
Lossless compression of predicted floating-point geometry

Martin Isenburga,*, Peter Lindstromb, Jack Snoeyinka

aDepartment of Computer Science, College of Arts and Sciences, University of North Carolina at Chapel Hill,

Campus Box 3175, Sitterson Hall, Chapel Hill, NC 27599-3175, USA
bLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA

Accepted 20 September 2004

Abstract

The size of geometric data sets in scientific and industrial applications is constantly increasing. Storing surface or volume meshes in

standard uncompressed formats results in large files that are expensive to store and slow to load and transmit. Scientists and engineers often

refrain from using mesh compression because currently available schemes modify the mesh data. While connectivity is encoded in a lossless

manner, the floating-point coordinates associated with the vertices are quantized onto a uniform integer grid to enable efficient predictive

compression. Although a fine enough grid can usually represent the data with sufficient precision, the original floating-point values will

change, regardless of grid resolution.

In this paper we describe a method for compressing floating-point coordinates with predictive coding in a completely lossless manner. The

initial quantization step is omitted and predictions are calculated in floating-point. The predicted and the actual floating-point values are

broken up into sign, exponent, and mantissa and their corrections are compressed separately with context-based arithmetic coding. As the

quality of the predictions varies with the exponent, we use the exponent to switch between different arithmetic contexts. We report

compression results using the popular parallelogram predictor, but our approach will work with any prediction scheme. The achieved bit-

rates for lossless floating-point compression nicely complement those resulting from uniformly quantizing with different precisions.

q 2004 Elsevier Ltd. All rights reserved.

Keywords: Mesh compression; Geometry coding; Lossless; Floating-point
1. Introduction

Irregular surface or volume meshes are widely used for

representing 3D geometric models. These meshes consists

of mesh geometry and mesh connectivity, the first describing

the positions in 3D space and the latter describing how to

connect these positions into the polygons/polyhedra that the

surface/volume mesh is composed of. Typically there are

also mesh properties such as colors, pressure or heat values,

or material attributes.

The standard representation for such meshes uses an

array of floats to specify the positions and an array of

integers containing indices into the position array to specify

the polygons/polyhedra. A similar scheme is used to specify

the various properties and how they attach to the mesh.
0010-4485//$ - see front matter q 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cad.2004.09.015

* Corresponding author.

E-mail address: isenburg@cs.unc.edu (M. Isenburg).
For large and detailed models this representation results in

files of substantial size, which makes their storage

expensive and their transmission slow.

The need for more compact mesh representations has

motivated researchers to develop techniques for com-

pression of connectivity [6–8,10,14,19,24], of geometry

[6,9,10,23,24], and of properties [2,15,16,22]. The most

popular compression scheme for triangulated surface

meshes was proposed by Touma and Gotsman [24]. It was

later generalized to both polygonal surface and hexahedral

volume meshes [8–10]. It tends to give very competitive bit-

rates and continues to be the accepted benchmark coder for

mesh compression [11]. Furthermore, this coding scheme

allows single-pass compression and decompression for out-

of-core operation on gigantic meshes [12].

While connectivity is typically encoded in a lossless

manner, geometry compression tends to be lossy. Current

schemes quantize floating-point coordinates and other

properties associated with the vertices onto a uniform
Computer-Aided Design 37 (2005) 869–877
www.elsevier.com/locate/cad

http://www.elsevier.com/locate/cad


Fig. 1. The x-coordinates of this 75 million vertex Double Eagle tanker range from K4.095 to 190.974. The coordinates above 128 have the least precision with 23

mantissa bits covering a range of 128. There is 16 times more precision between 8 and 16, where the same number of mantissa bits only have to cover a range of 8.

M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877870
integer grid prior to predictive compression. Usually one

can choose a sufficiently fine grid to capture the entire

precision that exists in the data. However, the original

floating-point values will change slightly. Scientists and

engineers typically dislike the idea of having their data

modified by a process outside of their control and therefore

often refrain from using mesh compression altogether.

A more scientific reason for avoiding the initial

quantization step is a non-uniform distribution of precision

in the data. Standard 32-bit IEEE floating-point numbers

have 23 bits of precision within the range of each exponent

(see Fig. 1) so that the least precise (i.e. the widest spaced)

numbers are those with the highest exponent. If we can

assume that all samples are equally accurate, then the

entire uniform precision present in the floating-point

samples can be represented with 25 bits once the bounding

box (i.e. the highest exponent) is known. But if this

assumption does not hold because, for example, the mesh

was specifically aligned with the origin to provide higher

precision in some areas, then uniform quantization is not

an option.

Finally, if neither the precision nor bounding box of the

floating-point samples is known in advance it may be

impractical to quantize the data prior to compression. Such a

situation may arise in streaming compression, as it was

envisioned by Isenburg and Gumhold [12]. In order to

compress the output of a mesh-generating application on-

the-fly, one may have to operate without a priori knowledge

about the precision or the bounding box of the mesh.

In this paper we investigate how to compress 32-bit IEEE

floating-point coordinates with predictive coding in a

completely lossless manner. The initial quantization step

is omitted and predictions are calculated in floating-point

arithmetic. The predicted and the actual floating-point

values are broken up into sign, exponent, and mantissa and

their corrections are compressed separately with context-

based arithmetic coding [25]. As the quality of predictions

varies with the exponent, we use the exponent to switch

between different arithmetic contexts. We report com-

pression results for single-precision floating-point
coordinates predicted with linear predictions. However,

our coding technique can also be used for other types of

floating-point data or in combination with other prediction

schemes. The achieved bit-rates for lossless floating-point

compression nicely complement those resulting from

uniformly quantizing with different precisions. Hence, our

approach is a completing rather than a competing

technology that can be used whenever uniform quantization

of the floating-point values is—for whatever reason—not an

option.

Compared to the preliminary results of this work that

were reported in [13] we achieve improved bit-rates, faster

compression and decompression, and lower memory

requirements. Furthermore we include a detailed compari-

son between the proposed compression scheme, simpler

predictive approaches, and non-predictive gzip com-

pression. This comparison shows that current predictive

techniques are not always the best choice. They are

outperformed by gzip on data sets that contain frequently

reoccuring floating-point numbers.

The remainder of this paper is organized as follows. In

Section 2 we give a brief overview of mesh compression. In

Section 3 we describe how current predictive geometry

coding schemes operate. In Section 4 we show how these

schemes can be adapted to work directly on floating-point

numbers. In Section 5 we report compression results and

timings. Section 6 summarizes our contributions and

discusses current and future work.
2. Mesh compression

The 3D surfaces and volumes that are used in scientific

simulations or engineering computations are often rep-

resented as irregular meshes. Limited transmission band-

width and storage capacity have motivated researchers to

find compact representations for such meshes and a number

of compression schemes have been developed. Compression

of connectivity and geometry are usually done by

clearly separated, but often interwoven techniques.



M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877 871
The connectivity coder [6–8,10,14,19,23,24] is usually the

core component of a compression engine and drives the

compression of geometry [6,9,10,23,24] and properties [15,

16,22]. Connectivity compression is lossless due to the

combinatorial nature of the data. Compression of geometry

and properties, however, is lossy due to the initial

quantization of the floating-point values.

All state-of-the-art connectivity compression schemes

grow a region by encoding adjacent mesh elements one after

the other until the entire mesh has been conquered. Most

compression engines use the traversal orders this induces on

the vertices to compress their (pre-quantized) positions with

a predictive coding scheme. Instead of specifying positions

individually, previously decoded positions are used to

predict the next position and only a corrective vector is

stored. Virtually all predictive coding schemes used in

industry-strength compression engines employ simple linear

predictors [3,23,24].

Recently we have seen a number of innovative, yet much

more involved approaches to geometry compression. There

are spectral methods [17] that perform a global frequency

decomposition based on the connectivity, there are space-

dividing methods [4] that compress connectivity-less

positions using a k–d tree, there are remeshing methods

[5,18] that compress a regularly parameterized version

instead of the original mesh, and there are high-pass

methods [21] that quantize coordinates after a basis

transformation with the Laplacian matrix. We do not

attempt to improve on these ‘lossy’ schemes. Instead we

show how predictive geometry compression schemes [6,9,

10,23,24] can be adapted to compress floating-point

coordinates in a lossless manner.
Fig. 2. The parallelogram predictor uses the vertices of a neighboring triangle to pr

be encoded. The coordinates are broken up into sign, exponent, and mantissa com

separately using context-based arithmetic coding. The three components for actu

function calls refer to the pseudo code from Fig. 4. Compressing the difference be

calls to the arithmetic coder.
3. Predictive geometry coding

The reasons for the popularity of linear prediction

schemes are that they are easy to implement robustly, that

compression and decompression are fast, and that they

deliver good compression rates. For several years already,

the simple parallelogram predictor [9,24] (see Fig. 2) has

been the accepted benchmark that many recent approaches

are compared against. Although better compression rates

have been reported, in practice it is often questionable

whether these gains are justified given the sometimes

immense increase in algorithmic and asymptotic complexity

of the coding scheme. Furthermore these improvements are

often specific to a certain type of mesh. Some methods

achieve significant gains only on models with sharp

features, while others are only applicable to smooth and

sufficiently densly sampled meshes.

Predictive geometry compression schemes work as

follows. First all floating-point positions are converted to

integers by uniform quantization with a user-defined

precision of for example 12, 16, or 20 bits per coordinate.

This introduces a quantization error as some of the floating-

point precision is lost. Then a prediction rule is applied that

uses previously decoded integer positions to predict the next

position. Finally, an offset vector is stored that corrects the

difference between predicted and actual integer position. The

values of these corrective vectors tend to cluster around zero.

This reduces the variation and thereby the entropy of the

sequence of numbers, which means they can be efficiently

compressed with, for example, an arithmetic coder [25].

The simplest prediction method predicts the next position

as the last position, and was suggested by Deering [3].
edict the next vertex. Only a small correction (here: the red arrow) needs to

ponents and differences between actual and predicted value are compressed

al and predicted x, y- and z-coordinates are reported in hexadecimal. The

tween a vertex coordinate and its prediction requires between three and five



Fig. 3. The non-uniform distribution of floating-point numbers implies that the same absolute prediction error of, for example, 0.2 results in differences that

vary drastically with the magnitude (i.e. the exponent) of the predicted numbers.

M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877872
While this technique, also known as delta-coding, makes as

a systematic prediction error, it can easily be implemented

in hardware. A more sophisticated scheme is the spanning

tree predictor by Taubin and Rossignac [23]. A weighted

linear combination of two, three, or more parents in a vertex

spanning tree is used for prediction. By far the most popular

scheme is the parallelogram rule introduced by Touma and

Gotsman [24]. A position is predicted to complete the

parallelogram that is spanned by the three previously

processed vertices of a neighboring triangle.

The first vertex of a mesh component has no obvious

predictor. We predict its position using the position that was

processed last or—if this is the first vertex of the entire

mesh—as zero. There will be only one such null prediction

per mesh component. Also the second and the third vertex of

a mesh component cannot be predicted with the parallelo-

gram rule. We predict their position as that of a previously

processed vertex to which they connect by an edge. There

will be only two such delta predictions per mesh

component. For all following vertices of a mesh component

we use the parallelogram predictor. To maximize com-

pression it is beneficial to compress correctors of the less

promising null and delta predictions with different arith-

metic contexts [9]. For meshes with few components this

hardly makes a difference, but the Power Plant and the

Double Eagle tanker each consist of millions of

components.

Predictive compression does not scale linearly with

increased precision. Such techniques mainly ‘predict away’

the higher-order bits. If more precision (i.e. low bits) is

added the compression ratio (i.e. the compressed size in

proportion to the uncompressed size) increases. This is

demonstrated in Table 3, which reports bit-rates for

parallelogram predicted geometry at different quantization

levels: the achieved compression ratios increase with

increasing precision.

The initial quantization step that maps each floating-point

number to an integer makes predictive coding simple. The

differences between predicted and actual numbers are also

integers and the same absolute prediction error always results

in the same difference. When operating directly in floating-

point, predictive coding is less straight-forward. The non-

uniform distribution of floating-point numbers makes

compression of the corrective terms more difficult in two
ways: First, the difference between two 32-bit floating-point

numbers can in general not be represented by a 32-bit

floating-point number computed using floating-point arith-

metic without loss in precision. Second, the same

absolute prediction error results in differences that

vary drastically with the magnitude of the predicted number,

as illustrated in Fig. 3. For the largest numbers there will only

be a difference of a few bits in the mantissa, but for smaller

numbers this difference will increase. Especially when the

sign or the exponents were miss-predicted we cannot expect

any correlation between the mantissas. Miss-predictions

of the exponent become more likely for numbers

close to zero. Here also the sign may often be predicted

incorrectly.
4. Predictive floating-point compression

In order to compress a floating-point coordinate using a

floating-point prediction without loss we split both numbers

into sign, exponent, and mantissa and then treat these

components separately. For a single-precision 32-bit IEEE

floating-point number [1], the sign s is a single bit that

specifies whether the number is positive (sZ0) or negative

(sZ1), the exponent e is an eight bit number with an added

bias of 127 where 0 and 255 are reserved for un-normalized

near-zero and infinite values, and the mantissa m is a 23 bit

number that is used to represent 223 uniformly spaced

numbers within the range associated with a particular

exponent.

We compress the differences in sign, exponent, and

mantissa between a floating-point number and its prediction

component by component with a context-based arithmetic

coder. Especially for the mantissa, the success of the

prediction is tied to the magnitude (i.e. the exponent) of the

number (see Fig. 3). The same absolute prediction error

results in a smaller difference in mantissa for numbers with

larger exponents. In particular, this difference doubles/

halves when the exponent is decreased/increased by one.

This is because the spacing between consecutive floating-

numbers changes with the exponent, so that more/less of

these spacings are required to express that difference. We

account for this by switching arithmetic contexts based on

the exponent. This prevents the high-entropy correctors



Fig. 4. Pseudo code illustrating the proposed scheme for lossless compression of predicted floating-point numbers. We first compress the common case of a

correctly predicted sign and a (nearly) correct predicted exponent while switching contexts based on the predicted exponent. Occasionally we need to compress

the exponent explicitly. Then we correct the mantissa. If sign or exponent were not predicted correctly we adjust the mantissa’s prediction to zero. Next we

compress the number of significant corrector bits while switching contexts based on the actual exponent. Finally these bits are compressed in one or two chunks

depending on their number.

M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877 873
from predictions for numbers with small exponents from

spoiling the potentially lower entropy of correctors from

predictions for numbers with higher exponents.

The pseudo code in Fig. 4 illustrates how we compress

the differences in sign, exponent and mantissa. First, we

compress a number between 0 and 8 that specifies: 0 the

signs are different, 1–7 the exponents are within plus/

minus three, and 8 the exponents differ by more than

three. When compressing this number we switch contexts

based on the predicted exponent. For cases 0 and 8 we

have to explicitly compress the exponent, which is done

with a separate context. Then we compress how to correct

the mantissa. If both signs and exponents were in

agreement we use the predicted mantissa as the actual

mantissa’s prediction or 0 otherwise. We compute the

signed corrector that is the shortest modulo 223 and the

number k that specifies the tightest interval (1–2k, 2k) into

which this corrector falls. Next, this number k, which

ranges between 0 and 22 is compressed while switching

contexts based on the actual exponent. Finally the kC1
significant bits of the corrector are compressed. This is

done in one chunk of kC1 bits given that k is smaller than

a threshold t and in two chunks of t bits and kKtC1 bits

otherwise.

The particular choice for the threshold t that splits the kC
1 significant bits of the corrector into two chunks is mainly a

trade-off between keeping the size of the arithmetic tables

small and the number of chunks to compress low. In the

worst case k is 22 so that there are 23 significant corrector

bits to compress. Using a large t means that we often need to

compress only one chunk, but results in higher memory

requirements and slower updates for the arithmetic tables.

We found that the best trade-off is achieved for a t of either

12 or 13. Using tZ12 results in the smallest tables, but

requires more often to compress two chunks than tZ13. For

the results in the paper we used tZ12.

In order to illustrate that the approach of switching contexts

based on the exponent is indeed reasonable, we show in Fig. 5

the distribution of exponents for some of our test models and in

Fig. 6 the average number of significant corrector bits kC1



Fig. 6. The average number of significant corrector bits kC1 that need to be

compressed during predictive coding of the mantissas of all x-coordinates

with the same exponent. Predictions for numbers with high exponents are

evidently better since they result in correctors with fewer significant bits.

Fig. 5. The distribution of exponents among all x-coordinates for the david

(2 mm), the lucy, and the power plant model as percentages of the total. The

power plant’s exponents of 143 belong to a building situated far from the

main complex.

M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877874
that need to be compressed during predictive coding of the

mantissa for numbers with that exponent. The first set of plots

shows that only a few exponents are used frequently in typical

models. The second set of plots confirms that mantissa

predictions are better for the more frequent numbers with large

exponents since they result in correctors that have fewer

significant bits. These plots also confirm that thresholds t of 12

or 13 assure that a large number of correctors are compressed

with a single chunk.
Fig. 7. Pseudo code illustrating a simple scheme for lossless compression of pred

several chunks and corrected chunk-wise using a different arithmetic context fo

indicating into which set of chunks the floating-point numbers were broken (i.e.
4.1. A simpler prediction scheme

We have also implemented a simpler predictive scheme

for lossless floating-point compression for which we give

pseudo code in Fig. 7. This scheme simply breaks the actual

and the predicted floating-point number into several chunks

ci that are bi bits long, computes for each chunk ci a

corrector modulo 2bi , and then compresses those with

different arithmetic tables. One objective for having this

simpler scheme is to validate if and when the additional

correlations that our scheme tries to exploit are worthwhile

this effort.
5. Results

In Table 1 we compare our predictive scheme with

simpler predictive schemes and standard gzip in terms of

compression performance. Our scheme outperforms the

simpler schemes by a difference of up to 10 bits per vertex.

However, this gain shrinks to just above one bit per vertex as

the meshes become large. The simpler schemes ‘9–12–11’

and ‘10–11–11’ are nearly identical in compression

performance, but ‘10–11–11’ is slightly faster and uses

less memory.

The biggest surprise is the superb performance of

standard gzip on the power plant model. This can be

explained with the high reoccurance of floating-point

numbers by the vertex coordinates. This results in

repeating byte pattern that suit gzip compression, but

cannot be exploited by traditional predictive coders. On the

contrary, the application of prediction rules may increase

the entropy of the mesh geometry if the corrective values

have a distribution with a wider spread than the original

positions.

If the compression engine is allowed to produce separate

streams or files for each of connectivity, x, y, z-coordinates,

and additional properties, then it would be easy to substitute

the predictive geometry compressor with gzip or bzip2

compressor whenever suitable. However, in order to create
icted floating-point numbers. The number and its predictor are broken into

r each chunk. We refer to variations of this scheme in Tables 1 and 2 by

8–8–8–8 or 9–12–11).



Table 1

This table illustrates the compression performance of our predictive scheme in comparison to simpler schemes and standard gzip compression

Mesh

name

Number of

vertices

Predictive compression gzip-9 Unique coordinates

4–4–.–4 8–8–8–8 9–12–11 10–11–11 New xyzx. x.y.z. x (%) y (%) z (%)

Golf club 209,779 47.3 43.1 38.4 38.4 29.0 62.0 50.3 8.2 12 8.0

Hip 530,168 53.3 51.6 48.3 48.3 37.9 73.0 67.0 11 10 12

Happy

buddha

543,652 55.6 53.2 52.8 52.9 47.4 55.8 50.0 40 29 42

David

(2 mm)

4,129,614 38.2 36.0 36.1 36.1 33.7 56.1 47.1 53 38 22

Power

plant

11,070,509 36.9 31.8 28.8 28.9 27.2 23.7 8.7 4.4 1.5 2.0

Lucy 14,027,872 45.4 44.8 44.9 44.9 43.7 78.7 73.8 49 82 77

For ‘xyzx.’ the vertex coordinates are stored alternating into a single file. For ‘x.y.z.’ the vertex coordinates are multiplexed into three different files. The

last three columns list for each coordinate the percentage of floating-point coordinates that are actually different.

M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877 875
single-stream encodings it will be necessary to incorporate

capabilities into a predictive coder that allow it to deal with

data sets that have a high reoccurance rate of sparsely

scattered floating-point numbers.

In Table 2 we compare four predictive scheme in terms

of compression rates and speeds. While the simple scheme

‘10–11–11’ is the winner in compression speed with nearly

2 million vertices per second, the proposed scheme achieves

higher compression rates and has the fastest decompression

speeds of up to 1 million vertices per second. The new

scheme outperforms our older scheme from [13] in every

respect while using fewer and smaller arithmetic tables.

It should be noted that neither scheme’s implementation

is particularly hand-optimized. The computation speeds are

mainly dictated by the efficiency of the entropy coder,

which in our case is a range coder implementation adapted

from [20]. In particular the simple scheme ‘8–8–8–8’ could

achieve significant speed-ups by using an entropy coder
Table 2

This table lists compression rates (rate) in bits per vertex, compression and decomp

thousand vertices per second for four predictive floating-point compression schem

11 bits, using the old scheme of [13], and using the new scheme proposed here

Mesh

name

8–8–8–8 10–11–11

Rate tenc
dec senc

dec Rate tenc
dec senc

dec

Golf club 43.1 0.16 1355 38.4 0.12 1741

0.26 821 0.23 910

Hip 51.6 0.36 1492 48.3 0.28 1893

0.78 679 0.71 746

Happy

buddha

53.2 0.34 1596 52.9 0.30 1837

0.69 792 0.65 835

David

(2 mm)

36.0 2.44 1693 36.1 2.07 1997

4.82 856 4.59 897

Power

plant

31.8 6.69 1656 28.9 5.59 1979

14.46 765 13.31 831

Lucy 44.8 8.67 1618 44.9 7.38 1901

17.91 783 17.60 796

36 tables 47 KB 27 tables 188 KB

Time measurements are taken on a computer with a 3 GHz Pentium 4 and 1 G

compression scheme the number of range tables used and the total amount of me
optimized for byte-sized symbols. For large models this

could make it therefore an overall better choice.

In Table 3 we list the bit-rates of our lossless floating-

point geometry compressor side by side with the results of

[12] where the bounding box is first uniformly quantized

with 16, 18, 20, 22, and 24 bits. The achieved bit-rates for

lossless compression nicely complement those resulting

from quantizing at different precisions. On various example

models, our encoding scheme compresses the floating-point

data to between 28 and 49% of the original 96 bits per

vertex (bpv) required for uncompressed storage.
6. Summary and current work

In this paper we have described how to efficiently

compress floating-point coordinates of irregular meshes

using predictive coding. For this we omit the traditional
ression times (t) in seconds and compression and decompression speed (s) in

es: predicting in 4 chunks of 8 bits, predicting in three chunks of 10, 11, and

Old [13] New

Rate tenc
dec senc

dec Rate tenc
dec senc

dec

33.7 0.18 1162 29.0 0.14 1551

0.34 625 0.22 974

43.5 0.46 1151 37.9 0.38 1391

0.85 622 0.66 802

49.9 0.46 1180 47.4 0.38 1448

0.88 620 0.63 862

34.7 3.29 1257 33.7 2.48 1663

6.28 657 4.02 1028

29.1 9.41 1175 27.2 6.93 1596

17.45 634 11.32 978

44.4 11.86 1183 43.7 9.11 1539

21.70 646 15.77 889

363 tables 1350 KB 217 tables 210 KB

B of RAM running Windows XP. The bottom most row reports for each

mory needed for storing them.



Table 3

This table lists results for lossless geometry compression in bits per vertex (bpv) side-by-side with the bit-rates that are obtained by [12] after uniformly

quantizing the geometry with 16,18,20,22, and 24 bits of precision. In addition we list the achieved gains as the ratio between the compressed and the

corresponding uncompressed bit-rates

Mesh

name

Compression rates (bpv) Compression ratio (%)

16 bit 18 bit 20 bit 22 bit 24 bit Lossless 16 bit 18 bit 20 bit 22 bit 24 bit Lossless

Golf club 15.67 20.77 21.56 22.34 25.50 29.05 33 38 36 34 35 30

Hip 19.37 25.37 27.14 27.96 33.60 37.90 40 47 45 42 47 39

Happy

buddha

21.79 26.44 32.15 36.92 43.95 47.42 45 49 54 56 61 49

David

(2 mm)

12.54 17.81 23.22 28.37 34.13 33.69 26 33 39 43 47 35

Power

plant

11.57 15.26 18.54 21.48 24.23 27.15 24 28 31 33 34 28

Lucy 14.60 20.41 26.51 32.87 39.08 43.74 30 38 44 50 54 46

These are calculated as three times the precision for the pre-quantized geometry and as three times 32 bits for the full precision floating-point geometry.

M. Isenburg et al. / Computer-Aided Design 37 (2005) 869–877876
quantization step, compute a prediction in floating-point,

and separately compress the differences between

predicted and actual sign, exponent, and mantissa using

context-based arithmetic coding. We exploit the correlation

among these three components by compressing them in

the order of dependency. In particular, we use the

exponent to switch contexts between predictions. This

prevents predictions for numbers with smaller exponents,

which are expected to be less accurate, from spoiling

the entropy of better predictions. Furthermore, we use

miss-predictions in sign or exponent to adjust the prediction

of the mantissa.

The presented approach can be seen as a completing

rather than competing technology that can be used whenever

uniform quantization of the floating-point values is for some

reason not possible. Our scheme may also be used to

predictively compress floating-point data in other contexts

given that reasonable predictions are available. Without

modification our coder also compresses special numbers

such as infinity or zero in an efficient way.

We identified a serious shortcoming of predictive

coding schemes that arises whenever a data set contains

many sparse samples of high precision that reoccur

frequently. As evidenced by comparing the gzip com-

pression results for the power plant from Table 1 with the

compression results after quantizing from Table 3 this is

also the case when performing predictive coding on pre-

quantized data. It seems that it has not been noticed before

that current predictive schemes perform so poorly on such

data. This will have to be investigated more closely in the

future.

One benefit of lossless floating-point compression is that

it does not require a priori knowledge about the precision or

bounding box of the data. However, if the precision in the

data is known to be uniform or if it is sufficient to preserve,

for example, only 16 uniform precision bits then it would be

wasteful to losslessly compress the floating-point values.

Currently we are designing a scheme that can quantize

and compress a stream of floating-point numbers on-the-fly
(i.e. in a single pass) by learning the bounding box while

guaranteeing a user-specified number of precision bits.
Acknowledgements

The Golf Club and the Hip model are courtesy of

Cyberware. The Happy Buddha and Lucy are courtesy of

the Stanford Computer Graphics Laboratory. The Power

Plant model was provided by the Walkthru Project at the

University of North Carolina at Chapel Hill. The Double

Eagle model is courtesy of Newport News Shipbuilding. The

David statue is courtesy of the Digital Michelangelo Project.

This work was—in part—performed under the auspices of

the U.S. DOE by LLNL under contract no. W-7405-Eng-48.
References

[1] ANSI/IEEE. IEEE standard 754 for binary floating point arithmetic.

New York: ANSI/IEEE; 1985.

[2] Bajaj C, Pascucci V, Zhuang G. Single resolution compression of

arbitrary triangular meshes with properties. In: Data compression

conference’99 conference proceedings; 1999. p. 247–56.

[3] Deering M. Geometry compression for interactive transimmion. In:

SIGGRAPH’95 conference proceedings; 1995. p. 13–20.

[4] Devillers O, Gandoin P-M. Geometric compression for interactive

transmission. In: Visualization’00 conference proceedings; 2000.

p. 319–26.

[5] Gu X, Gortler S, Hoppe H. Geometry images. In: SIGGRAPH’02

conference proceedings; 2002. p. 355–61.

[6] Gumhold S, Guthe S, Strasser W. Tetrahedral mesh compression with

the cut-border machine. In: Visualization’99 conference proceedings;

1999. p. 51–8.

[7] Gumhold S, Strasser W. Real time compression of triangle mesh

connectivity. In: SIGGRAPH’98 conference proceedings; 1998.

p. 133–40.

[8] Isenburg M. Compressing polygon mesh connectivity with degree

duality prediction. In: Graphics Interface’02 conference proceedings;

2002. p. 161–70.

[9] Isenburg M, Alliez P. Compressing polygon mesh geometry with

parallelogram prediction. In: Visualization’02 conference proceed-

ings; 2002. p. 141–6.



M. Isenburg et al. / Computer-Aide
[10] Isenburg M, Alliez P. Compressing hexahedral volume meshes. Graph

Models 2003;65(4):239–57.

[11] Isenburg M, Alliez P, Snoeyink J. A benchmark coder for polygon

mesh compression. http://www.cs.unc.edu/~isenburg/pmc/

[12] Isenburg M, Gumhold S. Out-of-core compression for gigantic

polygon meshes. In: SIGGRAPH’00 conference proceedings; 2003.

p. 935–42.

[13] Isenburg M, Lindstrom P, Snoeyink J. Lossless compression of

floating-point geometry. Comput Aided Des Appl (CAD’04) 2004;

1(1–4):495–502.

[14] Isenburg M, Snoeyink J. Face fixer: compressing polygon meshes

with properties. In: SIGGRAPH’00 conference proceedings; 2000.

p. 263–70.

[15] Isenburg M, Snoeyink J. Compressing the property mapping of

polygon meshes. Graph Models 2002;64(2):114–27.

[16] Isenburg M, Snoeyink J. Compressing texture coordinates with

selective linear predictions. In: Proceedings of computer graphics

International’03; 2003. p. 126–31.

[17] Karni Z, Gotsman C. Spectral compression of mesh geometry. In:

SIGGRAPH’00 conference proceedings; 2000. p. 279–86.

[18] Khodakovsky A, Schroeder P, Sweldens W. Progressive geometry

compression. In: SIGGRAPH’00 conference proceedings; 2000.

p. 271–8.

[19] Rossignac J. Edgebreaker: connectivity compression for triangle

meshes. IEEE Trans Vis Comput Graph 1999;5(l):47–61.

[20] Schindler M. Rangecoder (v1.3) http://www.compressconsult.com/

rangecoder/

[21] Sorkine O, Cohen-Or D, Toledo S. High-pass quantization for mesh

encoding. In: Proceedings of symposium on geometry processing’03;

2003. p. 42–51.

[22] Taubin G, Horn WP, Lazarus F, Rossignac J. Geometry coding and

VRML. Proc IEEE 1998;86(6):1228–43.

[23] Taubin G, Rossignac J. Geometric compression through topological

surgery. ACM Trans Graph 1998;17(2):84–115.

[24] Touma C, Gotsman C. Triangle mesh compression. In: Graphics

interface’98 conference proceedings; 1998. p. 26–34.

[25] Witten IH, Neal RM, Cleary JG. Arithmetic coding for data

compression. Commun ACM 1987;30(6):520–40.
Martin Isenburg is a PhD student in Computer

Graphics at the University of North Carolina at

Chapel Hill. He received his MSc in Computer

Science from the University of British-Colum-

bia at Vancouver in 1999. His dissertation

focuses on compressing and streaming of

d Design 37 (2005) 869–877 877
polygon meshes, both in-core and out-of-core.

Recently he has worked on streaming tech-

niques for large data sets at Lawrence Liver-

more National Laboratory. He enjoys having

dinner at Japanese noodle restaurants.
Peter Lindstrom received BS degrees in

computer science, mathematics, and physics

from Elon College in 1994 and a PhD in

computer science from the Georgia Institute of

Technology in 2000. He is currently a

computer scientist at the Center for Applied
Scientific Computing at Lawrence Livermore

National Laboratory. His research interests

include mesh simplification and compression,

multiresolution modeling, scientific visualiza-

tion, and interactive rendering.
Jack Snoeyink is a professor in the Depart-

ment of Computer Science at the University of

North Carolina at Chapel Hill. He received his

PhD in Computer Science from Stanford

University in 1990 and spent the rest of the

previous millenium at Utrecht as a postdoc and
UBC as a faculty member. Jack’s research area

is computational geometry and its application

in GIS, molecular modeling, and computer

graphics.

http://www.cs.unc.edu/~isenburg/pmc/
http://www.compressconsult.com/rangecoder/
http://www.compressconsult.com/rangecoder/

	Lossless compression of predicted floating-point geometry
	Introduction
	Mesh compression
	Predictive geometry coding
	Predictive floating-point compression
	A simpler prediction scheme

	Results
	Summary and current work
	Acknowledgements
	References


