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Rethinking resampling in the particle filter on
graphics processing units

Lawrence M. Murray, Anthony Lee and Pierre E. Jacob

Abstract—Modern parallel computing devices such as the
graphics processing unit (GPU) have gained significant traction
in scientific computing, and are particularly well-suited to data-
parallel algorithms such as the particle filter. Of the components
of the particle filter, the resampling step is the most difficult to
implement well on such devices, as it often requires a collective
operation, such as a sum, across weights. We present and compare
a number of resampling algorithms in this work, including rarely-
used alternatives based on Metropolis and rejection sampling.
We find that these alternative approaches perform significantly
faster on the GPU than more common approaches such as the
multinomial, stratified and systematic resamplers, a speedup
attributable to the absence of collective operations. Moreover,
in single-precision (particularly relevant on GPUs due to its
faster performance), the common approaches are numerically
unstable for plausibly large numbers of particles, while these
alternative approaches are not. Finally, we provide a number of
auxiliary functions of practical use in resampling, such as for the
permutation of ancestry vectors to enable in-place propagation
of particles.

Index Terms—Particle filter, sequential Monte Carlo, state-
space models, resampling, graphics processing unit

I. INTRODUCTION

For some sequence of time points t = 1, . . . , T and obser-
vations at those times y1, . . . ,yT , the particle filter [1], [2]
uses N weighted samples, or particles, to recursively estimate
the time marginals p(xt|y1:t) of the latent states x1, . . . ,xT
of the state-space model

p(x0:T ,y1:T ) = p(x0)

T∏
t=1

p(yt|xt)p(xt|xt−1), (1)

depicted in Figure 1.
Pseudocode for the simplest bootstrap particle filter [1] is

given in Code 1. The initialisation, propagation and weighting
steps are readily parallelised, being independent operations on
each particle xit and its weight wit. Resampling, on the other
hand, is a collective operation across particles and weights, so
that parallelisation is more difficult. It is here that the present
work concentrates.

The resampling step can be encoded by a randomised
algorithm ANCESTORS that accepts a vector, wt−1 ∈ RN , of
particle weights and returns a vector, at, of integers between
1 and N , where each ait is the index of the particle at time
t − 1 which is to be the ancestor of the ith particle at time
t. Alternatively, the resampling step may be encoded by a
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Fig. 1. The state-space model.

Code 1 Pseudocode for the bootstrap particle filter.

PARTICLE-FILTER(N ∈ N+, T ∈ N0)

1 foreach i ∈ {1, . . . , N}
2 xi0 ∼ p(x0) // initialise particle i
3 wi0 ← 1/N // initialise weight i
4 for t = 1, . . . , T
5 at ← ANCESTORS(wt−1) // resample
6 foreach i ∈ {1, . . . , N}
7 xit ∼ p(xt|x

ait
t−1) // propagate particle i

8 wit ← p(yt|xit) // weight particle i

randomized algorithm OFFSPRING that also accepts a vector,
wt−1 ∈ RN , of particle weights, but instead returns a vector,
ot, of integers between between 0 and N , where each oit is
the number of offspring to be created from the ith particle at
time t − 1 for propagation to time t. As we shall see, each
resampling algorithm more naturally takes one form or the
other, and ancestry vectors are readily converted to offspring
vectors and vice-versa (§III provides functions to achieve this).

Following the resampling step is the propagation step. In
the implementation of this there are two options in arranging
memory. The first is to have an input buffer holding the
particles at time t−1, and a separate output buffer into which
to write the propagated particles at time t. The second is to
work in-place, reading and writing particles from and to the
same buffer. The second option is more memory efficient by
a factor of two (for a fixed number of particles), but places
more stringent conditions on the output of the resampling
algorithm. It is sufficient that the ancestry vector, at, satisfies
∀i ∈ {1, . . . , N}:

oit > 0 =⇒ ait = i. (2)
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With this, it is possible to insert a copy step immediately
before each propagation step, setting xit−1 ← x

ait
t−1 for all

i = 1, . . . , N , but ait 6= i. Each particle can then be
propagated in-place by reading from and writing to the same
buffer. Importantly, (2) ensures that the copies can be done
concurrently without read and write conflicts, as each particle
is either read from or written to, but not both. The focus of
this work is on this in-place mode, such that algorithms are
timed up to the delivery of an ancestry vector that satisfies
(2). We also present auxiliary functions for the permutation of
arbitrary ancestry vectors to achieve this.

The challenge in programming a parallel device such as
a graphics processing unit (GPU) is that, to occupy its
full capacity, an algorithm must be executable with tens of
thousands of threads. Furthermore, the threads with which it
executes are not entirely independent, grouped into teams (of
size 32 on current hardware [3]) called warps. The threads
of a warp should ideally follow the same path through an
algorithm. Where they diverge to different branches of a
conditional, or different trip counts of a loop, their execution
becomes serialised and parallelism is lost (referred to as warp
divergence). A further consideration is that, for all the threads
of a warp, memory reads and writes should be from or to
neighbouring addresses for best performance (referred to as
the coalescing of reads and writes). Considerations such as
these shape the development of the algorithms in this work.
The reader is referred to the OpenCL standard [4] for general
information, and the Compute Unified Device Architecture
(CUDA) [5] for more detail on optimising for NVIDIA GPUs
in particular.

Parallel implementation of resampling schemes has been
considered before, largely in the context of distributed memory
machines [6], [7]. Likewise, implementation of the particle
filter on GPUs has been considered [8], [9], [10], although
with an emphasis on low-level implementation issues rather
than algorithmic adaptation as here.

Section II presents algorithms for resampling based on
multinomial, stratified, systematic, Metropolis and rejection
sampling. Section III presents auxiliary functions for convert-
ing between offspring and ancestry vectors, and the permuta-
tion of ancestry vectors to satisfy (2). Empirical results for
execution time and variance in outcomes are obtained for
all algorithms in Section IV, with concluding discussion in
Section V.

II. RESAMPLING ALGORITHMS

We present parallel resampling algorithms suitable for both
multi-core central processng units (CPUs) and many-core
graphics processing units (GPUs). Where competitive serial
algorithms exist, these are also presented. Resampling algo-
rithms are nicely visualised by arranging particles by weight
in a circle, as in Figure 2, which may help to elucidate the
various approaches.

The algorithms presented here are described using pseu-
docode with a number of conventions. In particular, we make
use of primitive operations such as searches, transformations,
reductions and prefix sums. Such operations will be familiar

Code 2 Pseudocode for various primitive functions.

INCLUSIVE-PREFIX-SUM(w ∈ RN )→ RN

1 W i ←
∑i
j=1 w

j

2 return W

EXCLUSIVE-PREFIX-SUM(w ∈ RN )→ RN

1 W i ←

{
0 i = 1∑i−1
j=1 w

j i > 1

2 return W

ADJACENT-DIFFERENCE(W ∈ RN )→ RN

1 wi ←

{
W i i = 1

W i −W i−1 i > 1

2 return w

SUM(w ∈ RN )→ R
1 return

∑N
i=1 w

i

LOWER-BOUND(W ∈ RN , u ∈ R)→ N+

1 requires
2 W is sorted in ascending order
3 return
4 the lowest j such that u may be inserted into

position j of W and maintain its sorting.

to programmers of, for example, the C++ standard template
library (STL) or Thrust library [11], and their implementation
on GPUs has been well-studied [12]. The advantage of describ-
ing algorithms in this way is that the efficient implementation
of these primitives in both serial and parallel contexts is well
understood, and a single pseudocode description in terms of
primitives will often suffice for both. Code 2 defines the
particular primitives used throughout this work.

We distinguish between the foreach and for constructs. The
former is used where the body of the loop is to be executed for
each element of a set, with the order unimportant. The latter
is used where the body of the loop is to be executed for each
element of a sequence, where the order must be preserved. The
intended implication is that foreach loops may be parallised,
while for loops may not be.

In what follows, we omit the subscript t from weight, off-
spring and ancestry vectors, as all of the algorithms presented
behave identically at each time in the particle filter.

A. Multinomial resampling

Multinomial resampling proceeds by drawing each ai in-
dependently from the categorical distribution over C =
{1, . . . , N}, where P (ai = j) = wj/SUM(w). Pseudocode
is given in Code 3. The algorithm is dominated by the N
calls of LOWER-BOUND, which if implemented with a binary
search, will give O(N log2N) complexity overall.

The INCLUSIVE-PREFIX-SUM operation on line 1 of Code
3 is not numerically stable, as large values may be added
to relatively insignificant ones during the procedure (an issue
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Fig. 2. Visualisation of the resampling algorithms considered. Arcs along the perimeter of the circles represent particles by weight, arrows indicate selected
particles and are positioned (a) uniformly randomly in the multinomial resampler, (b & c) by evenly slicing the circle into strata and randomly selecting an
offset (stratified resampler) or using the same offset (systematic resampler) into each stratum, (d) by initialising multiple Markov chains and simulating to
convergence in the Metropolis resampler, or (e) by rejection sampling.

Code 3 Pseudocode for parallel multinomial resampling.

MULTINOMIAL-ANCESTORS(w ∈ RN )→ RN

1 W← INCLUSIVE-PREFIX-SUM(w)
2 foreach i ∈ {1, . . . , N}
3 ui ∼ U [0,WN )
4 ai ← LOWER-BOUND(W, ui)
5 return a

intrinsic to any large summation). With large N , assigning
the weights to the leaves of a binary tree and summing with a
depth-first recursion over this will help. With large variance in
weights, pre-sorting will also help. While log-weights are often
used in the implementation of particle filters, these need to be
exponentiated (perhaps after rescaling) for the INCLUSIVE-
PREFIX-SUM operation, so this does not alleviate the issue.

Serially, the same approach may be used, although a single-
pass approach of complexity O(N) is enabled by generating
sorted uniform random variates [13]. Code 4 details this
approach. There is scope for a small degree of parallelism here
by dividing N amongst a handful of threads, but not enough
to make this a useful algorithm on the GPU. A drawback is
the use of relatively expensive logarithm functions, but we
nevertheless find it superior to Code 3 on CPU.

B. Stratified resampling

The variance in outcomes produced by the multinomial
resampler may be reduced [14] by stratifying the cumula-
tive probability function of the same categorical distribu-
tion, and randomly drawing one particle from each stratum.
This stratified resampler [15] most naturally delivers not the
ancestry or offspring vector, but the cumulative offspring
vector, defined with respect to the offspring vector o as
O = INCLUSIVE-PREFIX-SUM(o). Pseudocode is given in
Code 5. The algorithm is of complexity O(N).

As for multinomial resampling, the INCLUSIVE-PREFIX-
SUM operation on line 2 of Code 5 is not numerically stable.
The same strategies to ameliorate the problem apply.

Line 6 of Code 5 is more problematic. Consider that there
may be a j such that, for i ≥ j, uk

i

is not significant

Code 4 Pseudocode for serial, single-pass multinomial resam-
pling.

MULTINOMIAL-ANCESTORS(w ∈ RN )→ RN

1 W← EXCLUSIVE-PREFIX-SUM(w)
2 W ←WN + wn // sum of weights

3 lnMax ← 0
4 j ← N
5 for i = N, . . . , 1
6 u ∼ U [0, 1)
7 lnMax ← lnMax + ln(u)/i
8 u←W exp(lnMax )
9 whileu < W j

10 j ← j − 1
11 ai ← j
12 return a

Code 5 Pseudocode for stratified resampling.

STRATIFIED-CUMULATIVE-OFFSPRING(w ∈ RN )→ RN

1 u ∈ RN ∼ i.i.d.U [0, 1)
2 W← INCLUSIVE-PREFIX-SUM(w)
3 foreach i ∈ {1, . . . , N}
4 ri ← NW i

WN

5 ki ← min
(
N,
⌊
ri
⌋
+ 1
)

6 Oi ← min
(
N,
⌊
ri + uk

i
⌋)

7 return O

against ri under the floating-point model, so that the result
of ri + uk

i

is just ri. For such i, no random sample is
being made within the strata. Furthermore, rounding up on
the same line might easily deliver ON = N + 1, not
ON = N as required, if not for the quick-fix use of min!
This is particularly relevant in the present context because
contemporary GPUs have significantly faster single-precision
than double-precision floating-point performance, so that the
use of single precision is always tempting. In single precision,
seven significant figures (in decimal) can typically be expected.
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Code 6 Pseudocode for systematic resampling.

SYSTEMATIC-CUMULATIVE-OFFSPRING(w ∈ RN )→ RN

1 u ∼ U [0, 1)
2 W← INCLUSIVE-PREFIX-SUM(w)
3 foreach i ∈ {1, . . . , N}
4 r i ← NW i

WN

5 Oi ← min
(
N,
⌊
r i + u

⌋)
6 return O

Consider that, with N around one million, almost certainly no
uk

i ∈ [0, 1) is significant against ri at high i. One million
particles is not an unrealistic number for some contemporary
applications of the particle filter. In double-precision, however,
where 15 significant figures (in decimal) is expected, it is
unlikely that N is sufficiently large for this to be a problem
in current applications. Note that while pre-sorting weights
and summing over a binary tree can help with the numerical
stability of the INCLUSIVE-PREFIX-SUM operation, it does
not help with this latter issue.

C. Systematic resampling

The variance in outcomes of the stratified resampler may
often, but not always [14], be further reduced by using the
same random offset when sampling from each stratum. This
is the systematic resampler (equivalent to the deterministic
method described in the appendix of [15]). Pseudocode is
given in Code 6, which is a simple modification to Code 5. The
same complexity and numerical caveats apply to the systematic
resampler as for the stratified resampler.

D. Metropolis resampling

The preceding resamplers all suffer from two problems:
1) they exhibit numerical instability for large N or large

weight variance, and
2) they require a collective operation over the weights,

specifically INCLUSIVE-PREFIX-SUM, which is less
readily parallelised than independent operations on
weights.

We present two alternative approaches, not typically consid-
ered in the literature, which do not suffer from these problems.
They are more numerically stable, more readily parallelised,
and consequently better suited to the breadth of parallelism
offered by GPU hardware.

The first produces a multinomial resample via the Metropo-
lis algorithm [16] rather than by direct sampling. This was
briefly studied by the first author in [17], but a more complete
treatment is given here. Instead of the collective operation,
only the ratio between any two weights is ever computed,
and only when needed. Code 7 describes the approach. The
complexity of the algorithm is discussed later.

The Metropolis resampler is parameterised by B, the num-
ber of iterations to be performed before convergence is as-
sumed and each particle may settle on its chosen ancestor.

Code 7 Pseudocode for Metropolis resampling.

METROPOLIS-ANCESTORS(w ∈ RN , B ∈ N)→ RN

1 foreach i ∈ {1, . . . , N}
2 k ← i
3 forn = 1, . . . , B
4 u ∼ U [0, 1]
5 j ∼ U{1, . . . , N}
6 if u ≤ wj/wk
7 k ← i
8 ai ← k
9 return a

As B must be finite, the algorithm produces a biased sample.
Selecting B is a tradeoff between speed and bias, with smaller
B giving faster execution time but larger bias. This bias
may not be much of a problem for filtering applications, but
does violate the assumptions that lead to unbiased marginal
likelihood estimates in a particle Markov chain Monte Carlo
(PMCMC) framework [18], so care should be taken.

We provide guidance as to the selection of B by bounding
the bias ε for the maximum normalised weight p∗ [17]. One
may have both an upper bound on unnormalised weights,
supw, and an expected weight, E(w), from which this might
be computed as p∗ = supw/(NE(w)) (see §IV for one
such example, albeit contrived). Otherwise, this might be
thought of as a tolerance threshold on weight degeneracy and
a value specified accordingly. Convergence of a Metropolis
chain depends on a sufficient number of steps being taken
such that the probability of a particle of this maximum weight
being selected is within ε of p∗.

Following [19][§2.1], for N particles, construct a binary 0-1
process where state 1 represents being at a particle with the
maximum weight, and state 0 represents being at any other
particle. The transition matrix is

T =

(
1− α α
β 1− β

)
, (3)

where

α =
1

N
· 1− p

∗

p∗
(4)

is the probability of moving from state 1 to 0, and

β =
1

N
(5)

is the probability of moving from state 0 to 1, with a uniform
proposal over all N particles and the Metropolis acceptance
rule. The B-step transition matrix is then:

TB =
1

α+ β

(
α β
α β

)
+

λB

α+ β

(
α −α
−β β

)
, (6)

where λ = (1−α−β). We require that the second term satisfy
the bias bound:

λB

α+ β

(
α −α
−β β

)
< ε, (7)
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Code 8 Pseudocode for rejection resampling.

REJECTION-ANCESTORS(w ∈ RN )→ RN

1 foreach i ∈ {1, . . . , N}
2 j ← i
3 β ∼ U [0, 1]
4 whileβ > wj/ supw
5 j ∼ U{1, . . . , N}
6 β ∼ U [0, 1]
7 ai ← j
8 wi ← 1
9 return a

so
λB

α+ β
max(α, β) < ε, (8)

which is satisfied when

B > logλ
ε(α+ β)

max(α, β)
. (9)

Thus, by specifying a p∗ and some small ε, one proceeeds
by calculating α and β, then λ, then finally B as a suggested
number of steps for the Metropolis resampler. An appropriate
value for ε might be relative to p∗, such as p∗ × 10−2.
The experiments in §IV provide some empirical evidence to
support this as a reasonable choice for ε, and ultimately B.

The complexity of the Metropolis resampler is O(NB), but
B may itself be a function of N and weight variance, as in
the analysis above.

E. Rejection resampling

When an upper bound on the weights is known a priori,
rejection sampling is possible. Compared to the Metropo-
lis resampler, the rejection resampler also avoids collective
operations and their numerical instability, but offers several
additional advantages:

1) it is unbiased,
2) it is simpler to configure, and
3) it permits a first deterministic proposal (see, e.g., [20])

that ai = i, improving the variance in outcomes.
Pseudocode is given in Code 8. If the third item above is
removed, rejection resampling is an alternative implementation
of multinomial resampling. The complexity of the algorithm
is O(SUM(w)/ supw).

The rejection resampler will perform poorly if supw is
not a tight upper bound, i.e. if max(w1, . . . , wN ) � supw.
While one can empirically set supw = max(w1, . . . , wN ),
this would require a collective operation over weights that
would defeat the purpose of the approach.

Performance can be tuned if willing to concede a weighted
outcome from the resampling step, rather than the usual
unweighted outcome. To do this, choose some sup v < supw,
then form a categorical importance proposal using the weights
v1, . . . , vN , where vi = min(wi, sup v). Clearly sup v forms
an upper bound on these new weights. Sample from this

as a proposal distribution using REJECTION-ANCESTORS,
then importance weight each particle i with wi ← wa

i

/va
i

.
Note that each weight is 1 except where wa

i

> sup v. The
procedure may also be used when no hard upper bound on
weights exists (supw), but where some reasonable substitute
can be made (sup v).

An issue unique to the rejection resampler is that the compu-
tational effort required to draw each ancestor varies, depending
on the number of rejected proposals before acceptance. This is
an example of a variable task-length problem [21], particularly
acute in the GPU context where it causes warp divergence,
with threads of the same warp tripping the loop on line 4
of Code 8 different numbers of times. A persistent threads
strategy [22], [21] might be used to mitigate the effects of
this, although we have not been successful in finding such an
implementation that does not lose more than it gains through
additional overhead in register use and branching.

F. Other algorithms

The resampling algorithms presented here do not constitute
an exhaustive list of those in use, but are reasonably represen-
tative, and tend to form the building blocks of more elaborate
schemes. A notable example is residual resampling [23],
which deterministically draws each particle bNwi/SUM(w)c
number of times before making up the deficit in the number
of particles by randomly drawing additional particles with
probabilities proportional to the residuals Nwi/SUM(w) −
bNwi/SUM(w)c. The first stage may be implemented simi-
larly to the systematic resampler, and the second using either
a multinomial, Metropolis or rejection approach.

III. AUXILIARY FUNCTIONS

The multinomial, Metropolis and rejection resamplers most
naturally return the ancestry vector a, while the stratified and
systematic resamplers return the cumulative offspring vector
O. Conversion between these is reasonably straightforward.

An offspring vector o may be converted to a cumulative off-
spring vector O via the INCLUSIVE-PREFIX-SUM primitive,
and back again via ADJACENT-DIFFERENCE. A cumulative
offspring vector may be converted to an ancestry vector via
Code 9, and an ancestry vector to an offspring vector via
Code 10. These functions perform well on both CPU and
GPU. An alternative approach to CUMULATIVE-OFFSPRING-
TO-ANCESTORS, using a binary search for each ancestor, was
found to be slower.

An ancestry vector may be permuted to satisfy (2). A serial
algorithm to achieve this is straightforward and given in Code
11. This O(N) algorithm makes a single pass through the
ancestry vector with pair-wise swaps to satisfy the condition.

The simple algorithm is complicated in a parallel context as
the pair-wise swaps are not readily serialised without heavy-
weight mutual exclusion. In parallel we propose Code 12.
This algorithm does not perform the permutation in-place, but
instead produces a new vector c ∈ RN that is the permutation
of the input vector a. It introduces a new vector d ∈ RN ,
through which, ultimately, ci = ad

i

. In the first stage of the
algorithm, PREPERMUTE, the thread for element i attempts
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Code 9 Pseudocode conversion of an offspring vector o to an
ancestry vector a.

CUMULATIVE-OFFSPRING-TO-ANCESTORS(O ∈ RN ) →
RN

1 foreach i ∈ {1, . . . , N}
2 if i = 1
3 start ← 0
4 else
5 start ← Oi−1

6 oi ← Oi − start
7 for j = 1, . . . , oi

8 astart+j ← i
9 return a

Code 10 Pseudocode conversion of an ancestor vector a to an
offspring vector o.

ANCESTORS-TO-OFFSPRING(a ∈ RN )→ RN

1 o← 0
2 foreach i ∈ {1, . . . , N}
3 atomic oi ← oi + 1
4 return o

to claim position ai in the output vector by setting da
i ← i.

By virtue of the min function on line 3, the element of lowest
index always succeeds in this claim while all others contesting
the same place fail, and the outcome of the whole permutation
procedure is deterministic. This is desirable so that the results
of a particle filter are reproducible for the same pseudorandom
number seed. For each element i that is not successful in
its claim, the thread for i instead attempts to claim di, if
unsuccessful again then dd

i

, then recursively dd
di

, . . . etc,
until an unclaimed place is found. Note that this procedure
is guaranteed to terminate (a proof is given in Appendix A).

Two other procedures are worth mentioning, as they are
often used in conjunction with resampling. The first, the sort-
ing of weights for improved numerical stability, has already
been mentioned. The second is the computation of effective
sample size (ESS) [24], often used to decide whether or not

Code 11 Serial algorithm for permuting an ancestry to ensure
(2).

PERMUTE(a ∈ RN )

1 for i = 1, . . . , N

2 if ai 6= i and aa
i 6= ai

3 swap(ai, aa
i

)
4 i← i− 1 // repeat for new value
5 ensures
6 ∀i(i ∈ {1, . . . , N} : oi > 0 =⇒ ai = i)

Code 12 Parallel algorithm for the permutation of an ancestry
vector to ensure (2).

PREPERMUTE(a ∈ RN )→ RN

// claim places to satisfy (2)
1 Let d ∈ RN and set di ← N + 1 for i = 1, . . . , N .
2 foreach i ∈ {1, . . . , N}
3 atomic da

i ← min(da
i

, i)
4 ensures
5 ∀i(i ∈ {1, . . . , N} : oi > 0 =⇒ di = minj(a

j = i))
6 return d

PERMUTE(a ∈ RN )→ RN

1 d← PREPERMUTE(a)
2 foreach i ∈ {1, . . . , N}
3 x← da

i

4 if x 6= i
5 // claim unsuccessful in PREPERMUTE
6 x← i
7 while dx ≤ N
8 x← dx

9 dx ← i

10 foreach i ∈ {1, . . . , N}
11 ci ← ad

i

12 ensures
13 ∀i(i ∈ {1, . . . , N} : oi > 0 =⇒ ci = i)
14 return c

to resample at any given time in the particle filter. The ESS
is given by SUM(w)2/wTw. Note that both sorting and ESS
are necessarily collective operations. We include these two
procedures in our timing results to lend additional perspective.

IV. EXPERIMENTS

Weight sets are simulated to assess the speed and accuracy
of each resampling algorithm. For each number of particles
N = 24, 25, . . . , 220 and observation y = 0, 12 , 1, 1

1
2 , . . . , 4, a

weight set is generated by sampling xi ∼ N (0, 1), for i =
1, . . . , N , and setting

wi =
1√
2π

exp

(
−1

2
(xi − y)2

)
. (10)

This is repeated to produce 500 weight sets for each config-
uration. Note that the construction is analagous to having a
prior distribution of x ∼ N (0, 1) and likelihood function of
y ∼ N (x, 1). As y increases, the relative variance in weights
does too.

For this set up, the maximum weight is supw = 1/
√
2π,

and the expected weight

E(w) = N (y; 0, σ2 = 2) =
1

2
√
π
exp

(
−1

4
y2
)
. (11)
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The variance of the weights is

V(w) =
1

π
√
12

exp

(
−1

3
y2
)
− [E(w)]2, (12)

and so their relative variance is

V
(

w

E(w)

)
=

2√
3
exp

(
y2

6

)
− 1, (13)

which is increasing with y.
These are used to set B for the Metropolis resampler

according to the analysis in §II-D. This maximum weight
is also used for the rejection resampler. Note that, while
presented with weights here, our actual implementation works
with log-weights, which we assume is fairly common practice
for observation densities from the exponential family.

Experiments are conducted in single-precision on two
devices. The first device is an eight-core Intel Xeon E5-
2650 CPU, compiling with the Intel C++ Compiler version
12.1.3, using OpenMP to parallelise over eight threads, and
using the Mersenne Twister pseudorandom number genera-
tor (PRNG) [25] as implemented in the Boost.Random li-
brary [26]. The second device is an NVIDIA S2050 GPU
hosted by the same CPU, compiling with CUDA 5.0 and the
same version of the Intel compiler, and using the XORWOW
PRNG [27] from the CURAND library [28]. All compiler
optimisations are applied.

Figure 3 shows the surface contours of the mean execution
time across N and y for each algorithm, as well as marking
up the fastest algorithms on each device, and across both
devices. Execution times are taken until the delivery of an
ancestry vector satisfying (2), and so include any of the
auxiliary functions in §III necessary to achieve this. Note
that, as we would expect, execution times of the multinomial,
stratified and systematic resamplers are not sensitive to y – or
equivalently to the variance in weights – while the Metropolis
and rejection resamplers are.

As the resampling step is performed numerous times
throughout the particle filter, it is not unreasonable to com-
pare resampling algorithms on mean execution time alone.
Nonetheless, some variability in execution time is expected,
especially for the rejection resampler. This is shown in Figure
4 by taking a horizontal transect across each surface in Figure
3 at y = 1, then plotting N versus execution time separately
for each device. The execution time of the sorting and ESS
procedures is added to these plots for context.

To assess the variability in resampling draws for each
algorithm we compute the mean-square error in the outcome
for each weight-set, based on the offspring vector o [15]:

1

N

N∑
i=1

(
oi

N
− wi

SUM(w)

)2

. (14)

We then take the mean of this across all 500 weight sets,
and the square-root of this, to arrive at root-mean-square error
(RMSE) as in Figure 5. This figure plots the RMSE for both
y = 1 and y = 3. Nothing in this figure is surprising: it is
well known that the stratified resampler reduces variance over
the multinomial resampler, and that the systematic resampler
can, but does not necessarily, reduce it further [14]. Notably
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Fig. 5. Root-mean-square error (RMSE) of the various resampling algorithms
at (left) y = 1 and (right) y = 3.

the RMSE of the Metropolis resampler appears to match that
of the multinomial resampler, suggesting that the procedure in
§II-D for setting the number of steps, B, is appropriate. Also
of interest is that as y increases, the probability of the initial
proposal of the rejection resampler being accepted declines,
and so its RMSE degrades toward that of the multinomial and
Metropolis resamplers.

V. DISCUSSION

On raw speed, the Metropolis and rejection resamplers are
worth considering for faster execution times on GPU. This is
largely due to their avoidance of collective operations across
all weights, which better suits the GPU architecture. They do
not scale as well in either N or y, however, so that the stratified
and systematic resamplers are faster at larger values of these.
The Metropolis resampler scales worst of all in this regard. If
there exists a good upper bound on the weights, the rejection
resampler is faster, easier to configure and unbiased with
respect to the Metropolis resampler. The Metropolis resampler
is more configurable, however, and allows the tuning of B
to trade off between execution time and bias. This may be
particularly advantageous for applications with hard execution
time constraints, such as real-time object tracking. Recall that
the rejection resampler is somewhat configurable by using an
approximate maximum weight, if one is willing to accept a
still-weighted output from the resampling step.
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Fig. 3. Mean execution times for algorithms on each device, (top row) CPU and (bottom row) GPU. Each surface shows the base-10 logarithm of mean
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A further consideration is that the execution time of both
the Metropolis and rejection resamplers depends on the PRNG
used. This dependence is by a constant factor, but can be
substantial. Here, robust PRNGs for Monte Carlo work have
been used, but conceivably cheaper, if less robust, PRNGs
might be considered as another trade-off between execution
time and bias.

One should still be aware that the stratified resampler is
variance-reducing with respect to the multinomial resampler,
and that the systematic resampler can give further reduc-
tions [14]. This may be a more important consideration
than raw speed, depending on the application. The rejection
resampler, with its first deterministic proposal, has the nice
property that it can also improve upon the variance of the
multinomial resampler. The Metropolis resampler is expected
to match the multinomial resampler on variance, and indeed
any variation can only be attributed to the bias introduced by
finite B.

A special consideration on GPUs is the use of single-
precision floating-point operations to improve execution time.
For a number of particles upwards of hundreds of thousands,
plausible in modern applications, it is worth emphasising again
that great care should be taken in the use of the stratified
and systematic resamplers due to numerical instability. The
Metropolis and rejection resamplers have better numerical
properties, as they compute only ratios of weights. In dou-
ble precision, the number of particles required to have the
same issue far surpasses that which is realistic at present, so
numerical stability is unlikely to be an issue.
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APPENDIX

We offer a proof of the termination of Code 12.
First note that PREPERMUTE leaves d in a state where,

excluding all values of N+1, the remaining values are unique.
Furthermore, in PERMUTE the conditional on line 4 means that
the loop on line 7 is only entered for values of i that are not
represented in d.

For each such i, the while loop traverses the sequence x0 =
i, xn = dxn−1 , until dxn = N + 1. For the procedure to
terminate this sequence must be finite. Because each xn is an
element of the finite set {1, . . . , N}, to show that the sequence
is finite it is sufficient to show that it never revisits the same
value twice. The proof is by induction.

1) As no value of d is i, the sequence cannot revisit its
initial value x0 = i. The element x0 is therefore unique.

2) For k ≥ 1, assume that the elements of x0:k−1 are
unique.

3) Now, x0:k is not unique if there exists some j ∈
{1, . . . , k − 1} such that xk = dxk−1 = xj = dxj−1 ,
with xj−1 6= xk−1 by the uniqueness of x0:k−1. But this
contradicts the uniqueness of the (non N +1) values of
d. Thus the elements of x0:k are unique, the sequence
is finite, and the program must terminate. �
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