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SUMMARY

In regression models, such as generalized linear models, there is often substantial prior uncertainty about

the choice of covariates to include. Conceptually, the Bayesian paradigm can easily incorporate this form

of model uncertainty by building an expanded model that includes all possible subsets of covariates. In

Bayesian model averaging, predictive distributions or posterior distributions of quantities of interest are

obtained as mixtures of the model-specific distributions weighted by the posterior model probabilities.

A major difficulty in implementing this approach is that the number of models in the mixture is often

so large that enumeration of all models is impossible and some type of search strategy is required to

determine a subset of models to use. In the case of an orthonormal design, some computationally simple

approximations to the posterior model probabilities are introduced. These are used to develop efficient

methods for deterministic or stochastic sampling from high-dimensional model spaces.
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1. INTRODUCTION

Linear regression and its generalizations are some of the most commonly used methods in

the sciences for finding relationships between explanatory variables and dependent variables.

Scientists are collecting larger data sets, and, as the number of observations increases, so does the

number of possible explanatory variables. To find relationships and developmodels, researchers

often turn to variousmethods of automatedmodel selection and data-mining to select covariates.

A major problem is that, by selecting a single model, most analyses ignore model uncertainty,

which often significantly outweighs other sources of uncertainty (see Raftery et al. 1996, for

examples and further discussion). Bayesian model averaging (BMA) provides a coherent and

effective approach for incorporating model uncertainty: predictions and inferences are based on

a set ofmodels, rather than a singlemodel, and eachmodel in themixture distribution contributes

proportionally to the support it receives from the observed data. While BMA has a long history

(de Finetti 1937, Leamer 1978, Mitchell and Beauchamp 1988), it is only the major advance

in modern computing environments that has led to the substantial increase in use of BMA and

Bayesian variable selection in large problems (Chipman et al. 1998, Clyde and DeSimone 1997,

Clyde and Parmigiani 1998, Clyde, DeSimone, and Parmigiani 1996, Dellaportas and Forster

1994, Denison 1997, Denison, Mallick, and Smith 1998, George and McCulloch 1993, 1997,

Geweke 1996, Madigan and Raftery 1994, Raftery et al. 1997, Raftery et al. 1996, Smith and

Kohn 1996, 1998).

While BMA provides inferences that incorporate model uncertainty, there are a number

of difficulties in implementing BMA in high-dimensional problems with correlated variables.

BMA and current approaches and issues are reviewed in Section 2 of the paper. In Section

3, we discuss implementing BMA in the context of a normal linear regression model with an
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orthogonal design matrix in order to handle larger problems efficiently. Under orthogonal-

ity, one can find analytic expressions for posterior model probabilities, means and variances

in extremely high-dimensional problems, bypassing the usual problems with convergence of

MCMCmethods. In situations where a subset of models is desirable, orthogonality can be used

to create novel deterministic and stochastic sampling schemes that are more efficient than Gibbs

sampling or current MCMC methods. In Section 4, the normal linear model results are used

to derive approximations to posterior model probabilities for generalized linear models. These

approximations and others based on a model of posterior independence are used either directly

to approximate BMA estimates or as proposal distributions for sampling models with high

posterior probability. Section 5 illustrates the different approximations in several examples.

2. IMPLEMENTING BAYESIAN MODEL AVERAGING

Consider a regression problemwithn observations, with a response variable,Y = (Y1, . . . , Yn)′

and a n × p matrix of covariates,X . Typically, there is a great deal of prior uncertainty about

which subset of covariates should be included in the regression model. This can be modelled

by introducing the vector γ of indicator variables that reflect which covariates are included in

a model; the model space, Γ, will refer to the set of all possible vectors γ. Under model γ, the

distribution of Y depends on the covariates through a linear predictor ηγ = Xγβγ , whereXγ

corresponds to the columns of X where γ equals one. Standard Bayesian updating of f(γ),
the prior probability of model γ, leads to the posterior probability of γ given the data Y ,

f(γ|Y ) =
f(Y |γ)π(γ)

∑

γ ′∈Γ f(Y |γ ′)π(γ ′)
, f(Y |γ) =

∫

f(Y |βγ,γ) f(βγ|γ) dβγ (1)

where f(Y |γ) is the marginal distribution of the data Y given the model γ after integrating out

model-specific parameters βγ with respect to the prior distribution, f(βγ|γ). An equivalent
representation of (1) based on Bayes factors (Kass and Raftery 1995) is

f(γ|Y ) =
B(γ,γF )π(γ)

∑

γ ′∈Γ B(γ ′,γF )π(γ ′)
, (2)

whereB(γ,γF ) is the Bayes factor for comparing model γ to model γF , the full model. Under

BMA, the distribution of quantities of interest ∆, such as relative risks or future observations,
can be represented as a mixture distribution,

f(∆) =
∑

γ∈Γ
f(∆γ|Y , γ)f(γ|Y ) (3)

where the model-specific distributions f(∆γ|Y ,γ) are weighted by the amount each model is
supported by the data as measured by the posterior model probabilities, f(γ|Y ).

In practice, there are two major problems with implementing BMA (in addition to the usual

difficulty of specifying prior distributions). The first problem is that the integrals required to

obtain the marginal distribution of the data in (2) may be analytically intractable, and approxi-

mate methods of integration such as the Laplace method or Monte Carlo methods are necessary

(Kass and Raftery 1995). In nested models, such as in regression problems, a generalization

of the Savage-Dickey density ratio (Dickey 1971, Verdinelli and Wasserman 1995) can be used

to estimate Bayes factors using posterior simulations. The second major difficulty is that the

number of models (2p) is enormous, when there are many covariates. Even if Bayes factors or

marginal distributions can be calculated analytically or accurately using simulation methods,
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for p greater than 25-30 it is generally computationally infeasible to use all possible models in
BMA, and the summation over Γ in (1) and (3) is replaced by a summation over some subset
S. In high-dimensional problems where model averaging must be based on a subset of models,
the challenging aspect is determining which subset of models S to use. Two approaches in the
literature for determining a subset of models to approximate BMA estimates include Occam’s

Window or stochastic search via Monte Carlo methods.

2.1. Deterministic Search and Occam’s Window

Madigan and Raftery (1994) proposedOccam’s window as an approach for determining a subset

of models to use in model averaging. To determine the models in the “window”, any model

that has a posterior probability far less than the best model is removed. Any models that have

lower posterior probability than any of their simpler sub-models are also removed. For larger

problems where enumeration of Γ is not possible, Volinsky et al. (1997) use the “leaps and
bounds” algorithm to identify potential models in Occam’s Window (for p ≤ 30). In many
cases, the number of models in S is reduced to fewer than 25. While Occam’s window has

provided better predictive performance than selecting the single “best” model (Madigan and

Raftery 1994, Madigan et al. 1996, Raftery et al. 1997, Raftery et al. 1996, Volinsky et al.

1997), averaging over a larger set of models often leads to better predictive performance.

2.2. Stochastic Search and Reversible Jump Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a popular approach for stochastically search-

ing the model space for both variable selection and model averaging and providing samples

from the posterior distributions f(γ|Y ) and f(βγ|γ,Y ). Some examples include Carlin and
Chib (1995), Dellaportas and Forster (1996), George andMcCulloch (1993, 1997), George et al.

(1995), Geweke (1996), Kuo andMallick (1998), Madigan and York (1993), Phillips and Smith

(1994), Raftery (1993), Raftery et al. (1993), Raftery et al. (1996), Volinsky et al. (1996). The

reversible jump MCMC algorithm of Green (1995) generates samples from the joint posterior

distribution f(βγ,γ|Y ) when the models have parameter spaces of different dimensions, and
includes many of the above algorithms as special cases (see Dellaportas et al. 1997 or Godsill

1997 for discussion of the relationships among these sampling methods). A key component of

these algorithms is the proposal distribution for “jumping” to new models.

In high-dimensional problems, convergence of MCMC algorithms is a critical issue, as

the number of models in the model space often far exceeds the number of iterations of the

MCMC sampler. The correlation structure of X can have a great impact on the convergence

rate ofMCMCmethods (Geweke 1996). Orthogonalizing the explanatory variables can strongly

improve convergence and mixing (Clyde et al. 1996, Gelfand et al. 1996, Gilks and Roberts

1996). In the next section, we show that, with orthogonality, normal errors and known error

variance, we can sample directly from the posterior. This results in an independent proposal

distribution for sampling from the model space, and provides the basis for approximations to

posterior model probabilities for GLMs. Alternatives to MCMC for more efficient sampling

are also discussed.

3. ORTHOGONAL REGRESSIONS WITH NORMAL ERRORS

Consider a normal linear model with known error variance σ2 and orthogonal design matrix.

Under independent prior distributions for (βγ,γ),

βj |γj ∼ N(bj , c
2
jγj)

γj ∼ Be(pj)
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the elements of γ are a posteriori independent Bernoulli random variables,

πN (γ|Y ) =

p
∏

j=1

ρ
γj
j (1 − ρj)

1−γj ρj = ρ(Y , σ)j =
Oj(Y , σ)

1 + Oj(Y , σ)

Oj(Y , σ) =

(

pj

1 − pj

)

(

xT
j xj/σ2 + 1/c2

j

1/c2
j

)−1/2

exp

{

1

2

(β̂jx
T
j xj/σ2 + bj/c2

j)
2

xT
j xj/σ2 + 1/c2

j

− 1

2

b2
j

c2
j

}

(4)

where xj is the j-th column ofX and β̂j = (x′
jxj)

−1x′
jY is the least-squares estimate of βj .

The termOj(Y , σ) represents the posterior odds of including variable j in the model and is the
product of the prior odds times the Bayes factor (BF) for testing the hypothesis that βj is not

equal to zero against the hypothesis that βj equals zero. For j greater than 1, typically the prior
mean is zero. If we select c2

j to have the same scale as the likelihood so that c
2
j = c2σ2/(x′

jxj),
then the Bayes factor simplifies to

(1 + c2)−1/2 exp

(

1

2
t2

c2

1 + c2

)

(5)

where t is the t-statistic for testing the hypothesis that βj equals 0. This formulation is useful

for calibrating the prior hyperparameter c.
With an orthogonal design and known σ2, one can sample directly from the posterior dis-

tribution of γ using the Gibbs sampler, which produces independent and identically distributed

draws from the posterior. This is clearly more efficient thanMetropolis algorithms, which result

in some rejection of proposedmodels and correlation in the sample. Quantities such as posterior

means and variances under BMA, however, can be calculated, for arbitrarily large p without
Monte Carlo sampling,

E(βj |Y v) = P (γj = 1|Y )
c2

1 + c2
β̂j = ρj(Y , σ)

c2

1 + c2
β̂j

var(βj |Y v, σ) = ρj(Y , σ)
c2

1 + c2
σ2(x′

jxj)
−1 + ρj(Y , σ) (1 − ρj(Y , σ))

(

c2

1 + c2
β̂j

)2

.

Reasonable results can be obtained using a plug-in estimate for σ2. When σ2 is unknown and

has an inverse gamma prior distribution, then it is straightforward to implement a blocked Gibbs

sampler where γ|Y , σ2 is distributed as a product of independent Bernoulli distributions and

σ2|γ,Y has an inverse gamma distribution. A Rao-Blackwellized estimator of the marginal

probability that γj equals one can obtained by averaging ρj(Y , σ2) over values of σ2 from

the Gibbs sampler. The Rao-Blackwellized estimator can be used in place of ρj(Y , σ2) to
find the posterior mean under model averaging. For nonparametric curve estimation using

wavelets (where p = n), Clyde et al. (1998) considered simulated data from several popular

test functions, “Doppler”, “Bumps”, “Heavisine”, and “Blocks”. Using data-based estimates

of σ2 in the model probabilities was nearly as efficient (in terms of mean squared error) as the

Rao-Blackwellized estimator.

For other quantities of interest, such as quantiles, one cannot average over the model space

analytically and one must implement BMA by averaging over a subset of models. There

are, however, more efficient sampling alternatives than MCMC. Models generated from the

Gibbs sampler can be viewed as a sample drawn with replacement from a finite population. In

conjugate models, however, there is no additional information provided by re-sampling models.
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For the orthogonal design, Clyde and Littman (1998) develop an efficient sampling-without-

replacement algorithm. This is a stochastic algorithm for enumerating all possible models,

and is much more efficient than the Gibbs sampler for enumerating the model space. Clyde

and Littman also develop an efficient deterministic algorithm for listing models in order of their

posterior probabilities. For a sample of kmodels, both algorithms takeO(kp) operations, which
is approximately equivalent to the time required to write out each model. These can both be

used to identify a subset of models S for BMA, or can be used to identify potential models in
Occam’s Window. For variable selection problems, where the log of the expected utility can

be approximated by a linear function in γ, the deterministic sampling algorithm can also be

used to identify the k models with highest expected utility. Likewise, this sampling-without-
replacement algorithm can sample models proportional to their expected utility.

In generalized linear models, one typically cannot integrate out the model-specific param-

eters, and thus some type of stochastic or deterministic sampling scheme is required to identify

the subset of models used in BMA in GLMs. In the next section, we develop several approxima-

tions to the posterior model probabilities for GLMs that have the same independent Bernoulli

structure as in linear models under orthogonality.

4. APPROXIMATE POSTERIOR MODEL PROBABILITIES IN GLMS

In the generalized linear model, the Yi’s are taken as independent observations from an expo-

nential family with canonical parameter θi:

f(yi|θi) = exp

{

wi

φ
(yiθi − b(θi)) + c(y, w, φ)

}

for specific known functions b(·), and c(·) (see McCullagh and Nelder (1989)). The mean and
variance of Yi are given by

E(Yi) = µi = b′(θi) var(Yi) = b′′(b′−1(µi))
φ

wi
,

where the linear predictor ηi is related to the mean µi via a link function g, ηi = g(µi). In
the examples in Section 5, the Poisson distribution with a log and identity link, and a possible

overdispersion parameter φ (Efron 1986, West 1985), is used.
Before routines for maximum likelihood estimation were routinely available, it was com-

mon to use transformations of the data and then ordinary least squares to analyse Poisson,

binomial or gamma observations. Using the transformed data and normal theory results for

model probabilities from Section 3 is a simple and effective way to approximate the posterior

distribution of γ and leads to posterior independence for γ. As an alternative approximation

that does not assume approximate normality, we fit a “meta-model” for the model space which

leads to posterior independence. Approximate posterior independence of γ under orthogonality

provides computationally simple yet efficient approximations to model probabilities in general-

ized linear models. The approximations can be used as proposal distributions in reversible jump

algorithms or used in the deterministic or stochastic sampling-without-replacement algorithms

of Clyde and Littman (1998) to find a subset of models S for BMA.

4.1. Variance-Stabilizing Transformations

For many exponential families there exists a variance-stabilizing transformation h, so that the
variance of the transformed response is approximately constant, say k. Additionally, if Yi

is approximately normally distributed N(µi, V (µi)), then h(Yi) is approximately normally
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distributed N(h(µi), V (µi)h
′(µi)

2), provided h is differentiable and h′(µi) is not zero. The
variance-stabilizing transformation can be obtained as the indefinite integral,

h(µ) =

∫

k1/2V (µ)−1/2dµ.

For Poisson datah is the square root transformation and k = 1/4. Under the variance-stabilizing
transformation h, the mean is

E(h(Y )) ≈ h(µ) = h(g−1(ηγ)),

which is a nonlinear model in terms of ηγ = Xγβγ , depending on the specific link function

and variance-stabilizing function. To use normal linear model methods to approximate model

probabilities, h(g−1(ηγ)) is replaced by the first two terms of the Taylor series expansion about
η0i,

h(g−1(ηi)) ≈ h(g−1(η0i)) +
h′(g−1(η0i))

g′(g−1(η0i))
(ηi − η0i). (6)

Substituting the approximate linear regression (6) for the mean results in an approximate normal

regression model for the transformed variable W = (w1, . . . , wn)T with a mean Xγβγ and

known diagonal variance Σ, where

wi =
g′(g−1(η0i))

h′(g−1(η0i))

(

h(Yi) − h(g−1(η0i))
)

+ η0i (7)

Σii = k

(

g′(g−1(η0i))

h′(g−1(η0i))

)2

.

If η0i does not depend on i, then Σii is a known constant, σ
2. Using W in place of Y , the

posterior model probabilities in (4) can be used to approximate the posterior distribution of γ

in generalized linear models.

Calculations and examples for Poisson regression with a log link, are considered by Clyde

and DeSimone–Sasinowska (1997). In this case, the variance-stabilizing transformation is the

square root transformation and the transformed variableW is

W =
2√
Ȳ

(

Y 1/2 − Ȳ
1/2

)

+ log(Ȳ )

where the Taylor series expansion is about η0i = log(Ȳ ).

4.2. Other Transformations for Normality

As the derivation of approximate model probabilities in Section 4.1 relies on approximate

normality, it is natural to look for other transformations such that the distribution of h(Y ) is
“close” to a normal distribution. Hougaard (1982) discussed various transformations in one-

parameter exponential families given by

h(θ) =

(

φ

wi

)δ ∫
{

d2

dθ2
b(θ)

}δ

dθ,

where δ is a constant that determines properties of the reparameterization. For example, δ = 0
corresponds to the canonical parameterization, δ = 1/3 corresponds to a quadratic loglikelihood
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parameterization (the third derivative of the log likelihood vanishes), δ = 1/2 is the variance-
stabilizing transformation, δ = 2/3 results in approximate zero skewness (symmetry), and
δ = 1 is the mean value parameterization. In terms of µ, the transformation is

h(µ) =
φ

wi

∫

V (µ)δ−1dµ (8)

so that the approximate mean under transformation of Yi is h(µi) and the approximate variance
is V (µi)

2δ−1. For the Poisson model, the transformation is h(Yi) = Y δ
i /δ with an approximate

mean of µδ
i/δ and approximate variance of µ

(2δ−1)
i for δ > 0, and is the log transformation for

δ = 0.
If h(Yi) is approximately normal, then the above mean and variance determine the distribu-

tion. To achieve a mean that is linear in βγ , a Taylor series expansion of h about η0i is carried

out as in (6). The variableW is defined analogously toW in Section 4.1 and is approximately

normal with meanXγβγ , but Σ is diagonal with elements

Σii =

(

g′(g−1(η0i))

h′(g−1(η0i))

)2

V (g−1(ηi))
2δ−1.

The approximate variance Σ varies with ηi, so unless a common value is substituted for all

cases, the nonconstant variance destroys the orthogonality required for independence of the

posterior model probabilities. One option involves replacing Σii by a known constant σ
2, such

as evaluating Σii at η0, the point where the Taylor series was evaluated.

4.3. Transformation to Linearity

While the above transformations may improve normal approximations, they often result in a

mean that is nonlinear in βγ . Using the link function to define a transformation of Y results in

approximate linearity,E(g(Y |γ)) ≈ Xγβγ . When the link function is the same as the variance-

stabilizing transformation, the variance of g(Y ) is approximately constant. Otherwise,Σii may

be replaced by a common value σ2.

4.4. Model Probabilities by Approximate Bayes Factors

In generalized linear models, orthogonality of the covariates does not lead to posterior indepen-

dence of elements of γ. However, ignoring the dependence may lead to reasonable approxi-

mations of posterior model probabilities. Using the Savage-Dickey density ratio, the posterior

odds that γj equals one can be approximated by

Oj =
pj

1 − pj

fβj
(0)

fβj
(0|Y )

where fβj
(·|Y ) is the marginal posterior distribution for βj obtained from the full model and

fβj
(·) is the marginal prior distribution for βj . One can approximate the marginal distribution

using the asymptotic normal approximation for the maximum likelihood estimates (MLEs) or

the Laplace method (Raftery 1996). The approximate posterior odds are then used in equation

(4) to approximate the posterior distribution ofγ. In the examples thatwe have considered, when

the correlations among the MLEs are less than 0.2 in absolute value, these approximations have

worked reasonably well. With higher correlations, independent proposal distributions become

less efficient.
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4.5 Model Probabilities via Loglinear Models on the Model Space

One can view each model γ as a cell in a 2p contingency table that represents the model space,

where the probability of being in the cellγ is π(γ|Y v). In general, posterior model probabilities
may be represented by a “meta-model” that is a saturated log-linear model for π(γ|Y v),

log(π(γ|Y )) = log(qγ) − log(
∑

γ ′
qγ ′)

= α0 +
∑

j

αjγj +
∑

j,k

αjkγjγk +
∑

j,k,l

αjklγjγkγl + . . . α1...p

p
∏

j=1

γj ,

(9)

where the vector α = (α0, . . . α1...p)
T is a function of the data Y and qγ is the un-normalized

posterior model probability.

In the linear regression model with known σ2, the log model probability is

log(π(γ|Y )) =
∑

j

(1 + Oj(Y , σ))−1 +
∑

j

Oj(Y , σ)γj

which corresponds to a model of independence for the model space, where all the two-way

(αjk) and higher order interaction terms are zero. Likewise, in the approximations in 4.1-4.4,

the elements ofγ are all assumed to be independent and the “parameters”αj have been estimated

under different transformations.

Approximate posterior model probabilities in GLMs can be obtained by fitting a model of

independence for the meta-model. Since log(
∑

γ ′∈Γ qγ ′) is a constant we can alternatively
model log(qγ) and then obtain the normalizing constant by summation afterwards. We estimate
qγ using the Laplace approximation for integrals (Raftery 1996),

qγ = π(γ)

∫

p(Y |βγ,γ)p(βγ|γ) dβγ

≈ π(γ) (2π)p/2|ψγ|−1/2p(Y |β̃γ,γ) p(β̃γ|γ),

(10)

where β̃γ is the posterior mode givenmodel γ andψγ is the negative Hessian of the log posterior

with (i, j) element,

[ψγ]ij = − ∂2

∂βi ∂βj
log(p(Y |β,γ)p(β|γ)).

To estimate α, let Q denote the vector of the Laplace approximations for a subset of l
models, and let U denote the l × p “design” matrix based on the l models, where the rows of
U are the corresponding vectors γ. The log-linear model can be represented as

log(Q) = Uα + e (11)

where e represents an “error term” due to lack of independence. Estimates of α using least

squares are then transformed to obtain estimates of the marginal posterior probability that γj

equals one:

pj =
exp(α̂j)

1 + exp(α̂j)
.

Tofind the best subset ofmodelsU to estimateα is a “meta-design” problem. One approach

is to start with the best model γ∗ based on one of the approximate model probabilities from
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sections 4.1-4.4. The first row ofU is γ∗. To obtain row j inU , one starts with γ∗ and switches
γ∗

j to 1 − γ∗
j . This ensures that all parameters are estimable, and has given better results than

a random selection of models or using a “design” based on fractional factorials or orthogonal

arrays, but is open to further research. One can include more models and extend this approach

to incorporate higher order interactions to model dependence among the elements of γ.

4.6. Posterior Inference

The approximations to posterior model probabilities in Sections 4.1-4.5 can be used directly for

computing approximate posterior means or variances. They can also be used in the deterministic

or sampling-without-replacement algorithms of Clyde and Littman (1998) to provide a subset of

models, S. The approximations can be used as proposal distributions in reversible jumpMCMC
algorithms. Generation of a new model only involves sampling from Bernoulli distributions,

and as long as the approximate model probabilities are strictly greater than 0 and less than 1, the

chain is irreducible. One can potentially move to any model in the model space from the current

state, unlike the default proposal in a reversible jump algorithm, which uses birth and death

steps to move to new models and only allows moves to models that differ in one component of

γ. In the default birth step, each variable (not currently in the model) has the same probability

of being added; using the approximate probabilities as a proposal distribution can be viewed

as having different probabilities of birth/death for each variable. In large model spaces, this

enables more rapid mixing, and since components of the new model are selected based on

their approximate posterior distribution, this can be more efficient as the procedure focuses on

important variables. The importance sampler in Clyde et al. (1996) also has this feature. Using

mixtures of the proposal distributions in Sections 4.1-4.5 can be easily implemented, or one

may even mix these with the usual birth/death proposal. This may be desirable in terms of

“robustifying” the independent proposal sampler in problems with moderate correlation among

the MLE’s in the GLM. Standard methods can be used to generate βγ given a proposed γ such

as adaptive rejection sampling, independence proposals based on a normal approximation, or a

random walk proposal (Clyde and DeSimone–Sasinowska 1997, Dellaportas and Forster 1996,

George et al. 1994, Kuo and Mallick 1998).

5. EXAMPLES

5.1. Tetanus

Accuracy of the various approximations to the posteriormodel probabilities was examined using

a log-linear model from Healy (1988, page 97) on deaths from tetanus, where we assume that

the number of deaths has a Poisson distribution. The problem is small enough (a 23 contingency

table with factors Mortality (M), Severity of Tetanus (S), Antitoxen Indicator (S)) that model

probabilities for all log-linear models (223
) can be calculated. While in practice one might only

examine hierarchical models, for comparison purposes this restriction has not been imposed.

The design matrix is constructed using plus and minus ones to code the effects (the ANOVA

sum-to-zero constraint) and products of columns to create 2-way and 3-way interactions, so that

X ′X = 8I8.

The prior mean for the regression coefficients was 0 and the covariance matrix was 16I8.

The Laplace approximation was used as a “gold standard” for the comparison. Table 1 shows

the Kullback-Leibler divergence between the approximate posterior model probabilities using

the power transformations from Section 4.1-4.3 and the model probabilities under the Laplace

approximation. For comparison, the approximation based on the Savage-Dickey ratio and a nor-

mal approximation based on the GLM estimates (Section 4.4) resulted in a divergence of 0.045.

The model of independence (Section 4.5) was fitted to all models, giving a Kullback-Leibler
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Table 1. Kullback-Leibler divergence between approximate posterior model probabilities and posterior

model probabilities based on the Laplace approximation for the tetanus data.

Method: Power Transformation δ Savage- Independence Independence
0 1/3 1/2 2/3 1 Dickey (all models) (8 models)

KL 0.045 0.030 0.025 0.018 0.011 0.045 0.011 0.015

divergence of 0.011. Estimating the model of independence using a minimum subset of 8 mod-

els results in a Kullback-Leibler divergence of 0.015. Overall, there is an excellent agreement

between the approximations and the Laplace approximations; however the approximations can

be calculated in a fraction of the time necessary to compute all Laplace approximations. Similar

results were obtained with other prior covariancematrices and using otherMonte Carlo methods

to estimate the “exact” posterior model probabilities.

5.2. Simulated Loglinear Model

To compare model averaging to other model selection approaches, DeSimone–Sasinowska and

Clyde (1998) consider a 24 contingency table, with the effects coded using the ANOVA sum-

to-zero constraints as above, so that the design matrix for the saturated model has 16 columns

and there are 216 possible models. The response variable was generated according to the model

η = log E(Y ) = 2.7375X1 + 0.15X2 + 0.15X4 + 0.15X5 + 0.15X9 + 0.15X10 + 0.15X16

where Y ∼ Poisson (exp(η)). The prior mean for the intercept was log(Ȳ ), while the prior
mean for the remaining coefficients was zero. The prior covariance was a diagonal matrix,

(c/Ȳ )(X ′X)−1 with c = 249 based on the George and Foster (1998) Risk Inflation Criterion.
This provides one method of automatically calibrating the prior distribution: see George and

Foster for other choices. A uniform prior distribution over the model space was also used.

Table 2. Comparing Bayesian Model Averaging to maximum likelihood estimation

Bayesian Model Averaging Maximum Likelihood
Method Independent Independent MCMC BIC STEP FULL

Approx + RJ Approx (KM)

avg MSE 0.258 0.319 0.254 1.102 0.805 1.188
min MSE 0.072 0.065 0.064 0.252 0.135 0.268
max MSE 1.461 3.044 1.497 2.735 2.523 4.450

Using 120 simulated data sets from the truemodel, we comparedBayesianModelAveraging

to maximum likelihood estimation using mean squared error calculated for each simulation,

MSE =
∑

j(βj − β̂j)
2/16 (see Table 2). For the independent approximate posterior model

probabilities, we used the variance-stabilizing transformation from Section 4.1. We used this

independent approximation as a proposal distribution in a reversible jump MCMC and also

directly to estimate the posterior mean of β without using MCMC. For comparison, we used a

MCMCalgorithmbased on themethod inKuo andMallick (KM) to estimatemodel probabilities

and the BIC approximation from Volinsky et al. (1997). These four approaches to BMA were

compared to the the maximum likelihood estimates from stepwise variable selection and the

full model maximum likelihood estimates. The best results are obtained by the two MCMC

approaches, with little difference in efficiency in terms of MSE. However, the computational

time for the KM MCMC algorithm was 8.5 times longer than using the independent proposal
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distribution in the reversible jump MCMC algorithm. Using the independent approximation

directly for model averaging is roughly 2.5 to 4 times more efficient (in terms of MSE) than

using BIC, the MLE under stepwise selection or the MLE from the full model, but with roughly

the same computational burden as finding the MLE in the full model.

5.3. Particulate matter and Mortality

Anumber of scientific studies have found an association betweenmortality andPM10, particulate

matter less than 10µ in aerodynamic diameter, prompting the EPA to propose changes in the
National Ambient Air Quality Standard (NAAQS) for PM10 and creating new standards for

PM2.5. Many analyses are based on Poisson or over-dispersed Poisson regression models for

daily non-accidental mortality. As there is a large number of potential confounding variables,

traditional model selection techniques can lead to the selection of very different models and

ignore model uncertainty. One concern is that the positive association between PM10 and

mortality found in many of these studies is a result of multiple testing and selection. We will

use BMA to estimate the effect of PM10 on mortality taking into account uncertainty about

which predictors should be included.

Data from Chicago and Cook County, Illinois, contain daily measurements of total non-

accidental mortality for individuals age 65 and older, plus daily and lagged values of average

temperature, maximum and minimum temperature, specific humidity, windchill, discomfort

index, atmospheric pressure, and total solar radiation over the period 1985-1990. The PM10

data are based on daily values from a single daily monitoring station and the daily average of

a subset of monitoring stations that report values every six days. Other measures are based on

three-day means from the daily station, the subset of six stations, and all of the 20 available

reporting stations. For additional information on the data see Styer et al. (1995).

Because of the correlation structure and its effect on sampling from the model space, prin-

cipal component analysis was used to create a set of orthogonal meteorological and orthogonal

particulate matter variables. This has the advantage of keeping all the information in the original

variables, but eliminating problems due to multicollinearity within the two groups of variables.

The first meteorological principal component (PC) combines temperature and humidity with

windchill, where low values correspond to extreme windchill, low temperature and humidity

combinations and high values correspond to high temperature and humidity days. The second

PC measures average atmospheric pressure, while the third measures changes in pressure over

3-day intervals with high values of the component corresponding to extreme highs followed by a

low, and low values related to low pressure followed by a high. The fourth principal component

appears to be related predominately to solar radiation. The first PM10 principal component

provides a weighted average of the daily and three-day means, resulting in more weight given

to the daily stations. The second PM10 principal component captures days where the current

day average differs from the three-day average. Additionally, fourth order orthogonal polyno-

mials of the first two PM10 and meteorological principal components were included to allow

for nonlinear functions. Interpretation of the remaining variables is not as clear but they capture

departures from the main component directions, and are included in the design matrix so that

there is a total of 35 variables. Othermethods such as Gram-Schmidt or sliced inverse regression

(Li 1992) could also be used, leading to a different set of orthogonal variables.

In general, the canonical log link has been used in such analyses. As data are often ag-

gregated over time (daily mortality) and space (metropolitan area) this often leads to biased

estimates, as the aggregate mean no longer has a log-linear form (Richardson 1992). As in-

dividual level covariates are unavailable, it is necessary to rely on aggregated data. Under

an identity link with additive effects, the Poisson mean retains linearity under aggregation so
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that results may be summarized at different levels of aggregation without re-fitting the model.

While aggregation combined with measurement error may lead to bias with the identity link,

simulations indicate the bias appears much worse with the log-linear formulation. To compare

the assumption of an identity link to a log link, the log Bayes factor was approximated using the

Schwarz criterion (Schwarz 1978, Kass and Raftery 1995) with deviances estimated under the

full model allowing for overdispersion. Twice the log Bayes factor was 4.58 indicating positive

support for the identity link. Using a reduced set of variables, twice the log Bayes factor was

8.04, indicating strong support for the identity link. In the following, we will explore using

Poisson regression with the identity link, using BMA to potentially adjust for all of the meteo-

rological variables. To allow for overdispersion, we incorporate an additional scale parameter

φ (Clyde and DeSimone–Sasinowska 1997, Efron 1986, West 1985).

Independent normal prior distributionswere used for each of the regression coefficients, with

the prior mean for the intercept taken as the sample mean, 83 deaths/day; the other prior means

were set to zero. The prior standard deviations were based on 10 times the estimated standard

error from the GLM analysis of the full data. The prior probability for each component of the

orthogonal polynomials of the first twometeorological and PM10 principal component variables

was set to 0.75. For the remaining variables, the prior probability that the variable was included

was set to 0.5. The prior distribution also incorporates a constraint that the Poisson mean must

be positive. Alternative prior distributions, such as the data augmentation prior suggested by

Bedrick et al. (1997)may be preferable when using the identity link. Development of alternative

proposal distributions using this class of prior distributions is under way.

Approximate model probabilities were estimated using the Bayes factor method described

in Section 4.4, using the MLEs from the Poisson regression model with an overdispersion

parameter and an identity link. Because the standard errors of the MLEs were more variable

than the OLS standard errors which ignore correlation, this approximation seemed preferable

and had to a better acceptance rate in the MCMC sampler than the approximation based on

the variance-stabilizing transformation. Using a burn-in of 2000 iterations, the Markov chain

was run for 100,000 iterations with every 10th iteration saved to provide an approximately

independent sample for making posterior inferences. Details of the MCMC algorithm and

methods for checking convergence and fit are described in Clyde and DeSimone-Sasinowska

(1997).

Because of the size of the model space, the Monte Carlo frequency of many models will be

one or zero. For each model in the sample, the Laplace method was used to estimate the model

probability and posterior mean ofβγ . Figure 1 shows one representation of the space of sampled

models, with models and variables arranged in a matrix, with variables represented by columns

and models by rows. Variables that are excluded in a model are left blank. The models are

sorted in order of their log posterior model probability, in this case, estimated using the Laplace

approximation, with the best model in the sample at the bottom. The intensity of the color

or grey-scale is proportional to log(posterior model probability) − log(max(posterior model

probability). We find such a plot helpful in visualizing important variables and uncertainty

about which ones should be included. From this we see that PM10 variables have been included

in almost all of the sampled models. The association does not appear to be the effect of model

selection. While models in Figure 1 are ranked based on posterior model probabilities, such a

plot can also be constructed using other utility functions.

Figure 2 shows the posterior distribution of the linear, quadratic and cubic coefficients for

the orthogonal polynomial in the first PM10 principal component variable. The last plot in

the figure shows the posterior mean for the linear predictor under model averaging plus 95%

probability intervals. Because the variables are centered, this shows how the change in the
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Figure 1. Posterior distribution of γ. Each column corresponds to a column of the X and each row to

a model obtained from the MCMC output. The intensities are proportional to the log of the approximate

model probability estimated using the Laplace approximation, with the best model having a value of 0.

number of deaths from the PM10 increases/decreases relative to the overall mean. These values

can be converted to relative risks by dividing by the expected mortality under the average values

of PM10 and other variables. A similar figure showing a nonlinear relative risk for PM10 is

presented by Smith et al. (1997) using a generalized additive model with a log link. While there

is some evidence of a nonlinear effect at higher PM10 levels (the posterior probability that the

higher order terms are included is 0.68), this appears to be sensitive to the choice of the prior

probabilities. The posterior probability that there is a particulate matter effect is close to 1.

Without the higher order terms, the posterior mean number of deaths attributed to PM10 on a

day with 150 µg/m3 is 9.3, with a 95% probability interval of (4.2, 14.1). This corresponds

to a 5 to 16 percent increase in mortality compared to the average level of PM10 and is at the

highest permissible daily average for PM10. Such conditions occurred, however, only on 2-3
days in the seven year period. For a day with average PM10 levels, 41 µg/m3, the expected

number of deaths attributed to PM10 ranges from 1.1 to 3.8. While it is not clear what effect

the new standards will have on PM10 levels, Smith et al. (1997) have suggested that levels

may decrease by 10 µg/m3 on average. Under the model with the linear term for PM10, 95%
posterior intervals for the expected decrease in mortality due to such a change are 0.25 to 0.82

deaths/day, or roughly 91 to 300 deaths per year in the over 65 population in Cook County. One

can use this to obtain the predictive distribution for the reduction in mortality. A 95% prediction

interval suggests that the overall reduction is 70 to 340 deaths/year.
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Figure 2. Posterior distributions of the coefficients of of the first principal component for particulate

matter variable using third order orthogonal polynomials. Estimated effect and 95% probability interval

using BMA.

These are still preliminary results and are subject to a number of caveats. If the PM10 mea-

surements are not representative of the average ambient outdoor exposure in the population, then

ecological bias is a concern in interpreting the results, and may lead to under- or over-estimation

of the effect. With the non-zero probability that the PM10 effect is nonlinear, aggregation and

measurement error become more serious issues.

6. DISCUSSION

Model uncertainty often dominates other forms of uncertainty, such as parameter uncertainty,

and in almost every application ofBMAmodel averaging has led to better predictive performance

(Raftery, Madigan and Volinsky 1996). In the examples in Section 5, using orthogonal variables

can lead tomajor improvements in computational efficiency for implementingBMA. In thePM10

example, our goal is tomake predictions aswell as tomake inferences about the effect of PM10 on

mortality. Because of the large number of models, orthogonalizing the meteorological variables

leads to dramatic increases in computational efficiency, making it much easier to explore the

model space. The use of principal components results in more efficient computations, but also

still allows meaningful interpretation of several of the components.

There are still a number of open areas. The choice of orthogonal variables and what impact

that has on the efficiency, and selection of prior distributions on the model space, are open
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problems. The approximate posterior distributions are all based on a model of independence

for the posterior distribution of γ. Simple diagnostics in addition to high correlations among

the mle’s that indicate when independence is not a reasonable approximation for a proposal

distribution would be useful.

REFERENCES

Carlin, B.P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo. J. Roy. Statist. Soc. B 57,

473–484.

Chipman, H., George, E. I. and McCulloch, R. (1998). Bayesian CART model search. J. Amer. Statist. Assoc. 93,

935-960.

Clyde, M. and DeSimone–Sasinowska, H. (1997). Accounting for model uncertainty in Poisson regression models:

Particulate matter and mortality in Birmingham, Alabama. Tech. Rep. 97–06, Duke University.

Clyde, M., DeSimone, H. and Parmigiani, G. (1996). Prediction via orthogonalized model mixing. J. Amer. Statist.

Assoc. 91, 1197–1208.

Clyde, M. and Littman, M. (1998). Computationally efficient sampling for Bayesian model averaging. Tech.

Rep., Duke University.

Clyde, M. and Parmigiani, G. (1996). Orthogonalizations and prior distributions for orthogonalized model mixing.

Modelling and Prediction: Essays in Honor of Seymour Geisser (J. C. Lee et al. , eds.). New York: Springer,

206-227.

Clyde, M. and Parmigiani, G. (1998). Protein construct storage: Bayesian variable selection and prediction with

mixtures. J. Biopharmaceutical Statist. 8, 431–443.

Clyde,M., Parmigiani,G.,Vidakovic,B. (1998).Multiple shrinkage and subset selection inwavelets.Biometrika85,

391–402.

Dellaportas, P. and Forster, J. J. (1996). Markov chain Monte Carlo model determination for hierarchical and

graphical log-linear models. Tech. Rep., Southampton University.

Dellaportas, P. Forster, J. J, and Ntzoufras, I. (1997). On Bayesian model and variable selection using MCMC.

Tech. Rep., Southampton University.

Denison, DGT (1997). Simulation Based Bayesian Nonparametric Regression Methods. Ph.D. Thesis, Imperial

College, London.

Denison, D. G. T.,Mallick, B. K. and Smith, A. F.M. (1998). ABayesian CART algorithm.Biometrika 85, 363–377

Dickey, J. M. (1971). The weighted likelihood ratio, linear hypotheses on normal location parameters. Ann. Sta-

tist. 42, 204–223.

Draper, D. (1995). Assessment and propagation of model uncertainty. J. Roy. Statist. Soc. B 57, 45–70 (with

discussion).

Efron, B. (1986). Double exponential families and their use in generalized linear regression. J. Amer. Statist.

Assoc. 81, 709–721.

Gelfand, A., Sahu, S. K. and Carlin, B. P. (1996). Efficient parameterizations for generalized linear mixed models.

Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University

Press, 48–74 (with discussion).

George, E. I. and Foster, D. P. (1997). Calibration and empirical Bayes selection. Tech. Rep., Univ. of Texas, Austin.

George, E.I. andMcCulloch, R. (1993). Variable selection via Gibbs sampling. J. Amer. Statist. Assoc. 88, 881–889.

George, E. I. and McCulloch, R. (1997). Approaches for Bayesian variable selection. Statistica Sinica 7, 339–374.

George, E. I., McCulloch, R. and Tsay, R. (1995). Two approaches to Bayesian model selection with applica-

tions. Bayesian Analysis in Statistics and Econometrics: Essays in Honor of Arnold Zellner (D. A.Berry,

K. M. Chaloner and J. K. Geweke, eds.). New York: Wiley, 339–348.

Geweke, J. (1996). Variable selection and model comparison in regression. Bayesian Statistics 5 (J. M. Bernardo,

J. O. Berger, A. P. Dawid and A. F. M. Smith, eds.). Oxford: University Press, 609–620.

Gilks, W. R. and Roberts, G. O. (1996). Strategies for improving MCMC.Markov Chain Monte Carlo in Practice

(W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.). London: Chapman and Hall, 89–114.

Green, P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika 82, 711–732.

Hoeting, J., Raftery, A. E., and Madigan, D. M. (1996). A method for simultaneous variable selection and outlier

identification in linear regression. Comput. Statist. and Data Analysis 22, 251–270



172 M. A. Clyde

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90, 773–795.

Kuo, L. and Mallick, B. (1998). Variable selection for regression models. Sankhya A (to appear).

Leamer, E. E. (1978). Specification Searches: Ad Hoc Inference with Nonexperimental Data Chichester: Wiley

Madigan, D. M. and Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical

models using Occam’s window. J. Amer. Statist. Assoc. 89, 1535–1546.

Madigan, D., Raftery, A. E., Volinsky, C., and Hoeting, J. (1996). Bayesian Model Averaging. Integrating Multiple

Learned Models (IMLM-96), (P. Chan, S. Stolofo, and D. Wolpert, eds.), 77–83.

Madigan, D.M. andYork, J. (1995). Bayesian graphical models for discrete data. Internat. Statist. Rev. 63, 215-232.

Mitchell, T. J. and Beauchamp, J. J. (1988). Bayesian variable selection in linear regression. J. Amer. Statist.

Assoc. 83, 1023–1036.

Phillips, D. B. and Smith, A. F. M. (1994). Bayesian model comparison via jump diffusions.Markov Chain Monte

Carlo in Practice (W. R. Gilks, S. Richardson and D. J. Spiegelhalter, eds.). London: Chapman and Hall,

215–238.

Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalized linear

models. Biometrika 83, 251–266.

Raftery, A. E., Madigan, D. M., and Hoeting, J. (1997). Model selection and accounting for model uncertainty in

linear regression models. J. Amer. Statist. Assoc. 92, 179–191.

Raftery, A. E., Madigan, D. M. and Volinsky C. T. (1996). Accounting for model uncertainty in survival anal-

ysis improves predictive performance. Bayesian Statistics 5 (J. M. Bernardo, J. O. Berger, A. P. Dawid and

A. F. M. Smith, eds.). Oxford: University Press, 323–350, (with discussion).

Richardson, S. (1992). Statisticalmethods for geographical correlation studies. InGeographical andEnvironmental

Epidemiology: Methods for Small-Area Studies (P. Elliott, J. Cuzick, D. English and R. Stern, eds.). Oxford:

Oxford University Press, 181–204.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461–464.

Smith, M. and Kohn, R. (1996). Nonparametric regression using Bayesian variable selection. J. Econometrics 75,

317–344.

Smith,M. andKohn, R. (1998). Nonparametric estimation of irregular functionswith independent or autocorrelated

errors. Practical Nonparametric and Semiparametric Bayesian Statistics, (D. Dey, P. Müller, and Sinha, D.

eds.). New York: Springer-Verlag, 157–180.

Smith, R. L., Davis, J. M. and Speckman, P. (1997). Assessing the human health risk of atmospheric particles.

Tech. Rep., Univeristy of North Carolina, Chapel Hill.

Styer, P., McMillan, N., Gao, F., Davis, J. and Sacks,J. (1995). The effect of airborn particulate matter on daily

death counts. Environ. Health Persp. 103, 490–497.

Verdinelli, I. and Wasserman, L. (1995). Computing Bayes factors using a generalization of the Savage-Dickey

density ratio. J. Amer. Statist. Assoc. 90, 614–618.

Volinsky, C., Madigan, D., Raftery, A. E. and Kronmal, R. (1997). Bayesian model averaging in proportional

hazard models: Assessing stroke risk. Appl. Statist. 46, 433–448.

West, M. (1985). Generalized linear models: Scale parameters, outlier accommodation and prior distributions.

Bayesian Statistics 2 (J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, eds.), Amsterdam:

North-Holland, 531–558.

DISCUSSION

PETROS DELLAPORTAS (Athens University of Economics and Business, Greece)

This is an interesting paperwhich collects interesting results and presents some new research

avenues. It is based on a series of previous papers by the author and co-authors focused on

Bayesian model averaging via orthogonalised model mixing.

There is plenty of empirical and some theoretical evidence that Bayesian model averaging

yields better out-of-sample predictions than a single “best” model (Draper 1995, Raftery et al.

1995). The author focuses on prediction via orthogonalised model mixing (Clyde et al. 1996)

which is extremely fast for linear models. The innovative idea of this paper is to exploit this

algorithm for the more general family of generalised linear models (GLM) by transforming any
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GLM to a normal regression model using asymptotic arguments and then applying orthogo-

nalised mixing to achieve a fast model averaging. This can provide either estimates of posterior

model probabilities or proposals for other MCMC algorithms.

There are two questions one needs to answer: when do the suggested transformations

produce the desired result, and when should we prefer to obtain predictions with this method

instead of adopting other existing model averaging algorithms? Clearly, if the method is robust

or fail-safe, there is a big potential due to its amazing efficiency. We will try to motivate

discussion by re-analysing some real data examples.

Wewould like to compareClyde’s algorithmwith standardMCMCmodel choice algorithms

such as reversible jump (Green, 1995) and variants, so an obvious choice is the log-linear model

of Section 5.1. We used priors βj ∼ N(0, 2) (Dellaportas and Forster, 1997) for all model
parameters. Model averaging can be performed considering only hierarchical models or by

considering all possible models. Clyde chooses the latter for illustration, but because the

former might also be a feasible approach we chose to illustrate results for both cases. Tables 3

and 4 present the results, with A denoting severity, B denoting antitoxen medication, C denoting

mortality and M denoting the overall mean. It seems that Clyde’s algorithm performs well for

a series of δ values.

Table 3. Posterior Model Probabilities of Hierarhical Models in Healy Data.

MCMC Clyde
Model Poisson δ = 0 δ = 1/3 δ = 1/2 δ = 2/3 δ = 1

AC+BC 0.59 0.55 0.49 0.47 0.46 0.45
AC+B 0.25 0.34 0.38 0.38 0.38 0.35
AB+AC+BC 0.07 0.06 0.07 0.07 0.08 0.01
AB+AC 0.07 0.04 0.05 0.06 0.07 0.08
A+BC 0.01 0.01 0.01 0.01 0.00 0.00
ABC 0.00 0.01 0.01 0.01 0.01 0.01

KL Distance 0.0290 0.0249 0.0371 0.0418 0.0443 0.0435

Table 4. Posterior Model Probabilities of all Models in Healy Data

MCMC Clyde
Model Poisson δ = 0 δ = 1/3 δ = 1/2 δ = 2/3 δ = 1

M+AC+BC 0.18 0.23 0.21 0.20 0.19 0.16
M+C+AC+BC 0.15 0.15 0.13 0.12 0.12 0.13
M+AC 0.13 0.14 0.16 0.16 0.16 0.13
M+C+AC 0.11 0.09 0.10 0.10 0.10 0.10
M+A+AC+BC 0.06 0.04 0.04 0.04 0.05 0.05
M+A+AC 0.05 0.02 0.03 0.04 0.04 0.04
M+AB+AC 0.03 0.02 0.02 0.02 0.03 0.03
M+AB+C+AC 0.03 0.01 0.01 0.01 0.02 0.02
M+B+C+AC+BC 0.02 0.02 0.01 0.01 0.01 0.01

KL Distance 0.0638 0.0626 0.0425 0.0374 0.0354 0.0486

A question that someone might pose looking at Tables 3 and 4, and in particular how the

posterior probabilities vary with δ, is whether the prior π(β, γ) should depend on δ. Smith
and Kohn (1996) suggest the use of a transformation h(Yi) that has, approximately, the same
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distribution for every δ. Their approach is not readily applicable in Clyde’s case, but some
thoughts on this direction might provide ideas to robustify the methodology put forward.

A more challenging problem is to compare the two methodologies above in a larger log-

linear model. We use the example in Dellaportas and Forster (1996) which is a 26 contingency

table of risk factors for coronary heart disease presented by Edwards and Havránek (1985).

The labels represent: A, smoking; B, strenuous mental work; C, strenuous physical work; D,

systolic blood pressure; E, ratio of α and β lipoproteins; F, family history of coronary heart
disease. The results in Table 5 provide evidence that Clyde’s method fails to detect the most

probable models. In fact it seems that there is tendency to support more complicated models.

The reason might be that more complicated models are closer to the underlying assumption of

constant variance.

Table 5. Posterior Model Probabilities for Edwards and Havránek data.

Model MCMC

AC+BC+AD+AE+CE+DE+F 0.28
AC+BC+AD+AE+BE+DE+F 0.16
AC+BC+AD+AE+BE+CE+DE+F 0.07
AC+BC+AD+AE+CE+DE+BF 0.07

Model Clyde (δ = 1/3)

AC+AD+BE+BCF 0.16
AC+AD+CD+BE+BCF 0.13
AC+AD+AE+BE+BCF 0.06
AC+AD+CD+AE+BE+BCF 0.05

Model Clyde (δ = 1/2)

AC+AD+AE+BE+BCF+DEF 0.23
AC+AE+BE+BCF+DEF 0.12
AC+AD+BE+BCF+DEF 0.08
AC+AD+AE+BE+CE+BCF+DEF 0.06

Further experimentation consisted of repeated construction of various marginal tables de-

rived from the Edwards and Havránek data, and visual comparison of the results of both Clyde’s

and MCMC methodologies. It was revealed that in many cases Clyde’s method provides ade-

quate results but sometimes the results are very poor; see for example the 5-dimensionalmarginal

table ABCDE results in Table 6 and the 3-dimensional BCF results in Table 8. In this latter

case, Clyde’s method visits only the BCF model.

Table 6. Posterior Model Probabilities for ABCDE Marginal Table

Model MCMC Clyde (δ = 1/2)

AC+BC+AD+AE+CE+DE 0.41 0.06
AC+BC+AD+AE+BE+DE 0.24 0.08
AC+BC+AD+AE+BE+CE+DE 0.13 0.25
AC+AD+AE+BCE+DE * 0.32
AC+AE+BCE+DE * 0.08

What is now interesting is to try to detect when and why the method is not working. Table 7

suggests that the assumption of normality together with retaining Σii constant is a difficult task
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Table 7. BCF Marginal Table

C No Yes
F B No Yes No Yes

Negative 235 558 694 94
Positive 33 101 101 25

Table 8. Posterior Model Probabilities for BCF Marginal Table

Model MCMC Clyde (δ = 1/2)

BC+F 0.77 *
BC+FB 0.21 *
BC+FC 0.02 *
BCF * 1.00

and in some rather ill-conditioned problems nearly impossible to achieve. Some ideas to deal

with it are as follows. If we use a hierarchical stage σ2 ∼ IG(a, b) then the algorithm requires
sampling from the full conditional density of σ2 which involves quite a lot of computing effort.

If we use, as Clyde suggests, the prior

βj ∼ N(0, c2σ2(X ′X)−1)

then we can integrate out σ2 and follow the steps of Smith and Kohn (1996). Another idea is to

model outliers with heavy-tailed error distributions. This would lead to more robust methods

but again, the price will be that the algorithm will be less eficient. Finally, a definite way to

proceed is with the usual suspects: diagnostic checking, residual analysis, graphical displays.

It gives me great pleasure to congratulate the author for a very nice paper.

E. I. GEORGE (University of Texas at Austin, USA)

I would like to begin by congratulating the author on a very stimulating synthesis of recent

work on model averaging and model search. In my opinion, an essential message of the paper

is that, in large problems, the desired Bayesian model average or posterior mean cannot be

computed exactly and so must be approximated. For example, in variable selection with Y and

X1, . . . , Xp, when p is large (e.g. larger than 40), one cannot compute

f(∆) =
∑

γ∈Γ

f(γ|Y )f(∆γ|Y, γ)

in (3) because the 2p models in Γ are too many for exhaustive enumeration. Instead, the author
and others approximate f(∆) by something of the form

f̂(∆) =
∑

γ∈S

f̂(γ|Y, S)f(∆γ|Y, γ)

where S is a manageable subset of models. (In general, f(∆γ|Y, γ) is also approximated by

f̂(∆γ|Y, γ) but I will ignore that aspect here). Model search enters the picture as a strategy for
selecting S. I would like to focus my discussion on issues concerning the use of model search
for this purpose, and how this can affect the approximation.
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I would like to begin by discussing a posterior phenomenon which I call dilution. Basically,

dilution occurs when posterior probability is spread out overmany similar models. For example,

suppose only X1 and X2 are considered as possible linear predictors of Y , yielding posterior
probabilities:

Variables in γ X1 X2 X1, X2

π(γ|Y ) 0.3 0.4 0.15

Suppose now a new potential variableX3, very highly correlated withX2 but not withX1,

is introduced. If the model prior is elaborated in a sensible way, as is discussed below, the

posterior may well look something like

Variables in γ X1 X2 X3 X1, X2 X1, X3 X1, X2, X3

π(γ|Y ) 0.3 0.2 0.2 0.05 0.05 0.05

The probability allocated to X2 and (X1, X2) has been “diluted” across the new models con-
taining X3. Is dilution a reasonable phenomenon? I would argue yes, because dilution does

not change the allocation of posterior probability across neighborhoods of similar models. In

the example above, the introduction of X3 has not really added any new models to the mix.

Instead, models containing X3 are merely equivalent substitutes for the corresponding models

containingX2. IntroducingX3 has essentially resulted in relabeling a set of equivalent models.

The probability of such a set should not increase as a result of this relabeling, and it is dilution

that prevents this from happening.

Can dilution be controlled? Again the answer is yes, because dilution results from prior

probability allocation across models. This follows by noting that f(γ|Y ) ∝ f(Y |γ)π(γ) and
the likelihood f(Y |γ) does not depend on the model space under consideration. Thus the
prior needs to be adjusted to dilute properly to compensate for the presence of similar models.

Note that the commonly used uniform prior on all models does not yield satisfactory dilution.

Indeed, under uniform priors, the probability of a set of similar models can be increased merely

by adding more of the same models. An interesting example of a prior construction which

dilutes naturally is the tree generating process priors proposed for Bayesian CART by Chipman

et al. (1998).

Although dilution seems to be a reasonable phenomenon, it can lead to paradoxical con-

clusions when trying to interpret individual model probabilities. This happens because dilution

changes the relative posterior probability allocation to individual models. In the example above,

for instance, the relative strengths ofX1 andX2 should not depend onwhetherX3 is considered.

When dilution is present, model selection based on the largest posterior probabilities can be

unreliable when there is dilution. If selection is desired in such a case, it may be best to use

Bayes factors, which corresponds to Bayesian selection under a uniform prior over the model

space.

For the purpose of obtaining a goodmodel averaging approximation f̂(∆) of f(∆), dilution
is not a problem if the model subset S is randomly sampled from f(γ|Y ). Although i.i.d.
sampling can more easily be used to obtain unbiased estimates of f(∆), stochastic search
strategies using MCMCmethods can also approximately serve this purpose. Random sampling

from f(γ|Y ) will avoid the dilution pitfalls because neighborhoods of models will tend to be
represented in S according to their posterior probability. The substitution of one similar model
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for another will not have a substantial affect on themodel average. In sharp contrast, dilution can

have a very detrimental affect on deterministic strategies for choosingS. For example, choosing
S to contain models with largest posterior probability f(γ|Y ), such as happens with Occam’s
Window, can neglect diluted neighborhoods with many similar models. In a sense, dilution

causes skewness of the model posterior distribution. From this perspective, such approximation

failures result from a discrepancy between the mean and the mode.

Closely tied to the choice of S is the choice of f̂(γ|Y, S). When no special structure is
available, and S has been randomly sampled, a natural choice is the relative frequency of γ in
the sample. However, in many problems, the choice of conjugate forms for the parameter priors

allows for analytical simplification to obtain f(γ|Y ) = Cg(γ) with some easily computable
form g. In this case, each sampled γ includes the information g(γ). When S is randomly

sampled, a natural estimate of f(∆) is then

f̂g(∆) =
∑

γ∈S

f̂g(γ|Y, S)f(∆γ|Y, γ)

where

f̂g(γ|Y, S) = g(γ)/g(S)

is just the renormalized value of g(γ).

When available, the estimator f̂g(∆) appears to be superior to using relative frequencies.
For example, under i.i.d. sampling, it approximates the best unbiased estimator of f(∆). To see

this, consider f̄(∆) =
∑

γ∈S f̂freq(γ |Y, S)f(∆γ |Y, γ) where f̂freq(γ |Y, S) is the relative

frequency of γ. Note that f̄(∆) is unbiased for f(∆). Since S (together with g) is sufficient, the
Rao-Blackwellized estimateE(f̄(∆) |S) is best unbiased. But when n is large,E(f̄(∆) |S) ≈
f̂g(∆).

Although sampling-with-replacement is not needed for the calculation of f̂g(∆) when
f(γ|Y ) = Cg(γ)with g computable, the relative model frequencies can still be used to estimate
C. This can be useful because (i) it yields improved estimates of the probability of individual

γ values, f̂(γ|Y ) = Ĉg(γ), and (ii) it allows for an estimate of the total visited probability,

f̂(S|Y ) = Ĉ g(S).

Note that f̂(S|Y ) can provide valuable information about when to stop a MCMC simulation.
Interestingly, Bayesianmethods appear to be unavailable for estimatingC from the sampled

information in S because there is no likelihood for C. This is a consequence of the fact that the
value of C, although unknown, does not affect the probability distribution of S. Fortunately,
frequentist methods can still be used to estimate C. In particular, George & McCulloch (1997)
propose the following. Let A be a preselected subset of γ values. If γ1, . . . , γK is obtained by

MCMC sampling from f(γ|Y ), a consistent estimate of C is obtained as

Ĉ =
1

g(A)K

K
∑

k=1

IA(γ(k))

where IA( ) is the indicator of the setA. If γ1, . . . , γK were i.i.d. , then var(Ĉ) = (C2/K)(1−
f(A|Y ))/f(A|Y ), suggesting that A should be chosen so that f(A|Y ) is large. It is also
desirable to choose A such that IA(γ) will be inexpensive to evaluate. Current joint work with
my student Linghua Peng extends and generalizes these ideas to obtain improved estimators of

C, and will be reported on elsewhere.
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STEPHEN FIENBERG (Carnegie Mellon University, USA)

I found the author’s approach to both the model average and model selection problems quite

fascinating, and was pleased to see the link to other statistical literature such as that arising from

sampling from finite populations. Because of the formal relationship between sampling theory

and experimental design, one might think that there would be some scope for use of ideas from

the classical design of experiments, e.g., fractional factorials, in this particular Bayesian context.

Has the author considered such possibilities?

Doing model search for a generalized linear model with p = 35 possible predictors is
an impressive feat, but I have colleagues whose problems are much more complex and who

justifiably begin with p = 2, 000 or even more predictors, while they are hoping to work
ultimately with a value of p one or two orders of magnitude smaller. They would like to achieve
the reduction in dimensionality in an automated or at least semi-automated way. To what extent

could we expect the methods described in the paper to scale up for such problems?

Finally, the author describes several interesting applications involving loglinear and logistic

models for count data. Inmy experience, themost difficult contingency table problems are those

with large values of p, where virtually all of entries of the resulting cross-classification tend
to be small, with many cells containing counts of 0 or 1. The distributional approach and

approximations used by the author in her examples do not seem especially appropriate for such

circumstances. Could she comment on this class of statistical problems and how it relates to

the methods in the paper?

PAOLO GIUDICI (University of Pavia, Italy)

The paper is an important contribution in the rather challenging area ofmodel determination.

I would like to add one comment and one suggestion.

The comment concerns the proposed orthogonalisation procedure. The author shows that

orthogonalising the explanatory variables may lead to a considerable increase in computational

efficiency. I agree with this; however, as is well-known in multivariate analysis, doing so

one typically loses in interpretation: how can we elicit a prior distribution on the regression

coefficient of a principal component? Furthermore, in situations where one is interested in inter-

actions among the explanatory variables (for instance in log-linear models), interaction effects

are typically lost. Finally, it is known that conditional independences among the explanatory

variables may considerably improve computational efficiency, via local computations (for in-

stance in graphical models, see e.g. Lauritzen, 1996). I wonder whether orthogonalisation is a

real computational advantage in this case.

The suggestion concerns the practical implementation of the proposed methodology. It is

clearly very important to measure what we can gain in computational efficiency, for instance

with respect to a “non orthogonal” reversible jumpMCMC approach. It would be interesting to

see a comparison in terms of convergence performance, both formodel parameters and formodel

averaged quantities. A recent paper (Brooks and Giudici, 1998) has proposed a convergence

diagnostic which can be used for both purposes.

I. NTZOUFRAS (Athens University of Economics and Business, Greece)

This nice work provides us with a valuable and fast tool for the calculation of posterior

weights used in Bayesian model selection and model averaging. It uses clever ideas similar

to Foster and George (1994) where they use information criteria in orthogonal data to select

variables rather than models.

In model selection, our aim is either the interpretation of casual relationships or prediction

of future outcomes. Transformation to orthogonality changes the model space and therefore

the simple and natural model interpretation. This makes the method appropriate only for model
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averaging where prediction is of main interest. Since, in real life practice, our interest may lie

in examining casual relationships, I wonder in which cases we can avoid orthogonalization and

how robust is the method to deviations from orthogonality.

The author’s proposed method is ideal for analysis of variance model selection using sum-

to-zero constraints. An ANOVA model can be written as y ∼ N(Xβ, σ2I), where y is the

data vector,X is the orthogonal design matrix and β is the parameter vector. The design matrix

and the parameter vector can be divided in sub-matrices xi and sub-vectors βi of dimension

n × di and di × 1, respectively, which correspond to a i factor or interaction term. Assuming
known σ2 and prior βi ∼ Ndi

(θi,V i) the sampler steps are

γi |y, σ2,γ\i ∼ Be(πi),
πi

1 − πi
=

p(γi = 1, γ\i)

p(γi = 0, γ\i)
Oi

with

Oi =

(

|xT
i xi/σ2 + V −1

i |
|V −1

i |

)−1/2

exp

(

1

2
AT

i (xT
i xi/σ2 + V −1

i )−1Ai −
1

2
θiV

−1
i θi

)

,

Ai = (xT
i xiβ̂i/σ2 + V −1

i θi),

whereOi is the Bayes factor to include the i term, and β̂i are the maximum likelihood estimates

of the parameters of the i term, γ\i is the vector of γ excluding γi.

An alternative prior specification is βi ∼ Ndi
(0, c2(xT

i xi)
−1σ2) and σ−2 ∼ Γ(a0, b0),

resulting to the Gibbs sampler steps

γi |y, σ2,γ\i ∼ Be(πi),

πi

1 − πi
=

p(γi = 1, γ\i)

p(γi = 0, γ\i)
(c2 + 1)−di/2 exp

(

1

2σ2

c2

c2 + 1
Fi

)

, Fi = β̂
T
i xT

i xiβ̂i,

and

σ−2 |y, γ ∼ Γ

(

a0 + n/2, b0 + (yT y − c2

c2 + 1

p
∑

i=1

γiFi)/2

)

.

The author has drawn attention only to the former case. I wonder whether the latter is also fast

and flexible.

As a final comment, I would like to point out that Bayesian model selection in GLMs can be

routinely applied using either ‘sophisticated’ techniques such as reversible jump (Green, 1995),

or easy-to-use Gibbs samplers which can be implemented in any standardMCMC software such

as BUGS; for details see Dellaportas et al. (1998).

REPLY TO THE DISCUSSION

Iwould like to thank the discussants for their interesting comments and questions. Several issues

were raised relating to orthogonalization, choice of prior distributions, and interpretations with

orthogonal variables, as well as estimation of posterior model probabilities based on a sample

of models. Rather than addressing each set of comments individually, I will try to address them

by discussing the issues of prior choice, robustness to non-orthogonality, and sampling issues.

Prof. Giudici asked how to specify prior distributions on regression coefficients after orthog-

onalizing the explanatory variables and whether interaction effects are lost in such a transforma-

tion. Orthogonal designs naturally arise in applications such as balanced factorial experiments
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and loglinear models with the parameterization based on the sum-to-zero constraints. One does

not lose the ability to test for interactions by using these orthogonal designs/parameterizations.

In other situations, one may restrict the model to allow interactions only if the “main” effects are

included. In such a case, orthogonalizing the variables in the order of main effects then inter-

actions via Gram-Schmidt orthogonalization leads to the usual interpretation of the coefficient

for the interaction. Thus, one can still learn about interactions with an orthogonal design.

Specifying a prior distribution is often difficult enough when dealing with the original

variables, and even more difficult if the variables do not have an intuitive meaning. All of the

methods for specifying prior distributions on the regression coefficients in the original variables,

such as default priors, priors based on historical data, or a subjective prior specification, still

apply with orthogonal variables. If one can specify a prior distribution on the regression

coefficients with the original variables (or on the mean using a coordinate-free approach), then

one can easily obtain the prior distribution for the coefficients for the orthogonalized variables

as the transformation to orthogonal explanatory variables is a linear transformation (Clyde and

Parmigiani 1996). For example, if we start with a meanXβ, and the orthogonal variables are

W = XU ′ where U ′U is the identity matrix, then the resulting mean is XU ′Uβ = Wα,

where α = Uβ. When the orthogonalization is based on using principal components and the

prior distribution for β is normal with covariance matrix c(X ′X)−1 (a commonly used default

choice), then the resulting covariance for α is diagonal. If, in addition, one standardizesW so

thatW ′W = I bydividing each columnby the square root of the corresponding eigenvalue, then
the resulting prior covariance matrix is proportional to the identity matrix. It does not matter

which coordinate system is used initially. Related to the choice of prior distributions on β,

Prof. Dellaportas asks whether the prior distribution for β should depend on the transformation

determined by δ. The answer is no, as the prior distribution for β should reflect the GLM

parameterization; δ determines an approximate model used to derive the proposal distribution.
One can take into account the effect of the transformation which leads to different normal error

variances σ by changing the value of c used to derive the proposal distribution.

A more difficult issue concerns how to construct the prior distribution on the model space.

While one can obtain the prior distribution on the regression coefficients by a simple change

of variables, the prior and posterior distributions on the model space depend on the model

parameterization or coordinate system. The uniform prior distribution is often the default

choice in most BMA applications, as the number of variables and correlation structure often

makes subjective prior elicitation for 2p models intractable. When variables are correlated,

however, it is not clear that the independent uniform prior on the model space is sensible. This

is directly related to the dilution issue that Prof. George discussed. For example, suppose we

start off with one variable, X1, and consider two models ({1}, {1, X1}) where {1} represents
themodel with just an intercept. Assign bothmodels equal prior probabilities 0.5. Now consider

adding a second variable X2 that is highly correlated (or even perfectly correlated) with X1,

with possible models ({1}, {1, X1}, {1, X2}, {1, X1, X2}) and uniform prior probabilities

(0.25, 0.25, 0.25, 0.25). The total prior probability mass of the last three models is 0.75, while,
if X2 is really a proxy for X1, the mass should be closer to 0.5, as these three models are

approximately equivalent (or exactly with perfect collinearity), and should have the sameweight

as in the original model space with just X1. The uniform prior has inflated the importance of

X1 while a more sensible prior should dilute the 0.5 mass over the three equivalent models,

in order to be consistent with the first prior distribution. This inflation in the prior distribution

carries over to the posterior distribution and hence has an effect on both model selection and

model averaging.
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As an alternative, consider what happens when we change to orthogonal variables Z1 =
0.5(X1 + X2) and Z2 = 0.5(X1 − X2). The resulting model space is ({1}, {1, Z1}, {1, Z2},
{1, Z1, Z2}) with uniform prior probabilities (0.25, 0.25, 0.25, 0.25). With highly positively

correlated variables, Z1 and X1 are effectively measuring the same quantity, but Z2 should be

close to a constant. If we look at the mass on sets of equivalent models, we find that there is

equal mass on ({1}, {1, Z2}) and ({1, Z1}, {1, Z1, Z2}), corresponding to the probabilities that
we assigned originally to the two models ({1}, {1, X1}). In this case, the independent uniform
prior probabilities have diluted in an appropriate manner, and result in the appropriate dilution of

the posterior model probabilities. While model selection can be affected by the dilution caused

by adding a proxy variable, the posterior means under model averaging with ({1}, {1, X1})
will be approximately the same as with ({1}, {1, Z2}, {1, Z1}, {1, Z1, Z2}.

In model selection where the aim is interpretation rather than prediction, using arbitrary

principal components or other orthogonal variables does not make sense for the goals of the

analysis. It is not always clear, however, that using the original variables leads to a simpler

and more natural interpretation of the results, as suggested by Dr. Ntzoufras, because of the

difficulties that can occur with multicollinearity. For example, Weisberg (1985) discusses

an analysis from the Berkeley Guidance study for predicting somatypes where three of the

explanatory variables are positively correlated (weights at age 2, 9 and 18). Using the original

variables in the regression results in an unexpected sign on the regression coefficient for weight

at age 2, and the conclusion that heavier girls at age 2 have thinner somatypes at age 18. He

describes alternative reparameterizations using the weight at age 2, and then the weight gains

between age 9 and 2, and between 9 and 18, and finds that while the coefficient for weight

at age 2 still has the wrong sign, it is no longer statistically significant, leading to a simpler

interpretation and a more natural conclusion. Weisberg concludes with “The interpretation of

the effect of a variable depends not only on the other variables in the model, but also upon

which linear transformation of those variables is used.” One advantage of orthogonal variables

is that the values of the coefficients do not depend on which other variables are included in the

model. Principal components analysis in the example in Weisberg results in new variables with

simple interpretations, with three components that approximately measure the average, linear,

and quadratic time trends in weight. Many of the PCs in the PM10 example also have simple

interpretations as average temperature, average pressure, the change in temperature and change

in pressure, thus we can obtain meaningful interpretations of effects with the computational

advantage of orthogonality. After either model selection or model averaging with orthogonal

variables, one can still compute the coefficients for each of the original variables.

Both Prof. Dellaportas and Dr. Ntzoufras raise the issue of how robust the method is to

deviations from orthogonality, and Dellaportas shows examples for the Edwards and Havránek

data where some of the approximations fail. He suggests that the assumption of normality

along with the constant variances Σii may explain why the method is not working. However,

the cell counts in Table 5 of Dellaportas are large enough for approximate normality and the

variance-stabilizing transformation to result in constant variance, yet the approximation gives

very different answers than those obtained by MCMC. The problems, in my view, arise because

of dependence in the posterior distribution of β, even when posterior normality is satisfied. The

methods in the paper assume that the posterior distribution forγ can be adequately approximated

by a model of independence, using a product of Bernoulli distributions. As pointed out in the

paper, high correlations among the MLEs from the GLM analysis are a simple indication of

posterior dependence. As the correlations increase, the accuracy of the approximation decreases,

which also decreases the efficiency ofMCMC algorithms using the approximation as a proposal

distribution.
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With the Savage-Dickey ratio discussed in section 4.4, the posterior odds that γj equals one

were approximated by

Oj =
pj

1 − pj

fβj
(0)

fβj
(0|Y )

,

where fβj
(0|Y ) is the marginal posterior density for βj obtained from the full model and fβj

(0)

is the marginal prior density for βj where both densities are evaluated at 0. As these marginals

are obtained from the full model, this should really be interpreted as the posterior odds that γj

equals one conditional on γk = 1, for all k not equal to j. In the normal linear model with
known σ and orthogonality, this does not depend on the other values of γk, as the joint posterior

distribution of β factors into the product of the marginal distributions. In GLMs this is not

the case, and even with orthogonality, the distribution of βj depends on the values of the other

βs. Assume for now that the joint posterior distribution of β can be well-approximated by a

multivariate normal distribution centered at the MLE and with a covariance matrix based on the

inverse Fisher information. In the saturated loglinear model, the covariance is (X ′Y X)−1. In

the Healy data, the range of Y is 4 to 22 so the covariance matrix is near diagonal, consistent

with posterior independence of γ. In fact, we found that the model of independence for the

model space was a very good approximation to the actual posterior distribution of γ in the Healy

data.

In the Edwards and Havránek example, the range of Y is much greater, 0 to 145, and

the correlation matrix from the GLM analysis is not close to diagonal. If we compare the t-

statistics formodelswith up to three-way interactions, wefind that, under the variance-stabilizing

transformation, the interaction BCF has a t-statistic over 8, which results in its approximate

posterior probability of inclusion being near one. In the GLM analysis, the t-statistic is 0.78,

so that the approximate posterior inclusion probability is much smaller. The difference is not

as extreme in the case of the DEF interactions, with t-statistics of -2.99 and -2.05 for the

variance-stabilizing transformation and the GLM analysis respectively. This explains some of

the differences in Tables 3, 4, and 6 in Dellaportas’s discussion.

Differences in the results do not disappear when the table is collapsed, as in the BCF table

summarized by Dellaportas. Here, cell counts are large enough that we expect posterior normal-

ity to be a reasonable assumption; however posterior dependence between components of β is

problematic. In this table, the parameter estimates with the variance-stabilizing transformation

and the GLM parameter estimates are very similar, except for the BCF interaction, which is

highly significant under the variance-stabilizing transformation but not in the GLM. There are

large correlations between theMLEs (e.g. 0.7 which is much higher than what the paper recom-

mends for implementing the method). Table 9 shows posterior model probabilities estimated

using the variance-stabilizing and the Savage-Dickey ratio approximations with the independent

Bernoulli model, and estimates using the Savage-Dickey ratio as a proposal distribution in a

RJMCMC algorithm.

The approximate model probabilities computed using the independent Bernoulli approxi-

mation with the variance-stabilizing transformation put almost of the mass on the model with

the three factor interaction. When this is used as a proposal distribution, the Markov chain

will be very slow to converge, because of the dominance of this one model. The probability of

the most probable model under the approximation can be easily calculated before running the

MCMC chain and could identify this problem. The approximate model probabilities computed

using the independent Bernoulli approximation with the Savage-Dickey estimates are better,

and rank the models identically to the MCMC methods. But it is clear that, because of the

correlation among the MLEs, the elements of γ will not be independent a posteriori, and the

discrepancy between this approximation and the MCMC methods is not surprising. Using the
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Table 9 Estimated posterior model probabilities for the BCF marginal table. An asterisk denotes a

probability less than 0.01.

Model Dellaportas Savage-Dickey Savage-Dickey variance-stabilizing
MCMC MCMC without MCMC without MCMC

[BC][F ] 0.77 0.77 0.50 *
[BC][BF ] 0.21 0.20 0.44 *
[BC][CF ] 0.02 0.02 0.03 *
[BC][BF ][CF ] * 0.01 0.03 *
[BCF ] * * * 1.00

Savage-Dickey ratio approximation as a proposal distribution does give results that are virtually

identical to Dellaportas, but can be computed in much less time.

Going back to the more challenging problem of the larger ABCDEF table, we used the

Savage-Dickey approximation as the proposal distribution for the RJMCMC algorithm. The

approximate probabilities of inclusion for the proposal distribution for the two-way interactions

AC, AD, AE, BC, DE are all over 0.96. The other terms identified by Dellaportas in the

most probable models are CE, BE, and BF, which have approximate inclusion probabilities

of 0.39, 0.17, and 0.29, respectively. The relative importance of the two groups of terms

does agree with Dellaportas and Forster (1996). While the proposal probability for including

the DEF interaction is 0.167, we find that, based on the MCMC output, it is more likely to

be included than DE, and that there is high correlation between the two terms. Substituting

DEF for DE, our results agree with the most probable models identified by Dellaportas. One

might be concerned that the MCMC algorithm is getting stuck in models with DEF, however,

the model [AC][BC][AD][AE][CE][F ] with [DE] has a residual deviance of 64.9 while the
non-hierarchical model [AC][BC][AD][AE][CE][F ] with the interaction DEF has a residual
deviance of 62.3. As both models have the same number of parameters, there is slight evidence

(using the Schwartz criterion) in favour of the model with DEF. If one restricts the class of

models to hierarchical models rather than all log-linear models, then the two methods agree. If

there is evidence of high correlation (which is easy to check from the GLM analysis), then, as

is well known, an independent proposal distribution can be inefficient. In the loglinear models,

our next step is to develop amore efficient approximation that takes into account the hierarchical

structure and accounts for the dependence.

As seen above, different MCMC implementations can lead to different answers, although,

theoretically, they should reach the same stationary distribution if run long enough. Dr.Ntzoufras

contrasts twoGibbs sampling schemes in the normal linearmodel. The first Gibbs sampler treats

σ2 as known and only generates γ, as in Section 3 of the paper. In the second case, there is

an inverse gamma prior distribution on σ2 and it is assummed that Vi = c2(xT
i xi)

−1σ2 (Clyde

et al. 1998). Using the same choice of Vi in both, the two Gibbs samplers result in equivalent

full conditional distributions for γi. Thus the only real difference between the two samplers is

whether one needs to sample from the full conditional distribution for σ2. As the additional

time to generate σ2 is only slightly more than the time to generate a single γi, in large problems

both Gibbs samplers take the same order of time to run. In the case of unknown σ2, one can run

an alternative Gibbs sampler that generates each γi from the posterior conditional distribution

of γi|γ(i),Y after integrating out σ2 (George and McCulloch 1997). In this case the (γi) are no
longer independent even with an orthogonal design; however, it is unclear whether this sampler

is more or less efficient than the second Gibbs sampler that generates γ|σ2,Y and σ2|γ,Y .

As σ2 is typically unknown, in most regression problems one would use either the second

or third Gibbs samplers. However, in applications with wavelets (where there is an orthonormal
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basis) speed of algorithms is a serious concern and Bayesian methods must compete with

algorithms that run in O(n) time (in wavelets the number of parameters is n). Running any
of the three Gibbs samplers described above for M iterations to estimate the posterior mean

requires at least O(nM) time (M > n). By using an estimate of σ2, one can bypass using

MCMCmethods altogether for computing posteriormeans and variances undermodel averaging

or model selection, so that Bayesian methods are computationally competitive with classical

estimators. As n is usually large, the posterior distribution for σ2 is often highly concentrated

around the mode and there is very little gain in efficiency (in terms of mean squared error) using

the Gibbs sampler compared to treating σ2 as known when computing the posterior mean (see

Clyde et al. 1998). In situations with high levels of noise, small sample sizes or when there is

additional prior information about σ2 that is not overwhelmed by the data, the additional gains

in efficiency using the Gibbs sampler can be impressive enough to sway all concerns about the

run time of the Gibbs sampler.

Estimated model probabilities using Monte Carlo frequencies can converge very slowly in

large problems and posterior dependence can create problemswithmulti-modalities. Prof. Fien-

berg asks whether the methods here scale up as problems increase in size. With orthogonality in

linear models (as in the wavelet example), instead of an optimization problem with dimension

2p, the problem is replaced by p one-dimensional problems, and thus scales up linearly with
the number of variables. In the case of the loglinear model with 2000 variables that Fienberg

describes, orthogonality of the design is not likely to lead to independence of the posterior

distribution of β, and the current approximations will not be accurate enough for use in model

averaging on their own. In order to avoid problems of convergence of MCMC algorithms in

the GLM setting, we can use other data-dependent reparameterizations that lead to parameter

orthogonality. This should lead to better approximations in larger problems; however this does

lead to data-dependent prior distributions on the model and parameter spaces. While it is not

clear that this is directly useful for the problem of variable selection, it may lead to efficient

semi-automatic approaches for dimension reduction and model averaging by converting the

problem to p independent ones.

Professor Fienberg also brings up the connection between sampling theory and experimen-

tal design, and questions whether ideas from experimental design can be used here. As an

alternative to stochastic search of model spaces via MCMC algorithms, ideas from finite pop-

ulation sampling and experimental design (e.g., fractional factorial designs, response surface

estimation, sequential designs, and design for computer experiments) may be adapted to BMA.

In the methodology outlined in Section 4.5, the posterior model probabilities are re-written in

terms of a “meta-model” that is a saturated loglinear model for the 2p contingency table that

represents the model space. This representation is applicable to any variable selection problem,

not just normal regression or generalized linear models. Estimating all of the parameters in

the “meta-model” is equivalent to enumerating all models and is generally intractable. We

can approximate the posterior model probabilities by setting some higher order terms in the

meta-model to zero. The resulting problem of how to choose the models to best estimate the

parameters of the meta-model falls within the usual domain of optimal experimental design.

I have explored using 2k fractional factorial designs for estimating “main effects” (the model

of independence) as well as some orthogonal array designs, but have found that the designs

obtained by the approach outlined in Section 4.5 lead to smaller Kullback-Leibler divergences.

The approach in Section 4.5 informally uses the normal approximations or Savage-Dickey den-

sity ratios to choose a set of models for the design. More formal approaches may be brought to

bear on this design/estimation problem. For example, sequential designs and sequential updat-
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ing of the “meta-model” may lead to interesting new approximations for estimating posterior

model probabilities.

Given that we are in the same position as the U.S. Census Bureau and cannot enumerate

the population (but the Republicans cannot stop us from sampling), what type of sampling plan

should we use? MCMC is one approach for random sampling. Even in moderate problems

(p = 15), it is not clear that MCMC methods actually perform significantly better than simple
random sampling (Clyde et al. 1996). Given the set of sampled models, Prof. George raised

the question of how we should estimate posterior model probabilities, posterior means, and

normalizing constants in this situation. While the relative frequencies are unbiased in sampling

with replacement, other approaches may bemore efficient and take advantage of the information

available in the un-normalized posterior model probabilities. The Rao-Blackwellized estimator

of Prof. George uses this information and ismore efficient than the relative frequencies; however,

computing it in in large problems may turn out to be as computationally difficult as enumerating

all models. Sampling without replacement appears to be more efficient from a computational

perspective, but more work is needed in finding the best estimators or properties of estimators.

Normalizing the un-normalized posterior model probabilities over the set of unique sampled

models leads to the correct answer when all models are sampled, but is biased otherwise. While

there are some twists that make the BMA estimation problem slightly different from the usual

finite population sampling problem, finite population sampling methods may yield new insights

for improving Bayesian model averaging as we deal with larger scale problems.
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