
The System-Level Simplex Architecture for
Improved Real-Time Embedded System Safety

Stanley Bak, Deepti K. Chivukula, Olugbemiga Adekunle, Mu Sun, Marco Caccamo, Lui Sha
Department of Computer Science

University of Illinois at Urbana-Champaign
United States of America

{sbak2, dchivuk2, oadekunl, musun, mcaccamo, lrs}@illinois.edu

Abstract

Embedded systems in safety-critical environments demand
safety guarantees while providing many useful services that
are too complex to formally verify or fully test. Existing
application-level fault-tolerance methods, even if formally
verified, leave the system vulnerable to errors in the real-
time operating system (RTOS), middleware, and micropro-
cessor. We introduce the System-Level Simplex Architecture,
which uses hardware/software co-design to provide fail-
operational guarantees for both logical application-level
faults, as well as faults in previously dependent layers
including the RTOS and microprocessor. We also provide
an end-to-end design process for the System-Level Simplex
Architecture where the AADL architecture description is
automatically constructed and checked and the VHDL hard-
ware code is generated.

To show the efficacy of System-Level Simplex design, we
apply the approach to both a classic inverted pendulum and
a cardiac pacemaker. We perform fault-injection tests on the
inverted pendulum design which demonstrate robustness in
spite of software controller and operating system faults. For
the pacemaker, we contrast the provided safety guarantees
with those of a previous-generation pacemaker.

1. Introduction

Embedded systems are growing in complexity and must
continue to meet requirements including reliability and per-
formance. Reliability is difficult to scale using traditional
designs because large systems have high complexity, and
high complexity presents more possibilities for errors. High
performance, on the other hand, drives system complexity
upward.

One way to deal with complex systems in a safety-critical
environment is through the Simplex Architecture [1]–[4].
This architecture provides an application-level safety guar-
antee by “using simplicity to control complexity”. It uses
a simple safety controller subsystem to ensure the stability
of the plant. This conservative safety control core is then

complemented by a high-performance complex control sub-
system. A decision module then uses the high-performance
complex controller whenever possible, but will switch to the
safety controller when system liveliness is jeopardized. This
design has been applied to improve the safety of a diving
controller [5], a fleet of remote-controlled cars [4], and a set
of advanced aircraft maneuvers [6].

One drawback of the Application-Level Simplex Archi-
tecture, however, is that bugs present in the microprocessor,
Real-time Operating System (RTOS) or middleware, or re-
sultant from their upgrades, are not guaranteed to be handled
safely. Although great progress has been made towards
producing a verifiable RTOS [7], most current RTOSes have
been neither formally verified nor exhaustively tested. We
would still like to use the services provided by an RTOS,
without requiring its correctness to guarantee system safety.

We thus propose the System-Level Simplex Architecture,
which provides robustness in the presence of both bugs in
the application and bugs in previously dependent layers such
as the RTOS. In this new architecture, we perform hard-
ware/software partitioning on the Simplex framework. Two
Simplex safety-critical components, the safety controller and
decision module, are moved to a dedicated processing unit,
not for the typical HW/SW co-design reasons of power and
performance, but instead to provide isolation from software-
related complexity. Additionally, this architecture meets the
temporal constraints of the monitored safety properties by
design.

Using Simplex preserves safety in the presence of
logical faults, but only if Simplex is properly designed
and implemented. To address proper design, we provide
an AADL-based [8] System-Level Simplex architecture
generator and checker. If the AADL architecture model
contains an improper application of System-Level Simplex,
our checker determines exactly where the violation occurs
and notifies the user. We describe several necessary
conditions for proper System-Level Simplex Architecture
design, and for each provide an example of a safety
violation that may occur if it is ignored. To address
proper implementation, we extract the safety controller
and decision module behaviors (which are the two simpler



modules in the Simplex system) from the AADL model
provided in the AADL behavior annex [9]. These behavior
descriptions can be expressed and formally verified in
model checking tools such as UPPAAL [10]. The creation
of these finite-state machines and their safety model
checking are application-specific, and a responsibility of the
designer. However, if such a finite-state machine description
is provided, we can use our VHDL code generator to
immediately create the associated hardware code for the
safety core.

In brief, the key contributions of our work are:
• The design of the System-Level Simplex Architecture

which can handle a superset of the failure modes of
previous Simplex versions

• An end-to-end design process that both verifies a valid
System-Level Simplex AADL architecture model and
can generate hardware VHDL code from a finite-state
machine description

• Empirical verification of both the practicality of end-to-
end System-Level Simplex design, and the robustness
guarantees through fault-injection testing in two case
studies

We first briefly review Simplex and describe the System-
Level Simplex Architecture in Section 2. This design pro-
vides resilience from failures caused by the operating system
or middleware as well as logical errors in complex control
software. In Section 3, we describe the end-to-end System-
Level Simplex design process. This process consists of an
AADL architecture generator and verifier, as well as a
VHDL code generator. We then apply the architecture in two
case studies in Section 4. In the first, we examine pacemaker
design and contrast the failures handled by the System-
Level Simplex Architecture pacemaker with a previous-
generation pacemaker. Then we apply the System-Level
Simplex Architecture to an inverted pendulum system and
verify its robustness with fault-injection testing. We then
discuss related work in Section 5 and conclude in Section
6.

2. System-Level Simplex Design

The System-Level Simplex Architecture is based on the
original Simplex concept [1]. Simplex is logically divided
into three subsystems: safety, complex, and decision (Figure
1). The safety subsystem has a simple, reliable controller
which provides verifiably safe performance. This is used
in case the complex controller malfunctions. The complex
controller drives the system as long as it does not jeop-
ardize system liveliness. This controller can be changed
and upgraded while the system is running and may even
contain bugs. The decision subsystem chooses which of the
two previously-mentioned controllers to use. The decision

Figure 1. In the logical view of the Simplex architecture,
the decision module chooses the controller version that
drives the system.

module and safety controller make up the trusted computing
base, and must function correctly for the system to remain
safe, while most of the system’s complexity is contained
within the complex controller.

Previous Simplex designs had all three subsystems located
at the application-level. This worked well for protecting
the system from value faults from the complex controller,
however it required that, to guarantee system safety, the
middleware, the operating system, and the microprocessor
be fully reliable. We relax this requirement in the System-
Level Simplex architecture by performing hardware/software
partitioning on the system. The two Simplex safety-critical
components, the safety controller and the decision module,
are moved into a dedicated processing unit outside the
microprocessor.

This is akin to hardware/software co-design, except that
we perform this move not primarily for reasons of perfor-
mance and power consumption, but instead to protect from
software-related faults. The designer therefore has a choice
of what the dedicated processing unit should be. One option
is to use a microcontroller to run the two safety core subsys-
tems. However, in safety-critical systems, even processors
are not completely trusted [11], and we would prefer to
eliminate this underlying complexity. We instead choose
to run the Simplex safety core on dedicated hardware.
Ideally we would produce an Application-Specific Integrated
Circuit (ASIC), but instead, for cost and reprogrammability
reasons, we opted to perform our evaluation using a Field
Programmable Gate Array (FPGA). The same VHDL code
used to program an FPGA can be used to produce an ASIC.

By moving the Simplex safety core to isolated hardware,
we can also provide temporal correctness for the monitored
safety properties. If the high-performance complex subsys-
tem does not produce a control command in the appro-
priate time, whether caused by an RTOS bug, poor cache
performance or excessive bus contention, the conservative
safety controller’s output is used. Since the safety controller
runs in parallel on isolated hardware (which prevents run-



time variations caused by resource sharing), the temporal
constraints are met by design.

2.1. Fault Model

The System-Level Simplex Architecture tolerates two
broad categories of faults: logical faults and resource sharing
faults.

Logical faults occur when the complex controller passes
an unsafe value to the decision module, or a value of an
incorrect type. One cause for this sort of fault is a mal-
functioning complex controller. An incorrectly-typed value,
on the other hand, may cause logical operations that use
it to fail. For example, if the control commands are IEEE
floating-point values that correspond to voltages, the values
NAN or infinity are incorrectly-typed. Another logical fault
occurs when a non-functional complex controller does not
output any value.

Resource sharing faults are caused by failures in common
resources among components. The original Application-
Level Simplex Architecture shares several resources, each
of which can cause the system to fail. These include all
the physical and logical resources managed by the OS
like memory, CPU, and shared libraries. These faults can
manifest directly (a misimplemented library causing the de-
cision module process to crash), or indirectly (a mismanaged
processor causing timing faults). Additional shared resources
may include the communication bus and the power source.

There also exist out-of-scope faults which System-Level
Simplex does not address. Specifically, the sensors and
actuators used by our system must be reliable and accurate.
The FPGA hardware, which runs our Simplex safety core,
is assumed to be correctly manufactured. Additionally, the
synthesis process, which takes our VHDL code and gener-
ates FPGA bitstreams, is unaddressed. However, these faults
are rare since companies strive to provide reliable hardware
and synthesis tools, and may be even further reduced by
techniques like triple modular redundancy (TMR) [12]. We
also do not handle environmental modeling faults which can
be present in any system that uses formal methods. Since
model checking is performed on the models and not the
physical environment, a significant mismatch between the
two results in an unsafe system, even if it is fully model
checked. To account for these errors, the formal model
should be reviewed, and fault-injection testing should still
be performed on the final system.

3. System-Level Simplex Design Process

We now present the end-to-end design process for creating
a System-Level Simplex design. The process begins with the
designer providing a behavioral specification of the Simplex
safety core (the safety controller and the decision module)

Figure 2. The end-to-end System-Level Simplex design
process results in a verified behavior and a validated
architecture.

and a logical architectural description. The behavioral spec-
ification is then formally verified to meet the application-
specific safety requirements. One way to do this is by model
checking a finite-state machine controller against safety
properties also expressed as finite-state machines. After the
behavior satisfies all safety requirements, we automatically
transform the provided AADL architecture to a System-
Level Simplex design. The designer can then modify the
architecture to meet design-specific goals. To make sure the
modifications do not result in an unsafe architecture, we pro-
vide a tool to assist the validation of the architecture, which
checks a set of necessary safety requirements. Violations are
reported back to the designer, who can then address each
one. The process is summarized in Figure 2.

For creating and verifying the System-Level Simplex
architecture design, we use the AADL architecture descrip-
tion language [8]. This language is specifically designed to
model the interaction of hardware and software for real-time
and safety-critical embedded systems with the potential to
support formal methods and the use of engineering mod-
els. Several organizations, including Boeing, the US Army,
and SEI have evaluated using an architecture description
language as the primary modeling notion for system-level
analysis. One project by the US Army reported an estimated
50% man-hour savings in the reengineering effort required to
upgrade an existing missile guidance system to run on a new
hardware platform [13]. Similarly, our design process can be
used to reengineer an existing Application-Level Simplex
design into a System-Level Simplex design.

In the following sections, we describe each of the
steps for creating a System-Level Simplex design in
detail, and our contributions in automating the pro-
cess. We used the OSATE [14] environment to cre-
ate and validate our AADL models because of its sup-
port for both high-level logical design and low-level sys-
tem properties. All of our tools are available for down-
load at https://agora.cs.uiuc.edu/display/
realTimeSystems/System+Level+Simplex.



Figure 3. UPPAAL can be used to perform model
checking on safety properties.

3.1. Initial Logical Design

The first step of the design process is to create the initial
logical design using the classic Simplex paradigm. Our
logical Simplex design for a cardiac pacemaker is shown
in Figure 4. There are three threads cc, sc, dm for the
complex controller, simple controller, and decision module,
respectively. The sensor data are EKG signal events that
detect when the heart’s ventricle or atrium has paced. The
actuation signals tell whether to send a shock to the ventricle
or atrium through the pacemaker leads. There is also an extra
sensor signal for the patient’s acceleration that the complex
controller uses to perform rate-adaptive pacing.

The specification of the logical design describes each
thread’s behavior using the AADL Behavior Annex [9]. The
Behavior Annex describes behavior with message passing
finite-state machines. This behavioral model can be trans-
lated to an equivalent specification in a model checking
tool such as UPPAAL [10]. The UPPAAL model of the
pacemaker behavior is shown in Figure 3. UPPAAL is then
used to formally verify safety properties for the logical
Simplex design.

3.2. System-Level Simplex Architecture Generation

We have created an OSATE plug-in that inputs the for-
mally verified logical design from before, and automatically
generates the general structure of the System-Level Simplex
Architecture. The logical design in Figure 4 is transformed
into the System-Level design shown in Figure 5.

The transformation wraps the individual threads into sep-
arate processes that have isolated memory and processors.
Furthermore, all communication from the complex controller
is put inside an application-level process. The pseudo code
for the hardware design generation is shown in Code Block
1.

Figure 4. The design process takes in a logical Simplex
AADL Model.

Figure 5. The design process generates a System-
Level Simplex AADL Model.

3.3. System-Level Simplex Architecture Validation

We have also produced a System-Level Simplex archi-
tecture checker which will traverse an AADL model and
enforce a checklist of architectural requirements. This is
important because the generator does not provide a one-
size-fits-all architecture, but rather an application-specific
template that is further modified for the specific design. We
want to guarantee that these further modifications do not
violate key Simplex architectural safety requirements.

We have identified several necessary conditions required
by a System-Level Simplex design that are checked by
our OSATE architecture checker. The properties can be
classified into resource isolation properties, data consistency
properties, and data flow properties. We briefly describe each
of these, along with associated failures that may occur if they
are not present.

Resource isolation properties that we require include a
real-time bus with an electrically-safe interface (such as the
CAN bus [15]), and a power management scheme. If the bus
is not real-time, correct complex controller commands may
not reach the decision module in a timely fashion, which
will result in degraded system performance as the safety
controller will be used instead. If the bus interface is not
electrically safe, the FPGA hardware may be damaged by



a short on the bus, which may damage the Simplex safety
core. If the power is not managed, the complex controller
may drain all the system’s power, shutting down the Simplex
safety core.

One data consistency property that we check is that the
value received from the complex controller goes through a
type-checking process. If this were not the case, a complex
controller may send values of the wrong type (for example,
sending the floating-point value NAN instead of a finite
voltage value), which the decision module may not interpret
correctly.

Data flow properties impose requirements on the connec-
tions among the System-Level Simplex components. The
complex controller, for example, should not be sending data
to the safety controller, only to the decision module. If these
connection properties are not enforced, we can not guarantee
that the architecture is actually an instance of Simplex.

Our architecture checking tool enforces each of these
necessary requirements for architectural safety. The tool can
be further extended to enforce additional requirements by
defining new AADL properties and writing the expected
invariants on these properties.

3.4. System-Level Simplex Implementation Gener-
ation

We have developed a VHDL code generator to automati-
cally create the System-Level Simplex hardware code for
both the safety controller and decision module. If these
modules are described as finite-state machines in the AADL
behavior annex, the corresponding VHDL code can be im-
mediately generated. This removes an extra level of human
interaction which may have lead to errors. The VHDL
hardware code can then be synthesized and used to program
an FPGA.

4. Case Studies

In order to demonstrate the practicality and robustness
of System-Level Simplex systems, we examine two case
studies in detail. First, we use our end-to-end design pro-
cess to produce a cardiac pacemaker system and compare
the resultant safety guarantees with those provided by a
previous-generation pacemaker. Later, we apply the System-
Level Simplex Architecture to a classic inverted pendulum
and empirically verify fault-tolerance guarantees. In addition
to the two case studies discussed in this paper, we are
currently evaluating the System-Level Simplex design to
provide safety for control of an autonomous tractor, in
collaboration with John Deere.

Code 1 The architecture generator separates the logical
Simplex system into a System-Level AADL model.
Transform(model) {

newModel = copy(model);
ss = new SimplexSwitch(model);
ss.traverseModel(); // find simplex components

appProc = newModel.wrapInProcess(ss.complex_ctrl);
sysProc = newModel.wrapInProcess(ss.simple_ctrl,

ss.decision_module);
...
appProc.bindToMemory(appMem);
appProc.bindToProcessor(cpu);
sysProc.bindToMemory(sysMem)
sysProc.bindToProcessor(fpga);
newModel.bindPower(power_source);
...
newModel.createDataConnections(ss.conn);
newModel.createBusBindings(sysBus);
...
return newModel;

}

4.1. System-Level Simplex Design for a Cardiac
Pacemaker

A cardiac pacemaker is a piece of hardware inserted into
a patient’s body in order to regulate his or her heart rate.
Detailed designs of cardiac pacemakers have been disclosed
[16], [17]. In this safety-critical application, we examine
the practicality and usefulness of the System-Level Simplex
Architecture, as well as the end-to-end design process.

We investigate three considerations for using the System-
Level Simplex Architecture:

• Can the system be divided up into a safe controller and
a complex controller, such that the most likely causes
of failure are contained in the complex controller?

• Is the System-Level Simplex end-to-end design process
effective in the cardiac pacemaker context?

• How do the resultant safety guarantees compare to
those of existing pacemakers?

4.1.1. Dividing the Cardiac Pacemaker System. The first
concern, the division of the system into complex and simple
controllers, asks if the logical Simplex framework can be
applied to a cardiac pacemaker. Since this is domain-specific,
we examine some properties of artificial pacemakers.

The first generation of artificial pacemakers actuated the
heart at a set interval. This functionality was sufficient
to keep the patient alive, however, problems did arise.
For example, when a healthy person walks up stairs or
performs strenuous action, his heart rate increases. The first
generation of pacemakers did not take this into account and
patients would become dizzy and uncomfortable. Additional
functionality was added to pacemakers to detect if the heart
rate should be increased by monitoring the temperature of
the blood, or the acceleration on the patient’s body [16].



Requirements were then added on top of this to preserve
smooth heart-rate transitions, rather than suddenly jumping
from 65 to 120 beats per minute because of a sudden
large acceleration. Additionally, modern pacemakers attempt
to detect and log anomalous events with the heart to aid
a doctor’s diagnosis. The logged data must be retrieved,
and this is done through wireless communication with an
external device.

Modern pacemakers have many other requirements, how-
ever we already covered enough to apply the System-Level
Simplex Architecture. The rate-adaptive pacing modes,
where the heart rate changes over time, require complex
functionality. The pacing rate to which we should change is
a function of the current rate, as well as the past and present
accelerometer readings. The safety properties we want to
enforce are that the heart rate should be between a lower
rate limit and an upper rate limit, and should not change
by more than a doctor-specified rate-smoothing parameter.
These are the properties monitored by the decision module.
The safe controller is a finite-state machine that meets the
safety requirements. We choose a safe controller that slows
down the heart to the resting rate (lower rate limit) in
a way that satisfies the rate smoothing requirement. This
safety controller does not have the complex rate-adaptive
functionality, but instead provides a fail-operational mode
that will maintain safety for the patient.

4.1.2. Using the System-Level Simplex Design Process.
The second concern addresses the effectiveness of the end-
to-end System-Level Simplex design process. The inputs for
the process are a finite-state machine behavioral description
for the decision module and safety controller, and the logical
AADL architecture description for Simplex.

As discussed in Section 3, we begin by describing both
the decision module behavior and safety controller behavior
as finite-state machines. The heart is then modeled in the
same way, and we exhaustively test for violations of safety
properties in UPPAAL (Figure 3). For example, one property
we check is that the safety core will not actuate the heart
unless it has been idle for a minimum time interval (to
enforce a maximum heart rate), for all possible actuation
commands coming from the unspecified complex controller.
When this checking is complete, we describe the final finite-
state machines in the AADL behavior annex.

The next step is the construction of the initial AADL
model. This model, shown in Figure 4, outlines the logical
Simplex connections. Our OSATE plug-in then takes this
initial model and transforms it into a model for a System-
Level Simplex Architecture (Figure 5). At this point the
designer can modify the model as needed and run our
architecture checker to make sure all System-Level Simplex
Architecture requirements are met.

One item checked is power safety between the Simplex
safety core and the complex controller. If power is not

managed, the complex controller can drain the shared battery
causing the system to fail. Although the architecture checker
makes sure this constraint is satisfied, the designer must
determine how to satisfy it. Our pacemaker is designed as a
System-on-Chip (SoC) running on a Xilinx FPGA. Modern
Xilinx FPGAs have several clock regions which can be
toggled on or off [18]. By using a soft processor on the
FPGA to run the complex subsystem, we can control the
power consumed by disabling the processor’s clock when
the battery is low. In CMOS circuits, preventing transistor
state changes (by stopping the clock) results in near-zero
power consumption. In this way we are able to provide
power isolation, and can set the appropriate power-isolation
AADL property within our model. Without the architecture
checker, this critical step could be overlooked.

After the architectural constraint checker validates the
model, we proceed to generate the implementation for our
pacemaker. The AADL behavior annex finite-state machines
for both the decision module and the complex controller
are put into our VHDL code generator. The generator
produces synthesizable hardware VHDL code which is used
to program the FPGA.

4.1.3. Comparing against Existing Pacemaker Reliability
Mechanisms. The last consideration compares the existing
reliability mechanisms found in one previous-generation
pacemaker description [16] to the design created using the
System-Level Simplex end-to-end design process. We focus
on two mechanisms for enhanced reliability which were
present in the pacemaker description we examined.

The first is a watchdog timer which is periodically reset
during normal system execution. If the execution hangs at
some point, the timer will not be reset and will timeout.
The timeout triggers a high-priority interrupt which signals
that an anomalous event has occurred and the system is
reinitialized. Alternately, the system can be shut down as
a fail-safe mechanism.

The watchdog timer mechanism is compatible with the
System-Level Simplex Architecture. It provides a means to
restart the system when it enters a rare error state. However,
the watchdog timer does not protect the system from unsafe
pacing, only system hangs. Additionally, deterministic bugs
in the program will continue to restart the system, whereas
a System-Level Simplex system is able to function safely in
spite of deterministic bugs in the complex controller.

The other safety mechanism we examine is a redundant
pacemaker system which, at first, appears to be similar to the
System-Level Simplex Architecture. This system provides
a simpler pacing mode without rate-adaption. This system
takes control from the microprocessor when “a fault is
detected in the operation of the microprocessor circuit.” This
component, like the System-Level Simplex Architecture,
provides protection from microprocessor errors. This is a
real cause of concern with this specific pacemaker design



because it uses a custom pacemaker-specific microprocessor.
However, it does not provide protection from logical faults
in the software. Additionally, control is switched to this
system when any fault in the microprocessor is detected.
In the System-Level Simplex Architecture, a hardware fault
that only affects the logging mechanism (perhaps because
of a rarely used instruction), one that does not compromise
safety, would not trigger a change in control.

4.2. System-Level Simplex Design for Inverted Pen-
dulum

An inverted pendulum is a classical control testbed where
a rod must be maintained upright by moving a cart along
a track. An inverted pendulum presents an obvious failure
state when the rod falls over. We applied the System-
Level Simplex Architecture to an inverted pendulum and
evaluated its robustness by inserting faults and observing
system robustness.

An inverted pendulum, however, does not completely lend
itself to our end-to-end design process. We still generate the
AADL architecture description and run it through the ar-
chitecture checker to make sure the architectural constraints
are met. However, control of an inverted pendulum is best
done through differential equations rather than finite-state
machines. This means that we can not use a finite-state ma-
chine model checker such as UPPAAL to guarantee safety.
Instead, we guarantee safety through the same technique as
previous Simplex applications [1]. We measure the inverted
pendulum system and find a Lyapunov stability function
[19]. From this, we can generate the safety controller C
code using Matlab Simulink [20] and determine when the
decision module should switch controllers (before the state
leaves the Lyapunov stability neighborhood). The C code is
then manually translated to VHDL for hardware synthesis.

Our hardware safety core resides on an externally-
powered Xilinx ML505 FPGA. This FPGA contains a PCIe
port which is used to communicate to a PC which runs the
software portion of the architecture. The software portion
uses a custom driver written for Linux. We run Linux/RK
[21] as the operating system for the complex controller.
Since the System-Level Simplex Architecture handles tim-
ing faults, we purposefully do not use the provided real-
time scheduler. Through memory-mapped I/O, the complex
controller reads the most recent angle and track position
and suggests a motor voltage to the hardware-based decision
module.

After constructing the system, we verified that the
software-based complex controller was able to actuate the
inverted pendulum as long as it did not jeopardize safety.
When the pendulum’s state approached the edge of the
Lyapunov stability neighborhood, the safety controller took
over and prevented the pendulum from collapsing. In this

Inverted Pendulum Fault-Injection
Failure Type Safe
No Output

√

Maximum Voltage
√

Wrong Way — Maximum Voltage
√

Time Degraded Control
√

OS Crash
√

Timing Faults
√

Computer Reboot
√

Table 1. The System-Level Simplex inverted pendulum
tolerates a variety of faults.

Figure 6. When the inverted pendulum state passes the
edge of the recoverable region (dashed line), the safety
controller takes over and prevents system collapse.

way, the system was able to tolerate a multitude of faults as
outlined in Table 1. We outline two of these faults in detail.

4.2.1. Wrong Way — Maximum Voltage. The pendulum
should remain balanced even if the complex controller
outputs a motor voltage that would normally destabilize
the system. This test took an extreme case of this where
we used a working inverted pendulum controller for a
few seconds, and then output the maximum voltage in the
direction opposite of that needed to stabilize the pendulum.
The decision module detected this and switched control
to the safety subsystem. The safety controller returned the
pendulum to a stable state and control was again given to
the complex subsystem after a few seconds. Measurements
from one iteration of this process are given in Figure 6.

4.2.2. Computer Reboot. The System-Level Simplex Ar-
chitecture provides protection from arbitrary operating sys-
tem behavior, including rebooting the system. From the
decision module’s perspective, the computer rebooting is
equivalent to a complex controller that sends no output.
We ran this test on our inverted pendulum setup, and the
pendulum remained stable throughout the reboot process.
Additionally, after the computer restarted, the software-
based complex controller was able to regain control of
the inverted pendulum using memory-mapped I/O with the



FPGA. This is significant because a common remedy for
software problems is rebooting the computer. A malfunc-
tioning complex controller can be repaired in this fashion
while the system remains stable and safe.

5. Related Work

Previous research has been performed on reliable system
design. One method proposed to accomplish this has been
N-version programming [22]. In this method, multiple ver-
sions of software are independently created from the same
specification. Then, all are run and the result given by the
majority of versions is taken as the output of the system.
One drawback with this method is the lack of statistical
independence of bugs [23], [24]. Additionally, for a constant
amount of development effort, N-version programming is
actually less reliable than focusing on a single version over
a wide range of parameter values [1].

Another reliability mechanism is the recovery block con-
cept [25]. In this approach, several alternative methods are
developed. We first run the fully featured one and check
if it is correct. If it is, we use it. Otherwise, we try the
simpler ones. The essential difference between recovery
blocks and the Simplex architecture is that the former is
a backward recovery method while the latter is a forward
recovery method.

A common engineering practice to increase system re-
liability in spite of unreliable hardware is triple modular
redundancy (TMR) [12]. In this scheme, three versions of
identical hardware running an identical program are run with
the same input. The output is then voted upon, such that if
any one of the outputs is incorrect (due to a hardware failure
or random environmental interference [26]), the overall sys-
tem continues to function correctly. This technique, unlike
the System-Level Simplex Architecture, is powerless against
errors in the logic of the program, since all three modules
will produce the identically incorrect output. However, it
is effective against hardware failures and can be used in
conjunction with the System-Level Simplex Architecture.
The resultant architecture prevents logical errors, transient
faults, and hardware failure problems. To use this combined
scheme, we would have three modules each with their own
hardware and software portions running the System-Level
Simplex Architecture with a reliable voter at the end to
accumulate the results. Variations of this also are possible,
for example by replicating only the safety-critical hardware
subsystem and using a single microprocessor-based complex
controller.

Our method is most closely related to the original
Application-Level Simplex Architecture [1]–[3]. In this de-
sign, two controllers are used in software to provide re-
liability in spite of logical errors in the complex version.
The System-Level Simplex is a novel architecture over the

Application-Level Simplex in several ways. The System-
Level Simplex Architecture eliminates a large body of
common unverified dependencies between the safety and
complex controllers, including the operating system, mid-
dleware, and microprocessor. Additionally, moving logic
outside of software allows us to handle additional failure
modes previously unavailable to software running within the
Application-Level Simplex design, such as power and timing
faults of the microprocessor-based system. The System-
Level Simplex also removes computation overhead from
the processor, which no longer has to run the simple con-
troller and decision module (which could affect real-time
schedulability). One drawback of the System-Level version
of Simplex is that additional resources are required to run the
decision module and complex controller, such as the FPGA.

Simplex (both versions) should not be regarded as a one-
size-fits-all robustness approach. To guarantee safety, we
must calculate a Lyapunov function in a dynamical system,
or be able to exhaustively model check a finite-state machine
behavioral description. Even after this step is complete,
the pessimism in the decision module and the simplicity
of the simple controller can unnecessarily reduce system
performance when the simple controller is governing. This
is the inherent trade-off a Simplex system makes in order to
guarantee robustness and controllability.

6. Conclusions

We have presented the System-Level Simplex Architec-
ture which uses hardware/software co-design to produce
fault-tolerant systems. By leveraging on a simple safety
controller and a decision module implemented in hardware,
several types of previously unhandlable errors can be safely
managed. These include failures in the complex software
controller code, operating system, and microprocessor, as
well as real-time temporal faults.

An end-to-end design process has been created for the
architecture, which leverages on an initial AADL model to
provide both an architectural and behavioral description. The
output of the process is a checkable System-Level Simplex
architectural model, and the corresponding VHDL hardware
code.

We demonstrated the feasibility and robustness of the
System-Level Simplex Architecture through two case studies
involving a pacemaker and a classic inverted pendulum. The
architecture is also currently being evaluated to improve the
safety of autonomous tractor control, in collaboration with
John Deere.

Acknowledgment

We would like to thank Rodolfo Pellizzoni for his plethora
of knowledge and support related to VHDL synthesis and



Xilinx development tools. Additionally, Bach Duy Bui de-
serves recognition for furnishing the PCIe driver which
presents the memory-mapped I/O interface for our inverted
pendulum implementation.

This material is based upon work supported by John
Deere and by the NSF under Awards No. CNS0237884,
CNS0613665, CCF0325716. Any opinions, findings, and
conclusions or recommendations expressed in this publica-
tion are those of the authors and do not necessarily reflect
the views of the NSF.

References

[1] L. Sha, “Using simplicity to control complexity,” IEEE Softw.,
vol. 18, no. 4, pp. 20–28, 2001.

[2] ——, “Dependable system upgrade,” in RTSS ’98: Proceed-
ings of the IEEE Real-Time Systems Symposium. Washing-
ton, DC, USA: IEEE Computer Society, 1998, p. 440.

[3] L. Sha, R. Rajkumar, and M. Gagliardi, “Evolving dependable
real-time systems,” in 1996 IEEE Aerospace Applications
Conference. Proceedings. Aspen, CO: IEEE New York,
NY, USA, 3–10 1996, pp. 335–46. [Online]. Available:
citeseer.ist.psu.edu/ sha95evolving.html

[4] T. L. Crenshaw, E. Gunter, C. L. Robinson, L. Sha, and
P. R. Kumar, “The simplex reference model: Limiting fault-
propagation due to unreliable components in cyber-physical
system architectures,” in RTSS ’07: Proceedings of the 28th
IEEE International Real-Time Systems Symposium. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 400–412.

[5] S. E. Institute, “The simplex distributed pilot study,”
www.sei.cmu.edu/ simplex/ demonstrations/ distributed.html,
1999.

[6] D. Seto, E. Ferreira, and T. F. Marz, “Case study:
Development of a baseline controller for automatic landing
of an f-16 aircraft using linear matrix inequalities (lmis),”
Technical Report Cmu/ sei-99-Tr-020. [Online]. Available:
citeseer.ist.psu.edu/ 606539.html

[7] T. I. der Rieden, “Verisoft,” www.verisoft.de, 2008.

[8] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture
analysis and design language (aadl): An introduction,” CMU/
SEI, Tech. Rep., 2006.

[9] R. B. Franca, J.-P. Bodeveix, M. Filali, J.-F. Rolland,
D. Chemouil, and D. Thomas, “The aadl behaviour annex
– experiments and roadmap,” in ICECCS ’07: Proceedings
of the 12th IEEE International Conference on Engineering
Complex Computer Systems (ICECCS 2007). Washington,
DC, USA: IEEE Computer Society, 2007, pp. 377–382.

[10] A. University and U. University, “Uppaal a tool suite for
verification of real-time systems,” www.uppaal.com, 2008.

[11] Y. Yeh, “Triple-triple redundant 777 primary flight com-
puter,” Aerospace Applications Conference, 1996. Proceed-
ings., 1996 IEEE, vol. 1, pp. 293–307 vol.1, Feb 1996.

[12] R. E. Lyons and W. Vanderkulk, “The use of triple-modular
redundancy to improve computer reliability,” IBM Research
and Development, vol. 6, pp. 200–209, 1962.

[13] P. Feiler, B. Lewis, and S. Vestal, “The sae architecture
analysis & design language (aadl) a standard for engineering
performance critical systems,” In Proceedings of the 2006
IEEE Conference on Computer Aided Control Systems De-
sign, October 2006.

[14] C. S. E. Institute, “An extensible open source aadl tool en-
vironment (osate),” la.sei.cmu.edu/ aadl/ downloads/ osate13/
AADLToolUserGuide1.3.0

[15] I. O. for Standardization, “Controller area network (can),”
ISO 11898-1:2003, 2003.

[16] J. G. Webster, Ed., Design of cardiac pacemakers. Piscat-
away, NJ: IEEE Press, 1995, ecow.engr.wisc.edu/ cgi-bin/ get/
bme/ 762/ webster/ designofca/.

[17] B. Scientific, “Pacemaker system specifcation,”
sqrl.mcmaster.ca/ SQRLDocuments/ PACEMAKER.pdf,
2007.

[18] M. Adhiwiyogo, “Virtex-4 clocking resources,”
www.xilinx.com/ publications/ xcellonline/ xcell 52/
xc v4xesium52.htm, 2005.

[19] K. J. Astrom and B. Wittenmark, Computer-controlled sys-
tems: theory and design (2nd ed.). Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1990.

[20] B. Messner and D. Tilbury, “Control tutorials for mat-
lab,” www.engin.umich.edu/ group/ ctm/ examples/ pend/
invpen.html, August 1997.

[21] R. Rajkumar, “Linux/ rk,” www.cs.cmu.edu/ rajkumar/ linux-
rk.html, 2008.

[22] A. Avizienis and L. Chen, “On the implementation of n-
version programming for software fault tolerance during
program execution,” in COMPSAC 77, 1977, pp. 149–155.

[23] J. C. Knight and N. G. Leveson, “An experimental
evaluation of the assumption of independence in multiversion
programming,” Software Engineering, vol. 12, no. 1,
pp. 96–109, 1986. [Online]. Available: citeseer.ist.psu.edu/
knight86experimental.html

[24] S. S. Brilliant, J. C. Knight, and N. G. Leveson, “Analysis
of faults in an n-version software experiment,” IEEE Trans.
Softw. Eng., vol. 16, no. 2, pp. 238–247, 1990.

[25] B. Randell, “The evolution of the recovery block concept,”
in Software Fault Tolerance, Lyu, Ed., 1995, ch. 1, pp. 1–21.
[Online]. Available: www.ece.cmu.edu/ ece849/ papers/
randell95 evolution recovery blocks.pdf

[26] K. Morris, “Fpgas in space,” FPGA and Programmable Logic
Journal, August 2004.


