.

Whatever the grading scheme, we reiterate the following

issue raised by other researchers in section 2.1: It is
important that the syllabus and/or grading policy clearly
spell out the instructors’ intent. The University of Kentucky
often uses this paragraph:

“Group Projects:

The group project for the course will require you to work
together with other students in the class. You will be
evaluated on your contribution to the group project and
presentations of the project results. The instructor will make
group assignments. Group members are not guaranteed to
receive the same grade; evaluation of the group will be
individualized to determine individual understanding,
commitment, and mastery of the project goals. As part of
the project, written reports will be required. Proper
language usage is required.”

3.3 Preparing for when bad things happen

Generally there are some warning signs when things are
not going well within a team. One or more disgruntled

Table 1. Grading criteria mapped to individual effort grading.
Grading
Criterion

All
same
grade

Each
reports
own
effort

Each
evaluates
self and
others

Each
reports in
weekly
Web log

Each
reports
in
journal

Quiz
in
class

Project
reviews

Individual
effort
analysis

Fair X X X
Consistent X X X
Reflect
Educ.
Objectives

 X X X

Provide
feedback

 X X X X

Encourage
students

 X X

No grade
inflation

 X X

Easy on
grader

X X X X

students will call, e-mail, or visit an instructor. At this time,
we believe that the instructor should encourage the students
to work it out among themselves. If this fails, the instructor
can serve as an intermediary and meet with the team.

Hong-Mei Chen at the University of Hawaii [8]
approaches the problem very much like industry. Once a
student is part of a team and is not pulling his/her weight,
the team can "fire" them. The “fired” student can then try
to get rehired by another team. If unsuccessful, the student
will be given an individual project to work on. If the latter
occurs, it becomes labor intensive for the instructor and
grader. A variation on this is that fired members could be
assigned a 0 or a failing grade.

4. Suggested best practices

Based on the findings above, we feel that there are
several best practices that can be suggested.

• Allow team members to evaluate each other, but

carefully and/or frequently monitor this to prevent the
“mob” mentality or collusion.

• Use project demonstrations and/or quizzes to further
test project knowledge.

• Require frequent generation and/or posting of
individual effort information, or the maintenance of
individual dossiers

• Cross-validate individual effort evaluations with group
evaluations

• Have multiple individual grading methods (e.g.
individual project critique and individual effort) to
enable adjustments for individual contribution

• Whatever grading scheme you use, evaluate it using
the criteria we listed in section 3.1

5. Summary and conclusions

In this paper we have discussed how software engineering
course instructors can tackle problems associated with
grading group projects. We first pointed out that group
projects are an essential component of software engineering
curricula: Students must practice collaborating with
teammates since this is what they will be doing in their
careers.

Whenever an instructor is designing a grading scheme,
he or she should evaluate the scheme according to the
criteria we presented in Section 3.1. Among these criteria
are issues of fairness, consistency, encouraging students,
and preventing various kinds of anomalies. The fairness
issue is one of the most important since studies have shown
that students feel bitterness about slackers.

In Section 3.2, we examined some techniques and
grading schemes that can help instructors meet the criteria.
The various mechanisms encourage accountability or permit

individual contributions and knowledge to be properly
assessed. We suggest combining several techniques.

6. References

[1] Angelo, T.A. and Cross, K.P., “Group Work Evaluations”, in
Classroom assessment techniques: a handbook for college
teachers, Jossey-Bass Publishers, a Wiley company, 1993, pp.
349-351.
[2] Gates, A.Q.; Delgado, N.; Mondragon, O., “A structured
approach for managing a practical software engineering course”,
30th Frontiers in Education conf, IEEE, 2000, pp. T1C/21 -
T1C/26.
[3] Johnson, D. W., Johnson, R. T., and Smith, K. A.
“Cooperative learning: Increasing college faculty instructional
productivity”, ASHE-ERIC Higher Education Report 20, 4,
Graduate School of Education and Human Development, The
George Washington University, 1991.
[4] Lethbridge, T. “SEG 4000: Rules for Projects”, University of
Ottawa, web page as of Sept. 2002,
http://www.site.uottawa.ca/~tcl/seg4000/rules.html
[5] McKinney, K. “Tips for Grading Group Work”, Illinois State
University, web page as of Sept. 2002,
www.cat.ilstu.edu/teaching_tips/handouts/
tipsgroupwork.shtml
[6] Schultz, T.W., “Students assessing teams”, proc. 29th
Frontiers in Education conf, IEEE, 1999, pp. 13B2/1 -13B2/3.
[7] Speck, B.W., “Pedagogical Support for Classroom
Collaborative Writing Assignments”, ASHE-ERIC Higher
Education Report, 28, 6, Jossey-Bass, a Wiley Company, 2002,
pp. 1-139
[8] Chen, H-M., web page http://www.cba.hawaii.edu
/HMCHEN/home.htm
[9] Lethbridge, T.C., University of Ottawa, SEG 2100 course web
page: http://www.lloseng.com/seg2100
[10] Individual Critique Guidelines for CS577a 2000
http://sunset.usc.edu/classes/cs577a_2002/IndividualCritiqe.html
[11] Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., and
Madachy, R., “Using the WinWin Spiral Model: A Case Study,”
Computer, July 1998, pp. 33-44.
[12] Shull, F.; Rus, I.; and Basili, V.R. “How Perspective-Based
Reading Can Improve Requirements Inspections”. IEEE
Computer 33, 7 (July 2000), 73-79.
[13] Port, D., Bhuta, J., Yang, Y., Boehm, B., “Not All CBS Are
Created Equally: COTS Intensive Project Types,” Accepted to
ICCBSS 2003.
[14] Boehm, B., Brown, W., “Mastering Rapid Delivery and
Change with the SAIV Process Model”, Proceedings, ESCOM
2001, April 2001
[15] Boehm, B. (1996), “Anchoring the Software Process,” IEEE
Software, July, pp. 73-82.
[16] Hayes, J. Huffman. “Energizing Software Engineering
Education through Real-World Projects as Experimental Studies,”
in Proceedings of the 15th Conference on Software Engineering
Education and Training (CSEET), Covington, KY, February
2002.
[17] Ohland, M. W., Layton, R A.. “Comparing the Reliability of
Two Peer Evaluation Instruments”. Proceedings. ASEE Annual
Conference & Exposition, St. Louis, MO, Jun. 2000.

[18] Layton, R. A., Ohland, M W., “Peer Ratings Revisited: Focus
on Teamwork, Not Ability”. In Proceedings. ASEE Annual
Conference & Exposition, Charlotte, NC, June. 2001.
[19] Sims-Knight, J., Upchurch, R., Powers, T.A., Haden, S., and
Topciu, R. “Teams in Software Engineering Education”.
Proceedings of Frontiers in Education 2002, November 6 – 9,
2002, Boston, MA, pp. S3G17 – S3G22.

7. Acknowledgments

We would like to thank Hong-Mei Chen of the University
of Hawaii, Jurek Jaromczyk, Paul Piwowarski, and Tony
Baxter of the University of Kentucky for their insights and
contributions to this paper.

