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Abstract

Fractal analyses have been applied successfully for the image compression, texture analysis, and texture image segmentation. The fractal

dimension could be used to quantify the texture information. In this study, the differences of gray value of neighboring pixels are used to

estimate the fractal dimension of an ultrasound image of breast lesion by using the fractal Brownian motion. Furthermore, a computer-aided

diagnosis (CAD) system based on the fractal analysis is proposed to classify the breast lesions into two classes: benign and malignant. To

improve the classification performances, the ultrasound images are preprocessed by using morphology operations and histogram

equalization. Finally, the k-means classification method is used to classify benign tumors from malignant ones. The US breast image

databases include only histologically confirmed cases: 110 malignant and 140 benign tumors, which were recorded. All the digital images

were obtained prior to biopsy using by an ATL HDI 3000 system. The receiver operator characteristic (ROC) area index AZ is 0.9218, which

represents the diagnostic performance.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Cancer remains a major public health problem in

developed countries. Breast cancer is the most common

cancer in women, accounting for nearly one out of every

three cancers in the United States. In 2003, 211,300 women

are expected to be diagnosed with this disease, and only

lung cancer causes more deaths among women [1]. The

early detection and diagnosis of breast cancer are the key to

decrease death rate and to provide prompt treatment. Now,

breast cancer is detected and diagnosed by a combination of

physical examination, imaging, and biopsy [2,3]. Mammog-

raphy and ultrasound are the main imaging techniques for

breast cancer. Some patients with palpable breast cancers
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may have mammogram and sonogram examinations with

both normal, benign, or nonspecific in appearance [4]. Up to

date, to confirm whether a patient has breast cancer, it has to

rely on biopsy. However, biopsy is one kind of invasive

surgical operation and imposes both psychological and

physical impacts on patients. To avoid unnecessary biopsy,

many researches have investigated computer-aided diagno-

sis (CAD) systems [5–9] that offer more objective evi-

dences and stable high diagnostic rates.

An ultrasonographic image consists of different values of

gray-level intensity, and different tissues have markedly

different texture. Benign lesions are classically described as

regular masses with homogenous internal echoes, but

malignant lesions are described as masses with fuzzy border

and heterogeneous internal echoes [9]. In this paper, fractal

characteristics are proposed to differentiate the benign and

malignant lesions. There are several features that can

distinguish the benign and malignant breast lesions. For
g 29 (2005) 235–245
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example, the often used diagnosis features in CAD systems

are texture [6,8,9] and shape. This paper will focus on the

study of texture feature. Texture refers to properties that

represent the surface or structure of an object; it is widely

used but has no precise definition due to its wide variability.

Fractal geometry [10,11] can be used on occasion to

discriminate between different textures. Fractal refers to

entities, especially sets of pixels, which display a degree of

self-similarity at different scales. Fractal analyses have been

applied for several medical image applications [12–20].

Most of these fractal analysis researches are focused on

digital mammograms [12–15,17–20]. Lefebvre et al. [18]

presented a computerized method for the automated

segmentation of individual microcalcifications in a region

of interest (ROI) in digital mammograms. Zheng and Chan

[17] presented an algorithm that combines several artificial

intelligent techniques, including fractal dimension analysis,

with the discrete wavelet transform for the detection of

masses in mammograms. Pohlman et al. [15] proposed six

different morphological descriptors, including fractal

dimension, to distinguish benign and malignant breast

lesions in digitized mammograms. The above fractal

analysis methods are applied for the mammograms. How-

ever, Garra et al. [16] used fractal analysis and statistical

texture analysis methods for the ultrasound images, to

improve the ability of ultrasound to distinguish benign from

malignant breast lesions. They concluded that the most

useful features are the co-occurrence matrices of the

ultrasound images, not the fractal analysis.
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Fig. 1. Histogram equalization.
2. Materials and methods

Here, we briefly introduce three basic techniques to be

used in the paper, morphology, histogram equalization, and

k-means classification. Noise filtering and shape simplifica-

tion are the main objectives of the morphology used in the

image preprocessing. Because the breast tumor images are

collected in different periods by different doctors for

different patients, histogram equalization is adopted to make

the US images at similar gray levels and good contrast for

improving the classification performance. The k-means is a

simple method for classifying the fractal features used in this

paper into benign and malignant lesions.

2.1. Morphology

Digital morphology [21,22] behind the mathematics is

simply set theory, which is a well-studied area. A small

pattern or shape, which is known as structuring element,

probes the image. Basic morphological operations are

erosion and dilation. Erosion is an operation on the image

that pixels matching a structuring element are deleted. For

the dilation operation, the area about a pixel is set to a given

structuring element and the original object to grow larger.

The definitions of these operations are dependent on the
types, including binary, gray level, or color, of the image

being processed (see Appendix A).

2.2. Histogram equalization

The histogram of an image provides the frequency

distribution of gray levels in that image. For example, the

histogram of an 8-bit image can be represented by a table

with 256 entries, or bin indexed form 0 to 255. In Bin 0, the

number of times of a gray level of 0 occurring is recorded;

in Bin 1, the number of times of a gray level of 1 occurring;

and so on, up to Bin 255. Histogram equalization [21,23] is

usually used for contrast enhancement, and it redistributes

gray levels in an attempt to flatten the frequency distribu-

tion, as shown in Fig. 1 (see Appendix B).

2.3. k-means classification

The purpose of the k -means, also described by the names

c-means or iterative relocation, is to partition the data into k

clusters, so that within each group, the sum of squared error

is minimized. That is, the k-means is a least-squares

partitioning method allowing users to divide a collection

of objects into k groups. Given k, e.g., k=2, we are able to

classify the features that are gotten from fractal textures of

breast tumor images to distinguish the benign from

malignant breast tumors (see Appendix C).

2.4. Fractal texture description

Traditionally, the Euclidean objects [11], such as lines,

planes, and circles, etc., have used as the basis of the

intuitive understanding of the geometry of nature. However,

most nature objects do not resemble Euclidean objects. With

the help of fractal geometry, it is possible to model nature

objects to a better description in many conditions. The

concept of fractal was first introduced by Mandelbrot [24].

The main distinct difference between Euclidean and fractal

geometry is that of self- similarity, which is described by

nonuniform scaling. In theory, shapes of fractal objects keep

invariant under successive magnifying or shrinking the

objects. We have known that the texture is a problem of

scale; that is, the texture description is scale dependent.

Hence, the fractal geometry can be applied to overcome the

scale problem of texture. Because the concept of fractal

dimension is an indicator of the surface roughness and

people usually describe texture as fine, coarse, gained, and
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Fig. 2. (A) Multiscale intensity difference vector. di(k) is computed by only

the pixel pairs with distance Drk. The value of Drk may be fractional. (B)

Normalized multiscale intensity difference vector. The value of k is an

integer. di(k) is computed by all the pixel pairs in the highlighted region.

(A) (B)

Fig. 3. (A) Only the pixel pairs with horizontal or vertical distance k are

used to compute di(k). (B) The pixel pairs with horizontal, vertical,
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smooth, etc., hence, it implies that fractal-based texture

analysis is a correlation between texture coarseness. Fractal

models typically relate a metric property, such as the length

of a line or surface area, to the elementary length or area

used as a basis for determining the metric property. For

example, the coast length could be measured by applying a

1-km-long ruler end to end to the coastline. If a 0.5-km ruler

or other short ruler is used for the same coast, then the

measured length will be longer. The relation between the

ruler length and the measured coast length can be consi-

dered a measure of the coastline’s geometric properties, e.g.,

its roughness. This property can be found also in other

naturally occurring objects. The functional relationship

between ruler size e and the measured length L is

L ¼ ke1�D ð1Þ

where k is a scaling constant and D is the fractal dimension.

In practice, D has been shown to correlate with the

function’s intuitive roughness.

A variety of procedures, including box counting, fractal

Brownian motion [25–27], and fractal interpolation function

system [11], have been proposed for estimating the fractal

dimension of images. We mainly introduce the fractional

Brownian motion model with gray-scale variation [25–27],

which has shown promise in the medical image texture. The

Brownian motion curve concepts can be extended to the

fractional Brownian motion curve I(x), and |I(x2)�I(x1)|

have a mean value proportional to |(x2�x1)|H. Thus, in the

fractal Brownian motion, there is only one parameter of

interest, H, or the Hurst coefficient, which can be described

as texture features, when we applied it to classify breast

tumor images. Considering the topological dimension Td,

for images, Td=3, the fractal dimension D can be estimated

from the Hurst coefficient H as

H ¼ Td � D ð2Þ

For the medical images, the fractal dimension can

be estimated from the above relationship. If we define

Dr¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x1ð Þ2þ y2�y1ð Þ2

q
;DIDr ¼ jI x2; y2ð Þ�I x1; y1ð Þj
then a simple way to estimate fractal dimension is to
use the following equation:

E DIDrÞ¼k Drð ÞH¼k Drð Þ3�D
�

ð3Þ

where E() is an expectation operator, DIDr is the intensity

variation, Dr is the spatial distance, and k=E(DI)Dr =1 is the

scaling constant, and by applying the log function to both

sides of the equation, we can deduce

log E DIDrÞð Þ ¼ H log Drð Þþlogk:ð ð4Þ

Because logk is a constant, the parameter H can be deduced

from the least-squares linear regression to estimate the slope

of the gray value differences log(E(DIDr)) versus log(Dr) by

choosing Drmax and Drmin.

Given an M�M image I , the implementation of

estimation fractal dimension [25] can be defined as

di kð Þ ¼

PM�1

x1¼0

PM�1

y1¼0

PM�1

x2¼0

PM�1

y2¼0

jI x2; y2ð Þ � I x1; y1ð Þj

pn kð Þ ð5Þ

where pn(k) is the total number of pixel pairs with distance

Drk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2� x1ð Þ2þ y2� y1ð Þ2

q
and

f kð Þ ¼ log di kð Þð Þ�log di 1ð Þð Þ for k¼1; 2; N ; n: ð6Þ

The vector [di(1), di(2), . . . , di(n)] is called the multi-

scale intensity difference (MSID) vector, and the vector

[ f (1), f (2),. . ., f (n)] is called the factional Brownian motion

feature (FBM) vector. For example, in Fig. 2(A), di(k) is

computed by only the pixel pairs with distance Drk, and the

value of Drk may be fractional. Because the total number of

all possible scales is too large, Chen et al. [25] also proposed

a normalized multiscale intensify difference (NMSID)

vector. In this normalized method, only the integer scales

are used. That is, all the pixel pairs (x1,y1) and (x2,y2) with

kV
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2�x1ð Þ2þ y2� y1ð Þ2

q
bkþ1 are used to compute the

value of di(k) in Eq. (5). As shown in Fig. 2(B), di(k) is

computed by all the pixel pairs in the highlighted region.

From the above discussion, a perfect fractal intensity

surface, f (k)=Hlog(Drk), and the H can be obtained. Fractal

dimension D is then derived from the values of the Hurst
diagonal, and asymmetric–diagonal directions are used to compute di(k).
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Fig. 4. Flowchart of processing.

coefficients. A small value of the fractal dimension, i.e., a large value of H, represents a fine texture, while a large fractal

dimension corresponds to a coarse texture.

However, the drawback of Eq. (5) is that it tends to be time consuming; this algorithm needs M
4
operations for estimating the

fractal dimension of an image of size M�M. Thus, Wu et al. [26] proposed the modified method using only the gray level dif-

ferences between the pixel pairs with horizontal or vertical distance k, as shown in Fig. 3(A). That is, the di(k) is redefined as

di kð Þ ¼
PM�1

x¼0

PM�k�1

y¼0

jI x; yð Þ�I x; yþ kð Þjþ
PM�k�1

x¼0

PM�1

y¼0

jI x; yð Þ � I xþk; yð Þj

2M M � kð Þ ð7Þ

Then, Chen et al. [27] proposed another modified method using the gray-level differences between the pixel pairs with

horizontal, vertical, diagonal, and asymmetric–diagonal directions, as shown in Fig. 3(B). The di(k) is redefined as

di kð Þ ¼

XM�1

x¼0

XM�k�1

y¼0

���I x; yð Þ�I x; yþkð Þ
���=M M�kð Þ

þ
XM�1

y¼0

XN�k�1

x¼0

���I x; yð Þ�I xþk; yð Þ
���=M M�kð Þ

þ
XM�k�1

x¼0

XM�k�1

y¼0

���jI x; yð Þ�I xþk; yþ kð Þ
���= M�kð Þ2

þ
XM�k�1

x¼0

XM�k�1

y¼0

���I x;M�yð Þ�I xþk;M� yþkð Þð Þ
���= M�kð Þ2

3
7777777777777775

=4

2
6666666666666664

ð8Þ

3. The proposed fractal analysis method

The fractal analysis method is proposed for diagnosis of tumors in sonograms, and the flowchart of the proposed method is

illustrated as Fig. 4. In the first subsection, how to acquire the image data is introduced. Then, the procedure for the image
Fig. 5. Original tumor images. (A) Benign. (B) Malignant.



Fig. 6. Morphological operation. (A) Benign. (B) Malignant.
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preprocessing is described to remove the noise in the US

images and to make the US images at similar gray levels

and good contrast for improving the classification perform-

ance of the proposed fractal analysis method. Finally, we

describe the extraction of texture features using the

proposed fractal method.

3.1. Data acquisition

The US breast image databases include only histolog-

ically confirmed cases: 110 malignant tumors and 140

benign tumors, which were recorded from August 1,

1999, to May 31, 2000. The ages of the patients ranged

from 18 to 64 years. All the digital images were obtained

prior to biopsy using by an ATL HDI 3000 system with a

L10-5 small part transducer, which is a linear-array

transducer with a frequency of 5–10 MHz and a scan

width of 38 mm. During the US scanning, no acoustic

standoff pad was used. All the images were supplied by

one of the authors (Dr. Moon). The ROI that contains the

tumor was selected by one of the authors (Dr. Chen).

Throughout this study, only the ROI subimages are used

to investigate the texture characteristics of benign and

malignant lesions. Note that only one lesion is extracted

from a patient.
Fig. 7. Histogram equalization after morphologi
3.2. Image preprocessing

Image preprocessing methods were used to remove the

redundancy in images for improving the image data with

undesired noisy or to enhance some image features that is

important for further processing. Images are inherent of

randomness. The US images typically have randomness

connected with both the nature of the fundamental structure

and the random noise superimposed on the image. In the

previous section, we have mentioned that the fractal analysis

is sensitive to the noise. To continue the study, we need to

eliminate the noise through the procedure of image

preprocessing. Several methods can be used to eliminate

the noise in image processing, including median filter,

averaging, and mean filter, etc. In this paper, the morpho-

logical operations are used as an image filter to eliminate the

noise; and those operations are the erosion and dilation

operations. The structuring element is a nonflat ellipsoid

shape whose radius in the X–Y plane is R and whose height

is H. In this paper, R=3 and H=3. Fig. 5 shows the original

benign and malignant images. Fig. 6 shows the results of the

morphological operations for the images in Fig. 5.

The ROIs containing the tumors are very dissimilar in

image sizes and different in gray levels. Therefore,

another image processing method is needed to make the
cal operation. (A) Benign. (B) Malignant.



Fig. 8. Fractal analysis based on Wu’s method for images in Fig. 6 without

image preprocessing. The slope of the benign line is 0.2994, and the slope

of the malignant is 0.3038.

Fig. 10. Fractal analysis based on Wu’s method for images in Fig. 7 with

image preprocessing. The slope of the benign line is 0.3550, and the slope

of the malignant is 0.3334.
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images at comparable gray levels and good contrasts. In

this paper, histogram equalization is used for the purpose.

Fig. 7 is the result after the histogram equalization for the

images in Fig. 6.

3.3. Fractal analysis

In the previous section, we have discussed the fractal

texture descriptor for texture analysis. The authors [25]

proposed the normalized MSID vectors to reduce the

number of all possible scales to M for an image of size

M�M. However, the total number of all possible scales is

still too large and a lot of time is needed to find the fractal

dimension. There are two simpler MSID vectors [26,27]

used to reduce the calculation time. In Wu’s method [26],

only the intensity differences of pixels pairs with horizontal
Fig. 9. Fractal analysis based on Chen’s method for images in Fig. 6

without image preprocessing. The slope of the benign line is 0.3031, and

the slope of the malignant is 0.3038.
or vertical distance k are needed to be found. The pixel pairs

with distance k along horizontal, vertical, diagonal, and

asymmetric–diagonal directions are needed to be found,

their intensity differences proposed in the paper of Chen

et al. [27]. Now, these two simpler MSID vectors are

adopted in the following fractal analysis. The following

figures demonstrate the fractal analysis for the benign and

malignant US images in Figs. 6 and 7. In Figs. 8 and 9, the

fractal analysis is applied for the US images without the

image preprocessing. In Figs. 10 and 11, the fractal analysis

is applied for those images after the morphology operations

and the histogram equalization.

Note that the slopes of lines in Figs. 10 and 11 are the

Hurst parameters H, and the fraction dimension can be

deduced from 3�H. According to the above figures, we can

find that those two lines are more separated in Figs. 10
Fig. 11. Fractal analysis based on Chen’s method for images in Fig. 7 with

image preprocessing. The slope of the benign line is 0.3644, and the slope

of the malignant is 0.3425.



Fig. 12. The pixel pairs with horizontal, vertical, diagonal, and asymmetric–

diagonal directions are used to compute di(k). Note that the distance of all

the pixel pairs are the same.
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and 11 than those in Figs. 8 and 9. Moreover, the slope

difference is larger in Figs. 10 and 11. Hence, the images

with the preprocessing can obtain much better results of the

fractal analysis. In the next section, more benign and

malignant cases will be used to prove that the image

preprocessing could improve the classification performance

for fractal analysis. In this paper, we will propose another

modified fractal analysis method. This method is based on

the methods of Wu et al. [26] and Chen et al. [27]. Note that,

in the method of Chen et al. [25], the distance of pixel pairs

along the diagonal and asymmetric-diagonal is
ffiffiffi
2

p
k, not k.

Hence, according to the original definition of MSID, the

equation for id(k) is modified as
id kð Þ ¼

XM�1

x¼0

XM�k�1

y¼0

���I x; yð Þ�I x; yþkð Þ
���=M M�kð Þ

þ
XM�1

y¼0

XN�k�1

x¼0

���I x; yð Þ�I xþk; yð Þ
���=M M�kð Þ

þ
XM kffiffi

2
p �1

x¼0

XM kffiffi
2

p �1

y¼0

���I x; yð Þ�Iðxþ kffiffiffi
2

p ; yþ kffiffiffi
2

p Þ
���=ðM� kffiffiffi

2
p Þ2

þ
XM kffiffi

2
p �1

x¼0

XM kffiffi
2

p �1

y¼0

���I x;M�yð Þ�Iðxþ kffiffiffi
2

p ;M�ðyþ kffiffiffi
2

p ÞÞ
���=ðM� kffiffiffi

2
p Þ2

3
7777777777777777775

=4

2
6666666666666666664

ð9Þ
The pixel pairs used in computing id(k) are shown in

Fig. 12. Note that the fractal dimension H can be obtained

by estimating the slope of log(FBM) versus log(Dr)

between Drmin and Drmax using the least-squares linear

regression [25]. In the cases of Figs. 8–11, Drmin=1 and the

Drmax=30. Fig. 13 is the results using our method for those

images in Fig. 11. Note that H=0.3578 for the benign image

and H=0.3351 for malignant image.

Hence, in this paper, the preprocessing techniques,

morphological operations, and histogram equation are used

at first to remove the image noise and to enhance the image

contrast. The fractal analysis based on Eq. (9) is used to find

the fractal dimension of the US images and the fractal

dimension is used as the texture features for diagnosis.
Finally, the k-means classification is used to classify the US

images into benign and malignant cases.
4. Experiments and results

In this study, the hardware experiment environment is

Intel Pentium III-800 with 512M RAM, and the program-

ming environment is the MATLAB of MathWorks (Natick,

MA, USA). The preprocessing techniques, morphology

operations, and histogram equalization use the functions in

the image toolbox.

From the flowchart Fig. 4, the proposed method could be

divided into three main steps: morphology operation,

histogram equalization, and fractal analysis. The first two

steps are the preprocessing technique to obtain better fractal

texture features. Actually, these two preprocessing steps are

very important and necessary, and the results with and

without will be compared. The fractal features are extracted

by using our modified version in Eq. (9) to obtain the

multiscale intensity difference vector [di(1), di(2),. . ., di(n)]
with Drmin=1 and Drmax=8. After obtaining the multiscale

intensity difference vector, the factional Brownian motion

feature vector [ f(1), f(2),. . ., f(n)] can be obtained by using

Eq. (6), and then, the fractal dimension could be obtained by
the slope of the factional Brownian motion feature vector

versus log(Dr), estimated by the least-squares linear

regression. Finally, the k-means classification method will

be adopted to verify the classification result. For diagnosis

purpose, the US images are divided into two classes, benign

and malignant, i.e., k=2. The k-means is an unsupervised

classification method and requires only the parameter of the

classification group number, k. However, for the purpose of

justification, we will apply the supervised manner to

simulate the diagnosis process. Hence, in the classification

experiments, the US images will be divided into the training

and the test sets. The training set is used to build the k-means

model, and the test set is used to verify the trained k-means

model. Note that the cases in the test set are not used to train



able 2

ummary of performance among fractal texture features

Fractal

dimension [%]

f (1)

[%]

f (2)

[%]

f (3)

[%]

f (4)–f (7)

[%]

ccuracy 88.80 88.40 88.80 88.80 88.80

ensitivity 93.64 92.72 92.73 93.64 93.64

pecificity 84.29 85.00 85.71 85.00 84.29

PV 82.40 82.92 83.61 83.06 82.40

PV 94.40 93.70 93.75 94.40 94.40

ccuracy= (TP+TN)/(TP+TN+FP+FN); Sensitivity=TP/(TP+FN); Specif-

ity=TN/(TN+FP); Positive Predictive Value (PPV)=TP/(TP+FP); Neg-

tive Predictive Value (NPV)=TN/(TN+FN).

Fig. 13. Fractal analysis based on our method for images in Fig. 7 with

image preprocessing. The slope of the benign line is 0.3578, and the slope

of the malignant is 0.3351.
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the k-means model. Due to that the number of the US

images is not large, the cross-verification method is used,

and the US images are divided into five groups. The first

group is used as the test set and the remaining four groups

are used as the training set. Next, the second is used as the

test set and the remaining four groups are used as the

training set. The above procedure is repeated until each

group is used as the test set once. Note that the centers of

two classes, benign and malignant, are obtained from the

training set by using the k-means method. For diagnosis, if a

test case is close to the center of the benign class, then this

class is classified as benign. Otherwise, this case is classified

as malignant. Tables 1 and 2 list the classification results for

the fractal dimension and all fractal coefficients f (i). Note

that the classification performances of these fractal features

are almost the same. In Table 2, five performance indexes,

accuracy, sensitivity, specificity, positive predictive value

(PPV), and negative predictive value (NPV), are adopted to

evaluate the classification performance. The accuracy of the

proposed fractal analysis is 88.80%.

Because the fractal dimension and the third fractal

coefficient f (3) have slightly better results, the following

comparisons will focus on these two features. At first, the

results with and without the preprocessing steps are

compared. The distribution of these features with the

preprocessing steps is shown in Figs. 14 and 15, and the
Table 1

Classification of breast tumors by k-means with fractal texture descriptors

Fractal

texture

The fractal

dimension

The first

fractal

coefficient f (1)

The second

fractal

coefficient f (2)

The third

fractal

coefficient f (3)

Benign TN118 FN 7 TN 119 FN 8 TN 120 FN 8 TN 119 FN 7

Malignant FP 22 TP 103 FP 21 TP 102 FP 20 TP 102 FP 21 TP 10

Total 140 110 140 110 140 110 140 110

TP: true positive; TN: true negative; FP: false positive; FN: false negative.
T

S

A

S

S

P

N

A

ic

a

distribution of these features without the preprocessing steps

is shown in Figs. 16 and 17. In Figs. 14 and 15, the benign

and malignant classes are clearly separated. However, these

two classes cannot be separated in Figs. 16 and 17. Hence,

we can prove that the preprocessing steps are very important

and necessary.

At last, the receiver operator characteristic (ROC) curve

is used to evaluate the fractal feature. The software package

LABROC1 by Professor C.E. Metz, University of Chicago,

is used to fit the ROC curve. The performance of the diag-

nosis feature can be evaluated by examining the ROC area

index, AZ. The ROC curve for the fractal dimension is shown

in Fig. 18. The ROC area index AZ is up to 0.9218.
5. Discussion

Many texture features can be used in computer-aided

schemes. Fractal analysis is a useful one. The input image is

the ROI subimage containing the lesion selected by a

physician. After, the preprocessing technique is applied for

the ROI image to remove the noise and enhance the

contrast. Then, the fractal analysis is applied to obtain the

fractal texture features to classify the test cases into benign

and malignant. From the experimental results, the fractal

analysis is useful to represent the texture information of US

breast lesions. The accuracy rate of the proposed system is

up to 88.80%.

In the future researches, this fractal analysis technique

could be applied for other medical images or other image

preprocessing techniques. More advanced nonlinear classi-

fication methods such as neural network or fuzzy logic can

be used to improve the classification accuracy. Now, the

ROI is selected by a physician. For the convenient of
The fourth

fractal

coefficient f (4)

The fifth

fractal

coefficient f (5)

The sixth

fractal

coefficient f (6)

The seventh

fractal

coefficient f (7)

TN 118 FN 7 TN 118 FN 7 TN 118 FN 7 TN 118 FN 7

3 FP 22 TP 103 FP 22 TP 103 FP 22 TP 103 FP 22 TP 103

140 110 140 110 140 110 140 110



Fig. 14. The fractal dimension for the ROIs images with morpho-

logy operations and histogram equalization. The horizontal axis is the

case number.

Fig. 16. The fractal dimension for the ROIs images without morpho-

logy operations and histogram equalization. The horizontal axis is the

case number.
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clinical usage, we try to develop an automatic detection and

segmentation method from an ultrasonic image. Further-

more, the segmentation method could be added to the

proposed system to find the tumor contour, and only the

texture information inside the tumor is used to diagnose

the tumor. In the future, we will extend the fractal analysis

for 3D US images based on our experiences of 2D fractal

analysis and 3D US to compare their performances.
Appendix A

First, we introduce the morphological operations for

binary images and then mainly consider those operations for
Fig. 15. The third fractal coefficient f(3) for the ROIs images with

morphology operations and histogram equalization. The horizontal axis is

the case number.
the gray-level images because the breast tumor image is also

a gray-level image.

The structuring element is a small matrix of pixels. When

a morphological operation is carried out, the origin of the

structuring element is typically translated to each current

processing pixel position in the image, in turn, and then the

pixels within the translated structuring element are com-

pared with the underlying image pixel values. Next, the two

relations fit or hit, between the structuring element, and the

processed image needs to be defined. It is said that a

structuring element to fit an image if, for all the pixels in the

structuring element being set to 1, their corresponding

image pixels are also 1. On the contrary, if there is at least

one structuring pixel being set to 1 and its corresponding
Fig. 17. The third fractal coefficient f(3) for the ROIs images without

morphology operations and histogram equalization. The horizontal axis is

the case number.
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Fig. 18. The ROC analysis of the fractal dimension feature.
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Fig. 20. Dilation of a gray-level image.
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image pixel being also 1, then this structure element is said

to hit the image. Then, the dilation of an image f by a

structuring element s is denoted g=fPs by applying the

following rule for the current processing pixel (x,y)

g x; yð Þ ¼ 1 if s hits f ;
0 otherwise;




The erosion of an image f by a structure element s is

written g=fOs by applying the following rule to the current

processing pixel (x,y)

g x; yð Þ ¼ 1 if s fits f ;
0 otherwise;




Fig. 19 illustrates the morphology on the given structur-

ing element and images. In the figure, the structuring

element defines the neighborhood of the pixel of interest

that is circled.

Morphological image processing is not restricted to

binary images. Actually, the binary morphological oper-

ations acting on binary images could be easily extended to

the gray level images using the min and max operations.
1  0  0 

0  1  0 

0  0  1 

1  1  1 

1  1  0

1  1  1

0  1  1

SStructuring element

(A)
OutputInput

Dilation

Fig. 19. Morphology of a binary ima
Denoting an image by f and a structuring element by s, the

gray scale dilation at a pixel (x,y) is

fPsð Þ x; yð Þ ¼ max f xþi; yþjð Þ�s i; jð Þ½ 


where i and j are the indexes for the pixels of s, as shown in

Fig. 20. The gray scale erosion is equivalent to

fOsð Þ x; yð Þ ¼ min f xþi; yþjð Þ�s i; jð Þ½ 
:

where i and j are the indexes for the pixels of structuring

element.
Appendix B

Let the original image be f(x,y) and the processed image

after the histogram equalization be g(x,y). The following

algorithm shows how this work in practice.

Step 1. Calculate a scaling factor a=(2n�1)/N, where n

is the number of bits for a pixel and N is the

total number of pixels in f (x,y). For an 8-bit

image, a=255/N.
Step 2. Compute the histogram h[i], where i is all

possible gray levels in f (x,y). For an 8-bit gray

level image, i is from 0 to 255.

Step 3. Let the accumulated histogram be c[i] and

c[0]=a�h[0]. For all gray levels i, do c[i]=

c[i�1]+a�h[i].

Step 4. For all pixels (x,y), do g(x,y)=c[ f (x,y)].
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Appendix C

Let the input vectors be X1, X2,. . ., Xp. The k-means

algorithm is defined as follows.

Step 1. For all cluster c, set total[c]=(0,0,. . .,0),
count[c]=0, and center[c]=a random vector.

For all input vector i, set belong[i]=0 and old-

belong[i]=1.

Step 2. Let min_dis be the maximum value of integer.

For each input vector Xi

For each cluster j=1 to k

dij=the distance of Xi to center[ j]

If dijbmin_dis then min_dis=dij
belong[i]=j

total[ j]=total[ j]+Xi

count[ j]=count[ j]+1

Step 3. If all old-belong[i]=belong[i], then stop.

Step 4. For all i, old-center[i]=belong[i].

For all clusters j, center[ j]=total[ j]/count[ j],
total[ j]=(0,0,. . . ,0), count[ j]=0 and go to

Step 2.
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