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Abstract: All practical MPC implementations should have a means to recover
from infeasibility. We propose an algorithm designed for linear state-space MPC
which transforms an infeasible MPC optimization problem into a feasible one. The
algorithm handles possible prioritizations among the constraints explicitly. Prioritized
constraints can be seen as an intuitive and structural way to impose process knowledge
and control objectives on the controlled process. The algorithm minimizes the
constraint violations by solving a series of optimization problems, and the violation
of a given constraint is minimized without a�ecting the higher prioritized constraints.
An example shows the e�ect of implementing this algorithm on a simple process.
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1. INTRODUCTION

During the last years, model predictive control
(MPC) see e.g. (Rawlings et al., 1994), has shown
to become an attractive control strategy within
the process industry. Important stability results
within the area of linear MPC are given in
(Rawlings and Muske, 1993). However, to fully ex-
ploit this stabilizing property, a means to recover
from infeasibility of the associated optimization
problem whenever possible is required, since gen-
erally, a practical MPC will sooner or later run into
infeasibility problems. The infeasibility problems
may e.g. be due to disturbances, operator inven-
tion, or actuator failure. If the input constraints
represent physical limitations (which is often the
case) they must be enforced at all times. The state
constraints are often desirables and should hence
be satis�ed whenever possible. Thus, usually, only
the state constraints can be relaxed in order to
transform the optimization problem into a feasible
one in the case of infeasibility.
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There exist techniques which transform an in-
feasible MPC-problem into a feasible one. Rawl-
ings and Muske (1993) proposed to remove the
constraints at the beginning of the horizon, i.e.
for samples up to some sample number j1. This
feature is also implemented in the QDMC algo-
rithm reported by Garcia and Morshedi (1986),
who also proposed a soft constraint solution which
minimizes the square of the constraint violations.
The use of soft constraints is a way to avoid run-
ning into infeasibility problems. Zheng and Morari
(1995) show that global asymptotic stability can
be guaranteed for linear time-invariant discrete
time systems with poles inside the closed unit disc
subject to hard input constraints and soft output
constraints. In (Scokaert and Rawlings, 1998b) a
method called optimal minimal time approach is
proposed, which �rst minimizes the value of j1,
and then minimizes the size of the violation during
the �rst j1 samples of the prediction horizon.

Often, the state constraints are not equally impor-
tant. One way to explicitly express this di�erence
in importance is to give the state constraints dif-
ferent priorities. Imposing priority levels on the
constraints is a systematic way to implement cer-
tain types of process knowledge, such as \avoid-



ing shut-down is more important than discarding
the product for some time, since start-up of the
process is very expensive compared to discarding
a certain amount of the product". The problem
studied in this paper is how to allow control to
be continued in the presence of infeasibility of the
state constraints taking into account the informa-
tion contained in the prioritization.

There are some existing techniques which take the
prioritization levels into account when recovering
from infeasibility. IDCOM-M from Setpoint Inc.
provides a means for recovery from infeasibilities
which involves prioritization of the constraints
(Qin and Badgwell, 1996). When the calculation
becomes infeasible, the lowest prioritized hard
constraint is dropped, and the calculation is re-
peated. PCT from Pro�matics also uses constraint
prioritization when recovering from infeasibility
(Qin and Badgwell, 1996).

Meadowcroft et al. (1992) have developed a modu-
lar multivariable controller (MMC), which is based
on the solution of a multiobjective optimization
problem using the strategy of lexicographic goal
programming where the objectives have di�erent
priorities. They proposed a detailed methodology
for the design of steady state MMCs (they have
left the detailed design of dynamic MMCs for a
forthcoming publication).

In (Tyler and Morari, 1997, 1996) it is presented
an approach using integer variables for solving
infeasible linear MPC problems where the con-
straints have di�erent priorities. The minimization
of the size of the violation of the constraints is
done by solving a sequence of mixed integer opti-
mization problems. They compare their methodol-
ogy with conventional MPC by using weights and
slack-variables on an example with 4 prioritized
constraints. By trial and error, they �nd weights
which give approximately the same performance
for one speci�c disturbance. When a di�erent dis-
turbance enters their example process, the simula-
tion results show that when using their approach,
the two a highest prioritized constraints are ful-
�lled, while only the highest prioritized constraint
is ful�lled when the conventional approach is used.
This example supports the statement in (Qin and
Badgwell, 1996), that for large problems it is not
easy to translate control speci�cations into a con-
sistent set of relative weights for a single objective
function.

The main di�erence between our approach and
the one presented in (Tyler and Morari, 1997,
1996) (the so-called rigorous one) is that the latter
approach results in a sequence of mixed integer
LP (or mixed integer QP) problems in addition to
the original MPC optimization problem, while our
approach results in a sequence of LP (QP) prob-
lems in addition to the original MPC optimization

problem. In both approaches, whether each step in
the resulting sequence of optimization problems is
an LP problem or QP problem depends on how
the slackvariables associated with the constraints
are penalized.

The outline of the paper is as follows: The next
section presents the problem de�nition and the
MPC formulation used. Then the algorithm which
transfers an infeasible MPC optimization problem
into a feasible one is presented, followed by a
simulation example. The last section contains a
discussion and some concluding remarks.

2. PROBLEM DEFINITION

2.1 MPC formulation

The notation and MPC-formulation used here is
adopted from (Scokaert and Rawlings, 1998a).
Consider the time-invariant, linear, discrete time
system described by

x
t+1 = Ax

t
+Bu

t
; (1)

where x
t
2 R

n and u
t
2 R

m are the state and
input vectors at discrete time t. It is assumed that
(A;B) is stabilizable. The control objective is to
regulate the state of the system optimally to the
origin. The quadratic objective is de�ned over an
in�nite horizon and is given by

�(x
t
; �) =

1X
j=t

xT
jjt
Qx

jjt + uT
jjt
Ru

jjt; (2)

where Q � 0 and R > 0 are symmetric weighting
matrices such that (Q1=2; A) is detectable, � =
fu

tjt; ut+1jt; : : : g, x
T is the transposed of x, and

x
j+1jt = Ax

jjt +Bu
jjt; t � j (3)

with x
tjt = x

t
. The linear constraints are

Hx
jjt � h; t < j

Du
jjt � d; t � j

where h 2 R
nh

+ and d 2 R
nd

+ (R+ is the positive
reals) de�ne the constraint levels, and H and
D are the state and input constraint matrices
respectively. The MPC optimization problem can
now be de�ned as follows:

min
�

�(x
t
; �)

subject to:
x
tjt = x

t

x
j+1jt = Ax

jjt +Bu
jjt; t � j

Hx
jjt � h; t < j

Du
jjt � d; t � j

u
jjt = �Kx

jjt; t+N � j

(4)

The constraints need only be satis�ed on a �-
nite horizon to guarantee satisfaction on the in-
�nite horizon (Rawlings and Muske, 1993). This
form of MPC has Nm decision variables, and can
be solved with standard quadratic programming



methods. K is discussed below. The performance
index in the above equation can be formulated as
(Rawlings and Muske, 1993)

�(x
t
; �) =

N�1X
j=0

(xT
j+tjt

Qx
j+tjt+u

T

j+tjt
Ru

j+tjt)+x
T

j+N jt
~Qx

j+Njt

where ~Q is the solution of the matrix Lyapunov
equation

~Q = Q+KTRK + (A�BK)T ~Q(A�BK):

The feedback matrix K can be chosen in several
ways. In the rest of this paper, K = 0 is used. In
order to obtain stability, the unstable modi of the
predictor, xu

t+Njt
, are zeroed at the Nth predicted

sample (end point constraint), i.e.,

xu
t+Njt = 0: (5)

The feedback law is de�ned by receding hori-
zon implementation of the optimal open-loop con-
trol. Given the optimal open-loop control strategy
��(x

t
) = fu�

tjt
(x

t
); u�

t+1jt
(x

t
); : : : g, the control law

is thus given by

u
t
(x

t
) = u�

tjt
(x

t
): (6)

2.2 Compact problem formulation

Assume that the system, performance index, and
predictor are given by (1), (2), and (3), respec-
tively, and that the MPC problem formulation
is given by (4) with K = 0 and the additional
end point constraint (5). The problem studied in
this paper is how to relax the state constraints
in an optimal manner subject to their prioritiza-
tion when the optimization problem de�ned by
the MPC formulation becomes infeasible (e.g. due
to a disturbance). The method solving this prob-
lem must be computationally implementable, and
must not interfere with the control law de�ned by
(4) and (6) when the optimization problem (4) is
feasible.

3. SOLUTION APPROACH

3.1 The algorithm

When it is impossible to satisfy all state con-
straints simultaneously, it is desirable to satisfy as
many of the highest prioritized constraints as pos-
sible. The violations of the other (infeasible) con-
straints should be minimized, taking their relative
prioritization into account. The method described
here is an extension of the theory presented in
(Scokaert and Rawlings, 1998b), such that the con-
straint violations are minimized according to their
priorities. Operating at Pareto-optimal points in
the "size of violation - duration of violation" space

is the goal. The MPC problem de�ned in (4) (with
K = 0), can be rewritten as 2

min
�

�(x
t
; �)

subject to:
(7)

"hard" hard
constraints

8>>>><
>>>>:

x
tjt = x

t

xu
t+Njt

= 0

x
j+1jt = Ax

jjt +Bu
jjt; t � j

Du
jjt � h; t � j

u
jjt = 0; t+N � j

(8)

"soft" hard
constraints

8<
:
c1 : H1x

jjt � h1; t < j
...

c
nc

: Hncx
jjt � hnc ; t < j

(9)

where the constraints marked as \hard" hard
constraints cannot under any circumstances be
violated, since they are either physical limitations
on the process, or related to zeroing the unstable
modi at the end of the prediction horizon, or
decided by the move horizon N which is assumed
to be �xed. The constraint sets fc1; : : : ; cncg are
constructed such that constraint set c

i
has higher

priority than c
i+1. A constraint set is composed

of one or more scalar constraints having the same
priority. H

i
2 R

nci
�n, h

i
2 R

nci

+ , where n
ci

is
the number of constraints in constraint set c

i
.

An algorithm solving the problem of infeasibility
subject to the prioritization among the constraints
is presented next. In the algorithm, a sequence
de�ned as fc

l
; : : : ; c

m
g; l > m; is interpreted as

the empty set.

Step 1: Solve the optimization problem de�ned
by (7), (8) and (9). If a feasible solution exists,
the optimal solution (��) is found - terminate.
Else, the problem infeasible. Go to step 2.
Step 2: Check existence of a solution to (8). If
there does not exist any solution, the process
cannot be stabilized with the given controller.
Some kind of extraordinary action has to be
taken. Else, if there exist a solution, set k  1
and go to Step 3. Note that the integer k is
indexing the constraints, and is not related to
time.
Step 3 Check existence of a solution to (8) and
(9), but without constraint sets fc

k+1; : : : ; cncg.
Go to Step 4.
Step 4 If a feasible solution is found, set k  k+
1, and go to Step 3. Else, if no feasible solution
is found, constraint set fc1; : : : ; ckg cannot be
satis�ed simultaneously. Go to Step 5.
Step 5 Step 4 showed that constraint set c

k
can-

not be satis�ed when fc1; : : : ; ck�1g are satis-
�ed. Minimize the violation of constraint set c

k
,

i.e. compute optimal slack variables (�hk
jjt
)� 2

R
nc

k

+ , such that

2 Detectability of (Q1=2; A), which is a general requirement

in Section 2.1, is not nescessary for stability here because

of the end point constraint xu
t+Njt

= 0.



c0
k
: Hkx

jjt � hk + (�hk
jjt
)�; t < j (10)

and fc1; : : : ; ck�1g are satis�ed. There are sev-
eral ways to compute the optimal slack vari-
ables, according to the control policy, see the
discussion at the end of this section. Set n

s
 1;

where n
s
is number of softened \soft" hard

constraints. If k < n
c
, i.e. there are more slack

variables to be computed, go to Step 6, else go
to Step 8.
Step 6: Minimize the violation of constraint
set c

k+ns , i.e. compute optimal slack variables
(�hk+ns

jjt
)�, using the same strategy as in Step

5, such that fc1; : : : ; ck�1; c
0

k
; : : : ; c0

k+ns�1
g are

satis�ed. Go to Step 7.
Step 7 If k + n

s
< n

c
, i.e. there are more slack

variables to be computed, set n
s
 n

s
+ 1 and

go to Step 6, else go to Step 8.
Step 8 At this step, the status is as follows:
Constraint sets fc1; : : : ; ck�1g are not violated,
and fc

k
; : : : ; c

nc
g are replaced by fc0

k
; : : : ; c0

nc
g

such that there exist a solution which ful�lls
fc1; : : : ; ck�1; c

0

k
; : : : ; c0

nc
g. Now, with the last

degrees of freedom (if any), minimize the per-
formance index (7) subject to these constraints.

As stated in Step 5 above, there are several
ways to compute the optimal slack variables for
a given constraint set. In Section 4 below, the op-
timal minimal time approach (Scokaert and Rawl-
ings, 1998b) is used to compute the slack variables
within each constraint set. Considering constraint
set c

k
; the computation can be described as fol-

lows: Let �k(x
t
) denote the least integer such that

c
k
can be ful�lled when j � t + �k(x

t
): Given

�k(x
t
), the least (in some sense) �hk

t
2 R

nc
k

+ , i.e.
(�hk

t
)�; is computed such that c0

k
de�ned in (10)

is feasible if (�hk
jjt
)� = (�hk

t
)� when t < j < t+

�k(x
t
) and (�hk

jjt
)� = 0 when t + �k(x

t
) � j.

Another method is, for each constraint set, to
introduce di�erent priorities for every sample. If,
for example, the constraints at predicted sample
q in constraint set k has higher priority than the
constraints at predicted sample q�1 in constraint
set k, then the minimal duration of the constraint
violation is obtained, but the size of the violations
will generally di�er from the corresponding size of
violations resulting from the optimal minimal time
approach. Another method for computing (�hk

jjt
)�

is to minimize
P

P

j=t+1
(�hk

jjt
)TW

j
�hk

jjt
subject to

c1 to ck�1 and H
kx

jjt � hk+�hk
jjt
; t < j � t+P;

whereW
j
2 Rnck �nck is a weighting matrix, and P

is su�ciently large such that �hk
jjt

= 0; j > t+P

is feasible.

3.2 Stability

The controller proposed in this paper is based
on the controller given in (Rawlings and Muske,

+

M u

k

Fig. 1. An idealized mass-spring system.

1993), which is shown to be exponentially stabi-
lizing in (Scokaert and Rawlings, 1998a), and is
essentially an add-on of infeasibility handling in
an optimal manner taking priorities into account.
This add-on does not interfere with any of the
stabilizing properties of the controller given in
(Rawlings and Muske, 1993), hence stability is
retained.

4. EXAMPLE

4.1 Process

The proposed method described above will now be
implemented on a simple example, and compared,
insofar it is possible, with the optimal minimal
time approach described in (Scokaert and Rawl-
ings, 1998b). The process used in this example
is an idealized mass-spring system which is illus-
trated in Figure 1. The spring is assumed to be
linear, and the mass slides without any friction.
There is a force u directed horizontally on the
mass. It is assumed that both the position and
the velocity of the mass are ideally measured, and
that the spring constant k and the mass M both
are equal to 1.0. By using exact discretization with
sample time equal to 0.5 s, the system is given by
the following equations:

x
t+1 = Ax

t
+Bu

t
;

where

A =

�
0:8776 0:4794
�0:4794 0:8776

�
; B =

�
0:1224
0:4794

�
:

The MPC problem is given by (4) and (2) with
K = 0, Q = I , R = 1, N = 5 and

H =

2
664

1 0
�1 0
0 1
0 �1

3
775; h =

2
664
0:25
0:25
0:25
0:25

3
775; D =

�
1
�1

�
; d =

�
0:6
0:6

�
:

The predictor is equal to the process. The input
constraint has always to be satis�ed, and the
prioritization of the state constraints is as follows,
in descending order:

(1) Constraints on the mass position, i.e. jx
jjt;1j �

0:25; j > t.
(2) Constraints on the mass velocity, jx

jjt;2j �

0:25; j > t.

Using the notation in Section 3.1, the following
constraint sets are de�ned:



c1 : H
1x

jjt � h1; j > t;

c2 : H
2x

jjt � h2; j > t

where

H1 =

�
1 0
�1 0

�
; H2 =

�
0 1
0 �1

�
; h1 = h2 =

�
0:25
0:25

�
:

4.2 Simulation: Case 1 - applying the proposed

approach

At time t = 0, a state disturbance of [0:8;�0:4]T

enters the system and the approach described in
Section 3.1 is used to recover from infeasibility.
Step 1 to 4 in the algorithm show that only
the "hard" hard constraints can be satis�ed at
time t = 0. In Step 5, the optimal minimal time
approach described in (Scokaert and Rawlings,
1998b) is used to compute the minimal violation of
constraint set c1: First the minimal time, �

1(x
t
),

beyond which the constraints c1 can be satis�ed is
computed. Given �1(x

t
), the following LP is solved

to compute the minimal size of the constraint
violation of constraint set c1:

min
�t;�h

1

t

S�h1
t
; subject to

"hard" hard constraints

H1x
jjt � h1 +�h1

t
; t < j < t+ �1(x

t
)

H1x
jjt � h1; t+ �1(x

t
) � j

(11)

where S = [1 1]. At time t = 0; the optimal
slack variables computed by this LP, are (�h10)

� =
[0:2944; 0:0]T , and �1(x0) = 3. Let c01 denote the
two last constraints in (11) when �h1

t
= (�h1

t
)�:

In Step 6, the minimal violation of constraint
set c2 is computed by �rst computing the min-
imal time, �2(x

t
), beyond which the constraints

c2 can be satis�ed, subject to the "hard" hard
constraints and c01. Given �

2(x
t
), the minimal size

of the constraint violation of constraint set c2 is
computed by a LP problem similar to (11), but
with c01 added to the hard constraints. The optimal
slack variables computed by this LP at t = 0 are
(�h20)

� = [0:3509; 0:0]T , and �2(x0) = 4. Let c02
denote the relaxed constraint set c2: In Step 8, the
performance index (7) is minimized subject to the
"hard" hard constraints, c01 and c02. The receding
horizon implementation using this strategy on the
example process with the given disturbance results
in the response shown in the left part of Figure
2. It can be observed from the �gure that the
constraints in constraint set c1 are satis�ed when
j � 2, while �1(x0) = 3. This di�erence in open-
and closed-loop is due to the receding horizon
nature of MPC and �nite move horizon (N).

4.3 Simulation: Case 2- the optimal minimal time

approach

The same disturbance as in Case 1 enters the sys-
tem at time t = 0, but now all slack variables are

Table 1. Computational load for the simulation
examples Case 1 and Case 2.

# LP problems # QP problems

Case 1: 16 22

Case 2: 13 16

minimized upon simultaneously by using the opti-
mal minimal time approach presented in (Scokaert
and Rawlings, 1998b), i.e. there are no prioritiza-
tion among the constraints. This approach is equal
to the approach used in the previous section, but
with all constraints collected in constraint set c1,
and gives the response shown in the right part
of Figure 2. It can be seen that the violations
of constraint set c1 are less, both in time and
size, when the approach used in this paper is
applied, compared to the plain optimal minimal
time approach. The expense is larger violations of
constraint set c2, this is of course due to the prior-
itization. It can be observed that in this case, the
approach described in this work causes a longer
time period with constraint violations, compared
to the plain optimal minimal time approach. Table
4.3 shows the number of LP and QP problems
needed to be solved in Case 1 and 2. It can be
seen that, for the example presented here, the total
number of LP and QP problems generated by the
approach presented in this paper is about 30%
greater than the optimal minimal time approach
presented in (Scokaert and Rawlings, 1998b). It
should be noted that the number of constraints
in the QP and LP problems generated by the two
approaches are di�erent. At a given sample, the
number of constraints in the LP problems gener-
ated by our approach are less than or equal to the
number of constraints generated by the optimal
minimal time approach, since only a subset of the
state constraints is present when computing �k

in our priority handling approach, while all state
constraints are present when computing � in the
optimal minimal time approach.

5. DISCUSSION/CONCLUSION

All practical MPC implementations should have a
means to recover from infeasibility, and this paper
contain an algorithm which transforms an infeasi-
ble hard constrained MPC optimization problem
into a feasible one by relaxing those hard state
constraints which do not a�ect the stability of
the controlled process. This is done taking into
account priorities among the state constraints ex-
tending the work (Scokaert and Rawlings, 1998b),
where priorities are not handled. This assignment
is an intuitive and natural means to state objec-
tives on the controlled process, and as shown in
this paper, MPC is a suitable framework to impose
such objectives. When minimizing the violation
of a given constraint, the violations of the higher
prioritized constraints are not a�ected.
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Fig. 2. The left (right) part of the �gure shows the simulation results from Case 1 (Case 2). In the upper
part of both plots, the solid line shows x1;t and dashed line shows x2;t. Dotted lines are the constraint
limits.

If some of the input constraint are desirables
rather than physical constraints, the infeasibility
handling algorithm should also take these con-
straints into account. Extending the proposed al-
gorithm to include input constraints is trivial.

The example shows how the violations of a con-
straint are minimized upon at the expense of larger
violations of the lower prioritized constraint. In
the example, the optimal minimal time approach
(Scokaert and Rawlings, 1998b) is used to mini-
mize the constraint violations of the constraints
which have the same priority. Other approaches
may also be used. Consider, for example, a pro-
cess where large sizes of constraint violations are
very expensive. In some cases (such as in non-
minimum-phase processes) it will then often be
more cost e�cient to allow for longer duration of
violations at the bene�t of smaller sizes of vio-
lations. Anyway, as mentioned earlier, obtaining
Pareto optimal operation in "the space of duration
of violation and size of violation" should always be
the goal.

In the example, the number of optimization prob-
lems needed to be solved when our approach is
used, is about 30% larger than the number of
optimization problems needed to be solved when
the optimal minimal time approach is used. In
other examples, the di�erence in computational
load will probably be di�erent. Whether the com-
putational load required by our approach is ac-
ceptable in practise is dependent on the process
dynamics and the sampling period of the given
process in addition to the computational capacity
of the computer where the MPC is installed.
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