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Sparse Signal Reconstruction from
Limited Data Using FOCUSS: A
Re-weighted Minimum Norm Algorithm

Irina F. Gorodnitsky,Member, IEEE and Bhaskar D. Rao

Abstract—We present a nonparametric algorithm for finding compression where the goal is to find a sparse or perhaps a
localized energy solutions from limited data. The problem we maximally sparse representation of a signal. In this paper, we

address is underdetermined, and no prior knowledge of the shape ,q4rags the “best” basis selection and develop a nonparametric
of the region on which the solution is nonzero is assumed. Termed

the FOcal Underdetermined System Solver (FOCUSS), the algo- algquthm folr thI_S prObIem_' . . .
rithm has two integral parts: a low-resolution initial estimate of Since estimation from limited data is an underdetermined
the real signal and the iteration process that refines the initial problem, infinitely many solutions exist, and additional criteria
estimate to the final localized energy solution. The iterations are must be used to select a single estimate. The sparsity of
based on weighted norm minimization of the dependent variable hq go|ytion is the onlya priori selection criterion available

with the weights being a function of the preceding iterative . bl A h in Secti . th it
solutions. The algorithm is presented as a general estimation tool ' QU probiem. As we show In ection i, the sparsity

usable across different applications. A detailed analysis laying constraint does not define a unique solution but rather narrows
the theoretical foundation for the algorithm is given and includes it to a finite subset. Hence, the problem remains underde-
proofs of global and local convergence and a derivation of termined. The non-uniqueness is worse when data represent
the rate of convergence. A view of the algorithm as a novel a single vector sample, such as a single time series or a

optimization method which combines desirable characteristics _. | hot f S techni
of both classical optimization and learning-based algorithms is S'N9'€ SNapshot irom a Sensor array. Some common techniques

provided. Mathematical results on conditions for uniqueness of uUsed to compute sparse signals include exhaustive searches
sparse solutions are also given. Applications of the algorithm are (e.g., greedy algorithms [1], [2]), evolutionary searches (e.g.,
illustrated on prob_ler_ns il’]_ direction-of-arrival (DOA) estimation genetic algorithms with a sparsity constraint [3]), and Bayesian
and neuromagnetic imaging. restoration with Gibbs priors [4]. These algorithms do not
utilize any additional information about the solution except its
|. INTRODUCTION sparsity. Thus, their results are not well constrained, and the

- . . bases they select are essentially arbitrary with respect to the
HE PRO.BLEM OF f_mdln_g localized energy SOI.unonSreal signal. Alternatively];-norm andl,-norm minimization
from limited data arises in many applications includ- ; ; .
. o L . S and Linear Programming (LP) methods which produce a
ng spectral est|ma_t|on, <_j|rect|on—ofje_1rr|v_al estimation (DOA)solution by optimizing some cost function are also used for
signal reconstruction, signal classification, and tomographélparse signal estimation [5]. Unfortunately, in most signal

Limited data can arise from either limited observation timé ; . . :
. . ; rocessing problems, the relationship of the real signal to the
nonstationarity of the observed processes, instrument con- . : :
; . cost functions is not known, and these techniques also return
straints, or the ill-posed nature of the problem and, often . : : : .
ah essentially arbitrary solution with respect to the real signal.

from a combination of these factors. To treat this problem : ) .
. . . . Another approach used to find sparse solutions is to compute
mathematically, we define localized energy or sparse signals

. . m?ximally sparse solutions [6]. In Section Ill, we show that
as signals that are zero everywhere except on a minima . S . :
In_general, maximum sparsity is not a suitable constraint for

Ifljrrfding sparse signals and derive the conditions under which

definition is given later in the paper. Thus, reconstruction of a nerate maximallv sparse solutions. and thev can be applied
sparse signal amounts to finding the “best” basis that represe%? Y sp ' y bp

. . N . in ﬁqis case. The problem i&-P complete, however, so the
this signal, where “best” can be measured in terms of a nor

S oY : ST Iigh computational cost and, in some cases, compromised

This is different, for example, from basis selection in signa .
convergence, are serious drawbacks of these methods.
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stationarity, in which case, parametric techniques providelution from a preceding iteration as the weight for the
good resolution. These are not the problems we addreext iteration. The use of this recursive weighting to enhance
here. What we are interested in are the problems in whicbsolution in harmonic retrieval was studied in [18], [19],
parametric methods suffer from poor resolution and/or are veapd the references therein. A similar iterative procedure was
difficult to use either due to unfavorable statistical propertiésdependently proposed in neuroimaging [8], [20]-[22], al-
of the signal or because an accurate parametric model is tramiugh the implementation of the recursive constraints was
available. The parametric methods also have three genarat explicitly exposed in [20]. In [22], Srebro developed
limitations in our view: the nontrivial requirement that aran interesting and slightly different implementation of the
accurate parametric description of the signal and the dimensiecursive weighting. The crucial importance of the correct
of the parametric model be suppliadpriori and the potential initialization of these procedures was not recognized in any
for a rapid rise in the number of model parameters with a small these, and the suggested algorithms simply amounted to
increase in the complexity of the signal. In our experienceefinement of a minimum 2-norm type initial estimate. The
these limitations may not be easily overcome in problemse of different initializations and generalizations of the basic
such as neuroelectromagnetic imaging (EEG/MEG) [8], whidterations were suggested in [21] and [24]. The use of a more
motivated the research presented here. general, non-AST objective function at each iterative step was
In what follows, we develop a nonparametric algorithrsuggested in [6].
designed to address the shortcomings of the above technique$he contributions of this paper are as follows. We present
Namely, the algorithm provides a relatively inexpensive waye development of the re-weighted minimum norm algorithm,
to accurately reconstruct sparse signals. Termed FOcal Undehich incorporates an initialization and a general form of
determined System Solver (FOCUSS), the algorithm consisesweighted iterations, and we provide a comprehensive theo-
of two parts. It starts by finding a low resolution estimate aktical foundation for re-weighted minimum norm algorithms,
the sparse signal, and then, this solution is pruned to a spamgch has not been previously available. We recognize the
signal representation. The pruning process is implementgenerality of the method and convert it from the particular
using a generalized Affine Scaling Transformation (ASTJrameworks of spectral estimation and neuroimaging into
which scales the entries of the current solution by thosegeneral signal processing algorithm. We generalize AST-
of the solutions of previous iterations. The solution at eadiased iterations by introducing two additional parameters.
iteration then is found by minimizing thig-norm of the trans- These parameters are necessary to extend the algorithm to
formed variable. The low-resolution initial estimate providea class of optimization techniques usable for a wide range
the necessary extra constraint to resolve the non-uniquenessfadpplications. The work also provides a formulation of the
the problem. Low-resolution estimates are available in magparse signal estimation problem in a mathematical framework
applications, and we describe some particular applicationsasfd develops the theory of uniqueness and non-uniqueness of
interest. The AST is a powerful procedure, in general, whosparse solutions. The paper is organized as follows. In Section
potential has yet to be fully realized. It has also been exploitdt}, we provide background material and definitions. In Section
but with a different optimization objective, in the design ofll, we present a theory of uniqueness and non-uniqueness
fast interior point methods in LP, including the Karmarkaof sparse solutions. Section IV contains a description of the
algorithm, and in minimizing thé,-norm (1 < p < 2) of the FOCUSS algorithm. In Section V, we present global and local
residual error in overdetermined problems [9]. convergence analyses and derive the rate of convergence. In
A posteriori constrained extrapolation and interpolation oSection VI, we discuss implementation issues revealed by the
bandlimited signals has been vigorously studied in the pasrlier analysis, including the necessary modifications to the
but mostly in the context of spectral estimation, and marsarly form of the algorithm to make it applicable to a wider
works pertain to the problem where signal bandwidth isnge of problems. In Section VII, we provide a view of the al-
known. Papoulis in [10] and Gerchberg in [11] proposed whgbrithm as a computational strategy partway between classical
is known as the Papoulis—Gerchberg (PG) algorithm whicbptimization and learning-based neural networks. Applications
given a continuous signal of known bandwidth on a finitef FOCUSS to DOA and neuromagnetic imaging problems
interval of time, iteratively recovered the entire signal. Are presented in Section VIIl. Several other applications of
one-step extrapolation algorithm for this procedure was lateEOCUSS can be found in [23], [25], and [26].
suggested in [12]. Jain [13] unified many of the existing The paper focuses on the theoretical foundation of ahe
bandlimited extrapolation algorithms under the criterion qfosterioriconstrained algorithm in which we restrict ourselves
minimum norm least squares extrapolation and suggesteda noise-free environment. Issues pertaining to noisy data,
another recursive least squares algorithm. A similar algorithsych as performance of the algorithm, are not covered here.
with no restrictions on the shape of the sampled regidrhese issues must be considered in the context of regulariza-
or the bandwidth, was presented in [14]. In [15], Papoulison, which is used to stablize inverse calculations and which
and Chamzas modified the PG algorithm by truncating tleeuld not be addressed in the already lengthy paper here,
spectrum of the estimate at each iteration to reduce spectrat we provide some references. In this paper, we provide
support of the solution in the subsequent iteration. The firsto ways to regularize FOCUSS that use either of the two
use of what is equivalent to the AST was proposed in @mmon regularization techniqgues—Tikhonov regularization
spectral estimation context in [16] and [17]. The authomr truncated singular value decomposition—at each iteration.
modified the Papoulis—-Chamzas algorithm to use the entlre[27], we provide the sufficient conditions for convergence



602 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997

of the regularized FOCUSS algorithms. In [8], we demonstratehere AT = A#(AAH)~! denotes the Moore-Penrose in-
the successful regularization of FOCUSS and its performaneerse [29]. The solution has a number of computational
in a noisy environment for the neuromagnetic imaging proldvantages, but it does not provide sparse solutions. Rather, it
lem. We also give an example with noisy data in Section Vllhas the tendency to spread the energy among a large number
The computational requirements of inverse algorithms aid entries ofx instead of putting all the energy into just a
efficient computational algorithms for large-scale problems afew entries.

investigated in [28]. A closely related weighted minimum norm solution, on
which FOCUSS iterations are based, is defined as the solution
[I. NONPARAMETRIC FORMULATION minimizing a weighted norn{W —1z||, whereW is a matrix.
AND MINIMUM NORM OPTIMIZATION It is given by
We review the nonparametric formulation of a signal es- z = W(AW)*tb. 3)

timation problem and the common minimum norm solutions.
We work in complexC™ space with the usual inner product ando accommodate singula’, we extend the definition of
norms defined. We carry out the development in the discrétee weighted minimum norm solution to be the solution
domain because it significantly simplifies the presentation amdnimizing || *z||. By changingW, every possible solution
is relevant to most signal processing applications, as mast(1) can be generated. Whén is diagonal, the cost objective
computations are carried out in discrete form. The results aienply becomeg|Wz|| = E?:Lw#o(fu—i)% wherew; are
directly extensible to analog (continuous) signals. the diagonal entries ofV.

Linear extrapolation (reconstruction, estimation, approxima- For future discussion, it is useful to restate the definition of
tion, interpolation) problems can be expressed in the matéxweighted minimum norm solution as follows:
equation form ,

find = = Wiy,

Az =1b (1) whereg : min ||g||, subjecttoAWq¢=105. (4)

where A is th? m X, (mn < n) matrix -operator from Note that||q|| = ||W *z||, i.e., the optimization objective in (4)
an unknown signalz € C™ to a limited data seth € . . . .
is preserved. Without further reliance on such terminology, we

m 1t 1 T
cr. T_he conditions fqr the existence ol are given by .note that minimum norm-based solutions (2) and (3) constitute
the Riesz representation theorem. The problem is to fll"lﬁ

(reconstruct, estimate, approximate, extrapolate) the signa Ilbert space optimization, which guarantees their existence

. . and uniqueness.
from its representatiof. s -
. . o The common norm minimization methods for finding sparse
We use an example of harmonic retrieval to facilitate the

: . solutions are the minimui norm and the related LP problem.
presentation. In this example, each column_frepresents . S )
: . . . The LP problem in the above notation is stated as follows:
a sampled exponential sinusoid of some frequengyi.e.,

[1, =i, o=i2 ¢~i(m=1]T The columns of4 are gen- minimize cf x : Az > b, x > 0, wherec is ann-vector repre-
’ ! v ) o 9 senting linear cost parameters. If the set of feasible solutions
erated by selecting the values of from within the range

o . _Is nonempty, the fundamental theorem of LP guarantees the
(-, ) to sample the frequency axis with the desired density, . . e .

. Xistence of a solution to (1) that satisfies the LP criterion and
The values ofw may be non-uniformly spaced and can be

chosen to reflect prior knowledge. The datis a sample of a i which the number of nonzero elements does not exeeed
process consisting of a few sinusoids. The chosen frequencies
{w;} may not match exactly the harmonics contained. iive IIl. DEFINITION AND CONDITIONS ON
denote the real solution to be the solution whose nonzero UNIQUENESS OF SPARSE SOLUTIONS
entries pick out the columns of that are the closest (in the A solutionz that hag nonzero terms lies in g-dimensional
1-norm) to the harmonics containedtinThus, nonparametric subspace of’™. For convenience, we will refer to such a
estimation of sparse signals can be thought of as a basigution as ap-dimensional solution, wherg can take any
selection process for a signal. It is important to note that th@alue from 1 ton.
sinusoids represented by each columndoimust be sampled
at the same sampling density as that used to genérate A Definition of a Sparse Solution

Non-uniqueness of solutions to (1) is a well-known problem.
The infinite set of solutions can be expressed as z,,,,, + v,
wherewv is any vector in the null space of, andz,,,, is the

To study sparse solutions, we suggest a mathematical def-
inition for these solutions. We propose that sparse solutions
minimum norm solution, which is defined next. be defined as the solutions witty or less nonzero terms.

The minimum norm solution is the most widely use(;l'hus, these solutions form the bases, i.e., the minimal rep-

estimate for (1) and is found by assuming the minimu'[ﬁesentations for the signal. The mathematical properties of
Euclidian or lo-norm criterionmin [j]| = (3", 2)1/2 on these solutions are distinct from the rest, as can be observed

i=1 H H '
the solutiont This solution is unique and is computed as from Fhe_umqueness results derived here. In addition, many
optimization algorithms, such as LP, naturally return these
Tmn = ATH (2) types of solutions.
lUnless explicitly stated, all| - || norms in this paper will refer to the The sparse solutions defined abO\{e are obviously not unique.
2-norm. Their total number can range frofft*)+1to (), as shown
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in Section VI. It may appear that we superficially induce non- The following theorem gives bounds on dimensions of
unigueness of sparse solutions by includingshv@limensional unique degenerate basic solutions.
solutions since an underdetermined system is guaranteed tdheorem 1: Given a linear system (1) satisfying the URP,
have at leastn — 1 artifactual m-dimensional solutions. We which has ap < m/2-dimensional solution, there can be no
show, however, that solutions of dimensipr: m can also be other solution with dimension less than=m —p+ 1. A
non-unique. Hence, the definition of sparsity cannot depend bilimensional solution is the unigue degenerate basic solution
the unigueness argument. Rather, #h&imensional solutions for a given system.
must be included in the definition because they provide valid Proof: Suppose two solutions; andzs to (1) exist with
minimum support representations. corresponding dimensions< m/2 andr < m—p+1. Then,
Sparse solutions also arise in LP dpehorm minimization these solutions satisfy the systemsz; = b and Az = b,
problems, and we borrow some useful terminology from thagspectively, wherel; and A, consist ofp andr columns of4
area. for which the corresponding entries of andz. are nonzero.
Definition [30]: Given a set ofn simultaneous linear equa-Hence, Ajx; = Asxo, which contradicts the assumption of
tions inn unknowns (1), letB be any nonsingularn x m linear independence of the columns.&fWhenp = 1, we get
submatrix made up of columns ol. Then, if alln — m = £ m; hence, the degenerate basic solution is unique
components ofr not associated with the columns & are The following two corollaries establish conditions for the
set equal to zero, the solution to the resulting set of equatiamsiqueness of maximally sparse solutions.
is said to be @asic solutionto (1), with respect to the basis Corollary 1: A linear system satisfying the URP can have
B. The components of associated with the columns &fare at most one solution of dimension less thap2. This solution
called basic variables If one or more of the basic variablesis the maximally sparse solution.
in a basic solutionhas value zero, the solution is said to be  Proof: The results follow readily from Theorem 1.
a degenerate basic solution Corollary 2: For systems satisfying the URP, the real signal
The sparse solutions then are equivalently the basic a¢®h always be found as the unique maximally sparse solution
degenerate basic solutions. We also refer to the basic avden the number of data samples exceeds the signal
degenerate basic solutions as low-dimensional solutions alithension by a factor of 2. In this case, if a solution with

to the rest as high dimensional solutions. dimension less tham /2 is found, it is guaranteed to represent
] - ) the real signal. The sampling of the measurement signal does
B. Uniqueness Conditions for Sparse Solutions not need to be uniform.

The following uniqueness/non-uniqueness results are de- Proof: The result follows readily from Theorem 1 and
rived for systems satisfying the following property. Corollary 1.

Unique Representation Property (URPAX system (1) is  Corollary 2 is a generalization of the Bandpass Filtering
said to have the URP if any: columns of A are linearly Theorem used in spectral estimation that is derived from the
independent. Sampling Theorem [32]. The Bandpass Filtering Theorem

The URP basically guarantees that every basis componsigtes that the length of a sampling region twice the bandwidth
of the real signal is uniquely represented by a column of a real signal is sufficient to recover this signal. This is
A. In many problems, the URP can be achieved by usimifferent from the condition on the density of the sampling set
a sufficiently dense sampling rate to crediethat unam- governed by the Nyquist frequency criterion. The sampling
biguously captures all of the components of the real signdensity in our results is specified by the URP and can be
This density does not need to correspond to the Nyquiignificantly lower than the Nyquest frequency. For example,
frequency used in spectral estimation, as explained beldW.spectral estimation, the sampling rate equal to the highest
In other problems, such as physical tomography probleniggquency contained in the signal is quite sufficient to satisfy
the URP can never be satisfied. An example of suchtkze URP.
problem is the extrapolation of electric currents inside a The preceding results show that the maximum sparsity
volume conductor from externally measured electromagne€i@nstraint is not always appropriate for estimating sparse
fields. Even when the sampling set is completely denstignals. We use the following simple example to reinforce
i.e., the field is completely known everywhere outside tH&is point.
conducting volume, the current inside the volume cannot beExample 1: The system
uniquely found [31]. Given such intrinsic ill-posedness, sparse
solutions, including the maximally sparse solutions, are never
unigue. However, depending on the physics, the net effect
of the intrinsic ill-posedness on the uniqueness of sparse
solutions may be limited and must be considered in the contéxts two equally likely maximally sparse solutions; =
of an individual problem. For example, in the case of the 1 0 0] andzz = [0 0 1 1]*. Both solutions are the
electromagnetic extrapolation problem, its effect is limited tdegenerate basic solutions of dimenstoq m. Obviously, the
the uncertainty in the neighborhood of each real solution poimtaximally sparse condition does not define a unique solution
[7]. How this affects the uniqueness results for sparse solutianghis example, and its relation to the real signal is not defined.
is discussed in Section VIII, when we present an example ofTo summarize, general sparse solutions, including ones with
the neuroimaging problem. less thanm nonzero terms, are non-unique. The constraints

1 0
0 1
0 1

= O O

1 1
llz=|1
0 1
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that do lead to a unique solution are either the maximumAt the basis of the basic FOCUSS algorithm lies the AST
sparsity constraint or the requirement that the solution has n
“less thanm /2 nonzero terms.” These provide valid opti- ¢=X 2 (5)

mization criteria for finding sparse signals when the conditiq,qre X1 = diags_1) with o1 being the solution

of Corollary 2 holds. Note that the “less tham/2 nonzero om the previous iteration. Throughout the paper, we use

terms” requirement may be cheaper to implement for Some;, 5 sybscript to denote the current iteration step. With

search methods than the maximum SPafS'W constraint. @ﬁstransformation, an optimization problemarbecomes an

we will later show, the FOCUSS algorithm can be set Ugiimization problem iny. The basic FOCUSS algorithm uses

to favor the maximally sparse solution, i.e., to converge {e AST to construct the weighted minimum norm constraint

this solution from within a large set of starting points Whew) by settingW,, = X,_., where W, denotes thea

the dimension of this solution is small relative to the SizEqgieriori weight ih each iterative step. b

of b. As the dimension of this solution increases, FOCUSS

gradually starts to favor solutions nearest its initializatio . .

Thus, FOCUSS provides a smooth transition between the trv}i/‘bThe Basic FOCUSS Algorithm

desired convergence properties: One is convergence to thdhe basic form of the FOCUSS algorithm is

maximally sparse solution when the condition of Corollary Step 1. W,, = (diagax_1))

2 holds, and the other is convergence to a sparse solution near b 4

the initialization when Corollary 2 is not satisfied. Step 2 g = (AWp,)"D 6)
We would like to make a few further comments on the Step 3: a2 = Wy, qr.

application of the uniqueness results. . . S .
. j . Since entries that are zero at initialization remain zero for
Multiple Samples of DataThe above results assume a lin-_ = . : . .
. all iterations, we assume without loss of generality that the
ear model (1), where the vectérrepresents a single sample

o : number of nonzero components in an initial vector, which
from some data distribution. Such a veciocan be a time , ; . . .
: . . defines the dimension of the problem, is alwaysThe final
series/autocorrelation or a single snapshot from a sensor array. .. ; .
. . solutions produced by the algorithm will be denotedabyo
In [7], we have shown stronger uniqueness results when . . . . ;
: differentiate them from the all feasible solutiofn$o the linear
composed of multiple data samples, namely, we have sho

Wi
that sparse solutions of dimensions less tharare unique, system (1).

: Steps 2 and 3 of the algorithm together represent the
provided that the sources are not completely correlated. It L . . .
; . eighted minimum norm computation (3). The algorithm is
is therefore most advantageous to use multiple samples, for : N
: written in three steps solely for exposition purposes. In the
example, multiple snapshots from an array of sensors, when-

. - . . ||mplementation, all the steps can be combined into one.
ever possible. In addition, the uniqueness result for multip €10 understand how the AST constraint leads to pruning of
samples of data is far less sensitive to the presence of nqiﬁe

in the data than the result for the single samip(see below). € solution space, we consider the objective minimized at

Effects of Noise:Regularized solutions that are used WheﬁaCh step
; : . ; . n 5
data is noisy provide o_nly_ an approximate flt_to the dat_a, Wl = [P = Z @i @)
where the amount of misfit is dependent on signal-to-noise q w;
ratio (SNR). In this case, the columns df that are nearly i=1w;#0

colinear to the columns that form the basis for the real signghe relatively large entries i reduce the contribution of
can become equally likely solution candidates. This injecife corresponding elementsoto the cost (7), and vice versa.
extra uncertainty into the estimator Therefore, the effect of Thys, larger entries im;_; result in larger corresponding
noise may weaken the above uniqueness results, but to Wagfries inz;, if the respective columns il are significant
extent depends on the SNR and the angular distances betvvigentting b as compared to the rest of the columns .f
the columns of4, i.e., the condition number of. By starting with some feasible approximate solution to (1),
minimization of (7) gradually reinforces some of the already
prominent entries inc while suppressing the rest until they
reach machine precision and become zérdte algorithm
IV. THE FOCUSS AGORITHM stops when a minimal set of the columns.bthat describé

In this section, we describe the FOCUSS algorithm. We obtained. Note that the algorithm does not simply increase
first describe what we call the basic form of the algorithmhe largest entries in the initialy. In fact, the largest entries
which represents a simple implementation of the re-weightéd z, can become zeros in the final Note also that (7) is
minimum norm idea. The iterative part of this algorithm hagever explicitly evaluated in (6). The weightg = 0 and the
appeared in earlier literature for neuroimaging and specttarresponding subspaces are eliminated from the computation
estimation problems [16], [17], [21]. The basic form capturesirough the productd - W, .
the main characteristic of the procedure, and we use it here taWhile the entries of; converge to zero and nonzero values,
provide an intuitive explanation as to how the algorithm workshe corresponding entries iy, converge to zeros or ones,
We then discuss more general forms of the algorithm. The, , . .
TR . . . . “Theoretically, the elements of a solution asymptotically converge to zeros
'n't'ahzat'on of FOCUSS is discussed foIIowmg the analys'§ut never reach zeros. In finite precision, the asymptotically diminishing
section. elements become zeros.
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2 . . . . whereZ, denotes the set of all positive integers. For the uses
of the algorithm considered here, it is sufficient to assiifhe
to be constant for all iterations.

In the applications where the positivity constraint> 0 is
imposed, we can expand the rangeldb all reall > 0.5.

The lower bound on/ is explained in Section V-A. The
positivity constraint onz can be enforced by incorporating
the step sizepy, = zx — xx—1 into the algorithm, as is done

in many LP methods. The iterative solution then becomes
I = zr—1 + apy, Where the step siza is chosen to keep

all entries of; positive.

05 More generally, other nondecreasing functionscpf; can

be used to define the weights in (8), although the need for
more complicated weight functions is not evident for the
applications we have considered.

A cumulativeform of the FOCUSS algorithm can be de-
rived by usingcumulative a posterioriweights in (8) that
ie, ge(i) — 0 asz(i) — 0, and qu(j) — 1 aszi(j) are a function of more than one iteration, e.§,, =
approach nonzero values. Fig. 1 illustrates the convergergﬁgqniﬁz—ll #!). This form may prove to be more robust in
of the elements ofy.. The example uses & x 10 matrix A terms of convergence to solutions near the initialization, as was
and the vectob equal to the ninth column ofl. The correct found to be the case for the neuromagnetic imaging problem.
sparse solution then is a vector of zeros with a one in the ninfRe convergence analysis of general FOCUSS (8), which is

entry. Each line in Fig. 1 shows an element of the vegior presented next, is extensible to the cumulative form of the
as a function of the iteration indek from initialization to  zgorithm.

the fifth iteration. The ninth elemeny;,(9) converges tamne
whereas the rest becorzera This indicates that the desired
sparse solutior:* with only one nonzero element in the ninth

MAGNITUDE

ITERATION STEP

Fig. 1. Elements ofy at each iteration for thé0 x 4 example described
in the text.

position was found. The minimum norm solution (2) was used V. ANALYSIS
for the initialization. Note that the ninth element was not the We concentrate our analysis on the form (8) of FOCUSS
largest in the initialization. unless indicated otherwise. The results are extensible to the

From our experience, the pattern of change;iBMerges other forms. SincéV,, is constant for all iterations, we assume
after few iterations, from which it is possible to identify the5¢ W,, = I without affecting the results of the analysis.
entries converging to ones and zeros. Significant savings inrpe steps of the FOCUSS algorithm always exist and are
computation, as well as better convergence and performargﬁﬁque since the transformation (8) is a one-to-one mapping.
properties, are gained by eliminating the diminishing entrigge next consider the global behavior of the algorithm. For
of z that are indicated by at each iteration. Further savingsyn aigorithm to be a useful estimation tool, it must converge
can be achieved by implementing a hard thresholding opgs- point solutions from all or at least a significant number
ation to obtain the final result once the convergence pattg§pinitialization states and not exhibit other nonlinear system
becomes clear. Although for the purposes of the analysis Wenaviors, such as divergence or oscillatiGiobal conver-
do not explicitly include these truncation operations in thgance analysiss used to investigate this behavior. The term
algorithm, they should always be an integral part of FOCUS{ypal convergencehowever, is sometimes used to imply

implementation. convergence to a global minimum, which is not the appropriate
meaning here. To avoid confusion, we use the tdixed
B. General FOCUSS point convergenceor absolute convergenceo describe the

We extend basic FOCUSS into a class of recursively cofonvergence properties of the algorithm. These terms mean
strained optimization algorithms by introducing two paranil’@t an algorithm converges to a point solution from any
eters. In the first extension, we allow the entriesagf , Starting condition. The ternabsolute stabilityhas also been
to be raised to some powés as shown in (8). The secondused for this property. o N
extension is the use of an additional weight matrix—denoted Global convergence analysis is not sufficient to understand
W,,—which is independent of tha posteriori constraints. t_he complet_e behawo.r of even an absolutely convergent non-
This extension makes the algorithm flexible enough to be usééfar algorithm. Typically, not all the convergence points
in many different applications. It also provides a way to ianPrm a valid solution set, but this cannot be revealed by the

a priori information. The general form of the algorithm then iglobal convergence analysis alone. This point is sometimes
overlooked. Here, we add local convergence to our analysis to

Wy, = diag(xft_l), lel, characterize the different convergence points. We first provide
. + some background in nonlinear systems to motivate our analysis

G = (AW, Wy, )b (8) 4 L 7
steps. This material is a compilation from several sources. For
xp = Wa, Wpan references, see, for example, [33] and the references therein.
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A phase space is a collection of trajectories that trace theConvergence of FOCUSS fdr< 1 is discussed in Section
temporal evolution of a nonlinear algorithm from differen¥/-C. The absolute convergence of FOCUSS means that it
initial points. The points at which a nonlinear algorithnproduces a point solution from any initial condition, but this
is stationary are calledixed points These can bestable point can be either a stable, a saddle, or an unstable fixed point.
fixed points (s-f-ps)to which the algorithm converges fromWe next determine which solutions of FOCUSS correspond to
anywhere within some closed neighborhood around suchwaich fixed states.
point, orsaddle fixed pointgo which the algorithm converges
only along some special trajectories. The third type, knows. Analysis of Fixed Points

as unstable fixed poinfsare stationary points from which an 1) Sparse SolutionsThe following theorem shows that the
algorithm moves away given any perturbation. The largegf,, .se FOCUSS solutions are the s-f-ps of the algorithm.
neighborhood of points from which an algorithm converges +aorem 3: Let #* denote a sparse solution to (1). For any
to a given s-f-p is called the basin of attraction of that Sfx* there exists a neighborhogd around it such that for any
p. For a fixed-point convergent algorithm, its entire solutiog0 € Q, the FOCUSS generated sequefieg }22,, converges

space is divided up by the basins of attraction containing s¢f; z*. The local rate of convergence is at least quadratic for

ps. The borders separating individual basins do not belong,{p, pasic algorithm and at leagt for the general class of
any of the basins. These borders can be made up of trajecmﬂ%%rithms @).

leading to saddle points or to infinity, or they can be a dens€” p,oof see Appendix.

set of unstable fixed points, or they can be a combination of\ste that the number of sparse FOCUSS solutions is limited
the two. Thus, it is important to recognize that an absolutely ot most. one solution per eacli (r < m) subspace of
convergent algorithm does not converge to an s-f-p from apy \what is left is to determine the nature of the non-sparse

initialization point. It can converge to a saddle point or it Ma¥q|utions, which we show correspond to saddle and unstable
get stuck at an unstable fixed point. Because the saddle poifsy points.

are reached only along special trajectories whose total numbeQ) Non-sparse Solutions:

has measure zero, an algorithm converges to these S°|Uti°”éorollary 3: Non-sparse FOCUSS solutions @if, m <
with probability O (w.p. 0). The unstable fixed points also have < n, are its saddle points. Convergence to these points is

measure zero; therefore, an algorithm returns these points WRng special trajectories on which groupings of two or more

0. It follows then that an absolutely stable algorithm convergessments of: do not change relative to each other. A fixed
to s-f-ps w.p. 1. Ideally, the s-f-ps of such an algorithm WOU'Hoint in ¢ is the unstable fixed point of FOCUSS.
form the set of valid solutions, such as the sparse solutions prgof: See Appendix.

in our case, and the other fixed points would be outside of rrom the proof of Corollary 3, it follows that the set of

the solution set. The unlikely case of an algorithm becomingygle fixed points of (8) is not dense. Since a nonlinear
fixed in a saddle or unstable fixed point can be resolved Rystem converges to a saddle or unstable fixed point w.p. 0, the

choosing a different initialization state. o ~ probability of FOCUSS converging to a non-sparse solution is
Equivalent global convergence theorems exist in two indgisg 0.

pendent fields. In Nonlinear Programming (NP), the theory

is based on the analysis of the general theory of algorithrgs, Relationship to Newton's Method and Cost

which was developed mainly by Zangwill. In nonlinear dyg nctions Associated with FOCUSS
namical systems, the Lyapunov stability theory was developed

by others based on Lyapunov’s first and second theorems, wén @ broad sense, quadratic minimization of the AST gener-
use elements of both theories in our analysis, as follows. \@&d cost functions is Blewton’s methodecause it replaces
first define the solution set to contain all the fixed points & 9lobal optimization problem by a series of local quadratic
FOCUSS and use the global convergence theorem from NFPRJimization steps. In fact, as shown below, FOCUSS is
show that FOCUSS is absolutely convergent. We then use lofgHivalent to a modified Newton's method minimizing a
convergence analysis to determine the nature of the individG@ncave cost function.

fixed points. We show that the sparse solutions are the s-f-1N€0rem 4:An iterative step from the current statdo the

ps of FOCUSS and the non-sparse solutions are the sadffé/ Stater, sy = o — &, of ”}e FOCUSS algorithm (8),'3
points. The rate of local convergence is shown to be at Bast €9ual t0 @ steppy, with A = — 7 of the modified Newton’s
Local analysis of saddle points is difficult and we use nonlinegtethod minimizing the function

dynamical system theory concepts for this part of the work. Oz, 1)

A. Global Convergence D ity o 11|73 =1
Theorem 2: The FOCUSS algorithm (8) is absolutely con- ~ ] — 2= A {5 > :0:6 1‘75 L i >CO" ©)
vergent, i.e., for any starting poiag, it converges asymptot- R = Integer,  ; €

ically to a fixed point. The descent function associated witubject to Az = 5. The modification can be viewed equiva-

the algorithm isL(z) =[]} |zx(¢)|. The set of fixed points lently as using a modified Hessian 6f(z,), in which the

I' of the algorithm are solutions to Az = b that have one signs of its negative eigenvalues are reversed, and the positive

or more zero entries. scaling A = ﬁ Further, the modified Newton search
Proof: See Appendix. criteria for constrained minimization af(y,!) : y = Az is
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equivalent to the constrained weighted minimum norm criteriais theregularization parametethat must be chosen before
min ||W,} z||* of the algorithm. For the basic FOCUSS10) can be solved. When the condition numbergf is not

algorithm, A = 1. very large, the solution to (10) can be found by solving the
Proof: See [26]. normal equations
FOCUSS finds a local minimum of'(x,l) N Az = b. T ) T
The initialization determines the valley 6f(x,7) minimized (A Aw + N)zip1 = Ayb. (11)

by FOCUSS. The valleys of'(z,l) then define the basins
of attraction of the algorithm. The parameteand a priori
weights shape these valleys and influence the outcome of the (Aw )\I)(xk-l—l) - (12)
algorithm. s

The cost function is useful in understanding the behavior gf the minimum norm sense is recommended instead. Standard
FOCUSS. It can be used to show that basic FOCUSS alwaygplementations for solving (12) that include finding the
converges to the minimum of the valley 6z, 1) in which it gptimal A are not very computationally efficient. A novel
starts, whereas general FOCUSS can move away and convejig@rithm for solving this problem efficiently is given in [28],
to the minimum of another valley [26]. We can also shownq we omit it here in the interest of space.
that if we constrain the entries afto not change their signs  TsvD: Here, Ay is replaced with a well-conditioned ap-

throughout all iterations, we hav@(z, ) < C(ax-1,1), .., proximation Ay, ., given by SVD expansion afl truncated to
FOCUSS is convergent to the local minimum, for dny 0.5  the first+ components

[26].

The breakdown of convergence fér< 0.5 can also be Aw, = UtStVtT- (13)
observed fromC(x,7). Whenl = 0.5, C(z,l) is the 1-norm i - _
of 2. Since quadratic approximation to a linear function is ndf"€ matrices/; andV;" are composed of the firgtleft and
defined, FOCUSS steps are also not defined, lard0.5 in ngh't singular vector's otél.w. S, is the diagonal matrix con-
(8) produces no change in, for k > 1. Forl < 0.5, C(x, ) 'tamln.gt gorrespondlng singular values. The TSVD FOCUSS
is piecewise convex; therefore, FOCUSS steps maximize ffgration is then
local C(_)st,_whlch leads first to a sparse solgtlon followed by Tl = WkVtS,leth. (14)
an oscillation cycle between two sparse points.

Although we do not emphasize the following use of thghe parametet can be found using thé-curve criteria [35],
algorithm here, FOCUSS also offers simple and relativefgr example. The performance of both regularized versions
inexpensive means of global costs optimization when a gogfl FOCUSS was studied in the context of the neuromagnetic
approximate solution is already known. Examples of such uggaging problem in [8].
are LP problems, in which solutions may change only slightly The cost of inverse operations and efficient algorithms
in day-to-day operations. If initialized sufficiently near théor computing regularized inverse solutions for large-scale
solution, only one or two iterations may be needed to identiptoblems are presented in detail in [28]. The Tikhonov reg-
the convergence pattern and, thus, the solution. Usirg2 ularization implementation proposed in [28] is approximately
in (8) and efficient implementations of the inverse operatiafiree times more efficient than the TSVD regularization that
[28] can further speed up the convergence. utilizes the R-SVD algorithm. In either case, the cost of both
regularized inversions is only a linear function in i.e.,
O(m?n + m?) floating-point operations.

Here, we discuss factors pertaining to implementation of the The truncation of entries of at each iteration and the hard
re-weighted minimum norm algorithms. We first discuss tH@resholding operation to terminate iterations were already
regularization, the computational requirements of FOCUS@scussed in Section Ill. These provide a very significant

and the use of the paramefekVe then discuss how to achievesaving in computational cost and improve the performance.
the desired Convergence properties_ They should be used in all FOCUSS implementations.

Each iteration of FOCUSS requires the evaluation of The parametel can be used to increase the rate of conver-
(Aw)*. Aw = AW}, (with Wy, = W, W,,) is the weighted 9ence and so further r_egjuce the cost of .computation. Althc_)ugh
A matrix at stepk. When (Ay)* is ill conditioned, the convergence to the minimum of the basin where the algorithm
inverse operation must be regularized to prevent arbitrarfjarts is not guaranteed fbg# 1, convergence to this minimum
large changes i in response to even small noise in the dat&an be shown from any point in its neighborhood for which
Here, we suggest two regularized versions of FOCUSS baddf; ‘ax|| < » holds in the subsequent iteration. Thus, the
on the two most common regularization techniques [8]. Of@equality [|[W/*q|| < n defines a neighborhood of local
is Tikhonov regularization [34] used at each iteration. Theonvergence for a given realization of (8). To utilize> 2,
second is truncated singular value decomposition (TSVDYe can begin the calculations usihg- 1 and switch tal > 2

Otherwise, solving

VI. IMPLEMENTATIONAL ISSUES

which is also used at each iteration. once anzy is reached for which the above inequality holds.
Tikhonov Regularizationin this method, the optimization In principle, the parametdrcan also be used to shape the
objective is modified to include a misfit parameter basins of attraction and thus control the convergence outcome,

but we do not advise this because it is difficult to predict the

: 2 2 2
Him[”Ax = b7+ A Wi |7 (10) effects of a change ihon the outcome. Instead, we concentrate
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original A. The minimum norm solution to (15) is
2 = (A N)To = NAH (A, N2 A7) ™1 (16)

. where A,, affects the solution only through the degree of

correlation of individual columns with the vectér whereas

the entries ofV act as weights on the corresponding elements

of z, i.e., small/large entries aV reduce/increase the penalty

assigned by the minimum norm criterion to the corresponding

x;. This means that the amplitudes of the entries in the columns

of A can modify the effect of the weights,, in a re-weighted

o ' ' ' _ minimum norm algorithm, producing a bias toward the entries

s e S T et of s e, ao . s sk 15, coresponding 10 the columns fcontalning lrger terms.

boundaries of the basins. e reason why no bias occurs in standard signal processing
problems, such as spectral estimation, should be clear now.
It is because the values in each columnAfpan the same

on the two factors that can be used to control CONVergence to 1] range.

properties. _ __Theintrinsic bias produced hy toward particular solutions
We assume here that the desired FOCUSS behavioriignsiates into larger basins of attraction around these solutions

convergence to a sparse solution in the neighborhood of {i&ne re-weighted minimum norm algorithms. To eliminate the
initialization. Additionally, we would like the algorithm to0 a5 the basin sizes must be equalized. Ideally, we would like
favor the maximally sparse solution when its dimension {§ \;se a weight in (8), such a8~ from (15), to cancel the

relatively small, for the reasons discussed in Section lll. " yenajties contributed to the weighted minimum norm cost by

Fig. 2 presents a schematic picture of the solution Spagf: magnitude differences in entries of the columnsioThis

tessellation via FOCUSS into .basms of attraction around ea\%ight would be used at each iterative step. Unfortunately, the
s-f-p. In order for the algorithm to converge to the realize of a column is not a well-defined quantity and cannot be
solution, the initial estimate must fall into the correct baS'EompIeter adjusted via a scalar multiple. We found, however,

of attraction. Thus, the shapes of the basins and the qualityigf; an approximate adjustment through such a scaling that
the initialization are two interrelated factors that control thg,5kes the range of values in each columnofas similar

FOCUSS outcome. as possible works well for such problems as electromagnetic

To avoid having the algorithm favor any one solution, all i'%mography. We use this particular scaling in the example
basins of attraction should be equally sized. The exception Mkesented in Section VIII.

be the maximally sparse solution, which we may want to favor, 2) Effect of the Number and Dimension of the Solutions
in which case, it should be quite large. Such basin sizes oCgif the Basins:The larger the number of sparse solutions
naturally in problems that include spectral estimation and fag5 4 given problem, the greater the fragmentation of the
field DOA estimation, which explains the noted success of tg)ytion space of the FOCUSS algorithm into correspondingly
basic FOCUSS algorithm in these applications [16], [17], [19majler basins. As the sizes of individual basins diminish, the
Physical inverse problems, such as biomedical or geophysiggsrithm must start progressively closer to the real solution
tomography, have a distinct bias to particular solutions, afd orqer to converge to it.

the basins must be adjusted for proper convergence to 0CCUzqr anm x system, the maximum number of sparse

We discuss this issue next. Initialization options are discussggltions occurs when all the solutions are basic. i.e.. there
at the end of the section. are no degenerate basic solutions. That number is given by

i i n!
A. Basins of Attraction <n ) _ — 17

Im!’
The factors that control the shape of the basins are the m m,)tm!

relative sizes of the entries in the columnsAfand the total The number of basins is reduced when degenerate basic
number of sparse solutions in a given problem, as shown nesglutions are present. Eaghdimensional solutior(p < m)

1) Effect of A on the Basins:In any minimum norm based reduces the number of s-f-ps by
solution the magnitude differences in the entries of different
columns ofA act analogously to the weight®” of a weighted <” -p ) _1. (18)
minimum norm solution. This can be seen as follows. Suppose m-=p
we can express matri¥ as a product of two matrices,, and

When the degenerate solution is 1-dimensional, there can be
N so that (1) becomes g

no other degenerate basic solutions, and the total number of
ANz =b (15) Ssparse solutions is minimaf”*) + 1.
To summarize, the number of basins decreases with an
where A,, is such that the entries in each of its columns spancrease in the number of data points and a decrease in
exactly the same range of valud¥.is then a diagonal matrix the dimensions of the degenerate basic solutions and increases

that reflects the “size” differences between the columns of théth an increase in the dimension of the solution space
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Basin sizes also depend on the dimensions of s-f-ps they o Simplex
contain. When there is no intrinsic bias due tb (either _\m\,«\“f‘fémf . o oS thods
naturally or because we cancel it with a weight matrix), o
the basins around degenerate basic solutions are larger than zo\\‘\"p v :/
the basins around the basic solutions, and the smaller the Q\\c;\\\*::;\o‘\/" Minimum support™ 32222‘!2?532&“&*2
dimension of the degenerate basic solution, the larger its 8‘2059\}/"//
basin of attraction. This is because when the sparse solutiemge soiutions (e-weighted
are all basic, eachn-dimensional subspace has an equaP™™"" e LeaS_» | min norm algorithms
probability of being the solution, and all basins are equal. c';"s’;';fl’ggtieéér;,gd"' L e
n

When a degenerate basic solution exists, a 1l-dimensional
solution for example, then-dimensional solutions in the
subspaces containing this dimension are no longer preseif,3. Diagram of optimization methods for finding sparse solutions. The
and an initialization that would have lead to one of thosesition of the FOCUSS algorithm is highlighted by the boxed area.
basic solutions now leads to the 1-dimensional solution. For

a 2-dimensional solution, all the basic solutions containing i};ﬁ)plication. When multiple samples of data are available,
two dﬁmensions would pe eI_iminat.ed, but the bgsic ,S‘Olmio%wever, the sparse signal of dimension less tharthat
conFamlng .only one of its dimensions would still exist. Th%an generate this data is unique [7]. In many applications, the
basin of this SO,IUt'On _WOUId be !arge, but not as large as tQﬁarse signal of interest is expected to be of dimension less
one for the 1-dimensional solution. . _ ) thanm; therefore, it can be estimated uniquely from multiple

It follows then that when the algorithm is adjusted so thaly1\hjes of data. Standard algorithms, however, suffer from
there is no bias due td, the maximally sparse solution haSyecreased resolution under unfavorable conditions, such as
the largest basin. The algorithm then favors the maximally,giationarity of sources. In this case, they provide good ini-
sparse solu.'uon in its convergence, as deswed_, and the smallgy; ation for FOCUSS, which can then refine the solution to a
the dimension of the maximally sparse solution, the greaigner degree of accuracy. From our experience, beamforming
the likelihood of convergence to it. At the other end oOfg"5 go0d choice for FOCUSS initialization when no special
the spectrum of convergence behavior, when the dimensiQfiraints are present. This suggests array processing as one

of the real solution approaches, the algorithm must start ¢ of applications for FOCUSS, and we present an example
progressively closer to this solution in order to end up in theg ;s application in Section VIII.

right basin. Therefore, convergence to a solution neighboringygte that when sparse initial estimates are used, they should

the real solution becomes more common, but the distances B@'“blurred," and all the entries should be made nonzero

tween the real solution and the neighboring ones also become hat potentially important components are not lost. In

significantly smaller. In this case, the error is manifested fLnerga), the initialization does not have to satisfy a given linear

poorer resolution, rather than in gross discrepancy betweghem exactly; therefore, any estimate, including guesses, can

the real signal and the solution obtained. be used. In the neuroimaging application, for example, an
estimate of brain activity from other modalities may be used
to initialize FOCUSS.

learming -
Arning ~ neural networks

B. Initialization

It is clear that an initialization as close to the true solution
as possible should be used. Earlier versions of the re-weighted
minimum norm algorithm [16], [17], [20], [21] were initialized
with the minimum norm solution (2). It is a very popular low- The re-weighted minimum norm algorithms can be viewed
resolution estimate that is used whenan@riori information as a novel class of computational strategies that combines
is available because it is often thought to contain no bigements of both the direct cost optimization and neural
toward any particular solution. Instead, this solution shoultetwork methods, as depicted in Fig. 3. Like classical direct
be viewed as one that minimizes the maximum possible ermst optimization methods, FOCUSS descends a well-defined
for a bounded solution set. In [26], we show that dependimgst function, but the function is generated in the process
on A, this estimate can strongly bias particular solutions, @$ computation rather than being explicitly supplied. Like an
described in the above subsection, and is not necessarily bassociative network, FOCUSS retrieves a stored fixed state in
even in the absence @f priori information. Even when bias response to an input, but no learning is involved. Learning
compensation is used, minimum norm-type estimates caneanh be added, however, if desired, to fine tune the cost
be used universally to initialize FOCUSS. They are derivddnction. What sets FOCUSS apatrt is its utilization of the
from only single samples of data and, hence, cannot resolnéial state, which defines the cost function being optimized.
general non-unique sparse signals (see Section Ill) as thi%g next discuss how FOCUSS relates computationally to these
select only one out of several possible basins. optimization strategies.

Instead, the best available low resolution estimate of theThe computational aspects of FOCUSS differ fundamentally
sparse solution should be used for the initialization. Any from those of classical optimization methods for finding sparse
priori information should be incorporated into it as well. Theolutions, the most popular of which are the Simplex algorithm
final choice of the algorithm clearly depends on the particuland the interior methods, which include the Karmakar algo-

VIl. RELATIONSHIP OF FOCUSSTO
OTHER OPTIMIZATION STRATEGIES
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rithm. FOCUSS can be considered to be a boundary meth@ijr example addresses the narrowband far-field estimation
operating on the boundary of the simplex regidm = . An  problem, where the sources can be considered as point sources
initialization near the final solution directly benefits FOCUS@&nd the incoming waves as plane waves.
convergence. The Simplex algorithm operates on the verticesThe nonparametric DOA model is constructed as follows.
of the simplex region defined byiz < b, and the interior The data vectob(t) denotes the output of the sensors at a time
methods operate in the interior of this region, i.ds < b. ¢, which is known as @&napshatThe noise-free output of the
Interior methods do not benefit from initialization near thé&h sensor at time, i.e., b;(¢), is the result of a superposition
final solution because in the course of their computation, tloé m plane waves. This can be expressed as
intermediate iterative solutions move away from the boundary. m

The connec_tion of _FOQUSS to pseudoinve_r_se-k_)ased neural bi(t) = in(t)eiwo‘f’l(ei) (19)
networks and its application to a pattern classification problem rr
was presented in [25]. The input/output function in FOCUSS
networks is well defined, and the stability of these networks Yéherez;(t) is the response of thigh sensor to théth source at
guaranteed for any input by the convergence analysis preseritgt ¢, ande/*o7(#:) is the complex exponential representing
here. If desired, learning can be incorporated into FOCUSSH$ ith incoming wave with DOAY;, (—7/2 < 6; < m/2),
produce the desired associative recall. This can be done, §6ater temporal frequenay,, and a time delay;(¢;) of the
example, by introducing an additional weight matrix that i¢/avefront between the reference sensor andithesensor.
learned and modifies the shape of the basins of attraction.TR€ parameters; represent thedOA we want to estimate.
crucial advantage of this type of network is that a proceddie:th column of the matrix4 is the output of the array due
of regularization can be built into the algorithm to deal wit0 & unit strength source at angular locat#yn The columns
noise [8]; therefore, a model of noise is not required. Thaf€ constructed by varying; through the range of possible
is important for applications where noise models are haRQA and computing array outputs. The nonzero entries in
to Obtain, such as biomedical tomography_ Another possiﬁr&e solutionz select the angular directions of the sources that
modification of FOCUSS that borrows from neural network&ompose the signal.
involves using past solutions as the memory states and crossVe demonstrate the high-resolution performance of FO-
referencing them with the current solution to try to anticipateUSS under challenging conditions. We use three moving

the final convergence state. This can speed up the convergetfti¢ces whose location and intensity change from one snap-
and provide a form of regularization. shot to the next, a very short non-uniformly spaced linear

array (eight sensors), and short record lengths (we use single
snapshots for all cases). We run tests with varying noise
level and DOA, relative angular separations, and amplitudes
The FOCUSS algorithm is suitable for application to lineasf the waves. The spatial frequencies of the waves do not
underdetermined problems for which sparse solutions af@tch the frequencies represented in the columnd.ofhe
required. The use of the basic form of the algorithm isensors are spaced sufficiently close to avoid aliasing, i.e.,
spectral estimation and harmonic retrieval has been extensiviglg sampling density of the array is such that the URP of
investigated, e.g., [16]-[19], [26]. Several other utilizationSection Ill is satisfied. FOCUSS with = 1 and a hard
have been studied, e.g., [8], [22], [25], [26]. Here, we presetiiresholding that eliminates all entries bel®d> - zy0x,
two examples. The first example is the narrowband farfielgheres,,., = max{z (i)}, is used for all iterations. The use
direction-of-arrival (DOA) estimation problem, for which weof such thresholding significantly improves the performance
give the results of a detailed study of FOCUSS performancgnd the convergence rate. The initialization is done using a
We use scenarios with moving sources, a very short nagularized MVDR estimate computed as
uniformly spaced linear array and short record lengths (single
snapshots). The aim is to illustrate the implementation and the xz; = H%
advantages of the algorithm on a familiar signal processing a;’ Rregai

application. FOCUSS can also be applied to much broadv%ere a; is the ith column of A, and Rig = b - bH + 81

Sensor Array Processingroblems, given the appropriate for'is a regularized covariance matrix of the data. Thkere is

ward model. One such example is the neuroimaging proble{ﬁ]e identity matrix, and is the regularization parameter. The

which is the second application we present. This is a nearfie 7 : . oo
; o . fegularization of the standard covariance makix b - b is

problem, where the sources are dynamic and multidimensional? ~. ) : i

required because using so few snapshots results in a singular

the array is nonlinear and nonuniform, and no assumpti X t 1 .
is made on the bandwidth of the signhals. Sources of brz%?ri R™ can be used in place oft,, in (20) to obtain

i : . cqmparable results, but only when the number of snapshots
magnetic fields that are not resolvable with more conventiona . .
IS equal to or exceeds the number of incoming waves.

methods are shown to be resolved by FOCUSS in this exampf'e.l_he simulation results are as follows. We find FOCUSS

performance to be consistent across the tested range of ampli-

A. DOA tudes and angular separations. In the case of zero noise, the
DOA estimation deals with the estimation of incomingerror in the model is only due to the mismatch between the
directions of waves impinging on an array of sensors. Thirequencies of the signal and those contained in the columns of

problem is a special case of general sensor array processidgin this case, the algorithm successfully recovers the DOA

VIIl. A PPLICATIONS

(20)
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Fig. 4. DOA estimation from single snapshots, with an array of eight unevenly spaced sensors, of three nonstationary sources|wiii DO29° 60°]

for the first snapshot]—43° —33° 56°] for the second snapshot, afd40° —36° 52°] for the third. (a) MVDR estimates from the first snapshot
(dashed line) and from the three snapshots combined (solid line). (b) FOCUSS solution for the first snapshot. (¢) FOCUSS solution for the second
snapshot. (d) FOCUSS solution for the third snapshot.

of each wave, typically by representing it by the two colummnsoise. It also concentrates the energy in the solutions for each
of A that span it. The exception is when the DOA is ver{dOA into a smaller (2—3) number of columns df As can be
close to the angular direction of a particular column. In thaxpected, due to noise, FOCUSS solutions may contain small
case, it is represented by this column alone. For this reasemors. The columns aoft that are found may no longer be the
the true amplitudes of the sources are not readily resolvedhsolute closest ones to the DOA of the real signal, but they
More precise DOA solutions that give accurate amplitudill provide a good estimate of the solution. In addition, the
estimates can be found by hierarchically refining the solutiaery closely spaced DOA's can, at times, get represented as a
grid in the areas of nonzero energydnand executing a few single DOA by the intervening columns of.
additional FOCUSS iterations, as demonstrated in [24]. We doThe results are demonstrated with the following example.
not demonstrate this step here. Three snapshots of three sources moving toward each other are
In simulations with varying levels of noise, white Gaussiansed. Two sources start with a moderate angular separation in
noise is used with the variance given as a percentage of the first snapshot and are closely spaced by the third snapshot.
power of the weakest wave in the signal. The unregulariz&the third source remains well separated from the other two at
algorithm reliably assigns the highest power to the entries afl times. The directions of arrival afe-46° — 29° 60°] for
x surrounding the true DOA's for noise power of up to 50%he first snapshof—43° — 33° 56°] for the second snapshot,
i.e., signal to noise (SNR) of 3 dB with respect to the weakeahd [-40° — 36° 52°] for the third. The amplitudes of three
source, but the power in the solution for each DOA tends to keurces ard0.7 1 0.5], [0.72 0.95 0.6], and [0.75 0.8 0.7]
spread among a number of neighboring columns4ofThis for the respective snapshots. FOCUSS solutions in the noise-
number can be as high as 8 for the highest noise levelsf(8e case for each snapshot are shown in Fig. 4(b)—(d). The
dB). The unregularized solutions also have smaller spuriofigures show the successful recovery of the three sources,
nonzero values in other entries af We use TSVD with including resolution of the two very closely spaced sources.
the truncation level determined by the L-curve criteria [33h each case, the algorithm converges to the solution in four
for the regularization of inverse operations. The regularizatidgterations. Fig. 4(a) shows the regularized MVDR estimates
allows FOCUSS to handle slightly higher levels of noise, arfdund using the first snapshot of data (dashed line) and all three
it eliminates spurious energy in the solutions that are due soapshots combined (solid line). The FOCUSS reconstructions



612 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997

0.08 - 1.5
0.06
) o 1
2 E
Z0.04 =
g £
< <05
0.02
0] 0
-50 0 50 -50 0 50
Angular frequencv (degrees) Angular frequency (degrees)
(a) (b)
1.5 1.5
o 1 o 1
© el
2 2
= =
£ £
<05 <0.5
0 0
-50 0 50 -50 0] 50
Angular frequency (degrees) Angular frequency (degrees)

© ()

Fig. 5. DOA estimation using the same example as in Fig. 4 with random Gaussian noise added to the data. The SNR is 10 dB with respect to the
weakest source. (a) MVDR estimates using all three snapshots. (b) FOCUSS solution for the first snapshot. (¢) FOCUSS solution for the second snapshot.

(d) FOCUSS solution for the third snapshot.

were independent of the MVDR solution that was used for th®en demonstrated for this problem. For a more complete
initialization. FOCUSS solutions for this example with a SNRlescription of the physics of the EEG/MEG imaging problem
of 10 db are shown in Fig. 5. and its approaches, see references in [8].
In [8], we show that the sparseness constraint is well suited
B. Neuroimaging for recovery of EEG/ME(_B signals if the problem is mgde
) _ _ _ _ physically well posed. This can be achieved by constraining
Fun<_:t|onal imaging of the brain using the scalp e|e°t“_fhe solutions to lie in a 2-D plane. In [7], we showed that
potentials (EEG) or_the brain magnepc fields measured outsifle, net effect of physical ill posedness is limited in any case
the head (MEG) is an extrapolation problem, where thg ¢ eyistence of a small uncertainty envelope around each
objective is to f|.nd the current |n3|dg the hgad thf"‘t generalesive site. Thus, by using the sparseness constraint, we can
the measured flelds_. The prot_JIem_ is physically ill posed entify the neighborhoods where the activity occurs but not
well as underdetermined. Physical ill posedness means thatthé:‘ exact shape of the current distributions. This is the best

current cannot be determined uniquely even with the absoluetsetimate obtainable for the EEG/MEG imaging problem. Our

knowledge of the fields outside the head, i.e., when the number -
experimental results suggest that the maximally sparse solu-

of data is infinite. The only priori constraint available is the .
knowledge that current distributions imaged by EEG/ME(EonS may not always work well to recover the neighborhoods

are spatially compact, i.e., these currents are produced Hy@ctivity, even when Corollary 2 holds in this situation.
synchronous firing of neurons clustered in 1 to 42caneas. The spz_;lrsny constramt can still be used here, however. _AST
Because neuronal activity is highly dynamic, i.e., the intensifPnstrained algorithms such as FOCUSS are a good choice of
and location of the current flow can change fairly rapidly an@n estimator in this case, but they provide only one solution
because simple models, such as electric or magnetic dipofé@m an infinite set of possible current distributions within
do not accurately describe extended and irregularly shapR@fh neighborhood of activity. In particular, FOCUSS finds
areas of activity, EEG/MEG solutions are difficult to modelhe maximally sparse representation for the current within each
either parametrically or through cost functions. The probleastive site. We demonstrate finding an MEG solution with
is further compounded by complex statistical properties of thi€®@CUSS here.

noise and by the physical ill posedness. As a result, the succesthe nonparametric EEG/MEG imaging model is constructed
of conventional algorithms under realistic conditions has nat follows. The elements of a solutian represent point
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current sources at each location node in the cortex (th

cortex is discretized using a 3-D lattice of nodes). Thus, the

current distribution at an active site is represented in this = Y
model by a uniform distribution of point sources within the .. == ol
site. The data is generated by assigning current values 1% ~;"f1. [ {
the selected locations in the cortex, shown in Fig. 6(a), ani .~ * e, WL o
computing the resultant electromagnetic field at the sensc s el 1 .
locations as determined by Maxwell equations. We use f —— . :p
boundary element model with realistic head geometry ir = 8 L
this example. We assume 150 sensors and three neuror A g
ensembles containing, respectively 2, 4, and 3 active node s
The distribution of current within each ensemble is maximally -‘
sparse. The coefficients of the matrixmap a unit current at L
each location in the cortex to the field values at the sensors. A (@)

weighted minimum norm solution (see Fig. 6(a)) that includes

a compensation for the bias contained Ap as described

in Section VI, is used for the initial estimate. Note the low

resolution and the false active sites returned by the minimurr - —_

norm-based estimate. The FOCUSS solution from (8) using " patE®

[ =1 and the same bias compensation maliy as used in w

the initialization is shown in Fig. 6(b). FOCUSS recovers the g -
correct maximally sparse current at each active site.

APPENDIX A e
PROOF OF THEOREM 2

To show fixed-point convergence, we use the solution sef
I' as defined in Theorem 2 and show that the conditions of the
global convergence theorem [30] hold: (b)
i) The Set{_x{v} C X IS_ compact. . . . . Fig. 6. MEG reconstructions of three neuronal ensembles represented by 3,
For the finite-dimensional case, this condition is equivaleptand 4 active nodes, respectively, with a 150 sensor array: (a) Solid black
to showing that a sequence of pOilﬁhSk k=1 t} generated circles mark the nodes of the three active sites. The weighted minimum norm
bv th . 8) of th | ithm is b ded solution that includes a compensation for the bias as described in the text is
y the map_plng_( ) of the algori m '5_ O_‘m ed. marked by gray transparent circles. (b) FOCUSS reconstruction of the active
At each iterative step, the solution is finite; therefore, Wbdes shown in solid black circles.
need only to examine the convergence limits of the algorithm.
From ii), the convergence limits gfz; } are the minima of the
descent_ functiorL(z), which occur on!y \_Nher_1 at least one OfTaking the logarithm of both sides, we have
the entries ofc;, becomes zero. The limit points ¢f;,} that

are sparse solutions are clearly bounded. We later show tha‘E Injx (i) = > Infax—y(@)|+ Y Infa) 2 (i)

the non-sparse limit points are only reachable through specialz; o 270 i, 20
trajectories for which the limit of convergence has the same _ 1. . (A.3)
properties as a sparse solution. Therefore, these solutions BMS, L(zx) < L(zx—1) iff 3, . _oIn|zy= (Han(é)] < 0. To
also bounded. show thaty_, , o In |z (4) g (4)| < 0, we note thain y? is
ii) There is a continuous descent functidfz) such that a purely concave function, that is
L(xy) < L(wp_1) outsidel’ ~1 2 1\~ 2
il 2\ < hl = 1.
{L(f) < L(z;)  whenzel. ; ) st 0 ;y
We show that the descent function is We can rewrite this as
n 2 & 1 "L,
L(x) = [ [ la(é)l. (A1) 521n|yi| <l +ln2yi
=1 1= =
or
From z3(i) = a2 ()qx(i), we havelz,(i)] = |t_, ()] n . Lo
(1 . i i 2
|l (¢)| and Zzz:lln|yz| < —5 Inn + 5 ln;yi. (A.4)

[T lzx@)] =[] lzra O [ ] 254 a()].  (A2)  We next observe that the norm minimized at each step of the
i=1 i=1 i=1 algorithm is bounded by the the value of the norm when no
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change inz occurs, that is T, = Wa O (I + Ckcf)_l(Alk)er. (B.6)
_ - 1 2 Consider an arbitrary point; in a neighborhood o%*
Wikl <3 (5e) Y pornt I 2 el
x=1(9) «
=1 .’L’l(]. + (51)
Since Y"1, (i) = |[W,*ax|2, we have :
_ a:;(l +6p)
n 5 Th—1 = ptt
> (@ Oa@)” <n. v
=1 :
€n

Substituting this into (A.3), we get
n where we assume, without loss of generality, thitl + 6;)
Z In|e!=% (§)qu (0] S—gln”+glnz (wiill(i)qze(i))Q is the largest element af;,_;. Note that

4,25 70 . . i=1 ﬁ
<—§lnn+§lnn:0. (A.5) Aii—kb: :
Substituting (A.4) into (A.2), we obtain the desired result ﬁ
L{zy) < L(zp_y). Using the Matrix Inversion LemmaP#(I + PPH)=! =

I — P(I+ P2 P)~1PH with (B.6) and (B.1)—(B.5), we have
Forz € I', we haveL(Z) = —oco < L(zyg).

iii) The mapping (8) is closed at points outsifle [
_This is _true since (8) is a continuously differentiable map— lek o (I+ Cﬁck)—lchin
Ping outsider < Iwn Gl (2 + e )~ el 4t (®.7)
APPENDIX B < || AT Az W [H[WH || AT Az 12, W2 AL
PROOF OF THEOREM 3 € + 402 2 + 2
< — Dl A7 Ao||” < e/p || AT Azl
Consider the system (1) partitioned as follows: z1 (1+61)%1+ 5|\/_H {4 Vo [lAT A ©8)
, :
(A A L;j =b The 2 denotes the largest of the terms, and1 + §) is the

~ smallest of all the(1 + §;) terms.
whereA; has anyp (p < m) columns such thatlyz; =bis  From (B.8), for sufficiently smalk, we get
compatible, andi, contains the remaining columns. Similarly, . )
let A;, and Ay, be the two partitions of the weighted matrix 2i(1+0(e))
AW, at an iterationk. Then ry, = +0(?) = : )
* 2
Ay, = AWy, Ay = AWy, {1+ 0(9)
Similarly
whereW;, = diagz;,_,) andWs,, = diagzs,_,). Define .
w2, |l = |[Wa, G (I + CrCFF) AL B

B,=(I-A;,AT)A d C, = AT A, (I — BYB;).
P U A and G = A A BEB): T 2 ap ) g

In the proof, we will also make use of the following results:

€
Af = WitAf (B.1) = at (14 61)2]1 + 6| VRlAL Az < V][5 |
AF Ay, = WIHAT AW, (B.2) (B.9)
Cr = W AT A,Ws, (I — B} By) (B.3) from which we get
I(1 - B By)| <1 (B.4) O(e?)
l+ac) | =+l ™| <1 B5) 2 = < : )

The inequality (B.4) holds becausé— B,jBk) is a projection In the next iteration, we repeat the same calculations, starting
operator. with z;,, to obtainzy, | = 2} 4+ O(c*) andx,,,, = O(c*).

From the general form of the pseudoinverse of partitioned For a sufficiently smalle, this shows asymptotic conver-
matrices [29], together with the fact thatc R(A;), the kth gence from an arbitrary point € 2 to z* with at least a

iterate of the basic algorithm can be written as quadratic rate of convergence.
-1 N The rate of convergence can be similarly derived for the
w1, = Wi (I + GG ) (An) ™ general algorithm (8) witfi > 0.5 using (B.7) and (B.9). The

and powers ofzf(1+ 61) ande in Wy, in the general case will be
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equal tol. Correspondingly, the rate of convergence will be By the continuity argument used above, there also must
2[. Thus, usingl = 2 in (8), for example, generates a locakxist a point inC™ where the recursive algorithm remains

rate of convergence order of 4. 0 completely stationary. This point is the unstable fixed point
Proof of Corollary 3: Analytical investigation of saddle of the algorithm. O

points is difficult because the behavior of the algorithm is

different at different points in a neighborhood of a saddle ACKNOWLEDGMENT
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