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AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD∗
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Abstract. This work is devoted to an adaptive multiscale finite element method (MsFEM)
for solving elliptic problems with rapidly oscillating coefficients. Starting from a general version of
the MsFEM with oversampling, we derive an a posteriori estimate for the H1-error between the
exact solution of the problem and a corresponding MsFEM approximation. Our estimate holds
without any assumptions on scale separation or on the type of the heterogeneity. The estimator
splits into different contributions which account for the coarse grid error, the fine grid error, and
the oversampling error. Based on the error estimate, we construct an adaptive algorithm that is
validated in numerical experiments.
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1. Introduction. We consider the following elliptic problem: find u with

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω.

Here, Ω ⊂ R
n is a bounded domain, f is a source term, and A is a rapidly oscillat-

ing, highly heterogeneous matrix, i.e., a rough coefficient function. Problems of this
type have various applications in hydrology and industrial engineering. Examples are
Darcy flow in porous media or heat transport in composite materials. Solving prob-
lems of the above type numerically is typically rather problematic. Standard methods
require a computational grid that resolves the fine scale. This leads to an enormous
computational demand which easily exceeds the capabilities of available computers.
To overcome these difficulties, various approaches have been proposed and discussed
within the last two decades. Just to name some of them, there is the variational mul-
tiscale method (VMM) initially proposed by Hughes et al. [34, 36], the heterogeneous
multiscale finite element method (HMM) by E and Engquist [11, 12, 13], the two-scale
finite element method by Matache and Schwab [42, 47], and the mortar multiscale
methods by Arbogast, Peszyńska, and coauthors [45, 44, 4]. The method that we fo-
cus on is the multiscale finite element method (MsFEM) that was introduced by Hou
and Wu [31]. The idea of MsFEM is to construct a set of conforming multiscale basis
functions. These basis functions are determined by adding fine-scale information to
the original (low-dimensional) set of Lagrange basis functions of a finite element space.
The MsFEM approximation is then defined as the Galerkin approximation of the orig-
inal problem in the discrete space that is spanned by the multiscale basis. Once the
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AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD 1079

multiscale basis is computed, the remaining problem is low dimensional and therefore
cheap to solve. The MsFEM approach can be combined with various oversampling
strategies (to reduce the effect of possible boundary layers). In such approaches the
multiscale basis functions are constructed in a sampling domain that is larger than
the support of the original basis function. The information close to the boundary
of the sampling domain is ignored and the remaining relevant “inner” information is
used to construct a new set of conforming basis functions (cf. [31, 16, 15]). In our
contribution we do not specify the explicit realization of the oversampling strategy;
instead we work with a general conforming projection operator that might be special-
ized to realize specific strategies. The MsFEM has been successfully applied to a large
variety of applications. For linear elliptic equations, we refer the reader to the works
of Hou et al. [31, 32, 15] or to [30] for an overview; for nonlinear elliptic equations we
refer the reader to [16]; two-phase flow in porous media was treated in [14], stochastic
porous media flow in [1], and problems of uncertainty quantification were approached
in [10]. Convergence of MsFEM approximations in general homogenization settings
were, e.g., treated in [17, 18, 19, 25, 49], and explicit a priori error estimates in peri-
odic or stochastic scenarios were obtained in [31, 32, 20, 16, 7]. However, so far we
do not know of any a posteriori error estimate for MsFEM approximations. In this
paper we wish to close this gap.

A posteriori error estimates for other types of multiscale methods are already
available. For the HMM, see [3, 2, 27, 26, 43] for L2-, H1-, and energy-norm es-
timates. However, the results in these contributions only hold up to a remaining
modeling error which vanishes in periodic or stochastic scenarios. Furthermore, the
estimates do not include oversampling control. Adaptive versions of the VMM have
been extensively studied by Larson and Målqvist. In [39, 41] they introduce an adap-
tive VMM based on energy-norm estimates, and the method in [38, 40] makes use of
a duality-based a posteriori error representation formula. These approaches are based
on a partition of unity by means of a coarse grid (finite element) Lagrange basis.
This partition is used to split the global fine-scale problem into localized (decoupled)
fine-scale problems. For each basis function, one local problem is obtained where the
corresponding solution has fast decay to 0 outside of the support of the basis func-
tion. As this strategy is only possible if the considered problem is linear, there is no
straightforward possibility to generalize it to nonlinear problems.

Our basic ansatz to error estimation is similar to the one proposed in [39] for the
VMM, but with several new ingredients. For instance, as already mentioned, for the
VMM in [39] every solution of a localized fine-scale problem rapidly decays outside
of the support of the associated coarse grid basis function (i.e., partition of unity
function). The local problems for the MsFEM do not have such a decay, since the
corresponding right-hand sides have global support in the whole domain Ω. Larson
and Målqvist use conservative fluxes to determine the computational domain for the
local problems of the VMM. When the conservative flux over the boundary of the
local domain is small enough, this computational domain seems to be large enough.
For the MsFEM, the fluxes need to be first split into macro and micro contributions.
Then the jump in the flux of the micro contributions is used as an indicator for the
size of the computational domain. An additional advantage of our approach is the
straightforward extension to nonlinear problems, which is not possible in the VMM
setting. We show in section 5 how a nonlinear problem can be treated.

Outline. In section 2 we motivate and propose a general version of the MsFEM.
In section 3 we discuss the role of conservative fluxes and present our final a posteriori
error estimate and a corresponding adaptive algorithm. A proof of the main a pos-
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1080 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

teriori error estimate is given in section 4. In section 5 we sketch how we transfer
our results to a nonlinear scenario, and in section 6 we present detailed numerical
experiments to validate the method, the error estimate, and the adaptive algorithm.

2. A multiscale finite element method. In this and the next two sections, we
consider a linear multiscale diffusion equation with homogeneous Dirichlet boundary
condition. We choose this model problem to develop our method, but we emphasize
that all the subsequent considerations can be generalized to other types of elliptic
multiscale problems. We develop a similar a posteriori error estimate for a strongly
monotone nonlinear problem in section 5. The linear model problem is the following:

find u ∈ H̊1(Ω) :

∫
Ω

A∇u · ∇Φ =

∫
Ω

fΦ ∀Φ ∈ H̊1(Ω).(2.1)

Here, Ω ⊂ R
n, n ∈ N>0 denotes a domain with a polygonal boundary, and we define

H̊1(Ω) := C∞
c (Ω)

‖·‖H1(Ω) . Furthermore, we assume that A ∈ (L∞(Ω))
n×n

and f ∈
L2(Ω). For A, we also suppose ellipticity, i.e., there exists some α ∈ R>0 with

A(x)ξ · ξ ≥ α|ξ|2 ∀ξ ∈ R
n and for a.e. x ∈ Ω.

We recall that we are interested in the case that A (and hence also u) exhibits micro-
scopic features.

2.1. Motivation. In order to motivate the MsFEM that we propose in Defi-
nition 2.2, we start to rewrite problem (2.1) in the style of a MsFEM. This helps
to understand the final formulation of the method and to identify the relevant pa-
rameters, which we need to “fine-tune” to improve the approximation. The subse-
quent considerations are typically made in order to motivate the variational multiscale
method (VMM; cf. [39]). Even though the MsFEM exhibits crucial differences to the
VMM, both methods are still related and can be formulated in a common frame-
work (cf. [28]). We therefore make the following considerations. Let Vc

H denote a

finite-dimensional “coarse-scale” subspace of H̊1(Ω). Let Ic : H̊1(Ω) → Vc
H denote a

projection operator. We define the continuous fine-scale space Vf by

Vf := {φ ∈ H̊1(Ω)|Ic(φ) = 0}.

This space is a Hilbert space with the H1-scalar product, and we can accordingly
decompose the full space with some complementary space Vc

H as

H̊1(Ω) = Vf ⊕ Vc
H .

Our next tool is a reconstruction operator R : Vc
H → H̊1(Ω). We define this operator

with the help of a corrector operator Q : Vc
H → Vf ⊂ H̊1(Ω) as R = id+Q. For each

basis function Φj ∈ Vc
H we define the corrector Q(Φj) ∈ Vf as the solution of∫

Ω

A (∇Φj +∇Q(Φj)) · ∇φ =

∫
Ω

fφ ∀φ ∈ Vf .(2.2)

Equation (2.2) is solvable by the Lax–Milgram theorem. With this construction, the
J := dimVc

H functions {R(Φj)|j ≤ J} form a multiscale basis for the multiscale space
V M := span{R(Φj)|j ≤ J}. In this space, we consider the following MsFEM-like
problem:

find ū ∈ VM :

∫
Ω

A∇ū · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ Vc
H .(2.3)
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AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD 1081

We emphasize that, at least formally, problem (2.3) is a low-dimensional problem.
Nevertheless, we claim that (2.3) is actually equivalent to the original problem, i.e.,
that we obtain the original solution ū = u. To verify this claim, we first use the
definition of V M and write ū ∈ V M as ū = R(uc) for some uc ∈ Vc

H . Now let

Φ ∈ H̊1(Ω) be an arbitrary test function. According to the decomposition of H̊1(Ω)
we can write this function as Φ = ΦH + φ with ΦH ∈ Vc

H and φ ∈ Vf . We have∫
Ω

A∇ū · ∇ΦH =

∫
Ω

fΦH

by (2.3) and ∫
Ω

A∇R(uc) · ∇φ =

∫
Ω

fφ

by the definition of Q in (2.2). Adding the two equations yields that ū = R(uc) solves∫
Ω

A∇ū · ∇Φ =

∫
Ω

fΦ,

the original problem. Since the solution is unique, there holds ū = u.
Our result is that an MsFEM can be formulated as follows:

find uc ∈ Vc
H :

∫
Ω

A∇R(uc) · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ Vc
H .

The reconstruction is defined as R(ΦH) := ΦH +Q(ΦH), where Q(ΦH) ∈ Vf solves∫
Ω

A (∇ΦH +∇Q(ΦH)) · ∇φ =

∫
Ω

fφ ∀φ ∈ Vf .(2.4)

In the above setting, the reconstruction R(uc) provides the true solution u. In
many methods, the right-hand side f in the corrector problem (2.4) is replaced by 0 to
make the operator Q linear and source independent. This can be motivated with the
fact that relevant test functions φ in (2.4) should be rapidly oscillating to capture the
variations of A. This means that such a test function exhibits a very large gradient,
whereas the function itself (respectively, its L2-norm) can be neglected in comparison
to this large gradient. The left- and right-hand sides of the corrector problem are
of different orders of magnitude, which prompts us to replace f by 0. This heuristic
consideration can be quantified in the above setting: if φ ∈ Vf , then Ic(φ) = 0 and
therefore ∣∣∣∣

∫
Ω

fφ

∣∣∣∣ ≤ ‖f‖L2(Ω)‖φ− Icφ‖L2(Ω),

where ‖φ− Icφ‖L2(Ω) behaves like C(H)‖∇φ‖L2(Ω) for proper choices of I
c.

Starting from the above formulation of the problem, we can construct a fully
discrete MsFEM: we replace Vf by a discrete space Wh. We replace f by 0 on the
right-hand side of the fine-scale problem (2.4). We localize the fine-scale problem
by replacing Ω by smaller domains. These three steps are performed in the next
subsection. Note that it is not clear a priori that such simplifications still lead to a
reasonable method. However, we will subsequently cite two major convergence results
that justify the method as it will be proposed in Definition 2.2.
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1082 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

2.2. Formulation of the method. In this section and in the subsequent ones,
we let TH and Th be shape-regular triangulations of Ω. Furthermore, we assume that
Th is obtained from a regular refinement of TH . We subsequently call Th the fine grid
and TH the coarse grid. The local coarse mesh size is defined by HT := |T |1/d for
T ∈ TH , and H denotes the maximum of these values. hT and h are defined in the
same way. By VH and Wh we denote the corresponding p1-Lagrange finite element
spaces, i.e.,

VH := {ΦH ∈ H̊1(Ω) ∩ C0(Ω) |ΦH |T ∈ P
1(T ) ∀T ∈ TH} and

Wh := {φh ∈ H̊1(Ω) ∩ C0(Ω) |φh|S ∈ P
1(S) ∀S ∈ Th}.

Hence, we have the inclusion VH ⊂ Wh ⊂ H̊1(Ω).
If the structure of A can be identified (or if we have any other a priori knowledge),

we should chose Wh to be sufficiently accurate to capture the oscillations of the
data, i.e., to fulfill a condition infvh∈Wh

‖u − vh‖H1(Ω) ≤ TOL. Such a condition
can, for instance, be checked by using standard a priori error estimates for finite
element functions. In order to impose boundary conditions on subdomains, we define
W̊h(ω) := Wh ∩ H̊1(ω) for ω ⊂ Ω. By Ah we denote an approximation of A, which is
piecewise constant with respect to the fine grid Th.

Definition 2.1 (admissible environment). For T ∈ TH , we call U(T ) an admis-
sible environment of T if it is connected, if T ⊂ U(T ) ⊂ Ω, and if it is the union of
elements of Th, i.e.,

U(T ) =
⋃

S∈T ∗
h

S, where T ∗
h ⊂ Th.

Note that the extreme choices U(T ) = T and U(T ) = Ω provide admissible
environments. Intermediate choices are useful for oversampling.

We can now introduce the MsFEM in a Petrov–Galerkin formulation with over-
sampling. The typical construction of an explicit multiscale finite element basis is
already incorporated into the method.

Definition 2.2. Let VH ,Wh ⊂ H̊1(Ω) be the discrete spaces defined above, and
let UH = {U(T )| T ∈ TH} be a family of admissible environments of the elements of
TH . For each simplex T ∈ TH and ΦH ∈ VH we define the local corrector Qh,T (ΦH) ∈
W̊h(U(T )) as the solution of∫

U(T )

Ah (∇ΦH |T +∇Qh,T (ΦH)) · ∇φh = 0 ∀φh ∈ W̊h(U(T )).(2.5)

Note that by ∇ΦH |T , we mean the constant value of ∇ΦH on T extended to U(T ), i.e.,
∇ΦH |T := χU(T )

∫
T

− ∇ΦH , where χU(T ) is the indicator function of U(T ). The local

correctors Qh,T are stringed together to a global corrector Q̃h by using a conforming
projection PH,h which maps piecewise continuous functions on TH to elements of Wh,

PH,h : {φh ∈ L2(Ω)| φh ∈ Wh(T ) ∀T ∈ TH} −→ Wh .

With such a projection, we set the global corrector to be

Q̃h(ΦH) := PH,h

( ∑
T∈TH

χT Qh,T (ΦH)

)
,D

ow
nl

oa
de

d 
07

/1
8/

14
 to

 1
28

.1
76

.1
79

.3
1.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD 1083

where χT is the indicator function of the simplex T . For ΦH ∈ VH , the total global
reconstruction Rh(ΦH) is finally defined as Rh(ΦH) := ΦH + Q̃h(ΦH). We call
Rh(uH) ∈ Wh the MsFEM approximation of u if uH ∈ VH solves∑

T∈TH

∫
T

Ah∇Rh(uH) · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ VH .(2.6)

Remark 2.3. The projection PH,h can be constructed by using a local average
on the edges of T . For instance, in the case of piecewise linear functions, let Nh

denote the set of nodes for the fine mesh Th and let TH(xh) := {T ∈ TH | xh ∈ T}
denote the set of coarse elements that share the node xh ∈ Nh. Then the projection
Q̃h(ΦH) ∈ Wh is uniquely defined by the following values of Q̃h(ΦH) in these nodes:

Q̃h(ΦH)(xh) := PH,h

( ∑
T∈TH

χTQh,T (ΦH)

)
(xh)(2.7)

:=
1

�TH(xh)

∑
T∈TH(xh)

Qh,T (ΦH)(xh) ∀xh ∈ Nh.

A more sophisticated way of defining PH,h is to formulate new micro problems
on an environment U(E) of each macro edge E = T1 ∩ T2. Boundary conditions for
these problems are obtained by using the values of Qh,T1 and Qh,T2 . However, the
standard numerical experiments in section 6 indicate that this is not necessary. The
averaging operator is extremely cheap and reaches a high accuracy. Also note that
we might exchange the projection of the nonconforming part and the solving of the
discrete macro problem (2.6); i.e., first we solve (2.6) with the (nonconforming) op-
erator Rh(ΦH) := ΦH +

∑
T∈TH

χTQh,T (ΦH) and then use the conforming function
uH + PH,h(

∑
T∈TH

χTQh,T (uH)) as your final approximation of u. In particular, in
nonlinear scenarios (or if the projection operator is nonlinear) this might be a reason-
able strategy. Furthermore, such a procedure does not change the final a posteriori
error estimate in Theorem 3.6 below. We still get the same error contributions, where
only the term ‖Ah∇(Qh,T −PH,h(Qh,T ))(uH)‖L2(T ) must be replaced by the slightly
different term ‖A∇(Qh,T −PH,h(Qh,T ))(uH)‖L2(T ). This is an easy observation when
looking at the proof of Theorem 3.6 in section 4.

Remark 2.4. For the choice U(T ) = T , Definition 2.2 provides the typical formu-
lation of the MsFEM without oversampling. In this case we also get Rh(uH) ∈ Wh

without any projection.
Let us make a heuristic consideration. If h → 0, if U(T ) → Ω, and if we replace

the right-hand side in the local problems (2.5) by
∫
Ω fφ and ∇ΦH |T by ∇ΦH(x),

we obtain the exact method of section 2.1, and therefore Rh(uH) = u. This implies
that we can tune three parameters: h (accuracy with which we solve the micro-scale
equations), U(T ) (the computational domains for the micro-scale equations), and H
(since we ignore the influence of f for the micro-scale equations). In section 3 we
present an a posteriori error estimate which can be used to decide how to fine-tune
these three quantities. However, let us first present the central analytical results that
justify the usage of the MsFEM defined in 2.2.

2.3. Convergence results. Let VH and Wh be as stated at the beginning of
section 2.2. In this subsection we cite two convergence results for the MsFEM that
justify the specific formulation in Definition 2.2. One result is abstract and does
not rely on structural assumptions on the coefficient A, and the other result is more
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1084 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

classical, relying on structural assumptions on A but giving more quantitative answers
about the speed of convergence. To state the convergence results properly, let us
introduce an additional definition.

Definition 2.5 (patch radius). Let U(T ) be an admissible patch; then we call
the set U(T ) \ T the oversampling layer of T . Furthermore, let xU(T ) ∈ U(T ) denote
the barycenter of the patch U(T ); then we call dU(T ) the patch radius if

|xU(T ) − x̄| ≥ dU(T ) ∀x̄ ∈ ∂U(T ) \ ∂Ω

and if there exists at least one point x̄ ∈ ∂U(T ) \ ∂Ω with |xU(T ) − x̄| = dU(T ).
The above definition measures the extension of U(T ) in directions where it does

not touch the boundary of Ω, i.e., where we do not know the correct boundary con-
dition. Where U(T ) touches the boundary of Ω, the correct boundary condition is
known. To state the first convergence result, we recall the notion of H-convergence
(cf. [23]).

Definition 2.6 (H-convergence). Let Ω ⊂ R
d denote a bounded domain, and

let (Aε)ε>0 ⊂ [L∞(Ω)]d×d denote a sequence of matrices that are uniformly bounded
and coercive; i.e., there exist α, β ∈ R>0 such that for a.e. x ∈ Ω and for all ξ ∈ R

d

it holds that α|ξ|2 ≤ Aε(x)ξ · ξ ≤ β|ξ|2. Then we say (Aε)ε>0 is G-convergent to A0 ∈
[L∞(Ω)]d×d if for any F ∈ H−1(Ω) the solutions vε ∈ H1

0 (Ω) of (A
ε∇vε,∇Φ)L2(Ω) =

F (Φ) for all Φ ∈ H̊1(Ω) satisfy the relations vε ⇀ v0 in H̊1(Ω) and Aε∇vε ⇀ A0∇v0

in [L2(Ω)]d, where v0 ∈ H̊1(Ω) is the solution of (A0∇v0,∇Φ)L2(Ω) = F (Φ) for all

Φ ∈ H̊1(Ω).
The abstract notion of H-convergence is very general and particularly covers the

typical quasi-periodic and stochastic settings. However, it allows predictions without
further structural assumptions.

Theorem 2.7. Let f ∈ L2(Ω), and let (Aε)ε>0 ⊂ (L∞(Ω))
n×n

be a sequence of
matrices that is uniformly bounded and coercive; i.e., there exist α, β ∈ R>0 with

α|ξ|2 ≤ Aε(x)ξ · ξ ≤ β|ξ|2 ∀ξ ∈ R
n, for a.e. x ∈ Ω, and ∀ε > 0.

Furthermore, we assume that Aε is H-convergent and let uε
H ∈ VH denote the corre-

sponding nonconforming (semidiscrete) MsFEM approximation that solves

∑
T∈TH

∫
T

Aε∇ (uε
H +QT (u

ε
H)) · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ VH ,

where for ΦH ∈ VH the corrector QT (ΦH) ∈ H̊1(U(T )) solves∫
U(T )

A (∇ΦH(xT ) +∇QT (ΦH)) · ∇φ = 0 ∀φ ∈ H̊1(U(T )).

If

diam(U(T ))− diam(T )

diam(T )
→ 0 for H → 0,(2.8)

then we have

lim
H→0

lim
ε→0

( ∑
T∈TH

‖uε − (uε
H +QT (u

ε
H))‖2H1(T )

)1
2

= 0.(2.9)
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In the spirit of Theorem 2.7, the general diffusion matrix A in (2.1) can be seen
as being equal to some element Aε0 of the sequence (Aε)ε>0 for a fixed sufficiently
small ε0. If this is the case, Theorem 2.7 predicts a small H1-error. The theorem
was proved by Gloria for general nonsymmetric coefficients Aε in [23, Theorem 5]. A
generalization to nonlinear problems is given in [21, Theorem 6 and Remark 7]. At first
sight, assumption (2.8) appears counterintuitive, since the oversampling converges to
zero instead of being increased. However, observe that the first limit in (2.9) is ε,
which lets the relative thickness of the oversampling layer grow to infinity. Thus, for
fixed ε the local patches U(T ) should be increased more and more to get better results
and ε should be small compared to the thickness of the oversampling layer. We end up
in a typical homogenization setting, where optimal corrector problems are typically
equations formulated on whole R

d (cf. [37]).
A more quantitative result was obtained by Hou, Wu, and Zhang in the periodic

setting [33].
Theorem 2.8. Suppose that d = 2, f ∈ L2(Ω), and Aε(x) = Ap(

x
ε ) for a bounded,

elliptic, symmetric, and 1-periodic matrix Ap ∈ (C3([0, 1]d))d×d. Let uε
H ∈ VH denote

the corresponding nonconforming MsFEM approximation that solves∑
T∈TH

∫
T

Aε∇ (uε
H +Qh,T (u

ε
H)) · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ VH ,

where Qh,T is given by (2.5). Then it holds that( ∑
T∈TH

‖uε − (uε
H +Qh,T (u

ε
H))‖2H1(T )

)1
2

≤ C

(
ε

dH
+H +

h

ε
+ ε

1
2

)
,(2.10)

where dH denotes the minimum patch radius according to Definition 2.5.
A proof of this theorem is given in [33], where the assumption dH � H is made

(and does hence not appear in (2.10)). However, it is possible to work out the role
of dH by following their proofs closely so that estimate (2.10) is obtained as above.
Generalizations and improvements of this estimate by small modifications of the local
problems are presented in [22, Theorem 3.1] and [23, sections 5.3 and 5.4].

In addition to the above estimates let us recall that ifH < ε (i.e., if the coarse scale
resolves the micro structure), then the MsFEM solution yields the same approximation
order as standard FEMs on the full fine scale, i.e., O(H) for H2-solutions. This result
does not require structural assumptions on A (cf. [25, Proposition 1]).

Theorems 2.7 and 2.8 now give us a clear motivation for the necessity of a rigorous
a posteriori error estimate that does not rely on structural assumptions. We can make
out the following sources that can pollute an MsFEM approximation.

1. If h is not small enough, h
ε can dominate the error.

2. If H is not small enough, H can dominate the error.
3. If dH � H � ε (even only locally), ε

dH
will dominate the error strongly.

Hence, an adequate adaptive algorithm must be able to detect regions where the
MsFEM approximation is not sufficiently accurate (for instance, because Aε yields no
structure, ε cannot be identified, or ε is too coarse) to refine the coarse grid locally
to enter the regime of standard FEMs. In short, we want to construct an estimate
that tells us the subdomains where we can use a simplified model (i.e., use MsFEM
with H 
 ε) and the subdomains where we have to refine TH locally to resolve the
fine scale because scale separation and structures are missing (i.e., use MsFEM with
H < ε, which behaves like standard FEMs).
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1086 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

3. The a posteriori error estimate. In this section, we consider again the
case that the partitions are simplicial and that the discrete spaces consist of piecewise
linear functions, i.e., the case as specified at the beginning of section 2.2. The estimate
that we present in this section can also be generalized to other cases. First, we require
some additional definitions for formulating the a posteriori error estimate properly.

Definition 3.1. Let TH and Th be defined as in section 2.2. For an element
T ∈ TH we subsequently denote the barycenter of T by xT . The set of the inner
(coarse) faces is defined by

Γ(TH) := {E|E = T ∩ T̃ , T, T̃ ∈ TH and codim(E) = 1},

and Γ(Th) is defined analogously. For any subdomain ω ⊂ Ω, the local restriction of
Wh to ω is given by Wh(ω) := {(φh)|ω| φh ∈ Wh}. Ah denotes an approximation of
A, which is constant on every S ∈ Th.

To analyze the method of Definition 2.2 further, we next introduce a local corrector
basis (wi

h,T )T,i. The definition of these functions is analogous to the construction of

the cell problem basis functions in homogenization theory. The basis functions wi
h,T

will later provide an indicator for the oversampling error.
Definition 3.2 (local corrector basis). Let i ∈ N be such that 1 ≤ i ≤ n,

and let vi(x) := xi denote the linear function that maps x = (x1, . . . , xn) to its ith
component. For that we define wi

h,T := Qh,T (vi). We note that the corrector functions

{wi
h,T |i = 1, . . . , n} allow us to write

Qh,T (ΦH)(x) =

n∑
i=1

∂xiΦH(xT ) w
i
h,T (x).(3.1)

Equation (3.1) can be verified as follows: let us fix T and U(T ), and let ei ∈ R
n

denote the ith uni vector (i.e., (ei)j = 0 for i �= j and (ei)i = 1), and therefore
∇vi = ei. According to wi

h,T = Qh,T (vi) and because of the definition of Qh,T , we
obtain ∫

U(T )

Ah

(
ei +∇wi

h,T

)
· ∇φh = 0 ∀φh ∈ W̊h(U(T )).

Now we multiply both sides by ∂xiΦH(xT ) and form the sum over i, which gives us

0 =

n∑
i=1

∫
U(T )

Ah

(
∂xiΦH(xT )ei + ∂xiΦH(xT )∇wi

h,T

)
· ∇φh

=

∫
U(T )

Ah

(
∇ΦH(xT ) +∇

(
n∑

i=1

∂xiΦH(xT )w
i
h,T

))
· ∇φh.

Since this equation holds for all φh ∈ W̊h(U(T )) and since
(∑n

i=1 ∂xiΦH(xT )w
i
h,T

)
∈

W̊h(U(T )) solves the same equation as Qh,T (ΦH) ∈ W̊h(U(T )), namely,∫
U(T )

Ah (∇ΦH(xT ) +∇Qh,T (ΦH)) · ∇φh = 0 ∀φh ∈ W̊h(U(T )),

we conclude from the uniqueness of the solution (due to Lax–Milgram) that

Qh,T (ΦH)(x) =

n∑
i=1

∂xiΦH(xT )w
i
h,T (x).
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Remark 3.3. Working with the functions (wi
h,T )T,i instead of using Qh,T (ΦH)

also has advantages in the implementation and run time. To illustrate this, let us
consider the two-dimensional case. In the original formulation, Qh,T (ΦH) has to be
computed for each macroscopic basis function ΦH with support on T . In general,
these are three local problems to solve for each triangle T . Using the local corrector
basis, we only need to solve two problems for each T (one for v1 and one for v2).
Additionally, the a posteriori error estimate below uses expressions that depend on
wi

h,T .

3.1. Conservative corrector flux. In the discrete scheme, the local correctors
Qh,T (ΦH) are glued together in order to obtain a global corrector Qh(ΦH). This will
not provide the “exact corrector” Q(ΦH) of section 2.1. Therefore, one of the errors
of the discrete scheme can be determined by checking how well two local correctors
Qh,T1(ΦH) and Qh,T2(ΦH) can be glued together. We hence study the jump in the
flux over interfaces E.

When doing this, we must consider two aspects. The first aspect is that we should
not look at the jump [Ah∇Qh,T (ΦH)]E , because this jump contains a macroscopic
contribution due to the jump of ∇ΦH over E. This jump cannot be reduced by
increasing the admissible environments U(T1) and U(T2). The right strategy is to first
remove the influence of the jump of ∇ΦH over E and then concentrate on the jump
of the corrector flux. With this purpose in mind, we introduced the local corrector
basis {wi

h,T |1 ≤ i ≤ n}. We will evaluate [Ah∇wi
h,T ]E instead of [Ah∇Qh,T (ΦH)].

The second aspect is the choice of an adequate flux measure. We will use a con-
servative corrector flux. This flux is defined according to the results obtained in the
work of Hughes et al. [35]. In the mentioned work, the main finding is that the contin-
uous Galerkin method is locally conservative with respect to subdomains consisting
of a union of grid elements. The conservative flux is a variational approximation of
the numerical flux over the boundary of such a subdomain. This suggests that the
conservative flux is a good indicator for oversampling in the following sense: the closer
the sum of the conservative fluxes over a macro edge E comes to zero, the more the
method behaves like a global FEM on the fine grid. In this case we get the best pos-
sible approximations. Note that we should not use the numerical flux as an indicator
(i.e., the gradient jumps of the numerical approximations over the individual micro
edges that contribute to E), since this is not mass conservative and since it typically
does not accurately approximate the real flux. For further details and experiments
on the differences between the numerical flux and the conservative flux, we refer the
reader to the work of Hughes et al. [35].

Given the basis functions wi
h,T , we define flux functions qh,T,i as follows. Re-

garding the name we note that the property of mass conservation can be verified by
choosing φh = 1 in the definition of qh,T,i.

Definition 3.4 (conservative corrector flux). We define the conservative cor-
rector flux qh,T,i ∈ Wh(∂T ) of w

i
h,T as the unique solution (continuous and piecewise

linear on ∂T ) of

(−qh,T,i, φh)L2(∂T ) =

∫
T

Ah

(
ei +∇wi

h,T

)
· ∇φh ∀φh ∈ Wh(T ).(3.2)

The a posteriori error estimate will depend on the flux functions qh,T,i. Using
the error estimate in an adaptive numerical scheme leads to the following strategy: If
the jump of the conservative corrector flux over a face E = T1 ∩ T2 is too large, we
increase the admissible environments U(T1) and U(T2). The jump is measured by the
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1088 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

quantities of the next definition.
Definition 3.5 (flux and flux jump measures). For any simplex T ∈ TH , we

denote the outer normal function by νT : ∂T → R
n. For two simplices T1 and T2, with

E := T̄1 ∩ T̄2 and for a function g ∈ (L∞(T1 ∪ T2))
n
with g|Tj

∈
(
C0(Tj)

)n
, j = 1, 2,

we define the jump [g]E : E → R of g over E by

[g]E(x) := lim
δ→0

g(x− δνT1) · νT1(x) + lim
δ→0

g(x− δνT2) · νT2(x).

With the conservative corrector fluxes qh,T,i of Definition 3.4 we set

[qh,i]E(x) := qh,T1,i(x) + qh,T2,i(x).

For ΦH ∈ VH (which has a piecewise constant gradient), we define

[qE(ΦH)](x) :=

∣∣∣∣∣
n∑

i=1

lim
δ→0

(∂xiΦH(x− δνT1)) [qh,i]E(x)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

lim
δ→0

(∂xiΦH(x− δνT2) [qh,i]E(x)

∣∣∣∣∣
and

[γE(ΦH)](x) :=

∣∣∣∣∣
n∑

i=1

lim
δ→0

(∂xiΦH(x− δνT1)− ∂xiΦH(x − δνT2)) qh,T1,i(x)

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

lim
δ→0

(∂xiΦH(x− δνT1)− ∂xiΦH(x− δνT2)) qh,T2,i(x)

∣∣∣∣∣ .
3.2. Main result and adaptive algorithm. In this section we present the

a posteriori error estimate and the associated adaptive algorithm. The proof is given
in section 4. The notation f � g is used if f ≤ Cg, where C > 0 does not depend on
the discretization.

Theorem 3.6 (a posteriori error estimate). Let u be the solution of the original
problem (2.1), and let Rh(uH) be the solution of the discrete scheme of Definition 2.2.
We want to investigate the error e := u − Rh(uH) ∈ H̊1(Ω). For the error, we have
the following a posteriori error estimate:

‖e‖H1(Ω) �
( ∑

T∈TH

H2
T ‖f‖2L2(T )

) 1
2

+

(∑
S∈Th

‖(A−Ah)∇Rh(uH)‖2L2(S)

) 1
2

+

⎛
⎝ ∑

ES∈Γ(Th)

hES‖[Ah∇Rh(uH)]ES‖2L2(ES)

⎞
⎠

1
2

+

( ∑
T∈TH

‖Ah∇(Qh,T − PH,h(Qh,T ))(uH)‖2L2(T )

) 1
2

+

⎛
⎝ ∑

E∈Γ(TH)

HE‖[qE(uH)]‖2L2(E)

⎞
⎠

1
2

+

⎛
⎝ ∑

E∈Γ(TH)

HE‖[γE(uH)]‖2L2(E)

⎞
⎠

1
2
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Let us consider the six terms on the right-hand side of the error estimate. The
first and the last term account for the discretization error in the macro grid. The
second term is due to the approximation of the diffusion matrix A. The third term
is a measure for the discretization error in the local problems, and the fourth term
for the enforcement of global continuity. The fifth term accounts for the error that
occurs if U(T ) is not large enough, i.e., the error contribution which can be decreased
with larger oversampling.

Remark 3.7 (effectivity of the estimate). It currently seems out of reach to de-
rive a general effectivity result for the above estimate including the projection and
the oversampling errors. If we increase the size of each environment U(T ) to converge
to the whole domain Ω, the projection part vanishes as well and we are in a known
scenario. However, we cannot forecast the interaction of projection and oversampling
in a general manner so that these parts can be bounded by the local H1-error itself.
Besides these, all the other error contributions (i.e., the macro and micro grid resid-
uals) are effective in the typical sense and can be treated in the standard way using
localization with bubble functions (cf. [50]).

Remark 3.8 (effectivity of the conservative fluxes). Let wi
T denote the exact

solution of a certain local problem (i.e., wi
h,T → wi

T for h → 0), and let qT,i denote
the corresponding exact flux. Then effectivity of the conservative flux was shown by
Brezzi, Hughes, and Süli [6] in simple cases (Poisson problem and certain geometrical
assumptions on Ω). Here, efficiency is in the sense that the accuracy of qh,T,i approxi-
mating qT,i is of the same order as ∇ξh approximating ∇ξ in L2. More general results
are not available, even though they seem to hold true due to [6].

Based on the a posteriori result of Theorem 3.6 we formulate an adaptive algo-
rithm. The contributions from fine-grid residual and approximation error are used
for locally refining Th, the contributions from the coarse-grid residual are used for an
adaptive refinement of TH , and contributions that depend on the conservative fluxes
are used to determine the sizes of the admissible environments U(T ). In order to
formulate the algorithm properly, we need some additional definitions.

Definition 3.9. The local error indicators for macro, micro, approximation,
projection, and oversampling errors are given by

ηmacro
T := HT ‖f‖L2(T ) +

1√
2

∑
E∈Γ(TH)

E⊂T

√
HE‖[γE(uH)]‖L2(E),

ηmicro
T :=

∑
ES∈Γ(Th)

ES⊂T

√
hES‖[Ah∇Rh(uH)]ES‖L2(ES),

ηapproxT :=
∑
S∈Th

S⊂T

‖(A−Ah)∇Rh(uH)‖L2(S),

ηprojeT := ‖A∇(Qh,T − PH,h(Qh,T ))(uH)‖L2(T ),

ηoversT :=
1√
2

∑
E∈Γ(TH)

E⊂T

√
HE‖[qE(uH)]‖L2(E).

Accordingly we define the global indicators:

η∗ :=

( ∑
T∈TH

(η∗T )
2

) 1
2

,
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where “*” stands for either “macro,” “micro,” “approx,” “proje,” or “overs.” The
total estimated error ηtotal is defined as the sum of all the global indicators. The
set of admissible environments is denoted by U := {U(T )|T ∈ TH}. By “increasing
U(T ) ∈ U” we mean that we add another layer of elements of Th to the corresponding
subgrid.

Algorithm: adaptiveRefine( TOL, TH , Th, U , σ, k ).

Let ci ∈ (0, 1), 1 ≤ i ≤ 4 with
∑4

i=1 ci = 1.

while ηtotal > TOL do
Compute Rh(uH) with TH , Th and U .
Compute ηtotal.
if ηtotal < TOL then

break.
end
Compute ηmacro, ηmicro, ηapprox, ηovers.
if ηmicro > c1 η

total or ηapprox > c2 η
total then

foreach T ∈ TH do
if ηmicro

T ≥ 1
|TH |η

micro then
mark all elements of Th ∩ T for one refinement.

end

end
Refine the grid Th.

end

if ηovers > c3 η
total then

foreach T ∈ TH do
if ηoversT ≥ 1

|TH |η
overs then

increase U(T ) ∈ U by k layers.
end

end

end

if ηmacro > c4 η
total then

foreach T ∈ TH do
if ηmacro

T ≥ σ 1
|TH |η

macro then
mark T for one refinement.

else
do nothing.

end

end
Refine the grid TH .

end

end

The input for the algorithm is a coarse-grid triangulation TH , a fine-grid trian-
gulation Th, a set of admissible environments U , a positive number σ describing the
permissible deviation from a given average, and a positive integer k describing how
many layers of fine-grid elements are added to a certain environment. Adding one
layer to T means that we add all fine-grid elements to U(T ) that share at least one
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node with a fine grid element in T . We put this into a definition.
Definition 3.10. Let K ⊂ Ω denote a set that consists of elements of Th, i.e.,

K =
⋃

S∈T ∗
h

S, where T ∗
h ⊂ Th.

We say U(K) is created by enriching K by one layer if

U(K) =
⋃

{S ∈ Th| S ∩K �= ∅}.

We denote U(K) to be an oversampling region with k layers if this procedure is iter-
atively applied k times.

In the algorithm, we use phrases such as “mark T for one refinement.” By “mark
an element for 1 refinement” we mean that we mark this element to be bisected at the
end of the current loop of the adaptive algorithm. The algorithm also includes the
step “mark all elements of Th ∩ T for one refinement,” which means all elements of
Th that are contained in T should be bisected at the end of the loop. This might also
influence elements of Th that are not contained in T in order to avoid hanging nodes.
Let us note that during the run of the algorithm, Th needs to remain a refinement of
TH . This means that changing TH might also mean to add some elements to Th. The
algorithm is validated in the numerical experiments in section 6.

4. Proof of the a posteriori error estimate. In this section we prove the
a posteriori error estimate in Theorem 3.6. We note that the strategy of the proof
could also be generalized to other multiscale methods such as the heterogeneous mul-
tiscale method (HMM). However, in that case, one would need to define a suitable
extension operator instead of a projection operator in order to glue the local solutions
Qh,T together. One possibility would be to extend the local parts by periodicity and
then use a projection to again glue them together. In comparison to the MsFEM case
it seems to be more reasonable that such a projection should involve additional local
problems around the interfaces where the local solutions are connected.

Proof of Theorem 3.6. Let IH : H̊1(Ω) → VH and Ih : H1(Ω) → Wh denote
Clément interpolation operators. For these operators we have the following estimates
(cf. [8]):

‖φ− IH(φ)‖L2(T ) ≤ C1HT |φ|H1(ωT ) ∀φ ∈ H1(Ω), ∀T ∈ TH ,(4.1)

‖φ− IH(φ)‖L2(E) ≤ C2H
1
2

E |φ|H1(ωE) ∀φ ∈ H1(Ω), ∀E ∈ Γ(TH),(4.2)

‖φ− Ih(φ)‖L2(S) ≤ C3hS |φ|H1(ωS) ∀φ ∈ H1(Ω), ∀S ∈ Th,(4.3)

‖φ− Ih(φ)‖L2(ES) ≤ C4h
1
2

ES
|φ|H1(ωES

) ∀φ ∈ H1(Ω), ∀ES ∈ Γ(Th).(4.4)

In these estimates we used the notation

ωT :=
⋃

K∈TH ,K∩T 
=∅

K, and ωE := T1 ∪ T2, where T1 ∩ T2 = E,

and ωS and ωES accordingly for the fine grid.
The estimate is based on an L2-approach, exploiting a testing procedure and

Galerkin orthogonality. We use the positive constant cP > 0 from the Poincaré
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1092 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

inequality to calculate

cPα‖e‖2H1(Ω) ≤
∫
Ω

A∇e · ∇e

=

∫
Ω

A∇u · ∇e−
∫
Ω

A∇Rh(uH) · ∇e

(2.1)
=

∫
Ω

fe−
∫
Ω

(A−Ah)∇Rh(uH) · ∇e−
∫
Ω

Ah∇Rh(uH) · ∇e

(2.6)
=

∫
Ω

f(e− IH(e))−
∑

T∈TH

∫
T

Ah∇Rh(uH) · ∇(e− IH(e))

−
∫
Ω

(A−Ah)∇Rh(uH) · ∇e

=

∫
Ω

f(e− IH(e))−
∫
Ω

(A−Ah)∇Rh(uH) · ∇e

−
∑
S∈Th

∫
S

Ah∇Rh(uH) · ∇ ((e− IH(e))− Ih(e − IH(e)))

−
∑

T∈TH

∫
T

Ah∇Rh(uH) · ∇ (Ih(e − IH(e)))

=

∫
Ω

f(e− IH(e))︸ ︷︷ ︸
=:I

−
∫
Ω

(A−Ah)∇Rh(uH) · ∇e︸ ︷︷ ︸
=:II

−
∑
S∈Th

∫
∂S

(Ah∇Rh(uH) · νS) ((e − IH(e))− Ih(e− IH(e)))

︸ ︷︷ ︸
=:III

+
∑

T∈TH

∫
T

Ah∇(uH +Qh,T (uH)−Rh(uH)) · ∇ (Ih(e− IH(e)))

︸ ︷︷ ︸
=:IV

−
∑

T∈TH

∫
T

Ah(∇uH +∇Qh,T (uH)) · ∇ (Ih(e− IH(e)))

︸ ︷︷ ︸
=:V

.

It remains to estimate the terms I to V. For I we obtain with (4.1)

|I| ≤
∑

T∈TH

‖f‖L2(T )‖e− IH(e)‖L2(T ) ≤ C
∑

T∈TH

‖f‖L2(T )HT ‖e‖H1(ω(T ))

≤ C

( ∑
T∈TH

‖f‖2L2(T )H
2
T

) 1
2

‖e‖H1(Ω).

Term II can be estimated directly by

|II| ≤
∑
S∈Th

‖(A−Ah)∇Rh(uH)‖L2(S)‖∇e‖L2(S)

≤
(∑

S∈Th

‖(A−Ah)∇Rh(uH)‖2L2(S)

) 1
2

‖e‖H1(Ω).
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AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD 1093

For III we use (4.4) and the fact that the Clément interpolation operator is H1-stable.
Furthermore, note that (e− IH(e))− Ih(e− IH(e)) vanishes on all faces that intersect
the boundary of Ω. We obtain

|III| =

∣∣∣∣∣∣
∑

ES∈Γ(Th)

∫
ES

[Ah∇Rh(uH)]ES ((e− IH(e))− Ih(e − IH(e)))

∣∣∣∣∣∣
≤ C

⎛
⎝ ∑

ES∈Γ(Th)

‖[Ah∇Rh(uH)]ES‖2L2(ES)hES

⎞
⎠

1
2

‖e‖H1(Ω).

Again, using the H1-stability of the Clément operator, we get for IV

|IV| =
∣∣∣∣∣ ∑
T∈TH

∫
T

Ah∇ (uH +Qh,T (uH)−Rh(uH)) · ∇ (Ih(e− IH(e)))

∣∣∣∣∣
=

∣∣∣∣∣ ∑
T∈TH

∫
T

Ah∇(Qh,T − Q̃h)(uH) · ∇ (Ih(e− IH(e)))

∣∣∣∣∣
≤ C

( ∑
T∈TH

‖Ah∇(Qh,T − Q̃h)(uH)‖2L2(T )

) 1
2

‖e‖H1(Ω).

It remains to estimate V. We abbreviate the second factor as φh := Ih(e − IH(e)).
Furthermore, for an edge E ∈ Γ(TH), let us denote by TE,1 and TE,2 the two elements
of TH that share E, i.e., E = TE,1 ∩ TE,2. With this notation, we get

V = −
∑

T∈TH

∫
T

Ah(∇uH +∇Qh,T (uH)) · ∇φh

(3.1)
= −

∑
T∈TH

n∑
i=1

∂xiuH(xT )

∫
T

Ah

(
ei +∇wi

h,T

)
· ∇φh

(3.2)
=

∑
T∈TH

n∑
i=1

∂xiuH(xT )(qh,T,i, φh)L2(∂T )

=
1

2

∑
E∈Γ(TH)

n∑
i=1

(
∂xiuH(xTE,1)

∫
E

qh,TE,1,i φh + ∂xiuH(xTE,2 )

∫
E

qh,TE,2,i φh

)

=
1

2

∑
E∈Γ(TH)

(
n∑

i=1

(
∂xiuH(xTE,1 )

∫
E

(qh,TE,1,i + qh,TE,2,i)φh

)

−
n∑

i=1

(
(∂xiuH(xTE,1)− ∂xiuH(xTE,2))

∫
E

qh,TE,2,iφh

))
.

With Definition 3.5 we can write

|V| ≤ 1

2

∑
E∈Γ(TH)

∫
E

[qE(uH)]|φh|+
1

2

∑
E∈Γ(TH)

∫
E

[γE(uH)]|φh|

≤ 1

2

∑
E∈Γ(TH)

∫
E

[qE(uH)]|Ih(e− IH(e))|+ 1

2

∑
E∈Γ(TH)

∫
E

[γE(uH)]|Ih(e− IH(e))|
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1094 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

≤ C

⎛
⎝ ∑

E∈Γ(TH)

HE‖[qE(uH)]‖2L2(E)

⎞
⎠

1
2

‖e‖H1(Ω)

+ C

⎛
⎝ ∑

E∈Γ(TH)

HE‖[γE(uH)]‖2L2(E)

⎞
⎠

1
2

‖e‖H1(Ω).

Adding the estimates for I to V and dividing by ‖e‖H1(Ω) yields the desired re-
sult.

5. A strictly monotone nonlinear problem. In comparison to the adaptive
VMM proposed by Larson and Målqvist [38, 39], our method directly generalizes to
nonlinear problems. The VMM in [38, 39] is based on a partition of unity which is used
to localize the fine-scale computations. The big advantage of this strategy is that this
yields a natural, globally continuous fine-scale approximation of the exact solution.
No projection is necessary and the homogeneous Dirichlet boundary condition for the
local problems is close to the correct boundary condition. On the other hand, this
strategy does not carry over to the nonlinear setting since we can no longer split the
problem linearly into local problems by means of a partition of unity. Our method
does not have such a restriction. Let us sketch the method and the estimate in the
case of monotone operators; i.e., we assume A(·, ξ) ∈ (L∞(Ω))

n
and that there exist

two constants 0 < α ≤ β < ∞ such that uniformly for a.e. x in Ω:

(A(x, ξ1)−A(x, ξ2), ξ1 − ξ2) ≥ α|ξ1 − ξ2|2 (strong monotonicity),

|A(x, ξ1)−A(x, ξ2)| ≤ β|ξ1 − ξ2| (Lipschitz continuity),

A(x, 0) = 0.

We then consider the problem of finding u ∈ H̊1(Ω) with∫
Ω

A (x,∇u) · ∇Φ(x) dx =

∫
Ω

f(x)Φ(x) dx ∀Φ ∈ H̊1(Ω).(5.1)

There is a unique solution of (5.1) due to the Browder–Minty theorem (cf. [46]). In
the following Ah denotes a piecewise x-independent strictly monotone operator (with
respect to the fine grid Th). The formulation of the McFEM is identical to the linear
case, i.e., Rh(uH) ∈ Wh ⊂ H̊1(Ω) is the MsFEM approximation of u, if uH ∈ VH

solves ∑
T∈TH

∫
T

Ah (·,∇Rh(uH)) · ∇ΦH =

∫
Ω

fΦH ∀ΦH ∈ VH .

Here, for each simplex T ∈ TH and for ΦH ∈ VH the local corrector Qh,T (ΦH) ∈
W̊h(U(T )) is the solution of∫

U(T )

Ah (·,∇ΦH(xT ) +∇Qh,T (ΦH)) · ∇φh = 0 ∀φh ∈ W̊h(U(T )).

We define the reconstruction by Rh(ΦH)|T := ΦH + Qh,T (ΦH). With a suitable
projection PH,h, the final (continuous) approximation of u is given by PH,h(Rh(uH)).

The arising nonlinear equations can be solved with the Newton scheme framework
for multiscale methods as proposed in [28].
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AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD 1095

There is only one difference in this nonlinear setting if a posteriori error estimates
are considered. Due to the nonlinearity, it is not possible to separate the flux into
its macro- and micro-scale parts (which we established with a local corrector basis).
Therefore, the conservative corrector flux needs to be defined in a more general manner
so that we determine the flux for the whole correction of uH : for ΦH ∈ VH , we define
the conservative corrector flux in the nonlinear case qh,T (ΦH) ∈ Wh(∂T ) of Qh,T (ΦH)
as the unique solution of

(−qh,T (ΦH), φh)L2(∂T ) =

∫
T

Ah (·,∇ΦH +∇Qh,T (ΦH)) · ∇φh ∀φh ∈ Wh(T ).

In addition we set

[qnlE (ΦH)]E(x) := qh,T1(ΦH)(x) + qh,T2(ΦH)(x).

With this modification, the a posteriori error estimate can be derived analogously to
the preceding section.

Theorem 5.1. Let u denote the exact solution of problem (5.1) and Rh(uH) the
corresponding MsFEM approximation. Then for the total error e := u−PH,h(Rh(uH))

∈ H̊1(Ω) we obtain

‖e‖H1(Ω) �
( ∑

T∈TH

H2
T ‖f‖2L2(T )

) 1
2

+

(∑
S∈Th

‖(A−Ah)(·,∇Rh(uH))‖2L2(S)

) 1
2

+

⎛
⎝ ∑

ES∈Γ(Th)

hES‖[Ah (·,∇Rh(uH))]ES‖2L2(ES)

⎞
⎠

1
2

+

( ∑
T∈TH

‖A (·,∇(Qh,T − PH,h(Qh,T ))(uH)) ‖2L2(T )

) 1
2

+

⎛
⎝ ∑

E∈Γ(TH)

HE‖[qnlE (uH)]‖2L2(E)

⎞
⎠

1
2

.

With Theorem 5.1 we have an a posteriori error estimate that allows us to deal
numerically with strictly monotone nonlinear problems. Regarding limitations of the
above results we mention that in relevant applications in hydrology, the nonlinear
multiscale problems are degenerate; see, e.g., [29] and [48]. For such a setting, the
construction of an adaptive MsFEM has yet to be developed.

6. Numerical experiments. In this section we validate the a posteriori error
estimate and the adaptive MsFEM in various numerical experiments. All implemen-
tations are made in C++ using the dune-fem module [9] and the dune-subgrid

module [24] of the software toolbox DUNE (cf. [5]). We apply the method to two
model problems with increasing complexity. The first model problem involves a peri-
odically oscillating coefficient function. Here, the exact solution is available, and we
can state quantitative results such as explicit L2- and H1-errors. The second model
problem involves a periodic structure that is locally perturbed by stripes of high con-
ductivity within a patch of low conductivity. Here, the exact solution is not available,
and we can only evaluate our adaptive MsFEM approximations by comparing them
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1096 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

Table 1

Model Problem 1. The table contains L2- and H1-errors between the exact solution and different
MsFEM approximations. The MsFEM approximations are obtained for different coarse-grid and
fine-grid resolutions H and h. The grids are uniformly refined. Each coarse element T ∈ TH is
enriched by 10 layers to create the oversampling set U(T ). We also list the total estimated error,
the coarse-grid error indicator ηmacro, and fine-grid error indicator ηmicro.

H h ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal ηmacro ηmicro ηapprox

2−2 2−4 0.1669 2.4887 5.6398 4.2013 0.7787 0.2236

2−3 2−5 0.0810 1.9847 4.8033 3.2779 0.6314 0.1773

2−4 2−6 0.0243 1.0391 2.8838 1.7292 0.3177 0.0947

2−5 2−7 0.0074 0.5629 1.8501 0.8714 0.1689 0.0489

qualitatively with standard finite element computations on a highly resolved grid.
To recall what we mean by “k oversampling layers,” we refer the reader to Defini-
tion 3.10. In this section, the error indicators (obtained from Theorem 3.6 and stated
in Definition 3.9) are multiplied by a factor of order β

α , which is a typical scaling of
the stability constants for these types of error estimates. In particular, for Model
Problem 1 we use the factor 10.

Model Problem 1. Let Ω := ]0, 1[2 and ε = 5 · 10−2. We define

u(x1, x2) := sin(2πx1)sin(2πx2) +
ε

2
cos(2πx1)sin (2πx2) sin

(
2π

x1

ε

)
,

which is the exact solution of the problem

−∇ · (A∇u) = f in Ω,

u = 0 on ∂Ω,

where A is given by

A(x1, x2) :=
1

8π2

(
2(2 + cos(2π x1

ε ))
−1 0

0 1 + 1
2cos(2π

x1

ε )

)
and f by

f(x) := −∇ · (A(x)∇u(x)) ≈ sin(2πx1)sin(2πx2).

In Table 1 we can see a listing of various L2-, H1-, and estimated errors. Here,
the number of layers (for oversampling) is fixed at 10, but H and h are coupled by the
factor 2−2. Ten layers are sufficient so that the oversampling error takes only a minor
role. We ignore the first row of computations (for 2−2 and 2−4) since these values
are not yet representative. We obtain an average experimental order of convergence
(EOC) of 1.72 for the L2-error and 0.91 for the H1-error. Note that we cannot
expect optimal orders of convergence for the errors, since we do not solve the local
problems globally but only in local sampling domains U(T ). However, we still observe
a very nice reduction of the error. The estimated error shows an average EOC of 0.7.
Again, the error contributions of the conservative flux jumps (i.e., the indicator for the
size of the oversampling error) prevent an optimal order of 1.0. Still, the reduction
of the estimated error is adequate and reasonable. On the other hand, the error
indicators for the coarse-grid residual (EOC 0.96), the fine-grid residual (EOC 0.95),
and approximation error (EOC 0.93) show, as expected, almost optimal order. Similar
results are obtained if we only regard convergence in the macro mesh size H . The
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AN ADAPTIVE MULTISCALE FINITE ELEMENT METHOD 1097

Table 2

Model Problem 1. MsFEM computations for fixed fine-grid resolution with h = 2−7 and fixed
number of 10 oversampling layers. We see a listing of the errors, the total estimated error ηtotal,
and its coarse-grid error contribution ηmacro.

H ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal ηmacro

2−3 0.0625 1.7719 4.1246 3.4181

2−4 0.0196 0.9231 2.5679 1.7652

2−5 0.0074 0.5629 1.8501 0.8714

Table 3

Model Problem 1. MsFEM computations for increasing coarse- and fine-grid resolutions and for
an increasing number of oversampling layers. We see a listing of the errors and the total estimated
error ηtotal and corresponding averaged EOCs.

H h Number of layers ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

2−3 2−5 6 0.1101 2.1897 5.6399

2−4 2−6 8 0.0259 1.0437 2.8856

2−5 2−7 10 0.0074 0.5629 1.8501

Average EOC 1.95 0.98 0.81

MsFEM computations in Table 2 are for a fixed fine-grid resolution with h = 2−7.
Here, the effect of a reduced EOC is even more pronounced due to the constant micro-
mesh contributions. The EOC for the L2-error is between 1.67 and 1.41, the EOC
for the H1-error is between 0.94 and 0.71, and the EOC for the estimated H1-error
is between 0.68 and 0.47. However, again the pure contribution of the coarse-grid
residual converges with an average order of 0.99. These first experiments indicate
that the various contributions of the error (coarse grid, fine grid, and oversampling)
interact with each other and that they all have a significant influence on the final
approximation. The total convergence of the method can be improved and comes
close to the optimal order if we combine the macro and micro refinements with an
increasing size of the oversampling region. This is depicted in Table 3, where we can
see that the L2-error converges with order 1.95 and the H1-error with order 0.98.

Furthermore, the overall accuracy obtained with the method is really high. This
becomes clear when we look at Figure 1, where we can see a comparison between the
isolines of the exact solution and the MsFEM approximation for H = 2−5, h = 2−7,
and 10 oversampling-layers. Except for a small discrepancy near the maximum and
the minimum, the isolines match each other perfectly. Even fine-scale fluctuations
are captured nicely. For the same computation, the explicit effect of the correction
operator is depicted in Figure 2. Here, we see the smooth coarse part uH that does
not resolve the oscillations of u and the corresponding fine-scale correction Q(uH)
which adds significant information about the oscillations to the coarse part.

The influence of the size of the oversampling set is illustrated in Table 4. In
these computations, we fix the coarse grid and the fine grid with (H,h) = (H =
2−4, 2−8). The number of layers increased step by step. We see that, solely by using
oversampling, the L2-error is almost halved and the H1-error is reduced by about
25%. Comparably, the estimated error is reduced by 30.7%, which suggests that
the oversampling indicator ηovers does a reliable job. The largest reduction of the
error appears when we add the first oversampling layer. We see the same effect for
the estimated error. After this first step, we still have a permanent reduction, but
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Fig. 1. Model Problem 1. MsFEM computation for H = 2−5, h = 2−7, and 10 oversampling
layers. The figure shows a comparison of the isolines of the MsFEM approximation with the isolines
of the exact solution. The black lines beneath are from the MsFEM solution. (See online version
for color images.)

(a) (b) (c)

Fig. 2. Model Problem 1. MsFEM computation for H = 2−5, h = 2−7, and 10 layers (cf.
Table 1). Panel (a) shows the total MsFEM approximation Rh(uH ), and panel (b) shows the coarse
part uH of the MsFEM approximation (isolines, colorshading for both: blue (−1.0) to red (1.0)).
Panel (c) shows the fine-scale part Q(uH ) of MsFEM approximation (colorshading: blue (−0.029)
to red (0.029)).

the respective reductions get smaller. Nevertheless, no visible stagnation occurs. The
oversampling error indicator shows a similar behavior. All in all, we see that the jump
in the conservative fluxes virtually signals whether the used oversampling sets UH are
really large enough. From Table 4, we also see that the contribution of the projection
error can be ignored. We do not have to perform expensive fine-scale computations to
improve the quality of the projection operator. Simple averaging as proposed in (2.7)
produces very convenient results. It is obvious from the results that the projection
error itself is a bad indicator for the size of an oversampling set, since it takes its
minimum for 0 layers, then it increases for several steps while the real error decreases.

In Figure 3 we fixed an inner coarse-grid element T . We see a corresponding
corrector basis element w1

h,T (see Definition 3.2) with support U(T ). U(T ) is equal
to T enriched by 10 layers. On the left side of the figure we can see the location of
w1

h,T in the coarse grid (i.e., we see how much we oversample), and on the right side of
the figure we see its location within the fine grid (i.e., we can see the resolution with
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Table 4

Model Problem 1. MsFEM computations for fixed coarse grid with H = 2−4 and fixed fine grid
with h = 2−8, but with different sizes for the oversampling domains U(T ). If k denotes the number
of layers, the coarse-grid element T has been enriched by k layers of fine-grid elements to create
U(T ). We depict the L2-error, the H1-error, the total estimated error ηtotal, the oversampling
indicator ηovers (size of corrector flux jumps), and the projection error indicator ηproje.

Number of layers ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal ηovers ηproje

0 0.0332 1.2085 3.4370 1.3754 0.0

1 0.0296 1.0878 3.0868 0.9920 5.4 ·10−3

2 0.0265 1.0652 2.8130 0.6468 9.9 ·10−3

3 0.0242 1.0599 2.6324 0.4576 1.1 ·10−2

4 0.0223 1.0227 2.5404 0.4069 9.6 ·10−3

5 0.0208 0.9720 2.4848 0.4063 7.1 ·10−3

10 0.0172 0.9524 2.4320 0.3532 7.0 ·10−3

15 0.0186 0.9305 2.4143 0.3369 5.7 ·10−3

20 0.0182 0.9161 2.3821 0.3166 4.2 ·10−3

Fig. 3. Model Problem 1. MsFEM computation for H = 2−4, h = 2−8, and 10 layers. The
figure depicts the corrector basis element w1

h,T (recall Definition 3.2) for an arbitrary inner coarse

grid element T . Coarse-grid triangulation (left) and fine-grid triangulation (right) with T and U(T )
indicated by black lines.

which we solve the local problems). In Figure 4 we can also see the corresponding
conservative flux which is almost constant along the edges of T , even though w1

h,T is
oscillating. Figure 5 shows a good agreement between the correctors of two adjacent
coarse-grid elements. Both correctors might be easily glued together at the common
edge of the two coarse elements. This matching becomes even clearer if we have a
look at Figure 6. Here, we see the conservative fluxes for the correctors w1

h,T1
and

w1
h,T2

of two adjacent coarse elements T1 and T2. The flow over the interface from
the left (almost constant with value 0.0157587) is about the negative of the flow from
the right (almost constant value −0.015759). This implies that the jump in the flux
is very close to zero and, therefore, the oversampling sets are chosen large enough.
Hence, the usage of conservative fluxes seems to be a good choice.

In Tables 5 and 6 we show two different results of the adaptive algorithm that
we suggested in section 3.2 for c1 = c2 = c3 = c4 = 0.25 and σ = 1.1. In both cases
we start in the first cycle with uniformly refined grids with H = 2−2 and h = 2−4

and corrector problems without oversampling. In the first example, i.e., Table 5, six
cycles are required to fall below the tolerance ηtotal < 2.0. During the algorithm the
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Fig. 4. Model Problem 1. MsFEM computation for H = 2−4, h = 2−8, 10 layers, and for
an arbitrary inner coarse-grid element T . Left: corrector basis element w1

h,T := Qh(v1)|T with

v1(x) := x1 (recall Definition 3.2). Colorshading: min −3.58 · 10−3 (blue) to max 6.18 · 10−3 (red).
Right: corresponding conservative corrector flux qh,T,1 (recall Definition 3.4). Colorshading: min
−1.09 · 10−2 (blue) to max 1.58 · 10−2 (red).

Fig. 5. Model Problem 1. MsFEM computation for H = 2−4, h = 2−8, and 10 layers. The
figure depicts two corrector basis elements w1

h,T1
and w1

h,T2
(see Definition 3.2) for two adjacent

coarse grid elements T1 and T2.

Fig. 6. Model Problem 1. MsFEM computation for H = 2−4, h = 2−8, and 10 layers. The
figure depicts two conservative corrector fluxes qh,T1,1 and qh,T2,1 for two adjacent coarse grid
elements T1 and T2. Left figure colorshading: min −1.5759 ·10−2 (blue) to max 1.09188 ·10−2 (red).
Right figure colorshading: min −1.09188 · 10−2 (blue) to max 1.57587 · 10−2 (red).
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Table 5

Model Problem 1. MsFEM computations obtained with the adaptive algorithm proposed in
section 3.2. We start with a uniformly refined coarse and fine grids with H = 2−2 and h = 2−4.
We also start with 0 layers, i.e., U(T ) = T for all T ∈ TH . During the algorithm, the number of
layers is only increased uniformly for all elements at once (with k = 5). The permissible deviation
σ is 1.1, and we have equal weighting of the components by c1 = c2 = c3 = c4 = 1

4
. In the first

column we depict the number of the cycle of the algorithm.

Run ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

1 0.1671 2.4884 5.6112

2 0.1072 2.1508 5.4531

3 0.0576 1.6258 4.9596

4 0.0209 1.0243 2.7894

5 0.0096 0.6095 2.0227

6 0.0054 0.4976 1.6495

Table 6

Model Problem 1. MsFEM computations obtained with the adaptive algorithm proposed in
section 3.2 with the same configuration as described in Table 5, but with the difference that if ηmacro

is identified as being dominant, each relevant coarse element is marked for 4 bisections instead of 2.
Again, we use an equal weighting of the components by c1 = c2 = c3 = c4 = 1

4
. In the first column

we depict the number of the cycle of the algorithm.

Run ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

1 0.16709 2.4884 5.9112

2 0.04536 1.5138 4.9976

3 0.00954 0.6406 1.8942

number of oversampling layers goes up to 15, and in the last cycle we have a coarse
grid that is locally refined up to H = 2−6, a fine grid locally refined up to h = 2−8.
In order to decrease the number of cycles, we slightly modified the algorithm for the
results in Table 6. Here, we allow a coarse element to be marked for 4 bisections
instead of 2. Now, the algorithm reaches the tolerance ηtotal < 2.0 already after
three cycles, where we get a very accurate approximation of the exact solution. The
maximum resolution of the (adaptively refined) coarse grid corresponds withH = 2−4,
the maximum resolution of the fine grid corresponds with h = 2−7, and the coarse
elements were enriched by only 5 layers for oversampling. Nevertheless, the errors are
already quite close to the errors for a uniform computation with (H,h) = (2−5, 2−7)
and an enrichment by 10 layers (as depicted in Table 1). The error reduction after
each cycle is significant. The algorithm produces very good results. The coarse grid
and the final MsFEM approximation after the third cycle is depicted in Figure 7. We
observe the strongest refinement close to the maximum values of the solution, where
we also have a strong curvature of the solution. The grid remains quite coarse in most
regions where the solution tends to be constant.

In order to investigate the influence of the “weighting constants” c1, . . . , c4 on the
performance of the adaptive algorithm, we repeated the computations with various
combinations of these constants. In Table 7 we see the results for the original version
of the algorithm (for a fixed number of 5 cycles), whereas Table 8 depicts the results
for the case that coarse elements can be marked for 4 bisections (for a fixed number
of 3 cycles). It turns out that the constant c4 (which decides whether the macro
error is dominant) plays the key role in the performance of the algorithm and should
not be chosen too large (not more than 0.3). However, in an investigated span of
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1102 P. HENNING, M. OHLBERGER, AND B. SCHWEIZER

Fig. 7. Model Problem 1. Adaptively refined coarse grid and corresponding MsFEM approxi-
mation obtained after the third cycle of the algorithm as indicated in Table 6.

Table 7

Model Problem 1. MsFEM computations obtained with the adaptive algorithm proposed in
section 3.2 with the same configuration as described in Table 5. The influence of the weighting
constants c1, . . . , c4 is tested. For simplification we define c1 := cmicro, c2 := capprox, c3 := covers,
c4 := cmacro. Column 5 depicts the number of runs of the algorithm for which the errors are stated.

cmicro cmacro capprox covers Number of runs ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

0.1 0.4 0.1 0.4 5 0.0130 0.7378 2.0672

0.2 0.3 0.3 0.3 5 0.0101 0.6396 2.0477

0.25 0.25 0.25 0.25 5 0.0096 0.6095 2.0227

0.3 0.1 0.3 0.3 5 0.0101 0.6396 2.0477

0.3 0.2 0.3 0.2 5 0.0096 0.6095 2.0227

0.3 0.3 0.3 0.1 5 0.0099 0.6124 2.0237

0.4 0.1 0.4 0.1 5 0.0099 0.6124 2.0237

0.4 0.05 0.4 0.15 5 0.0099 0.6124 2.0237

0.05 ≤ c4 ≤ 0.3 no noteworthy changes in the performance could be observed. The
choice of the other constants (in a span between 0.1 and 0.4) does not seem to have
a crucial influence, as long as c4 is chosen properly. The choice c1 = c2 = c3 = c4 =
0.25 gave the best performance results, even though it is only nuances over similar
constellations.

Model Problem 2. Let us define Ω := ]0, 1[2. Find u ∈ H̊1(Ω) with

−∇ · (A∇u) = 1 in Ω,

u = 0 on ∂Ω.

Here, the synthetic scalar coefficient A is depicted on the left side of Figure 8. A is
rapidly oscillating in an outer region. In an inner region, the conductivity is very low
(5 · 10−4) but still contains layers of constant high conductivity (5 · 10−2).

For Model Problem 2, we do not have access to the exact solution. However, on
the right side of Figure 8 we can see an approximation that was obtained with a finite
element computation with a uniformly refined grid with h = 2−8. We observe small
fine-scale fluctuations outside the inner patch and a dominant oval-shaped region
in the middle. Obviously, this middle region must be resolved by the coarse grid,
otherwise this part cannot be captured. Due to the absence of a reliable approximation
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Table 8

Model Problem 1. MsFEM computations obtained with the adaptive algorithm proposed in
section 3.2 with the same configuration as described in Table 6 (i.e., relevant coarse elements are
marked for 4 bisections instead of 2). We test the influence of the weighting constants c1, c4. For
simplification we define c1 := cmicro, c2 := capprox, c3 := covers, c4 := cmacro.

cmicro cmacro capprox covers Number of runs ‖e‖L2(Ω) ‖e‖H1(Ω) ηtotal

0.1 0.4 0.1 0.4 3 0.0231 0.9675 2.6569

0.2 0.3 0.3 0.3 3 0.0095 0.6406 1.8942

0.25 0.25 0.25 0.25 3 0.0095 0.6406 1.8942

0.3 0.1 0.3 0.3 3 0.0095 0.6406 1.8942

0.3 0.2 0.3 0.2 3 0.0095 0.6406 1.8942

0.3 0.3 0.3 0.1 3 0.0095 0.6406 1.8942

0.4 0.1 0.4 0.1 3 0.0095 0.6406 1.8942

0.4 0.05 0.4 0.15 3 0.0095 0.6406 1.8942

Fig. 8. Left: plot of the diffusion coefficient A used in Model Problem 2. The colorshading
is from red (0.05) to blue (0.0005). The micro structure outside the inner patch is periodic and
given by (8π2)−2

(
1 + 2−1cos(2π x0

ε
)sin(2π x1

ε
)
)
with ε = 5 · 10−2. The transition is smooth. Right:

approximation of the exact solution of Model Problem 2. Approximation obtained with a standard
FEM fine-scale computation with h = 2−8.

of u we only compare the solutions qualitatively.
As for Model Problem 1, we apply the algorithm stated in section 3.2. We start

with a uniform coarse grid and a uniform fine grid, where (H,h) = (2−2, 2−4). No
oversampling is used in the first cycle, and the permissible deviation σ is 1.1. By
choosing c1 = c2 = c3 = c4 = 1

4 we get an equal weighting of the components.
After 3 cycles we obtain an adaptively refined coarse grid (with 3044 elements) and a
corresponding fine grid. The coarse grid reaches a maximum resolution of H = 2−4,
whereas the fine grid resolves up to h = 2−7. The number of oversampling layers
reaches 10 for every coarse element T . The final approximation and the associated
coarse grid can be seen in Figure 9. Indeed, as expected, we observe strong refinements
around the problematic middle patch. The grid is also refined around the corners and
in the areas where the gradient of the coarse part ∇uH becomes relatively large. The
MsFEM solution shows visible fine-scale fluctuations outside the inner patch just like
the detailed FEM approximation in Figure 8 (right side). This becomes even clearer
when we have a look at Figure 10, which depicts the fine-scale part of the MsFEM
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Fig. 9. Model Problem 2. MsFEM computations obtained with the adaptive algorithm proposed
in section 3.2. We start with a uniformly refined coarse and fine grid with H = 2−2 and h = 2−4,
and we start with 0 layers, i.e., U(T ) = T for all T ∈ TH . The permissible deviation σ is 1.1,
and we have c1 = c2 = c3 = c4 = 1

4
(equal weighting of the components). The figure depicts the

adaptively refined coarse grid (3044 elements) and the MsFEM approximation after the third cycle
of the algorithm.

Fig. 10. Model Problem 2. Adaptively computed MsFEM approximation as already depicted
in Figure 9. The left figure shows the coarse scale part (colorshading identical to the right side
of Figure 8). The middle figure shows the fine-scale part with a maximum/minimum colorshading
from blue (−1.72) to red (3.52). The right figure also depicts the fine-scale part but (to see the micro
structure) with a scaled and clamped colorshading from blue (0.0) to red (0.6).

approximation and where the oscillating structure is clearly perceptible. The behavior
of the MsFEM solution in the inner patch is also close to the behavior of the detailed
FEM approximation, and we conclude that every characterizing feature seems to be
captured by the MsFEM solution. Note that the FEM approximation was obtained
on a grid with almost 150 000 elements in comparison to the MsFEM coarse grid with
only 3044 elements. Finally, in Figure 11 we can see the number of oversampling
layers for each coarse-grid element after the second cycle of the algorithm. Due
to the heterogeneity, we modified the algorithm in the following way: We define
ωT := ηoversT ( 1

|TH |η
overs)−1 (i.e., ωT describes the deviation of the local oversampling

error from the average oversampling error). If ωT ∈ [m5 ,
m+1
5 ), m ∈ N, then increase

U(T ) ∈ U by m+ 1 layers. This strategy is more flexible with regard to significantly
different oversampling errors depending on the location of the coarse-grid element.
We observe that the most layers are added to the elements located outside the inner
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Fig. 11. Model Problem 2. Results for the adaptive MsFEM computation described in Figure 9
after the second cycle of the algorithm. The depicted grid is the coarse grid. We see a visualization
of the number of layers for each of the coarse-grid elements. The colorshading is from yellow (2
layers) to red (11 layers).

patch. The coarse-grid elements located in the inner patch do not receive a lot of
layers. This behavior completely resembles what we expect. In the inner patch, the
behavior is primarily macroscopic and the microscopic behavior is almost constant.
This yields solutions of the local problems which must be close to zero. But the
zero solutions are already accurately approximated without a large oversampling set.
Therefore, we only need a few layers in this region. One the other hand, outside the
inner patch we are dealing with fast fine-scale oscillations. The solutions of the local
problems are highly variable and must not be forced to a zero boundary condition.
To reduce the effect of this wrong boundary condition, several oversampling layers
are required. The algorithm and oversampling error estimator perfectly adapt to this
situation. Again, the advantage of conservative fluxes used as oversampling error
indicators can be confirmed.

7. Conclusion. In this contribution, we derived the first rigorous a posteriori
error estimate for multiscale finite element approximations in a general scenario with
no further assumptions on the micro structure. Based on this estimate we were
able to derive an algorithm for oversampling control and adaptive mesh refinement.
We showed how to transfer our results to the nonlinear case and demonstrated the
applicability of the adaptive method in numerical experiments.
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