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Sparse Signal Reconstruction from
Limited Data Using FOCUSS: A

Re-weighted Minimum Norm Algorithm
Irina F. Gorodnitsky,Member, IEEE, and Bhaskar D. Rao

Abstract—We present a nonparametric algorithm for finding
localized energy solutions from limited data. The problem we
address is underdetermined, and no prior knowledge of the shape
of the region on which the solution is nonzero is assumed. Termed
the FOcal Underdetermined System Solver (FOCUSS), the algo-
rithm has two integral parts: a low-resolution initial estimate of
the real signal and the iteration process that refines the initial
estimate to the final localized energy solution. The iterations are
based on weighted norm minimization of the dependent variable
with the weights being a function of the preceding iterative
solutions. The algorithm is presented as a general estimation tool
usable across different applications. A detailed analysis laying
the theoretical foundation for the algorithm is given and includes
proofs of global and local convergence and a derivation of
the rate of convergence. A view of the algorithm as a novel
optimization method which combines desirable characteristics
of both classical optimization and learning-based algorithms is
provided. Mathematical results on conditions for uniqueness of
sparse solutions are also given. Applications of the algorithm are
illustrated on problems in direction-of-arrival (DOA) estimation
and neuromagnetic imaging.

I. INTRODUCTION

T HE PROBLEM OF finding localized energy solutions
from limited data arises in many applications includ-

ing spectral estimation, direction-of-arrival estimation (DOA),
signal reconstruction, signal classification, and tomography.
Limited data can arise from either limited observation time,
nonstationarity of the observed processes, instrument con-
straints, or the ill-posed nature of the problem and, often,
from a combination of these factors. To treat this problem
mathematically, we define localized energy or sparse signals
as signals that are zero everywhere except on a minimal
support of the solution space. We assume that no information
is available about this support. A detailed discussion of this
definition is given later in the paper. Thus, reconstruction of a
sparse signal amounts to finding the “best” basis that represents
this signal, where “best” can be measured in terms of a norm.
This is different, for example, from basis selection in signal

Manuscript received February 21, 1995; revised September 20, 1996. The
first author was supported in part by NSF Grant MIP-922055 and ONR Grant
N00014-94-1-0856. The second author was supported in part by NSF Grant
MIP-922055. The associate editor coordinating the review of this paper and
approving it for publication was Dr. Farokh Marvasti.

I. F. Gorodnitsky is with Cognitive Sciences Department, University of
California, La Jolla, CA 92093 USA (e-mail: igorodni@ece.ucsd.edu).

B. D. Rao is with the Electrical and Computer Engineering Department,
University of California, La Jolla, CA 92093, USA.

Publisher Item Identifier S 1053-587X(97)01864-3.

compression where the goal is to find a sparse or perhaps a
maximally sparse representation of a signal. In this paper, we
address the “best” basis selection and develop a nonparametric
algorithm for this problem.

Since estimation from limited data is an underdetermined
problem, infinitely many solutions exist, and additional criteria
must be used to select a single estimate. The sparsity of
the solution is the onlya priori selection criterion available
in our problem. As we show in Section III, the sparsity
constraint does not define a unique solution but rather narrows
it to a finite subset. Hence, the problem remains underde-
termined. The non-uniqueness is worse when data represent
a single vector sample, such as a single time series or a
single snapshot from a sensor array. Some common techniques
used to compute sparse signals include exhaustive searches
(e.g., greedy algorithms [1], [2]), evolutionary searches (e.g.,
genetic algorithms with a sparsity constraint [3]), and Bayesian
restoration with Gibbs priors [4]. These algorithms do not
utilize any additional information about the solution except its
sparsity. Thus, their results are not well constrained, and the
bases they select are essentially arbitrary with respect to the
real signal. Alternatively, -norm and -norm minimization
and Linear Programming (LP) methods which produce a
solution by optimizing some cost function are also used for
sparse signal estimation [5]. Unfortunately, in most signal
processing problems, the relationship of the real signal to the
cost functions is not known, and these techniques also return
an essentially arbitrary solution with respect to the real signal.

Another approach used to find sparse solutions is to compute
maximally sparse solutions [6]. In Section III, we show that
in general, maximum sparsity is not a suitable constraint for
finding sparse signals and derive the conditions under which
its use is appropriate. Some of the techniques listed above can
generate maximally sparse solutions, and they can be applied
in this case. The problem is - complete, however, so the
high computational cost and, in some cases, compromised
convergence, are serious drawbacks of these methods.

For completeness, we want to mention parametric methods
for estimating sparse signals. In [7], we show that sparse
solutions can be significantly better constrained by multiple
data samples, such as multiple snapshots from a sensor array;
therefore, parametric techniques based on such data can pro-
vide an advantage here. This holds true when the sparseness
of the solution allows the parameter space to be sufficiently
small and the signal has favorable statistical properties, e.g.,
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stationarity, in which case, parametric techniques provide
good resolution. These are not the problems we address
here. What we are interested in are the problems in which
parametric methods suffer from poor resolution and/or are very
difficult to use either due to unfavorable statistical properties
of the signal or because an accurate parametric model is not
available. The parametric methods also have three general
limitations in our view: the nontrivial requirement that an
accurate parametric description of the signal and the dimension
of the parametric model be supplieda priori and the potential
for a rapid rise in the number of model parameters with a small
increase in the complexity of the signal. In our experience,
these limitations may not be easily overcome in problems
such as neuroelectromagnetic imaging (EEG/MEG) [8], which
motivated the research presented here.

In what follows, we develop a nonparametric algorithm
designed to address the shortcomings of the above techniques.
Namely, the algorithm provides a relatively inexpensive way
to accurately reconstruct sparse signals. Termed FOcal Under-
determined System Solver (FOCUSS), the algorithm consists
of two parts. It starts by finding a low resolution estimate of
the sparse signal, and then, this solution is pruned to a sparse
signal representation. The pruning process is implemented
using a generalized Affine Scaling Transformation (AST),
which scales the entries of the current solution by those
of the solutions of previous iterations. The solution at each
iteration then is found by minimizing the-norm of the trans-
formed variable. The low-resolution initial estimate provides
the necessary extra constraint to resolve the non-uniqueness of
the problem. Low-resolution estimates are available in most
applications, and we describe some particular applications of
interest. The AST is a powerful procedure, in general, whose
potential has yet to be fully realized. It has also been exploited,
but with a different optimization objective, in the design of
fast interior point methods in LP, including the Karmarkar
algorithm, and in minimizing the -norm of the
residual error in overdetermined problems [9].

A posteriori constrained extrapolation and interpolation of
bandlimited signals has been vigorously studied in the past
but mostly in the context of spectral estimation, and many
works pertain to the problem where signal bandwidth is
known. Papoulis in [10] and Gerchberg in [11] proposed what
is known as the Papoulis–Gerchberg (PG) algorithm which,
given a continuous signal of known bandwidth on a finite
interval of time, iteratively recovered the entire signal. A
one-step extrapolation algorithm for this procedure was later
suggested in [12]. Jain [13] unified many of the existing
bandlimited extrapolation algorithms under the criterion of
minimum norm least squares extrapolation and suggested
another recursive least squares algorithm. A similar algorithm,
with no restrictions on the shape of the sampled region
or the bandwidth, was presented in [14]. In [15], Papoulis
and Chamzas modified the PG algorithm by truncating the
spectrum of the estimate at each iteration to reduce spectral
support of the solution in the subsequent iteration. The first
use of what is equivalent to the AST was proposed in a
spectral estimation context in [16] and [17]. The authors
modified the Papoulis–Chamzas algorithm to use the entire

solution from a preceding iteration as the weight for the
next iteration. The use of this recursive weighting to enhance
resolution in harmonic retrieval was studied in [18], [19],
and the references therein. A similar iterative procedure was
independently proposed in neuroimaging [8], [20]–[22], al-
though the implementation of the recursive constraints was
not explicitly exposed in [20]. In [22], Srebro developed
an interesting and slightly different implementation of the
recursive weighting. The crucial importance of the correct
initialization of these procedures was not recognized in any
of these, and the suggested algorithms simply amounted to
refinement of a minimum 2-norm type initial estimate. The
use of different initializations and generalizations of the basic
iterations were suggested in [21] and [24]. The use of a more
general, non-AST objective function at each iterative step was
suggested in [6].

The contributions of this paper are as follows. We present
the development of the re-weighted minimum norm algorithm,
which incorporates an initialization and a general form of
re-weighted iterations, and we provide a comprehensive theo-
retical foundation for re-weighted minimum norm algorithms,
which has not been previously available. We recognize the
generality of the method and convert it from the particular
frameworks of spectral estimation and neuroimaging into
a general signal processing algorithm. We generalize AST-
based iterations by introducing two additional parameters.
These parameters are necessary to extend the algorithm to
a class of optimization techniques usable for a wide range
of applications. The work also provides a formulation of the
sparse signal estimation problem in a mathematical framework
and develops the theory of uniqueness and non-uniqueness of
sparse solutions. The paper is organized as follows. In Section
II, we provide background material and definitions. In Section
III, we present a theory of uniqueness and non-uniqueness
of sparse solutions. Section IV contains a description of the
FOCUSS algorithm. In Section V, we present global and local
convergence analyses and derive the rate of convergence. In
Section VI, we discuss implementation issues revealed by the
earlier analysis, including the necessary modifications to the
early form of the algorithm to make it applicable to a wider
range of problems. In Section VII, we provide a view of the al-
gorithm as a computational strategy partway between classical
optimization and learning-based neural networks. Applications
of FOCUSS to DOA and neuromagnetic imaging problems
are presented in Section VIII. Several other applications of
FOCUSS can be found in [23], [25], and [26].

The paper focuses on the theoretical foundation of thea
posterioriconstrained algorithm in which we restrict ourselves
to a noise-free environment. Issues pertaining to noisy data,
such as performance of the algorithm, are not covered here.
These issues must be considered in the context of regulariza-
tion, which is used to stablize inverse calculations and which
could not be addressed in the already lengthy paper here,
but we provide some references. In this paper, we provide
two ways to regularize FOCUSS that use either of the two
common regularization techniques—Tikhonov regularization
or truncated singular value decomposition—at each iteration.
In [27], we provide the sufficient conditions for convergence
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of the regularized FOCUSS algorithms. In [8], we demonstrate
the successful regularization of FOCUSS and its performance
in a noisy environment for the neuromagnetic imaging prob-
lem. We also give an example with noisy data in Section VIII.
The computational requirements of inverse algorithms and
efficient computational algorithms for large-scale problems are
investigated in [28].

II. NONPARAMETRIC FORMULATION

AND MINIMUM NORM OPTIMIZATION

We review the nonparametric formulation of a signal es-
timation problem and the common minimum norm solutions.
We work in complex space with the usual inner product and
norms defined. We carry out the development in the discrete
domain because it significantly simplifies the presentation and
is relevant to most signal processing applications, as most
computations are carried out in discrete form. The results are
directly extensible to analog (continuous) signals.

Linear extrapolation (reconstruction, estimation, approxima-
tion, interpolation) problems can be expressed in the matrix
equation form

(1)

where is the matrix operator from
an unknown signal to a limited data set

. The conditions for the existence of are given by
the Riesz representation theorem. The problem is to find
(reconstruct, estimate, approximate, extrapolate) the signal
from its representation.

We use an example of harmonic retrieval to facilitate the
presentation. In this example, each column ofrepresents
a sampled exponential sinusoid of some frequency, i.e.,

. The columns of are gen-
erated by selecting the values of from within the range

to sample the frequency axis with the desired density.
The values of may be non-uniformly spaced and can be
chosen to reflect prior knowledge. The datais a sample of a
process consisting of a few sinusoids. The chosen frequencies

may not match exactly the harmonics contained in. We
denote the real solution to be the solution whose nonzero
entries pick out the columns of that are the closest (in the
1-norm) to the harmonics contained in. Thus, nonparametric
estimation of sparse signals can be thought of as a basis
selection process for a signal. It is important to note that the
sinusoids represented by each column ofmust be sampled
at the same sampling density as that used to generate.

Non-uniqueness of solutions to (1) is a well-known problem.
The infinite set of solutions can be expressed as ,
where is any vector in the null space of, and is the
minimum norm solution, which is defined next.

The minimum norm solution is the most widely used
estimate for (1) and is found by assuming the minimum
Euclidian or -norm criterion on
the solution.1 This solution is unique and is computed as

(2)
1Unless explicitly stated, allk � k norms in this paper will refer to the

2-norm.

where denotes the Moore–Penrose in-
verse [29]. The solution has a number of computational
advantages, but it does not provide sparse solutions. Rather, it
has the tendency to spread the energy among a large number
of entries of instead of putting all the energy into just a
few entries.

A closely related weighted minimum norm solution, on
which FOCUSS iterations are based, is defined as the solution
minimizing a weighted norm , where is a matrix.
It is given by

(3)

To accommodate singular , we extend the definition of
the weighted minimum norm solution to be the solution
minimizing . By changing , every possible solution
to (1) can be generated. When is diagonal, the cost objective
simply becomes , where are
the diagonal entries of .

For future discussion, it is useful to restate the definition of
a weighted minimum norm solution as follows:

find

where subject to (4)

Note that , i.e., the optimization objective in (4)
is preserved. Without further reliance on such terminology, we
note that minimum norm-based solutions (2) and (3) constitute
Hilbert space optimization, which guarantees their existence
and uniqueness.

The common norm minimization methods for finding sparse
solutions are the minimum norm and the related LP problem.
The LP problem in the above notation is stated as follows:

, where is an -vector repre-
senting linear cost parameters. If the set of feasible solutions
is nonempty, the fundamental theorem of LP guarantees the
existence of a solution to (1) that satisfies the LP criterion and
in which the number of nonzero elements does not exceed.

III. D EFINITION AND CONDITIONS ON

UNIQUENESS OFSPARSE SOLUTIONS

A solution that has nonzero terms lies in a-dimensional
subspace of . For convenience, we will refer to such a
solution as a -dimensional solution, where can take any
value from 1 to .

A. Definition of a Sparse Solution

To study sparse solutions, we suggest a mathematical def-
inition for these solutions. We propose that sparse solutions
be defined as the solutions with or less nonzero terms.
Thus, these solutions form the bases, i.e., the minimal rep-
resentations for the signal. The mathematical properties of
these solutions are distinct from the rest, as can be observed
from the uniqueness results derived here. In addition, many
optimization algorithms, such as LP, naturally return these
types of solutions.

The sparse solutions defined above are obviously not unique.
Their total number can range from to , as shown
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in Section VI. It may appear that we superficially induce non-
uniqueness of sparse solutions by including the-dimensional
solutions since an underdetermined system is guaranteed to
have at least artifactual -dimensional solutions. We
show, however, that solutions of dimension can also be
non-unique. Hence, the definition of sparsity cannot depend on
the uniqueness argument. Rather, the-dimensional solutions
must be included in the definition because they provide valid
minimum support representations.

Sparse solutions also arise in LP and-norm minimization
problems, and we borrow some useful terminology from that
area.

Definition [30]: Given a set of simultaneous linear equa-
tions in unknowns (1), let be any nonsingular
submatrix made up of columns of . Then, if all
components of not associated with the columns of are
set equal to zero, the solution to the resulting set of equations
is said to be abasic solutionto (1), with respect to the basis

. The components of associated with the columns of are
called basic variables. If one or more of the basic variables
in a basic solutionhas value zero, the solution is said to be
a degenerate basic solution.

The sparse solutions then are equivalently the basic and
degenerate basic solutions. We also refer to the basic and
degenerate basic solutions as low-dimensional solutions and
to the rest as high dimensional solutions.

B. Uniqueness Conditions for Sparse Solutions

The following uniqueness/non-uniqueness results are de-
rived for systems satisfying the following property.

Unique Representation Property (URP):A system (1) is
said to have the URP if any columns of are linearly
independent.

The URP basically guarantees that every basis component
of the real signal is uniquely represented by a column of

. In many problems, the URP can be achieved by using
a sufficiently dense sampling rate to createthat unam-
biguously captures all of the components of the real signal.
This density does not need to correspond to the Nyquist
frequency used in spectral estimation, as explained below.
In other problems, such as physical tomography problems,
the URP can never be satisfied. An example of such a
problem is the extrapolation of electric currents inside a
volume conductor from externally measured electromagnetic
fields. Even when the sampling set is completely dense,
i.e., the field is completely known everywhere outside the
conducting volume, the current inside the volume cannot be
uniquely found [31]. Given such intrinsic ill-posedness, sparse
solutions, including the maximally sparse solutions, are never
unique. However, depending on the physics, the net effect
of the intrinsic ill-posedness on the uniqueness of sparse
solutions may be limited and must be considered in the context
of an individual problem. For example, in the case of the
electromagnetic extrapolation problem, its effect is limited to
the uncertainty in the neighborhood of each real solution point
[7]. How this affects the uniqueness results for sparse solutions
is discussed in Section VIII, when we present an example of
the neuroimaging problem.

The following theorem gives bounds on dimensions of
unique degenerate basic solutions.

Theorem 1: Given a linear system (1) satisfying the URP,
which has a -dimensional solution, there can be no
other solution with dimension less than . A
1-dimensional solution is the unique degenerate basic solution
for a given system.

Proof: Suppose two solutions and to (1) exist with
corresponding dimensions and . Then,
these solutions satisfy the systems and ,
respectively, where and consist of and columns of
for which the corresponding entries of and are nonzero.
Hence, , which contradicts the assumption of
linear independence of the columns of. When , we get

; hence, the degenerate basic solution is unique.
The following two corollaries establish conditions for the

uniqueness of maximally sparse solutions.
Corollary 1: A linear system satisfying the URP can have

at most one solution of dimension less than . This solution
is the maximally sparse solution.

Proof: The results follow readily from Theorem 1.
Corollary 2: For systems satisfying the URP, the real signal

can always be found as the unique maximally sparse solution
when the number of data samples exceeds the signal
dimension by a factor of 2. In this case, if a solution with
dimension less than is found, it is guaranteed to represent
the real signal. The sampling of the measurement signal does
not need to be uniform.

Proof: The result follows readily from Theorem 1 and
Corollary 1.

Corollary 2 is a generalization of the Bandpass Filtering
Theorem used in spectral estimation that is derived from the
Sampling Theorem [32]. The Bandpass Filtering Theorem
states that the length of a sampling region twice the bandwidth
of a real signal is sufficient to recover this signal. This is
different from the condition on the density of the sampling set
governed by the Nyquist frequency criterion. The sampling
density in our results is specified by the URP and can be
significantly lower than the Nyquest frequency. For example,
in spectral estimation, the sampling rate equal to the highest
frequency contained in the signal is quite sufficient to satisfy
the URP.

The preceding results show that the maximum sparsity
constraint is not always appropriate for estimating sparse
signals. We use the following simple example to reinforce
this point.

Example 1: The system

has two equally likely maximally sparse solutions:
and . Both solutions are the

degenerate basic solutions of dimension . Obviously, the
maximally sparse condition does not define a unique solution
in this example, and its relation to the real signal is not defined.

To summarize, general sparse solutions, including ones with
less than nonzero terms, are non-unique. The constraints
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that do lead to a unique solution are either the maximum
sparsity constraint or the requirement that the solution has
“less than nonzero terms.” These provide valid opti-
mization criteria for finding sparse signals when the condition
of Corollary 2 holds. Note that the “less than nonzero
terms” requirement may be cheaper to implement for some
search methods than the maximum sparsity constraint. As
we will later show, the FOCUSS algorithm can be set up
to favor the maximally sparse solution, i.e., to converge to
this solution from within a large set of starting points when
the dimension of this solution is small relative to the size
of . As the dimension of this solution increases, FOCUSS
gradually starts to favor solutions nearest its initialization.
Thus, FOCUSS provides a smooth transition between the two
desired convergence properties: One is convergence to the
maximally sparse solution when the condition of Corollary
2 holds, and the other is convergence to a sparse solution near
the initialization when Corollary 2 is not satisfied.

We would like to make a few further comments on the
application of the uniqueness results.

Multiple Samples of Data:The above results assume a lin-
ear model (1), where the vectorrepresents a single sample
from some data distribution. Such a vectorcan be a time
series/autocorrelation or a single snapshot from a sensor array.
In [7], we have shown stronger uniqueness results whenis
composed of multiple data samples, namely, we have shown
that sparse solutions of dimensions less thanare unique,
provided that the sources are not completely correlated. It
is therefore most advantageous to use multiple samples, for
example, multiple snapshots from an array of sensors, when-
ever possible. In addition, the uniqueness result for multiple
samples of data is far less sensitive to the presence of noise
in the data than the result for the single sample(see below).

Effects of Noise:Regularized solutions that are used when
data is noisy provide only an approximate fit to the data,
where the amount of misfit is dependent on signal-to-noise
ratio (SNR). In this case, the columns of that are nearly
colinear to the columns that form the basis for the real signal
can become equally likely solution candidates. This injects
extra uncertainty into the estimator. Therefore, the effect of
noise may weaken the above uniqueness results, but to what
extent depends on the SNR and the angular distances between
the columns of , i.e., the condition number of .

IV. THE FOCUSS ALGORITHM

In this section, we describe the FOCUSS algorithm. We
first describe what we call the basic form of the algorithm,
which represents a simple implementation of the re-weighted
minimum norm idea. The iterative part of this algorithm has
appeared in earlier literature for neuroimaging and spectral
estimation problems [16], [17], [21]. The basic form captures
the main characteristic of the procedure, and we use it here to
provide an intuitive explanation as to how the algorithm works.
We then discuss more general forms of the algorithm. The
initialization of FOCUSS is discussed following the analysis
section.

At the basis of the basic FOCUSS algorithm lies the AST

(5)

where diag with being the solution
from the previous iteration. Throughout the paper, we use

in a subscript to denote the current iteration step. With
this transformation, an optimization problem inbecomes an
optimization problem in . The basic FOCUSS algorithm uses
the AST to construct the weighted minimum norm constraint
(7) by setting , where denotes thea
posteriori weight in each iterative step.

A. The Basic FOCUSS Algorithm

The basic form of the FOCUSS algorithm is

Step 1: diag

Step 2:

Step 3:

(6)

Since entries that are zero at initialization remain zero for
all iterations, we assume without loss of generality that the
number of nonzero components in an initial vector, which
defines the dimension of the problem, is always. The final
solutions produced by the algorithm will be denoted byto
differentiate them from the all feasible solutionsto the linear
system (1).

Steps 2 and 3 of the algorithm together represent the
weighted minimum norm computation (3). The algorithm is
written in three steps solely for exposition purposes. In the
implementation, all the steps can be combined into one.

To understand how the AST constraint leads to pruning of
the solution space, we consider the objective minimized at
each step

(7)

The relatively large entries in reduce the contribution of
the corresponding elements ofto the cost (7), and vice versa.
Thus, larger entries in result in larger corresponding
entries in if the respective columns in are significant
in fitting as compared to the rest of the columns of.
By starting with some feasible approximate solution to (1),
minimization of (7) gradually reinforces some of the already
prominent entries in while suppressing the rest until they
reach machine precision and become zeros.2 The algorithm
stops when a minimal set of the columns ofthat describe
is obtained. Note that the algorithm does not simply increase
the largest entries in the initial . In fact, the largest entries
in can become zeros in the final. Note also that (7) is
never explicitly evaluated in (6). The weights and the
corresponding subspaces are eliminated from the computation
through the product .

While the entries of converge to zero and nonzero values,
the corresponding entries in converge to zeros or ones,

2Theoretically, the elements of a solution asymptotically converge to zeros
but never reach zeros. In finite precision, the asymptotically diminishing
elements become zeros.
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Fig. 1. Elements ofq at each iteration for the10 � 4 example described
in the text.

i.e., as , and as
approach nonzero values. Fig. 1 illustrates the convergence
of the elements of . The example uses a matrix
and the vector equal to the ninth column of . The correct
sparse solution then is a vector of zeros with a one in the ninth
entry. Each line in Fig. 1 shows an element of the vector
as a function of the iteration index from initialization to
the fifth iteration. The ninth element converges toone,
whereas the rest becomezero. This indicates that the desired
sparse solution with only one nonzero element in the ninth
position was found. The minimum norm solution (2) was used
for the initialization. Note that the ninth element was not the
largest in the initialization.

From our experience, the pattern of change inemerges
after few iterations, from which it is possible to identify the
entries converging to ones and zeros. Significant savings in
computation, as well as better convergence and performance
properties, are gained by eliminating the diminishing entries
of that are indicated by at each iteration. Further savings
can be achieved by implementing a hard thresholding oper-
ation to obtain the final result once the convergence pattern
becomes clear. Although for the purposes of the analysis we
do not explicitly include these truncation operations in the
algorithm, they should always be an integral part of FOCUSS
implementation.

B. General FOCUSS

We extend basic FOCUSS into a class of recursively con-
strained optimization algorithms by introducing two param-
eters. In the first extension, we allow the entries of
to be raised to some power, as shown in (8). The second
extension is the use of an additional weight matrix—denoted

—which is independent of thea posteriori constraints.
This extension makes the algorithm flexible enough to be used
in many different applications. It also provides a way to input
a priori information. The general form of the algorithm then is

diag

(8)

where denotes the set of all positive integers. For the uses
of the algorithm considered here, it is sufficient to assume
to be constant for all iterations.

In the applications where the positivity constraint is
imposed, we can expand the range ofto all real .
The lower bound on is explained in Section V-A. The
positivity constraint on can be enforced by incorporating
the step size into the algorithm, as is done
in many LP methods. The iterative solution then becomes

, where the step size is chosen to keep
all entries of positive.

More generally, other nondecreasing functions of can
be used to define the weights in (8), although the need for
more complicated weight functions is not evident for the
applications we have considered.

A cumulativeform of the FOCUSS algorithm can be de-
rived by using cumulative a posterioriweights in (8) that
are a function of more than one iteration, e.g.,
diag . This form may prove to be more robust in
terms of convergence to solutions near the initialization, as was
found to be the case for the neuromagnetic imaging problem.
The convergence analysis of general FOCUSS (8), which is
presented next, is extensible to the cumulative form of the
algorithm.

V. ANALYSIS

We concentrate our analysis on the form (8) of FOCUSS,
unless indicated otherwise. The results are extensible to the
other forms. Since is constant for all iterations, we assume
that without affecting the results of the analysis.

The steps of the FOCUSS algorithm always exist and are
unique since the transformation (8) is a one-to-one mapping.
We next consider the global behavior of the algorithm. For
an algorithm to be a useful estimation tool, it must converge
to point solutions from all or at least a significant number
of initialization states and not exhibit other nonlinear system
behaviors, such as divergence or oscillation.Global conver-
gence analysisis used to investigate this behavior. The term
global convergence, however, is sometimes used to imply
convergence to a global minimum, which is not the appropriate
meaning here. To avoid confusion, we use the termfixed
point convergenceor absolute convergenceto describe the
convergence properties of the algorithm. These terms mean
that an algorithm converges to a point solution from any
starting condition. The termabsolute stabilityhas also been
used for this property.

Global convergence analysis is not sufficient to understand
the complete behavior of even an absolutely convergent non-
linear algorithm. Typically, not all the convergence points
form a valid solution set, but this cannot be revealed by the
global convergence analysis alone. This point is sometimes
overlooked. Here, we add local convergence to our analysis to
characterize the different convergence points. We first provide
some background in nonlinear systems to motivate our analysis
steps. This material is a compilation from several sources. For
references, see, for example, [33] and the references therein.
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A phase space is a collection of trajectories that trace the
temporal evolution of a nonlinear algorithm from different
initial points. The points at which a nonlinear algorithm
is stationary are calledfixed points. These can bestable
fixed points (s-f-ps), to which the algorithm converges from
anywhere within some closed neighborhood around such a
point, orsaddle fixed points, to which the algorithm converges
only along some special trajectories. The third type, known
as unstable fixed points, are stationary points from which an
algorithm moves away given any perturbation. The largest
neighborhood of points from which an algorithm converges
to a given s-f-p is called the basin of attraction of that s-f-
p. For a fixed-point convergent algorithm, its entire solution
space is divided up by the basins of attraction containing s-f-
ps. The borders separating individual basins do not belong to
any of the basins. These borders can be made up of trajectories
leading to saddle points or to infinity, or they can be a dense
set of unstable fixed points, or they can be a combination of
the two. Thus, it is important to recognize that an absolutely
convergent algorithm does not converge to an s-f-p from any
initialization point. It can converge to a saddle point or it may
get stuck at an unstable fixed point. Because the saddle points
are reached only along special trajectories whose total number
has measure zero, an algorithm converges to these solutions
with probability 0 (w.p. 0). The unstable fixed points also have
measure zero; therefore, an algorithm returns these points w.p.
0. It follows then that an absolutely stable algorithm converges
to s-f-ps w.p. 1. Ideally, the s-f-ps of such an algorithm would
form the set of valid solutions, such as the sparse solutions
in our case, and the other fixed points would be outside of
the solution set. The unlikely case of an algorithm becoming
fixed in a saddle or unstable fixed point can be resolved by
choosing a different initialization state.

Equivalent global convergence theorems exist in two inde-
pendent fields. In Nonlinear Programming (NP), the theory
is based on the analysis of the general theory of algorithms,
which was developed mainly by Zangwill. In nonlinear dy-
namical systems, the Lyapunov stability theory was developed
by others based on Lyapunov’s first and second theorems. We
use elements of both theories in our analysis, as follows. We
first define the solution set to contain all the fixed points of
FOCUSS and use the global convergence theorem from NP to
show that FOCUSS is absolutely convergent. We then use local
convergence analysis to determine the nature of the individual
fixed points. We show that the sparse solutions are the s-f-
ps of FOCUSS and the non-sparse solutions are the saddle
points. The rate of local convergence is shown to be at least.
Local analysis of saddle points is difficult and we use nonlinear
dynamical system theory concepts for this part of the work.

A. Global Convergence

Theorem 2: The FOCUSS algorithm (8) is absolutely con-
vergent, i.e., for any starting point , it converges asymptot-
ically to a fixed point. The descent function associated with
the algorithm is The set of fixed points

of the algorithm are solutions to that have one
or more zero entries.

Proof: See Appendix.

Convergence of FOCUSS for is discussed in Section
V-C. The absolute convergence of FOCUSS means that it
produces a point solution from any initial condition, but this
point can be either a stable, a saddle, or an unstable fixed point.
We next determine which solutions of FOCUSS correspond to
which fixed states.

B. Analysis of Fixed Points

1) Sparse Solutions:The following theorem shows that the
sparse FOCUSS solutions are the s-f-ps of the algorithm.

Theorem 3: Let denote a sparse solution to (1). For any
, there exists a neighborhoodaround it such that for any

, the FOCUSS generated sequence converges
to . The local rate of convergence is at least quadratic for
the basic algorithm and at least for the general class of
algorithms (8).

Proof: See Appendix.
Note that the number of sparse FOCUSS solutions is limited

to, at most, one solution per each subspace of
. What is left is to determine the nature of the non-sparse

solutions, which we show correspond to saddle and unstable
fixed points.

2) Non-sparse Solutions:
Corollary 3: Non-sparse FOCUSS solutions in ,

, are its saddle points. Convergence to these points is
along special trajectories on which groupings of two or more
elements of do not change relative to each other. A fixed
point in is the unstable fixed point of FOCUSS.

Proof: See Appendix.
From the proof of Corollary 3, it follows that the set of

saddle fixed points of (8) is not dense. Since a nonlinear
system converges to a saddle or unstable fixed point w.p. 0, the
probability of FOCUSS converging to a non-sparse solution is
also 0.

C. Relationship to Newton’s Method and Cost
Functions Associated with FOCUSS

In a broad sense, quadratic minimization of the AST gener-
ated cost functions is aNewton’s methodbecause it replaces
a global optimization problem by a series of local quadratic
optimization steps. In fact, as shown below, FOCUSS is
equivalent to a modified Newton’s method minimizing a
concave cost function.

Theorem 4: An iterative step from the current stateto the
new state , of the FOCUSS algorithm (8) is
equal to a step , with of the modified Newton’s
method minimizing the function

(9)

subject to . The modification can be viewed equiva-
lently as using a modified Hessian of , in which the
signs of its negative eigenvalues are reversed, and the positive
scaling . Further, the modified Newton search
criteria for constrained minimization of is
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equivalent to the constrained weighted minimum norm criteria
of the algorithm. For the basic FOCUSS

algorithm, .
Proof: See [26].

FOCUSS finds a local minimum of .
The initialization determines the valley of minimized
by FOCUSS. The valleys of then define the basins
of attraction of the algorithm. The parameterand a priori
weights shape these valleys and influence the outcome of the
algorithm.

The cost function is useful in understanding the behavior of
FOCUSS. It can be used to show that basic FOCUSS always
converges to the minimum of the valley of in which it
starts, whereas general FOCUSS can move away and converge
to the minimum of another valley [26]. We can also show
that if we constrain the entries of to not change their signs
throughout all iterations, we have , i.e.,
FOCUSS is convergent to the local minimum, for any
[26].

The breakdown of convergence for can also be
observed from . When , is the 1-norm
of . Since quadratic approximation to a linear function is not
defined, FOCUSS steps are also not defined, and in
(8) produces no change in for For ,
is piecewise convex; therefore, FOCUSS steps maximize the
local cost, which leads first to a sparse solution followed by
an oscillation cycle between two sparse points.

Although we do not emphasize the following use of the
algorithm here, FOCUSS also offers simple and relatively
inexpensive means of global costs optimization when a good
approximate solution is already known. Examples of such use
are LP problems, in which solutions may change only slightly
in day-to-day operations. If initialized sufficiently near the
solution, only one or two iterations may be needed to identify
the convergence pattern and, thus, the solution. Using
in (8) and efficient implementations of the inverse operation
[28] can further speed up the convergence.

VI. I MPLEMENTATIONAL ISSUES

Here, we discuss factors pertaining to implementation of the
re-weighted minimum norm algorithms. We first discuss the
regularization, the computational requirements of FOCUSS,
and the use of the parameter. We then discuss how to achieve
the desired convergence properties.

Each iteration of FOCUSS requires the evaluation of
. (with ) is the weighted

matrix at step . When is ill conditioned, the
inverse operation must be regularized to prevent arbitrarily
large changes in in response to even small noise in the data.
Here, we suggest two regularized versions of FOCUSS based
on the two most common regularization techniques [8]. One
is Tikhonov regularization [34] used at each iteration. The
second is truncated singular value decomposition (TSVD),
which is also used at each iteration.

Tikhonov Regularization:In this method, the optimization
objective is modified to include a misfit parameter

(10)

is the regularization parameterthat must be chosen before
(10) can be solved. When the condition number of is not
very large, the solution to (10) can be found by solving the
normal equations

(11)

Otherwise, solving

(12)

in the minimum norm sense is recommended instead. Standard
implementations for solving (12) that include finding the
optimal are not very computationally efficient. A novel
algorithm for solving this problem efficiently is given in [28],
and we omit it here in the interest of space.

TSVD: Here, is replaced with a well-conditioned ap-
proximation , given by SVD expansion of truncated to
the first components

(13)

The matrices and are composed of the firstleft and
right singular vectors of . is the diagonal matrix con-
taining corresponding singular values. The TSVD FOCUSS
iteration is then

(14)

The parameter can be found using the-curve criteria [35],
for example. The performance of both regularized versions
of FOCUSS was studied in the context of the neuromagnetic
imaging problem in [8].

The cost of inverse operations and efficient algorithms
for computing regularized inverse solutions for large-scale
problems are presented in detail in [28]. The Tikhonov reg-
ularization implementation proposed in [28] is approximately
three times more efficient than the TSVD regularization that
utilizes the R-SVD algorithm. In either case, the cost of both
regularized inversions is only a linear function in, i.e.,

floating-point operations.
The truncation of entries of at each iteration and the hard

thresholding operation to terminate iterations were already
discussed in Section III. These provide a very significant
saving in computational cost and improve the performance.
They should be used in all FOCUSS implementations.

The parameter can be used to increase the rate of conver-
gence and so further reduce the cost of computation. Although
convergence to the minimum of the basin where the algorithm
starts is not guaranteed for , convergence to this minimum
can be shown from any point in its neighborhood for which

holds in the subsequent iteration. Thus, the
inequality defines a neighborhood of local
convergence for a given realization of (8). To utilize ,
we can begin the calculations using and switch to
once an is reached for which the above inequality holds.

In principle, the parametercan also be used to shape the
basins of attraction and thus control the convergence outcome,
but we do not advise this because it is difficult to predict the
effects of a change inon the outcome. Instead, we concentrate
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Fig. 2. Schematic representation of basins of attraction of FOCUSS. The
dots indicate stable fixed points of the algorithm, and the lines mark the
boundaries of the basins.

on the two factors that can be used to control convergence
properties.

We assume here that the desired FOCUSS behavior is
convergence to a sparse solution in the neighborhood of the
initialization. Additionally, we would like the algorithm to
favor the maximally sparse solution when its dimension is
relatively small, for the reasons discussed in Section III.

Fig. 2 presents a schematic picture of the solution space
tessellation via FOCUSS into basins of attraction around each
s-f-p. In order for the algorithm to converge to the real
solution, the initial estimate must fall into the correct basin
of attraction. Thus, the shapes of the basins and the quality of
the initialization are two interrelated factors that control the
FOCUSS outcome.

To avoid having the algorithm favor any one solution, all its
basins of attraction should be equally sized. The exception may
be the maximally sparse solution, which we may want to favor,
in which case, it should be quite large. Such basin sizes occur
naturally in problems that include spectral estimation and far-
field DOA estimation, which explains the noted success of the
basic FOCUSS algorithm in these applications [16], [17], [19].
Physical inverse problems, such as biomedical or geophysical
tomography, have a distinct bias to particular solutions, and
the basins must be adjusted for proper convergence to occur.
We discuss this issue next. Initialization options are discussed
at the end of the section.

A. Basins of Attraction

The factors that control the shape of the basins are the
relative sizes of the entries in the columns ofand the total
number of sparse solutions in a given problem, as shown next.

1) Effect of on the Basins:In any minimum norm based
solution the magnitude differences in the entries of different
columns of act analogously to the weights of a weighted
minimum norm solution. This can be seen as follows. Suppose
we can express matrix as a product of two matrices and

so that (1) becomes

(15)

where is such that the entries in each of its columns span
exactly the same range of values.is then a diagonal matrix
that reflects the “size” differences between the columns of the

original . The minimum norm solution to (15) is

(16)

where affects the solution only through the degree of
correlation of individual columns with the vector, whereas
the entries of act as weights on the corresponding elements
of , i.e., small/large entries of reduce/increase the penalty
assigned by the minimum norm criterion to the corresponding

. This means that the amplitudes of the entries in the columns
of can modify the effect of the weights in a re-weighted
minimum norm algorithm, producing a bias toward the entries

corresponding to the columns of containing larger terms.
The reason why no bias occurs in standard signal processing
problems, such as spectral estimation, should be clear now.
It is because the values in each column ofspan the same

to range.
The intrinsic bias produced by toward particular solutions

translates into larger basins of attraction around these solutions
in the re-weighted minimum norm algorithms. To eliminate the
bias, the basin sizes must be equalized. Ideally, we would like
to use a weight in (8), such as from (15), to cancel the
penalties contributed to the weighted minimum norm cost by
the magnitude differences in entries of the columns of. This
weight would be used at each iterative step. Unfortunately, the
size of a column is not a well-defined quantity and cannot be
completely adjusted via a scalar multiple. We found, however,
that an approximate adjustment through such a scaling that
makes the range of values in each column ofas similar
as possible works well for such problems as electromagnetic
tomography. We use this particular scaling in the example
presented in Section VIII.

2) Effect of the Number and Dimension of the Solutions
on the Basins:The larger the number of sparse solutions
to a given problem, the greater the fragmentation of the
solution space of the FOCUSS algorithm into correspondingly
smaller basins. As the sizes of individual basins diminish, the
algorithm must start progressively closer to the real solution
in order to converge to it.

For an system, the maximum number of sparse
solutions occurs when all the solutions are basic, i.e., there
are no degenerate basic solutions. That number is given by

(17)

The number of basins is reduced when degenerate basic
solutions are present. Each-dimensional solution
reduces the number of s-f-ps by

(18)

When the degenerate solution is 1-dimensional, there can be
no other degenerate basic solutions, and the total number of
sparse solutions is minimal: .

To summarize, the number of basins decreases with an
increase in the number of data points and a decrease in
the dimensions of the degenerate basic solutions and increases
with an increase in the dimension of the solution space.
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Basin sizes also depend on the dimensions of s-f-ps they
contain. When there is no intrinsic bias due to (either
naturally or because we cancel it with a weight matrix),
the basins around degenerate basic solutions are larger than
the basins around the basic solutions, and the smaller the
dimension of the degenerate basic solution, the larger its
basin of attraction. This is because when the sparse solutions
are all basic, each -dimensional subspace has an equal
probability of being the solution, and all basins are equal.
When a degenerate basic solution exists, a 1-dimensional
solution for example, the -dimensional solutions in the
subspaces containing this dimension are no longer present,
and an initialization that would have lead to one of those
basic solutions now leads to the 1-dimensional solution. For
a 2-dimensional solution, all the basic solutions containing its
two dimensions would be eliminated, but the basic solutions
containing only one of its dimensions would still exist. The
basin of this solution would be large, but not as large as the
one for the 1-dimensional solution.

It follows then that when the algorithm is adjusted so that
there is no bias due to , the maximally sparse solution has
the largest basin. The algorithm then favors the maximally
sparse solution in its convergence, as desired, and the smaller
the dimension of the maximally sparse solution, the greater
the likelihood of convergence to it. At the other end of
the spectrum of convergence behavior, when the dimension
of the real solution approaches, the algorithm must start
progressively closer to this solution in order to end up in the
right basin. Therefore, convergence to a solution neighboring
the real solution becomes more common, but the distances be-
tween the real solution and the neighboring ones also become
significantly smaller. In this case, the error is manifested in
poorer resolution, rather than in gross discrepancy between
the real signal and the solution obtained.

B. Initialization

It is clear that an initialization as close to the true solution
as possible should be used. Earlier versions of the re-weighted
minimum norm algorithm [16], [17], [20], [21] were initialized
with the minimum norm solution (2). It is a very popular low-
resolution estimate that is used when noa priori information
is available because it is often thought to contain no bias
toward any particular solution. Instead, this solution should
be viewed as one that minimizes the maximum possible error
for a bounded solution set. In [26], we show that depending
on , this estimate can strongly bias particular solutions, as
described in the above subsection, and is not necessarily best,
even in the absence ofa priori information. Even when bias
compensation is used, minimum norm-type estimates cannot
be used universally to initialize FOCUSS. They are derived
from only single samples of data and, hence, cannot resolve
general non-unique sparse signals (see Section III) as they
select only one out of several possible basins.

Instead, the best available low resolution estimate of the
sparse solution should be used for the initialization. Anya
priori information should be incorporated into it as well. The
final choice of the algorithm clearly depends on the particular

Fig. 3. Diagram of optimization methods for finding sparse solutions. The
position of the FOCUSS algorithm is highlighted by the boxed area.

application. When multiple samples of data are available,
however, the sparse signal of dimension less thanthat
can generate this data is unique [7]. In many applications, the
sparse signal of interest is expected to be of dimension less
than ; therefore, it can be estimated uniquely from multiple
samples of data. Standard algorithms, however, suffer from
decreased resolution under unfavorable conditions, such as
nonstationarity of sources. In this case, they provide good ini-
tialization for FOCUSS, which can then refine the solution to a
higher degree of accuracy. From our experience, beamforming
is a good choice for FOCUSS initialization when no special
constraints are present. This suggests array processing as one
class of applications for FOCUSS, and we present an example
of this application in Section VIII.

Note that when sparse initial estimates are used, they should
be “blurred,” and all the entries should be made nonzero
so that potentially important components are not lost. In
general, the initialization does not have to satisfy a given linear
system exactly; therefore, any estimate, including guesses, can
be used. In the neuroimaging application, for example, an
estimate of brain activity from other modalities may be used
to initialize FOCUSS.

VII. RELATIONSHIP OF FOCUSSTO

OTHER OPTIMIZATION STRATEGIES

The re-weighted minimum norm algorithms can be viewed
as a novel class of computational strategies that combines
elements of both the direct cost optimization and neural
network methods, as depicted in Fig. 3. Like classical direct
cost optimization methods, FOCUSS descends a well-defined
cost function, but the function is generated in the process
of computation rather than being explicitly supplied. Like an
associative network, FOCUSS retrieves a stored fixed state in
response to an input, but no learning is involved. Learning
can be added, however, if desired, to fine tune the cost
function. What sets FOCUSS apart is its utilization of the
initial state, which defines the cost function being optimized.
We next discuss how FOCUSS relates computationally to these
optimization strategies.

The computational aspects of FOCUSS differ fundamentally
from those of classical optimization methods for finding sparse
solutions, the most popular of which are the Simplex algorithm
and the interior methods, which include the Karmakar algo-
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rithm. FOCUSS can be considered to be a boundary method,
operating on the boundary of the simplex region . An
initialization near the final solution directly benefits FOCUSS
convergence. The Simplex algorithm operates on the vertices
of the simplex region defined by , and the interior
methods operate in the interior of this region, i.e., .
Interior methods do not benefit from initialization near the
final solution because in the course of their computation, the
intermediate iterative solutions move away from the boundary.

The connection of FOCUSS to pseudoinverse-based neural
networks and its application to a pattern classification problem
was presented in [25]. The input/output function in FOCUSS
networks is well defined, and the stability of these networks is
guaranteed for any input by the convergence analysis presented
here. If desired, learning can be incorporated into FOCUSS to
produce the desired associative recall. This can be done, for
example, by introducing an additional weight matrix that is
learned and modifies the shape of the basins of attraction. A
crucial advantage of this type of network is that a process
of regularization can be built into the algorithm to deal with
noise [8]; therefore, a model of noise is not required. This
is important for applications where noise models are hard
to obtain, such as biomedical tomography. Another possible
modification of FOCUSS that borrows from neural networks
involves using past solutions as the memory states and cross-
referencing them with the current solution to try to anticipate
the final convergence state. This can speed up the convergence
and provide a form of regularization.

VIII. A PPLICATIONS

The FOCUSS algorithm is suitable for application to linear
underdetermined problems for which sparse solutions are
required. The use of the basic form of the algorithm in
spectral estimation and harmonic retrieval has been extensively
investigated, e.g., [16]–[19], [26]. Several other utilizations
have been studied, e.g., [8], [22], [25], [26]. Here, we present
two examples. The first example is the narrowband farfield
direction-of-arrival (DOA) estimation problem, for which we
give the results of a detailed study of FOCUSS performance.
We use scenarios with moving sources, a very short non-
uniformly spaced linear array and short record lengths (single
snapshots). The aim is to illustrate the implementation and the
advantages of the algorithm on a familiar signal processing
application. FOCUSS can also be applied to much broader
Sensor Array Processingproblems, given the appropriate for-
ward model. One such example is the neuroimaging problem,
which is the second application we present. This is a nearfield
problem, where the sources are dynamic and multidimensional,
the array is nonlinear and nonuniform, and no assumption
is made on the bandwidth of the signals. Sources of brain
magnetic fields that are not resolvable with more conventional
methods are shown to be resolved by FOCUSS in this example.

A. DOA

DOA estimation deals with the estimation of incoming
directions of waves impinging on an array of sensors. This
problem is a special case of general sensor array processing.

Our example addresses the narrowband far-field estimation
problem, where the sources can be considered as point sources
and the incoming waves as plane waves.

The nonparametric DOA model is constructed as follows.
The data vector denotes the output of the sensors at a time
, which is known as asnapshot. The noise-free output of the
th sensor at time, i.e., , is the result of a superposition

of plane waves. This can be expressed as

(19)

where is the response of theth sensor to theth source at
time , and is the complex exponential representing
the th incoming wave with DOA ,
center temporal frequency , and a time delay of the
wavefront between the reference sensor and theth sensor.
The parameters represent theDOA we want to estimate.
The th column of the matrix is the output of the array due
to a unit strength source at angular location. The columns
are constructed by varying through the range of possible
DOA and computing array outputs. The nonzero entries in
the solution select the angular directions of the sources that
compose the signal.

We demonstrate the high-resolution performance of FO-
CUSS under challenging conditions. We use three moving
sources whose location and intensity change from one snap-
shot to the next, a very short non-uniformly spaced linear
array (eight sensors), and short record lengths (we use single
snapshots for all cases). We run tests with varying noise
level and DOA, relative angular separations, and amplitudes
of the waves. The spatial frequencies of the waves do not
match the frequencies represented in the columns of. The
sensors are spaced sufficiently close to avoid aliasing, i.e.,
the sampling density of the array is such that the URP of
Section III is satisfied. FOCUSS with and a hard
thresholding that eliminates all entries below ,
where , is used for all iterations. The use
of such thresholding significantly improves the performance
and the convergence rate. The initialization is done using a
regularized MVDR estimate computed as

(20)

where is the th column of , and
is a regularized covariance matrix of the data. Thehere is
the identity matrix, and is the regularization parameter. The
regularization of the standard covariance matrix is
required because using so few snapshots results in a singular

. can be used in place of in (20) to obtain
comparable results, but only when the number of snapshots
is equal to or exceeds the number of incoming waves.

The simulation results are as follows. We find FOCUSS
performance to be consistent across the tested range of ampli-
tudes and angular separations. In the case of zero noise, the
error in the model is only due to the mismatch between the
frequencies of the signal and those contained in the columns of

. In this case, the algorithm successfully recovers the DOA
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(a) (b)

(c) (d)

Fig. 4. DOA estimation from single snapshots, with an array of eight unevenly spaced sensors, of three nonstationary sources with DOA[�46� �29� 60�]
for the first snapshot,[�43� �33� 56�] for the second snapshot, and[�40� �36� 52�] for the third. (a) MVDR estimates from the first snapshot
(dashed line) and from the three snapshots combined (solid line). (b) FOCUSS solution for the first snapshot. (c) FOCUSS solution for the second
snapshot. (d) FOCUSS solution for the third snapshot.

of each wave, typically by representing it by the two columns
of that span it. The exception is when the DOA is very
close to the angular direction of a particular column. In that
case, it is represented by this column alone. For this reason,
the true amplitudes of the sources are not readily resolved.
More precise DOA solutions that give accurate amplitude
estimates can be found by hierarchically refining the solution
grid in the areas of nonzero energy inand executing a few
additional FOCUSS iterations, as demonstrated in [24]. We do
not demonstrate this step here.

In simulations with varying levels of noise, white Gaussian
noise is used with the variance given as a percentage of the
power of the weakest wave in the signal. The unregularized
algorithm reliably assigns the highest power to the entries of

surrounding the true DOA’s for noise power of up to 50%,
i.e., signal to noise (SNR) of 3 dB with respect to the weakest
source, but the power in the solution for each DOA tends to be
spread among a number of neighboring columns of. This
number can be as high as 8 for the highest noise levels (3
dB). The unregularized solutions also have smaller spurious
nonzero values in other entries of. We use TSVD with
the truncation level determined by the L-curve criteria [35]
for the regularization of inverse operations. The regularization
allows FOCUSS to handle slightly higher levels of noise, and
it eliminates spurious energy in the solutions that are due to

noise. It also concentrates the energy in the solutions for each
DOA into a smaller (2–3) number of columns of. As can be
expected, due to noise, FOCUSS solutions may contain small
errors. The columns of that are found may no longer be the
absolute closest ones to the DOA of the real signal, but they
still provide a good estimate of the solution. In addition, the
very closely spaced DOA’s can, at times, get represented as a
single DOA by the intervening columns of.

The results are demonstrated with the following example.
Three snapshots of three sources moving toward each other are
used. Two sources start with a moderate angular separation in
the first snapshot and are closely spaced by the third snapshot.
The third source remains well separated from the other two at
all times. The directions of arrival are for
the first snapshot, for the second snapshot,
and for the third. The amplitudes of three
sources are , and
for the respective snapshots. FOCUSS solutions in the noise-
free case for each snapshot are shown in Fig. 4(b)–(d). The
figures show the successful recovery of the three sources,
including resolution of the two very closely spaced sources.
In each case, the algorithm converges to the solution in four
iterations. Fig. 4(a) shows the regularized MVDR estimates
found using the first snapshot of data (dashed line) and all three
snapshots combined (solid line). The FOCUSS reconstructions
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(a) (b)

(c) (d)

Fig. 5. DOA estimation using the same example as in Fig. 4 with random Gaussian noise added to the data. The SNR is 10 dB with respect to the
weakest source. (a) MVDR estimates using all three snapshots. (b) FOCUSS solution for the first snapshot. (c) FOCUSS solution for the second snapshot.
(d) FOCUSS solution for the third snapshot.

were independent of the MVDR solution that was used for the
initialization. FOCUSS solutions for this example with a SNR
of 10 db are shown in Fig. 5.

B. Neuroimaging

Functional imaging of the brain using the scalp electric
potentials (EEG) or the brain magnetic fields measured outside
the head (MEG) is an extrapolation problem, where the
objective is to find the current inside the head that generates
the measured fields. The problem is physically ill posed as
well as underdetermined. Physical ill posedness means that the
current cannot be determined uniquely even with the absolute
knowledge of the fields outside the head, i.e., when the number
of data is infinite. The onlya priori constraint available is the
knowledge that current distributions imaged by EEG/MEG
are spatially compact, i.e., these currents are produced by
synchronous firing of neurons clustered in 1 to 4 cmareas.
Because neuronal activity is highly dynamic, i.e., the intensity
and location of the current flow can change fairly rapidly and
because simple models, such as electric or magnetic dipoles,
do not accurately describe extended and irregularly shaped
areas of activity, EEG/MEG solutions are difficult to model
either parametrically or through cost functions. The problem
is further compounded by complex statistical properties of the
noise and by the physical ill posedness. As a result, the success
of conventional algorithms under realistic conditions has not

been demonstrated for this problem. For a more complete
description of the physics of the EEG/MEG imaging problem
and its approaches, see references in [8].

In [8], we show that the sparseness constraint is well suited
for recovery of EEG/MEG signals if the problem is made
physically well posed. This can be achieved by constraining
the solutions to lie in a 2-D plane. In [7], we showed that
the net effect of physical ill posedness is limited in any case
to the existence of a small uncertainty envelope around each
active site. Thus, by using the sparseness constraint, we can
identify the neighborhoods where the activity occurs but not
the exact shape of the current distributions. This is the best
estimate obtainable for the EEG/MEG imaging problem. Our
experimental results suggest that the maximally sparse solu-
tions may not always work well to recover the neighborhoods
of activity, even when Corollary 2 holds in this situation.
The sparsity constraint can still be used here, however. AST
constrained algorithms such as FOCUSS are a good choice of
an estimator in this case, but they provide only one solution
from an infinite set of possible current distributions within
each neighborhood of activity. In particular, FOCUSS finds
the maximally sparse representation for the current within each
active site. We demonstrate finding an MEG solution with
FOCUSS here.

The nonparametric EEG/MEG imaging model is constructed
as follows. The elements of a solution represent point
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current sources at each location node in the cortex (the
cortex is discretized using a 3-D lattice of nodes). Thus, the
current distribution at an active site is represented in this
model by a uniform distribution of point sources within the
site. The data is generated by assigning current values to
the selected locations in the cortex, shown in Fig. 6(a), and
computing the resultant electromagnetic field at the sensor
locations as determined by Maxwell equations. We use a
boundary element model with realistic head geometry in
this example. We assume 150 sensors and three neuronal
ensembles containing, respectively 2, 4, and 3 active nodes.
The distribution of current within each ensemble is maximally
sparse. The coefficients of the matrixmap a unit current at
each location in the cortex to the field values at the sensors. A
weighted minimum norm solution (see Fig. 6(a)) that includes
a compensation for the bias contained in, as described
in Section VI, is used for the initial estimate. Note the low
resolution and the false active sites returned by the minimum
norm-based estimate. The FOCUSS solution from (8) using

and the same bias compensation matrix as used in
the initialization is shown in Fig. 6(b). FOCUSS recovers the
correct maximally sparse current at each active site.

APPENDIX A
PROOF OF THEOREM 2

To show fixed-point convergence, we use the solution set
as defined in Theorem 2 and show that the conditions of the

global convergence theorem [30] hold:
i) The set is compact.

For the finite-dimensional case, this condition is equivalent
to showing that a sequence of points generated
by the mapping (8) of the algorithm is bounded.

At each iterative step, the solution is finite; therefore, we
need only to examine the convergence limits of the algorithm.
From ii), the convergence limits of are the minima of the
descent function , which occur only when at least one of
the entries of becomes zero. The limit points of that
are sparse solutions are clearly bounded. We later show that
the non-sparse limit points are only reachable through special
trajectories for which the limit of convergence has the same
properties as a sparse solution. Therefore, these solutions are
also bounded.
ii) There is a continuous descent function such that

outside
when

We show that the descent function is

(A.1)

From , we have
and

(A.2)

(a)

(b)

Fig. 6. MEG reconstructions of three neuronal ensembles represented by 3,
2, and 4 active nodes, respectively, with a 150 sensor array: (a) Solid black
circles mark the nodes of the three active sites. The weighted minimum norm
solution that includes a compensation for the bias as described in the text is
marked by gray transparent circles. (b) FOCUSS reconstruction of the active
nodes shown in solid black circles.

Taking the logarithm of both sides, we have

(A.3)
Thus, iff . To
show that , we note that is
a purely concave function, that is

We can rewrite this as

or

(A.4)

We next observe that the norm minimized at each step of the
algorithm is bounded by the the value of the norm when no



614 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 3, MARCH 1997

change in occurs, that is

Since , we have

Substituting this into (A.3), we get

(A.5)

Substituting (A.4) into (A.2), we obtain the desired result

For , we have .
iii) The mapping (8) is closed at points outside.

This is true since (8) is a continuously differentiable map-
ping outside .

APPENDIX B
PROOF OF THEOREM 3

Consider the system (1) partitioned as follows:

where has any columns such that is
compatible, and contains the remaining columns. Similarly,
let and be the two partitions of the weighted matrix

at an iteration . Then

where diag and diag . Define

and

In the proof, we will also make use of the following results:

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)

The inequality (B.4) holds because is a projection
operator.

From the general form of the pseudoinverse of partitioned
matrices [29], together with the fact that , the th
iterate of the basic algorithm can be written as

and

(B.6)

Consider an arbitrary point in a neighborhood of

...

...

where we assume, without loss of generality, that
is the largest element of . Note that

...

Using the Matrix Inversion Lemma
with (B.6) and (B.1)–(B.5), we have

(B.7)

(B.8)

The denotes the largest of the terms, and is the
smallest of all the terms.

From (B.8), for sufficiently small , we get

...

Similarly

(B.9)

from which we get

...

In the next iteration, we repeat the same calculations, starting
with , to obtain and .

For a sufficiently small , this shows asymptotic conver-
gence from an arbitrary point to with at least a
quadratic rate of convergence.

The rate of convergence can be similarly derived for the
general algorithm (8) with using (B.7) and (B.9). The
powers of and in in the general case will be
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equal to . Correspondingly, the rate of convergence will be
. Thus, using in (8), for example, generates a local

rate of convergence order of 4.
Proof of Corollary 3: Analytical investigation of saddle

points is difficult because the behavior of the algorithm is
different at different points in a neighborhood of a saddle
point. Instead, we use the interpretation of the geometry of
solution curves from nonlinear dynamical system theory for
this part of the analysis.

We first establish the existence of FOCUSS generated
sequences along which ratios between
two or more entries of do not change. Consider two
“neighboring” sparse solutions and that differ in two
entries as follows. For the first solution, we have
and , whereas for the second, we have and

. Along the trajectories within the basin of
attraction of , the ratio is decreasing, whereas
the reverse is true for the trajectories in the basin of.
Then, by continuity of the parameters in the phase space,
there must exist a trajectory along which the ratio between
th and th entree of is constant. This trajectory forms the

boundary between the basins of attraction ofand since
it does not lead to either of these solutions. Similarly, we can
extend the argument to show the existence of other boundary
trajectories along which several sets of two or more entries of

do not change relative to each other. Each of these sets of
entries acts as a single element ofand can be replaced by a
linear combination of its entries without affecting the overall
behavior of the algorithm along the special trajectories.

We now consider the convergence of FOCUSS along such
a trajectory, which we denote by . Let us substitute a
single element for each set of entries ofthat are constant
relative to each other. We similarly substitute a single column
for each corresponding set of columns of to produce a
reduced system . Convergence of FOCUSS to sparse
solutions of this system is guaranteed by Theorem 3. Some of
these sparse solutions are the same as the sparse solutions of
the original system (1). The others, namely, the solutions that
contain the reciprocally constant terms of, correspond to
the non-sparse solutions of (1). For example, the trajectories
along which any two terms of are reciprocally constant
lead to dimensional solutions. The trajectories along
which any three entries of are reciprocally constant lead to

dimensional solutions, etc. Since FOCUSS converges
to these solutions along these special trajectories only, these
solutions are saddle points. Using the argument from the above
paragraph, we can show that the total number of the trajectories
leading to such non-sparse solutions is limited, meaning that
the number of these solutions is also limited. In fact, the
trajectories along which the ratio between any two terms of
is constant are unique.

Thus far, we have established the existence of non-sparse
solutions that are saddle fixed points and that the sparse
solutions must be s-f-ps. Because the sparsity assumption is
required in the proof of stability in Theorem 3, we propose that
the non-sparse solutions in must be the saddle
points described above. Simulations verify this conclusion as
well.

By the continuity argument used above, there also must
exist a point in where the recursive algorithm remains
completely stationary. This point is the unstable fixed point
of the algorithm.
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