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Acquisition of Sharp Depth Map

from Multiple Cameras

Abstract

We present a method to estimate a dense and sharp depth map using multiple cameras.

A key issue for obtaining sharp depth map is how to overcome the harmful inuence

of occlusion. Thus, we �rst propose an occlusion-overcoming strategy which selectively

use the depth information from multiple cameras. With a simple selection technique,

we resolve the occlusion problem considerably at a slight sacri�ce of noise tolerance.

Another key issue in area-based stereo matching is the size of matching window. We

propose to use a hierarchical estimation scheme that attempts to acquire a sharp depth

map such that edges of the depth map coincide with object boundaries on the one hand,

reduce noisy estimates due to insu�cient size of matching window on the other hand.

Owing to the unique property of occlusion-overcoming strategy, we can utilize full bene�t

of hierarchical schemes. We show the method can produce a sharp and correct depth map

for a variety of images.
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1 Introduction

Recently, computer vision technology is widely used for achieving high degree of freedom

and e�ciency in video content creation. Thus, it is even said to be a kind of media

technology [11].

We are developing a video component database in order to realize a exible and ver-

satile framework for video content creation [5]. It is based on the layered representation

of video where a video sequence is regarded as a spatio-temporally ordered set of video

components [17]. Video components are stored with various property information such as

camera work, key words, depth, and the like in the database. We can freely select some

video components from the database and enjoy arranging them in a spatio-temporal

domain to make a new video and/or creating new video expressions by exploiting the

given property information.

Among the information, one of the most important one would be depth. It is Z

value of the camera-centered coordinate of the corresponding object point for each pixel,

where Z axis is set to optical axis. Depth information corresponds to the spatial part

in the spatio-temporal description of a scene. Thus, it takes a crucial role in making

natural-looking videos and/or creating various video expressions with high degree of

freedom using the video component database. Virtualized Reality [7], Z-keying for video

composition [8], 3D special video e�ects [13], and arbitrary view generation [15] are typ-

ical application using the depth information. Moreover, we can automatically generate

multi-layer description of a scene using depth information [14].

For such application, dense and sharp depth map is strongly required. Here, \sharp"

means that object boundary and/or depth discontinuity should be correct. Correctness

of depth map in shape is sometimes more important than precision of depth value.

In this paper, how to get such dense and sharp depth map is the main theme. The

proposed method is a hierarchical scheme consisting of an occlusion-overcoming disparity

estimator which exploits stereo images from 5 cameras. Considering hardware feasibility,

we con�ne the method to a signal-level processing. All the processing is localized such

that a parallel implementation can be achieved.

This paper is organized as follows. After a brief review on related work in Section 2,

we give details of the proposed method in Section 3. Experimental results are presented

in Section 4.

2 Related Work

Stereo matching is a useful method in obtaining depth map from image. There are two

approaches in stereo matching. One is area-based method and the other is feature-based

method. Area-based method is, in general, used for obtaining a dense depth map [1].

However, it is well-known that the area-based stereo matching faces several problems

such as lack of texture, occlusion, photometric change, repetitive pattern, and so on

[1][2].

A considerable amount of e�ort has been exerted to cope with such problems in com-
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puter vision [2][10]. Almost methods to obtain dense depth map are computationally ex-

pensive or iterative. Among some exception is multiple-baseline stereo matching [18][12].

It demands more cameras but alleviates the problems of lack of texture and repetitive

texture without much increase of computational complexity. Recently, a real-time depth

mapper has been developed on the basis of multiple-baseline method [8].

However, little attention has been paid to clearing the occlusion problem in stereo

matching. In fact, occlusion is one of the main culprits to prevent from obtaining cor-

rect depth map in shape. In two-view stereo, occlusion problem is unavoidable and it is

impossible to get correct match. Only some appropriate interpolation can �ll such area

based on some assumption and knowledge [1]. From the standpoint of correct match,

multiple view(more than two) can give a clue to resolve the occlusion problem. When

an area is occluded in an image from a camera, another camera located at a di�erent

position has a chance to observe the area and thus it can give a correct match. Kanade

et al.'s depth mapper does not seem to explicitly exploit this property although they

mentioned the occlusion problem a little [8]. Recently, Nakamura et al. extensively stud-

ied the occlusion problem [9]. Using eye array camera, they analyze occlusion patterns

quantitatively and propose a disparity estimation scheme which is capable of detecting

occlusion, selecting a proper mask for correct match, and thus preventing from mis-

match. However, it demands at least 9 cameras and furthermore, it does not provide a

strategy for controlling the e�ect of matching-window size.

A very important issue underlying the area-based matching is the size of matching

window [6][10]. It should be large enough to include enough intensity variation for char-

acterizing an area. But it should be small enough to avoid projective distortion. Toward

resolving such a dilemma, two approaches have been proposed. One is to use a locally

adaptive window [6]. It searches for a window that produces the estimate of dispar-

ity with the least uncertainty for each pixel of an image. Considerable improvement

is obtained from the aspects of smooth surface and sharp disparity edges. However,

the problem is that it is iterative. The other approach is to use hierarchical schemes

[2][10][3][4]. By restricting searching range of �ne resolution to the estimates of coarse

resolution, the trade-o� problem can be considerably alleviated. In this approach, the

local distribution of estimates around depth discontinuities is of signi�cant importance.

If it is not clearly di�erentiated between objects, we cannot expect further improvement

of estimate with hierarchical schemes.

In this paper, we propose an occlusion-overcoming multi-view stereo matching tech-

nique implemented on hierarchical schemes focused on getting correct depth map around

discontinuities. The proposed occlusion-overcoming technique not only alleviates occlu-

sion problem, but also produces abruptly changing estimates in the vicinity of depth

discontinuities. The abrupt transition of estimates near depth discontinuities is the very

desirable property in the hierarchical estimation schemes. Two kinds of hierarchical

implementation are presented. One is �ne-to-�ne approach which requires large amount

of computation. The other is a coarse-to-�ne method which alleviates computational

burden considerably. We will explain the details in the following section.
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Figure 1: Projection geometry of camera system.

3 Depth Estimation

3.1 Con�guration of 5 Camera System

The proposed con�guration of multiple camera system is shown in Fig. 1. We put a

camera at the center and a total of 4 cameras of the same speci�cation to each direction

of upper, lower, right, and left, separated by the same distance L.

Under the projection geometry of Fig. 1, an object point P = (X;Y;Z) is projected to

the point p

0

= (x

0

; y

0

) on the image plane of the center(=base) camera, where x

0

= F

X

Z

and y

0

= F

Y

Z

, and F is the focal length. It is also projected to p

i

= (x

i

; y

i

) on image

plane of each inspection camera C

i

, i = 1; 2; 3; 4, where

x

i

= F

X �D

i;x

Z

; y

i

= F

Y �D

i;y

Z

: (1)

Here, the baseline stretch D

i

= (D

i;x

D

i;y

)'s are D

1

= (L; 0), D

2

= (�L; 0), D

3

= (0; L),

and D

4

= (0;�L). In the con�guration, the true disparity d

t

of the object point P is

d

t

=

FL

Z

= jp

i

�p

0

j, for all i. Thus, by estimating the disparity, we can obtain the depth

of an object point. In this paper, we estimate a disparity map. It is converted to depth

map using the above relationship before application.

The camera con�guration is based on the assumption that when a camera cannot give

a correct match for a pixel because of occlusion, another camera located at the other

side can give a good one. This holds good for almost occluding cases

1

. In this sense, we

may say, the more the number of cameras, the more chance to obtain a good match we

1

The con�guration cannot cope with strongly concave area.
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have. However, if we consider practical implementation, the number of cameras should

be kept small. The least number of cameras to cope with such kind of occlusion can be

considered to be 3. But, if we locate the 3 cameras collinearly, any dedicated schemes

cannot be free from noisy estimates in the areas without intensity variation along the

epipolar line. If they are not collinear, there will be less chance of overcoming occlusion

problem. Thus, we set the number of cameras to 5 which can reasonably cope with the

occlusion problem.

Another important issue is the baseline stretch. Long baseline gives accurate estimates

but su�ers from photometric distortion and severe occlusion. Since we are aiming not

at 3D reconstruction of an object but at extracting object pro�les of a complex scene,

we give more weight on occlusion problem. Thus, we maintain the baseline stretch

much shorter than the distance of the nearest object from the cameras (less than 1/20

throughout the experiments).

Optical axes of the 5 cameras are set to be parallel. The possible digression from the

camera mapping model in the Fig.1 can be compensated for by camera calibration [19].

All the cameras should be synchronized in order to cope with moving objects. What we

are to acquire is the depth map of the image from the center camera. Other cameras

work as sensors in this sense. We now explain how we reduce possible bad matches and

obtain a good one around occlusion area in the followings.

3.2 Occlusion-Overcoming Multi-View Matching

There are two types of errors around depth discontinuities in stereo matching. The

presence of occluding boundaries within the matching window tends to confuse the

matcher and often gives an erroneous depth estimate, as Dhond and Aggarwal pointed

out[2]. This cannot be avoided with normal block-based matching. The other type of

error is due to occlusion. This can happen without any discontinuity within the matching

window. We will deal with these problems in this subsection.

Matching is performed at each pixel position with window overlapping. We use the

sum of squared-di�erence(SSD) as a matching measure. At a point x on the image plane

of the base camera C

0

, the matching measure is calculated at each displacement d for

each camera C

i

by

e

i

(x; d) =

X

b2W

[I

0

(x+ b)� I

i

(x+ b+ d

i

)]

2

(2)

where I

i

is the intensity andW is a matching window. The disparity should be the same

for all cameras in the camera geometry such that d = jd

i

j for all i.

A straightforward implementation of multiple-baseline stereo [8] using the camera

con�guration in Fig. 1 would be

^

d(x) = argmin

d

4

X

i=1

e

i

(x; d): (3)

It gives a good result if there is no discontinuity of depth. However, when there is a

discontinuity of depth near the matching window for a pixel, we cannot expect all of
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the matching data from the 4 directions gives us useful information. On the contrary,

some data, especially from the direction of occluded area, a�ect the estimation harmfully.

They should be eliminated for a good estimation. We illustrate typical example

2

of such

phenomenon in Fig. 2 where the e

i

curves for a typical point around object boundary are

shown (the size of matching window = 7x7 [pixels]). Due to the inuence of occlusion,

that is, the bad observation data from lower and left cameras, the matching tends to

produce undesirable result(

^

d � 19) where the true disparity is d

t

� 6. We see why the

matching based on eq.(3) cannot be successful in such area.

If we can eliminate such bad observations during the matching, a considerable im-

provement can be expected. Thus, we devise a simple selection method.

One of the right and the left cameras and one of the upper and the lower cameras

are supposed to give a correct match. Thus, we can assume that at least one of the 2

cameras located symmetrically is not inuenced by occlusion and thus gives us correct

matching data. In the areas where the above assumption does not hold, rare as it is, for

example, inside of strongly concave area, we cannot be free from erroneous estimates.

At each displacement, we compare the di�erence e

1

(x; d) from the right camera with

e

2

(x; d) from the left camera and discard the large one. Similarly, we do the process

for images from the lower and the upper cameras. Then, the two data are summed.

The summation provides more chance to get a correct match in the light of multiple-

baseline stereo. By repeating the selection and summation of data along the epipolar

lines, we get a 1-D curve for the estimation. We consider the displacement which gives

the minimum of the curve as the disparity of the pixel. In short, the estimation scheme

can be described by

^

d(x) = argmin

d

2

X

i=1

fmin[e

1

(x; d); e

2

(x; d)] +min[e

3

(x; d); e

4

(x; d)]g; (4)

where min[] represents the minimum of elements in the bracket.

The above procedure is equivalent to �nd the most proper camera set consisting of

3 cameras among the possible combination of camera con�guration and apply multiple-

baseline stereo. Note that the proposed scheme can deliberatively avoid the cases where

3 cameras are collinear. In such cases, the matcher sometimes fails to give a correct

match for the areas with no intensity variation along the epipolar line.

As we see in the Fig. 3, a considerable improvement is achieved around depth dis-

continuity by the above scheme at the slight sacri�ce of noise tolerance as is expected

[12]. The loss of noise tolerance will be compensated for by a hierarchical scheme in the

following subsection. In the disparity maps, we can observe two kinds of distortion. One

is from occlusion. We see many noisy estimates around object boundaries in the left

disparity map while no such estimates in the right disparity map. The other is boundary

overreach. As Cochran et al. pointed out, the more strongly textured surface tends to

leak into the less textured region. We see the disparity of higher texture tends to reach

2

The image is from the multi-view image database of Univ. of Tsukuba. The baseline stretch is 8

[mm], the focal length is 10 [mm], the size of CCD is 1/3 [inch], and the image size is 640x480 [pixels].

The distance to the nearest building is 33 [cm].

6





²

®

®²

¯

¯²

°

°²

±

 ¯ ± ³ µ ® ®¯ ®± ®³ ®µ ¯ ¯¯ ¯± ¯³ ¯µ ° °¯ °± °³ °µ ±

dc
e

displacement

Point �154, 164�

lower upper

left

right

true false

Figure 2: Illustration of the inuence of occlusion in stereo matching from multiple

cameras.
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Figure 3: Disparity map from multi-camera matching. Left map is obtained without

occlusion-overcoming strategy and right map with the strategy. Matching window size

is 7x7.

over the true edge of disparity and out to lower texture area in both of the disparity

maps. The di�erence is that the disparity map by the proposed occlusion-overcoming

strategy shows clear and abrupt change around discontinuity, which comes from the

nonlinear property of the strategy. Moreover, the amount of the boundary overreach

is roughly half of the size of the matching window as we see in the disparity map with

edge map overwritten in Fig.4. The size of matching window is 15x15 [pixels] and the

size of the leaks is less than 7 pixels. We will discuss the matter in more detail using the

results of synthetic images in the next section. The abrupt change of estimates and the

limited boundary overreach are useful properties in constructing a hierarchical scheme.

Smaller matching window is favorable in the aspect of reducing boundary overreach.

But, smaller matching window gives us less reliable results of estimation. There is a

trade-o� between reliability and geometric correctness of estimation with respect to the

size of matching window. Thus, we propose to use hierarchical schemes in order to cope

with the trade-o� problem as follows.

3.3 Hierarchical Estimation Scheme

The proposed hierarchical method is based on the observation that, when we use the

occlusion-overcoming strategy, the correct disparity for boundary overreach area exists

near(within half of the size of the matching window) the point in the disparity map

in most cases. We �rst explain a �ne-to-�ne implementation and then we present an

e�cient implementation using a resolution pyramid.

3.3.1 Fine-To-Fine Implementation

Figure 5 illustrates the concept of the �ne-to-�ne hierarchical method.
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Figure 4: Boundary overreach. The amount of boundary overreach is about half the size

of the matching window.
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Figure 5: Illustration of the �ne-to-�ne hierarchical scheme. Searching range is restricted

to the estimates in the matching window of previous(=large matching window) layer

except for the 1st layer.
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Figure 6: Disparity map obtained by the �ne-to-�ne hierarchical method [left]. Edge

map is overwritten [right].

We start by obtaining a disparity map with a large matching window using the

occlusion-overcoming strategy. We assume the true disparity value of a pixel exists

within the matching window of the pixel in the disparity map of the 1st layer. Now,

we reduce the size of the matching window by half. Then, the disparity is estimated

by the occlusion-overcoming technique except that the searching range is restricted to a

set consisting of the disparity values of the upper layer within the window of the upper

layer at the position. This restriction of searching range is based on the observation on

boundary overreach. The procedure is repeated until the last layer where the size of

matching window is 3x3

3

.

When there is no disparity discontinuity around a point(within the matching window

of the point), we don't need to estimate the disparity of the points again in the succes-

sive layers. Instead, we just enhance the resolution of the disparity value to sub-pixel

accuracy by quadratic �tting and no more update in the successive layers. Some noisy

estimates are eliminated by an edge-preserving order-statistics �lter [20].

We see very sharp and correct boundaries in the disparity map of Fig. 6, which can

be seen more clearly in the magni�ed disparity map of Fig. 7. It is obtained by using

3-layer(15x15 to 7x7 to 3x3) hierarchy.

It is possible to reach far lower complexity of matching by analyzing the matching

procedure and eliminating the redundancy as is indicated in [8], since the method is

based on a regularly overlapping matching.

3

We set the least window size to 3x3 because 1-pixel matching shows extremely noisy results. As

a result, 1-pixel extension inevitably appears at object boundaries. It is observed through many ex-

periments that 1-pixel extension does not seem to cause noticeable artifacts in many application. If

we pursue higher quality, it can be eliminated by postprocessing, for example, edge-based directional

postprocessing [16].
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Figure 7: Magni�ed disparity maps showing how well the proposed method can overcome

the occlusion problem and the boundary overreach.

3.3.2 Coarse-to-Fine Implementation

Fig.8 shows the concept of the proposed coarse-to-�ne hierarchical method.

Resolution pyramid is �rst constructed by low-pass �ltering and decimation. We use

a 4-layer pyramid. The size of matching window is set to 3x3[pixels] through the layers.

Searching is performed to a pixel accuracy at each layer.

We start from the most coarse layer. Using the occlusion-overcoming strategy, we

acquire the disparity map of the �rst layer. One pixel distance at this layer corresponds

to 8 pixels at the �nest layer. Thus, the disparity map is coarse in both spatial resolution

and accuracy. The amount of computation is thus reduced substantially.

Now we move to the 2nd layer. The spatial resolution and the accuracy are twice

those of the previous layer. We repeat stereo matching by the occlusion-overcoming

strategy. But the searching range is restricted to a set consisting of the estimates in

the matching window at the corresponding position of the previous layer and their

neighboring disparities (See Fig.8).

We repeat the same processing as of the 2nd layer for the successive layers. After

obtaining the disparity map of the last layer, post-�ltering to eliminate undesirable

errors is applied and we get the disparity map.

In Fig.9, we show the disparity map obtained by the coarse-to-�ne hierarchical method.

We see quite a sharp disparity map is obtained by the method.

The computational burden is considerably reduced when we compare with the �ne-

to-�ne hierarchical method. The quality of the disparity map is not much degraded.
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Figure 8: Illustration of the coarse-to-�ne hierarchical scheme. Searching range is re-

stricted to the estimates in the matching window of the previous layer except for the 1st

layer.

Figure 9: Disparity map obtained by the coarse-to-�ne hierarchical method [left]. Edge

map is overwritten [right].
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4 Experimental Results

4.1 Synthetic Images

We have tested the proposed method using synthetic images with 64[pixels]x64[lines]

and 8-bit gray-scale resolution. Each object is characterized by average intensity and

texture. Textures and noises are added by i.i.d. Gaussian random number generator.

Figure 10 shows a result. The standard deviation of all the texture signals is 5.0

and that of noise signal is 3.0. The average intensity of each area is 178, 128, and

78, from center to boundary of the image, respectively. In this way, we simulate a

realistic situation where the intensities within an object are highly correlated. The

true disparities of each area is 7, 2, and 0 [pixels], respectively. We see the occlusion-

overcoming strategy shows clear boundary. The amount of overreach is exactly half the

size of matching window. Thus, a hierarchical implementation using the strategy shows

a good result. However, without the strategy, boundaries are smoothed and thus, a

hierarchical implementation does not seem to be of bene�t to the result. These results

are consistent with our assertion in Sec. 3.2.

Throughout many experiments with varying the parameters of synthetic images, we

observed that

� the occlusion-overcoming strategy produces sharp disparity map due to its nonlin-

earity,

� the boundary overreach of the occlusion-overcoming method is less than half of

the size of the matching window,

� the noise immunity is slightly lowered by introducing the occlusion-overcoming

method when we �x the size of the matching window,

� performance of the hierarchical implementation with the occlusion-overcoming

strategy is consistently superior to that without the method except unrealistic

situations. In the unrealistic situations, the performance is almost the same.

Here, unrealistic situations refer to when the noise level is extremely high compared with

the signal level and the correlation of the intensities within an object is very small.

4.2 Real Images

We have tested the proposed algorithm using a variety of indoor images with 640[pix-

els]x480[lines] and 8-bit gray-scale resolution. They include some eye-array images in

the image database of University of Tsukuba and some indoor images shot in our labora-

tory (Fig. 11). We use single camera with varying positions and thus simulate multiple

cameras to validate the method.

We show some of the results obtained by the hierarchical methods in Fig. 12 and

Fig. 13.
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Figure 10: Simulation results with synthetic images.

Fig. 12 is the disparity maps of \Santa" image in the database of Univ. of Tsukuba.

The image is shot by SONY 3CCD Video Camera(XC-003) mounted on a robot arm.

The focal length is 10[mm], the CCD size is 1/3[inch], and the baseline stretch is 20[mm].

The distance to the nose of the stu� is 75[cm]. The left maps are the results of �ne-to-�ne

hierarchical method. Searching range is set to 50 pixels and 4-layer hierarchy(31x31 to

15x15 to 7x7 to 3x3) is used. The right maps are the results of coarse-to-�ne hierarchical

method. Searching range at the top layer is set to 8 pixels. We see the object edges

exactly coincide with disparity edges and the surfaces of disparity map are very smooth

in both of the disparity maps. In the no texture areas, for example, the foot of the

stu�, we see undesirable errors, which is the fundamental limitation of the area-based

matching.

Fig. 13 is the disparity maps of \Lab" image shot by SONY 3CCD video camera(DXC-

930) in our laboratory. The focal length is 7.5[mm], the CCD size is 1/2[inch], and the

baseline stretch is 50[mm]. The distance to the nearest object(foot of small bear) is

75[cm]. Estimation parameters are the same as that of the former image. The left

maps are the results of �ne-to-�ne hierarchical method. The right maps are the results

of coarse-to-�ne hierarchical method. We can con�rm the methods produce sharp and

correct disparity maps.

With the above con�guration, the matching accuracy of 1 pixel corresponds to 1.5,

8.9, 34 [cm] for objects located at 75, 188, 375 [cm] from camera, respectively. We
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Figure 11: Images used in the experiment. \Santa" image [upper]. \Lab" image [lower].
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Figure 12: Disparity maps of \Santa" image with �ne-to-�ne hierarchical method [left]

and with coarse-to-�ne hierarchical method [right]. Edges are overwritten in the lower

maps.

can cope with large objects by increasing the baseline stretch according to the size and

distance of the objects. The accuracy is considered to be su�cient for our application

since the matter is not accuracy but the exact shape of objects in a complex scene.

Throughout many experiments, we can con�rm that both of the methods works very

well for a variety of scenes. It achieves the correctness of disparity map around object

boundaries. The coarse-to-�ne approach shows slightly inferior performance to those of

�ne-to-�ne approach as is expected. However, the di�erence is not substantial compared

with the gap of the performance between the hierarchical methods in this paper and

some methods without occlusion-overcoming/hierarchical strategy.

5 Concluding Remarks

We have investigated on obtaining a sharp and dense depth map from multiple cam-

eras. The method is based on a simple selection of disparity information from 5 cameras

implemented on a novel hierarchical estimation scheme. By using occlusion-overcoming

strategy, we have reduced the harmful e�ects of occlusion considerably. Furthermore,

based on the unique property of boundary overreach of the strategy, we have constructed

a hierarchical estimator. A �ne-to-�ne implementation and a coarse-to-�ne implementa-

tion are presented. We have con�rmed that both of the implementation achieve shape-

correctness of depth map on the one hand, alleviate the problem of lack of texture on
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Figure 13: Disparity maps of \Lab" image with �ne-to-�ne hierarchical method [left]

and with coarse-to-�ne hierarchical method [right]. Edges are overwritten in the lower

maps.

the other hand. The coarse-to-�ne implementation reduces computational burden sub-

stantially but shows slightly inferior performance compared with the �ne-to-�ne one.

The computation of the proposed method is regular and parallelizable and thus it is well

suited for a hardware implementation.

Since the obtainable performance of the estimation depends on images, it would not

be unusual for the obtained one not to come up to the desired one. In such cases, some

interactive interface should be prepared to �ll the gap of the quality. Thus, we are

currently developing a user-friendly interface for post-processing of the estimation.

Moreover, we are developing application techniques using the depth map obtained

[14], which include arbitrary view generation for image-based rendering, Z-key method

for 3D video composition, automatic multi-layer description of a scene.

We have focused on only the spatial characteristics of a scene in this paper such

that all of the processing is executed by the frame. Temporal property has not been

considered. In order to obtain more satisfactory results, we may need to develop an

integrated approach of spatial and temporal property of a scene. Therefore, a paradigm

of motion and structure from multiple-baseline stereo would be very interesting as a

future work.
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