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Abstract 

This paper describes a novel Gabor Feature Class$er 
(GFC) method for  face recognition. The GFC method em- 
ploys an enhanced Fisher discrimination model on an aug- 
mented Gabor feature vector; which is derived from the 
Gabor wavelet transformation o f f i c e  images. The Gabor 
wavelets, whose kernels are similar to the 2 0  receptive field 
profiles of the nianinialian cortical simple cells, exhibit de- 
sirable characteristics of spatial locality and orientation se- 
lectivity. As a result, the Gabor transformed face images 
produce salient local and discriminating features that are 
suitable forface recognition. The feasibility of the new GFC 
method has been successfully tested on face recognition us- 
ing 600 FERET frontal face images, which involve differ- 
ent illumination and varied facial expressions of 200 sub- 
jects. The effectiveness of the novel GFC method is shown 
in ternis of both absolute performance indices and compar- 
ative performance against some popular face recognition 
schemes such as the Eigenfaces method and some other Ga- 
bor wavelet based class$cation methods. In particular; the 
novel GFC method achieves 100% recognition accuracy us- 
ing only 62features. 1 

1. Introduction 

Face recognition has been largely motivated by the need 
for surveillance and security, telecommunication and dig- 
ital libraries, human-computer intelligent interaction, and 
smart environments [ 171, [3], [6], [ 161, [ 121. It usually em- 
ploys various statistical techniques, such as PCA (principal 
component analysis) [ 191, [ 151, FLD (Fisher linear discrim- 
inant, a.k.a. linear discriminant analysis, or LDA) [ 181, [I] ,  
[8], [ 131, ICA (independent component analysis) [7], and 
Gabor based bunch graphs [20], to derive appearance-based 
models for classification. 

This paper introduces a novel Gabor Feature Classifier 
(GFC) method for face recognition. The GFC method ap- 
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plies an enhanced Fisher model (EFM) [I31 to an aug- 
mented Gabor feature vector, which is derived from the 
Gabor wavelet transformation of face images. The Ga- 
bor wavelets, whose kernels are similar to the 2D recep- 
tive field profiles of the mammalian cortical simple cells, 
exhibit desirable characteristics of spatial locality and ori- 
entation selectivity. The biological relevance and computa- 
tional properties of Gabor wavelets for image analysis have 
been described in [4], [14], [5], [IO]. As a result, the Gabor 
transformed face images yield features that display scale, 
locality, and differentiation properties. These properties are 
quite robust to variability of face image formation, such as 
the variations of illumination and facial expressions. To en- 
compass all the features produced by the different Gabor 
kernels we concatenate the resulting wavelet features to de- 
rive an augmented Gabor feature vector. The dimension- 
ality of the vector space is then reduced under the eigen- 
value selectivity constraint of the EFM method to derive a 
low-dimensional feature representation with enhanced dis- 
crimination power. The feasibility of the new GFC method 
has been successfully tested on face recognition using 600 
FERET frontal face images, which involve different illumi- 
nation and varied facial expressions of 200 subjects. The 
effectiveness of the novel GFC method is shown in terms of 
both absolute performance indices and comparative perfor- 
mance against some popular face recognition schemes such 
as the Eigenfaces method and some other Gabor wavelet 
based classification methods. In particular, the novel GFC 
method achieves 100% recognition accuracy using only 62 
features. 

2. Gabor Feature Analysis 

The Gabor wavelets, which capture the properties of spa- 
tial localization, orientation selectivity, spatial frequency 
selectivity, and quadrature phase relationship, seem to be 
a good approximation to the filter response profiles encoun- 
tered experimentally in cortical neurons [4], 1141, [91, [IO],  
[2]. The Gabor wavelets have been found to be particu- 
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(b) 
Figure 1. Gabor Wavelets. (a) The real part 
of the Gabor kernels at five scales and eight 
orientations under the following parameters: 
a = 27r, IC,,,, = n/2, and f = a. (b) The mag- 
nitude of the Gabor kernels at five different 
scales. 

larly suitable for image decomposition and representation 
when the goal is the'derivation of local and discriminating 
features. Most recently, Donato et al. [7] have experimen- 
tally shown that the Gabor filter representation is optimal 
for classifying facial actions. In this section, we review the 
basics on Gabor wavelets, describe the Gabor feature repre- 
sentation of images, and derive an augmented Gabor feature 
vector for face recognition. 

2.1. Gabor Wavelets 

Gabor wavelets are used for image analysis because of 
their biological relevance and computational properties [4], 
[141, [5], [ IO] .  The Gabor wavelets (kernels, filters) can be 
defined as follows [4], [ 141, [ 1 I]: 

where p and v define the orientation and scale of the Gabor 
kernels, z = (x, y), [ (  . ( 1  denotes the norm operator, and the 
wave vector kP,, is defined as follows: 

kLL,, = k,ea6* (2) 

where k ,  = k,,,/ f and (bLL = 7rp/8. IC,,, is the maxi- 
mum frequency, and f is the spacing factor between kernels 
in  the frequency domain [ 1 I]. 

The set of Gabor kernels in Eq. I are afl self-similar since 
they can be generated from one filter, the mother wavelet, 
by scaling and rotation via the wave vector kP,,. Each ker- 
nel is a product of a Gaussian envelope and a complex plane 
wave, while the first term in the square brackets in Eq. 1 de- 
termines the oscillatory part of the kernel and the second 
term compensates for the DC value. The effect of the DC 
term becomes negligible when the parameter (T, which de- 
termines the ratio of the Gaussian window width to wave- 
length, has sufficiently high values. 

In most cases one would use Gabor wavelets at five 
different scales, v E (0, ..., 4}, and eight orientations, 
p E (0, ...) 7) [9], [IO],  [2]. Fig. 1 shows the real part of 
the Gabor kernels at five scales and eight orientations and 
their magnitude, with the following parameters: (T = 27r, 
IC,,, = 7 ~ 1 2 ,  and f = a. The kernels exhibit desirable 
characteristics of spatial locality and orientation selectivity, 
making them a suitable choice for image feature extraction 
when one's goal is to derive local and discriminating fea- 
tures for (face) classification. 

2.2. Gabor Feature Representation 

The Gabor wavelet transformation of an image is the 
convolution of the image with a family of Gabor kernels as 
defined by Eq. 1 .  Let I ( z ,  y)  be the gray level distribution 
of an image, and define the convolution output of image I 
and a Gabor kernel +p,,, as follows: 

O P , U ( Z )  = I ( z )  * + P , Y ( Z )  ( 3 )  

where z = (xl y),  and * denotes the convolution operator. 
The convolution outputs (the real part and the magni- 

tude) of a sample image and Gabor kernels (see Fig. 1) are 
shown in Fig. 2. The outputs exhibit desirable characteris- 
tics of spatial locality, scale and orientation selectivity simi- 
lar to those displayed by the Gabor wavelets in Fig. I .  Since 
the outputs O,,,(z) consist of different local, scale and ori- 
entation features, we concatenate all those features together 
in order to derive an augmented feature vector X. Before 
the concatenation, we first downsample each O,,,(z) by a 
factor p to reduce the space dimension, and normalize it  to 
zero mean and uni t  variance. We then construct a vector 
out of the O,,,(z) by concatenating its rows (or columns). 
Now, let O,?$ denote the normalized vector constructed 
from O,,,(z) (downsampled by p and normalized to zero 
mean and unit variance), the augmented Gabor feature vec- 
tor X ( P )  is then defined as follows: 

where t is the transpose operator. The augmented fea- 
ture vector thus encompasses all the outputs, O,,,(z), p E 
(0, ..., 7}, Y E (0, ..., 4}, as important and discriminating 
information. 
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and Cb be the within- and between-class scater matrices, re- 
spectively. The EFM method first whitens the within-class 
covariance matrix: 

where 2, r E Rmxm are the eigenvector and the diagonal 
eigenvalue matrices of C,. Note that m is the dimension- 
ality of the reduced PCA space, and the choice of the range 
of principal components (m) for dimensionality reduction 
takes into account both the spectral energy and the mag- 
nitude requirements for adequate representation and good 
generalization, respectively [ 131. 

The EFM method proceeds then to compute the 
between-class scatter matrix as follows: 

(7 

K b @ = @ 4  and O t @ = l  (8) 

r-1/"txbEr-1/2 = K~ 

Diagonalize now the new between-class scatter matrix Kb: 

3. 

(b) 
Figure 2. Gabor wavelet transformation of a 
sample image. (a) The real part of the trans- 
formation. (b) The magnitude of the transfor- 
mation. 

Gabor Feature Classifier 

As our novel Gabor Feature Classifier (GFC) applies an 
enhanced Fisher discrimination model (EFM) [ 131 to the 
augmented Gabor feature vector X(P)  derived in Sect. 2.2, 
we briefly review the EFM method and discuss the similar- 
ity measures and the classification rule for GFC. The dimen- 
sionality of the resulting vector space is reduced, using the 
eigenvalue selectivity analysis of the EFM method, in or- 
der to derive a low-dimensional feature representation with 
enhanced discrimination power. 

3.1. The Enhanced Fisher Discrimination Model 
(EFM) 

The EFM method improves the generalization capability 
of the Fisher Linear Discriminant (FLD) 'criterion by de- 
composing it  into a simultaneous diagonalization of the two 
within- and between-class scatter matrices [13]. Let E, 

where 0, A E Rmxm are the eigenvector and the diagonal 
eigenvalue matrices of Kb. 

The overall transformation matrix of the EFM method is 
now defined as follows: 

(9 )  

3.2. Similarity Measures and Classification Rule for 
the Gabor Feature Classifier (GFC) 

Let the overall transformation matrix be T ,  as defined be 
Eq. 9. The new feature vector, U(P) ,  of an image is defined 
as follows: 

Let M i ,  k = 1 , 2 , .  . . , L,  be the mean of the training sam- 
ples for class wk after the overall transformation (Eq. 9). 
The GFC method employs a nearest neighbour (to the 
mean) classification rule using some similarity (distance) 
measure 6: 

6(LdP) ,  MO,) = min &(U("), Mq)  --+ U@) E wk 

The image feature vector, U ( P ) ,  is classified as belonging 
to the class of the closest mean, M i ,  using the similarity 
measure S. 

The similarity measures used in our experiments to eval- 
uate the efficiency of different representation and recogni- 
tion methods include L1 distance measure, SL, , L2 distance 
measure, 6 ~ ~ ,  Mahalanobis distance measure, S h f d ,  and co- 
sine similarity measure, d,,,, which are defined as follows: 

U(P) = p y ( d  (10) 

3 

(1 1) 

SL1 (X, Y )  = IXi - Y,l (12) 
z 
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Figure 3. Example FERET images used in our 
experiments (cropped to the size of 128 x 128 
to extract the facial region). The figure shows 
in the top two rows the examples of training 
images used in our experiments, and in the 
bottom row the examples of test images. 

where C is the covariance matrix, and ( 1 .  ( 1  denotes the norm 
operator. Note that the cosine similarity measure includes a 
minus sign in Eq. 15, because the nearest neighbour (to the 
mean) rule of Eq. 11  applies minimum (distance) measure 
rather than maximum similarity measure. 

4. Experiments 

We assessed the feasibility and performance of our novel 
Gabor Feature Classifier (GFC) method on the face recogni- 
tion task, using 600 face images corresponding to 200 sub- 
jects from the FERET database, which has become a stan- 
dard testbed for face recognition technologies. Each subject 
has three images of size 256 x 384 with 256 gray scale lev- 
els. Fig. 3 shows some example images used in our experi- 
ments that are already cropped to the size of 128 x 128 in 
order to extract the facial region. Note that the images are 
acquired duri'ng different photo sessions, they capture both 
different lighting conditions and facial expressions. Two 
images.are randomly chosen from the three images avail- 
able for each subject for training, while the remaining im- 
age (unseen during training) is used for testing. 

:For comparison purpose, we first implemented the 
Eigenfaces method [I91 on the original images as shown 
in.Fi-g. 3, using the four different similarity measures in- 
troduced in Sect. 3.2. Fig. 4 shows that the Mahalanobis 

0 7  

01 

number 01 lealures 

Figure 4. Face recognition performance of the 
Eigenfaces method on the original images as 
shown in Fig. 3, using four different similar- 
ity measures: L1 ( L 1  distance measure), L2 
(La distance measure), Md (Mahalanobis dis- 
tance measure), and Cos (cosine similarity 
measure). 

distance measure performs better than the L1 distance mea- 
sure, which is followed in order by the L2 distance mea- 
sure and the cosine similarity measure. The reason that the 
Mahalanobis distance measure performs the best is that it 
counteracts the fact that L1 and Lz distance measures in the 
PCA space weight preferentially for low frequencies. Such 
behavior should be expected to be even more pronounced 
when faces are aligned and cropped, as the first several 
leading eigenvalues encode mostly for prototypical (norm) 
representational aspects rather than discrimination informa, 
tion. As the L2 measure weights more the low frequencies 
than L1 does, the L1 distance measure should perform bet- 
ter than the La distance measure, a conjecture validated by 
our experiments. The cosine similarity measure does not 
compensate the low frequency preference, and i t  performs 
the worst among all the measures. Actually, the superior- 
ity of the cosine similarity measure to the others can be re- 
vealed only when the discriminating features (derived by 
GFC) rather than the most expressive features (derived by 
PCA) are used for classification (see Fig. 6). 

The next series of experiments used the Gabor convolu- 
tion outputs, Op,u(,z), derived in Sect. 2.2, and the L1,  Lz 
and cosine similarity measures, respectively. (The Maha- 
lanobis metric is not used here because i t  employs trans- 
formed data suitable for PCA-like schemes. The L1,  Lz 
and cosine metrics are compared at different downsampling 
rates without further data transformations.) For the first 
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Table 1. Face recognition performance using the Gabor wavelet transformation with the three differ- 
ent similarity measures, respectively: L1 ( L 1  distance measure), L2 ( L 2  distance measure), and Cos 
(cosine similarity measure). Gr,:) represents the Gabor transformation downsampled by a factor 
of 16 and normalized to unit length, as suggested by [7]. A'(16), and represent the aug- 
mented Gabor feature vector X ( P )  as defined by Eq. 4 using three different downsampling factors, 
respectively: p = 4,16, or 64. 

measure \representation ' ~ ; , 6 , )  
L 1  distance measure 76% 
Lz distance measure 73.5% 

cosine similarity measure 72% 

~ ( 4 )  ~ ( 1 6 )  ~ ( 6 4 )  

76.5% 76.5% 76.5% 
72% 72% 72% 

70.5% 70.5% 70% 

set of experiments, we downsampled the Gabor convolution 
outputs by a factor 16 to reduce the dimensionality and nor- 
malized them to unit length, G$), [7]. The classification 
performance using such Gabor outputs is shown in Table 1 .  
The best performance is achieved using the L1 similarity 
measure. Comparing Table 1 with Fig. 4, we found that (i) 
under the Lz and cosine similarity measures, the Gabor fea- 
tures carry more discriminating information than the PCA 
features do, a finding consistent with that reported by Do- 
nato et al. [7] on facial action classification; and (ii) the 
performance with the three similarity measures, L1, LZ  and 
cosine, varies less drastically than that shown in Fig. 4. The 
second finding indicates that the Gabor feature represen- 
tation is less likely affected by preferential low frequency 
weighting, which qualifies the Gabor feature representation 
as a discriminant representation method rather than an ex- 
pressive representation method. We have also experimented 
on the augmented Gabor feature vector X(P)  as defined by 
Eq. 4 with three different downsampling factors: p = 4, 16, 
and 64, respectively. From the classification performance 
as shown in Table I ,  we found that (i) the augmented Ga- 
bor feature vector X ( P )  carries quite similar discriminating 
information to the one used by Donato et al. [7]; and (ii) 
the performance differences using the three different down- 
sampling factors are not significant. As a result, we choose 
the downsampling factor 64 for the next series of experi- 
ments, since it reduces to a larger extent the dimensionality 
of the vector space than the other two factors do. (We exper- 
imented with other downsampling factors as well. When the 
downsampling factors are 256 and 1024, the performance is 
marginally less effective; when the downsampling factor is 
4096, the recognition rate drops drastically.) 

Even though the performance shown in Table 1 indicates 
that the Gabor based feature representation carries discrim- 
inating rather than expressive information, it is still not con- 
venient to use directly such a representation for classifica- 
tion, since the dimensionality of the augmented Gabor fea- 
ture vector space is very high. To reduce the dimensionality 
of the vector space, we applied PCA on the augmented Ga- 

bor feature vector X ( P ) ,  where the downsampling factor p 
is set to be 64. Fig. 5 shows the face recognition perfor- 
mance of PCA using the augmented Gabor feature vector 
A'(@). Our results indicate that (i) compared to Fig. 4, the 
recognition performance improves by a large margin for all 
the similarity measures, and this shows that the augmented 
Gabor feature vector carries more discriminating informa- 
tion than the original images do; and (ii) Mahalanobis and 
L1 distance measures perform better than the other two sim- 
ilarity measures - an inherent disadvantage of the PCA 
method. 

Our last series of experiments, performed using the novel 
Gabor Feature Classifier (GFC) method described in this 
paper, show that the GFC derives discriminating Gabor fea- 
tures with low dimensionality and enhanced discrimination 
power. Fig. 6 shows face recognition performance of GFC 
o n  the augmented Gabor feature vector X(P)  using L 1 ,  Lz 
and cosine similarity measures, respectively. Again, the 
downsampling factor p is set to be 64. The features derived 
by GFC do not preferentially weight low frequencies, since 
the GFC involves a whitening operation during the simulta- 
neous diagonalization of the two within- and between-class 
scatter matrices. As a result, the superiority of the L1 dis- 
tance measure to the L Z  distance measure displayed by the 
PCA method as shown in Fig. 3 and Fig. 5 should not exist 
for the GFC method, a conjecture validated by our experi- 
ments. Fig. 6 shows that both the L1 and the L2 distance 
measures display similar recognition performance. The co- 
sine similarity measure, however, performs the best, with 
100% correct recognition rate using only 62 features (note 
that the curves in Fig. 6 were drawn with an interval resolu- 
tion of 5 features, and it shows that 100% correct recogni- 
tion rate happens when 65 features are used). 
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