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Polyploidy in Crataegus and Mespilus (Rosaceae,
Maloideae): evolutionary inferences from flow
cytometry of nuclear DNA amounts

Nadia Talent and Timothy A. Dickinson

Abstract: Hawthorns and medlars are closely related genera in Rosaceae subfamily Maloideae, whose taxonomy remains
poorly understood. Gametophytic apomixis occurs in polyploids, and diploids are sexual out-crossers, so ploidy level is of
great interest, but suitable material for chromosome counts is of limited availability each year. The promise of flow cytom-
etry is that it permits rapid measurement of nuclear DNA amounts from most tissues, and ploidy level can be inferred if
climatic and taxonomic differences do not interfere. Our DNA measurements cover most of the taxonomic series in Cra-
taegus, adding cultivated and naturalized Eurasian plants to the many wild plants collected mainly from south-central Can-
ada and the southeastern and northwestern United States. We found that some variation in DNA amount per genome copy
distinguishes certain taxa, but ploidy-level estimates are at least as clear as the published chromosome counts, especially
in the most common diploid—triploid—tetraploid range, and to the single published higher (hexaploid) chromosome count,
we add evidence of pentaploids. By comparing ploidy evaluations to morphology, we hypothesize that both autopolyploidy
and allopolyploidy contribute to the taxonomic complexity. We compared DNA amounts in Maloideae with those in Gille-
nia, a likely sister genus to the subfamily, which has a smaller chromosome number.

Key words: apomixis, Crataegus, flow cytometry, Gillenia, Mespilus, polyploidy.

Résumé : Les aubépines et les néfles sont des genres voisins de Rosaceae, de la sous famille des Maloideae, dont la taxo-
nomie demeure mal comprise. L’apomixie gamétophytique survient chez les polyploides, et les diploides sont a croisements
externes, de sorte que le degré de ploidie est d’un grand intérét, mais le matériel adéquat pour le décompte des chromoso-
mes est d’accessibilité limitée chaque année. L’intérét de la cytométrie en flux est qu’elle permet de mesurer rapidement les
quantités d’ADN, a partir de la plupart des tissus, et qu’on peut en déduire le degré de ploidie, si les différences climatiques
et taxonomiques n’interferent pas. Les mesures d’ADN effectuées par les auteurs couvrent la majeure partie des séries ta-
xonomiques chez les Crataegus, y incluent des plantes cultivées et naturalisées d’origine eurasienne, ainsi que plusieurs
plantes sauvages, récoltées surtout dans le centre sud du Canada, et le sud est et le nord ouest des Etats-Unis. On constate
qu’une certaine variation dans la quantité d’ADN par copie du génome distingue certains taxons, mais que les estimations
du degré de ploidie sont au moins aussi claires que les décomptes de chromosomes publi€s, surtout dans la gamme la plus
commune diploide—triploide—tétraploide; les auteurs ajoutent a un unique compte de nombre chromosomique supérieur (he-
xaploide), la preuve de pentaploidie. En comparant les estimés de ploidie avec la morphologie, les auteurs formulent 1’hy-
pothése que 1’autopolyploidie et 1’alloploidie contribuent a la complexité taxonomique. Ils comparent les quantités d’ADN
chez les Maloideae avec les Gillenia, un genre vraisemblablement voisin de la sous-famille, lequel posséde un plus petit
nombre de chromosomes.

Mots clés : apomixie, Crataegus, cytométrie en flux, Gillenia, Mepilus, polyploidie.

[Traduit par la Rédaction]

Introduction closely related genera, with just two species in Mespilus L.

The hawthorns and medlars form a distinct group within
Rosaceae subfamily Maloideae, but their taxonomic history
has been complex. They are now divided between two

and the remainder in Crataegus L. The distribution of Mes-
pilus is strangely disjoint since the Eurasian medlar M. ger-
manica L., though widely naturalized in Europe, was
apparently native to Azerbaijan, Armenia, Georgia, and

northern Turkey (Baird and Thieret 1989) whereas M. can-
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of published names is far from complete (approximately
1700 species names may have been validly published; IPNI
2004). Approximately 40 taxonomic series have been identi-
fied that are grouped with less certainty into about 14 sec-
tions, but morphological analysis has so far yielded little
insight into the relationships between these groups, and phy-
logenetic analyses have not yet incorporated molecular data.

Historically it was suggested that hybridization is primar-
ily responsible for the systematic difficulty (Eggleston 1908;
Brown 1910; Standish 1916), but although hybridization is
well documented, its extent is now debated (Phipps 2005).
Thus, it is unclear at this stage whether a phylogenetic anal-
ysis using molecular data would be hampered by reticulate
relationships. What has long been inferred (Palmer 1932;
Rickett 1936) and has since been demonstrated cytologically
(Muniyamma and Phipps 1979b; Dickinson and Phipps
1986; Smith and Phipps 1988; Dickinson et al. 1996) is that
gametophytic apomixis complicates the taxonomy. Apospory
occurs in triploids and tetraploids, while diploids and some
tetraploids are sexual (Muniyamma and Phipps 1985; Ptak
1986). In most of the many plant groups where apomixis oc-
curs, it is associated with polyploidy and with heterozygos-
ity, which suggests a hybrid origin (Nogler 1984; Carman
2001). The distributions of polyploidy and apomixis within
the hawthorns, the details of the mechanisms, and the suc-
cess rate of apomictic reproduction, as well as the extent of
hybridization, all require further study.

One of the major lineages within subfamily Rosoideae of
the Rosaceae includes some genera, notably Rubus and Po-
tentilla sensu lato (Morgan et al. 1994), where apomixis co-
exists with high polyploid series from diploid to 12-ploid or
higher. As far as we are aware, Crataegus and other mem-
bers of subfamily Maloideae are a contrast, having yielded
only diploid, triploid, and tetraploid chromosome counts un-
til the recent addition of a hexaploid count for Crataegus
pinnatifida (Gu and Spongberg 2003). It is plausible that
the Maloideae are a group of recent origin where high poly-
ploids have yet to evolve, but it is equally plausible that dif-
ferent mechanisms of genome duplication exist in the two
groups (Nogler 1984). An investigation of this question
might require a large number of ploidy-level determinations,
which could also serve as a foundation for another important
goal: a molecular phylogeny of Crataegus and Mespilus
needs a good survey of polyploidy as a first step to deter-
mining the numbers of copies of nuclear genes.

Existing data

There already exists a considerable collection of chromo-
some counts from Crataegus (details below), enough to indi-
cate that ploidy level probably varies within a morphological
group, and that a full survey would require a large number
of counts. Published chromosome counts are sometimes con-
sidered unreliable because of uncertain identifications or in-
adequate taxonomic coverage (Merxmiiller 1970; Nelson-
Jones et al. 2002; Funk et al. 2005) and in Maloideae, the
difficulty of obtaining appropriate tissue for mitotic figures
has caused some authors to resort to using data from root
tips of seedlings rather than data from the tree itself, which
is clearly problematic where hybridization between ploidy
levels is known to occur. The most common practice is to
obtain countable metaphase figures from pollen meiosis and
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from mitosis in meristematic tissues (e.g., petals), both of
which are available only during a very narrow window of
time. The precision of chromosome counts in Crataegus
and Mespilus is also hampered by the small size of the chro-
mosomes (0.6-2.5 um at mitotic metaphase; Byatt and Mur-
ray 1977; Ptak 1986; Dickinson et al. 1996), but although
many of the chromosome counts are approximate, we found
that a re-examination of the older data is valuable.

The single largest collection of counts for New World
taxa was made by Longley (1924) using sections of pollen
mother cells, a particularly difficult technique that often
yielded only approximate counts. The aim was to refine a
previous conclusion that problems in pollen meiosis indi-
cated hybrid origin (Standish 1916) by checking whether
the supposed hybrids were polyploid. Longley followed ear-
lier work by Meyer (1915) in accepting the basic euploid
chromosome number as 16 rather than 17, a number that is
currently accepted as a feature shared with the genera of
Maloideae sensu stricto (Evans and Campbell 2002), but his
assessments of polyploidy are in line with other work. For
the small number of dedicated workers who continue to
wrestle with the taxonomic complexity of Crataegus, Long-
ley’s chromosome counts might provide a clue to identifying
taxa that could be extinct and, as we shall see below, there
may be clues to evolutionary behaviour in these data even if
some of the plants are no longer readily available for study.

Longley obtained counts from 79 ‘“species” at a time
when over 1100 species names were in use for North Amer-
ican Crataegus. The counts were made from the living col-
lection at the Arnold Arboretum and voucher specimens
were not kept. But the labeling of the trees is described in
the paper as ‘“accurate,” and at that time much care was
taken with that arboretum collection as it was central to
taxonomic work on North American Crataegus. We have
grouped the taxa studied by Longley at the species level ac-
cording to the most recent taxonomic revisions available
(Table 1) to compare them to other publications and to our
own results.

Flow cytometry might help

Flow cytometry is an established technique for plant as
well as animal cells and is particularly appropriate for estab-
lishing the DNA content of free plant nuclei extracted from
chopped tissue (Arumuganathan and Earle 1991). We hoped
that DNA measurements per genome might be sufficiently
uniform across Crataegus and Mespilus, or at least across
many of the taxa, that they could translate to ploidy-level
determinations, although this is not guaranteed since the
DNA amount can vary greatly within the diploids of a single
genus (e.g., Gossypium, Wendel et al. 2002). However, it is
necessary to check that DNA measurements from a particu-
lar plant group are consistent under different growth condi-
tions (Michaelson et al. 1991; Price et al. 2000). Crataegus
has also been one of the more difficult subjects for flow cy-
tometry (E.E. Dickson, personal communication, 1992). For
practical use with a large number of plants, it may be neces-
sary to use a high rate of flow through the cytometer, which
reduces the precision of the DNA measurement. Thus we
found it necessary to develop some adjustments to the proto-
col for tissue preparation and to verify the utility of DNA
measurements in Crataegus and Mespilus. We have the pub-
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lished chromosome counts from taxa that we can identify
with certainty with which to calibrate cytometric measure-
ments, and a few of the counts are from individual trees
that are still accessible to us.

Materials and methods

Materials

Leaves were collected in the field and in botanical gar-
dens April-September 2001-2004 (Table 1). We tagged all
source trees growing outside botanical gardens with alumi-
num tags, and voucher specimens from all plants are filed
in the Green Plant Herbarium of the Royal Ontario Museum
(TRT). At sites distant from Toronto, leaf samples were
sealed in plastic bags together with labels identifying the
source tree, and (following the suggestion of E.E. Dickson)
with no added moisture. Leaves packaged in this way
yielded useful data in the cytometer up to 2 weeks later if
refrigerated for most of that time.

Determinations of wild trees are by the authors unless
other names are listed, and these are the names of col-
leagues who have lent their special expertise to particular
groups. Determinations of cultivated trees were made by the
arboretum staff of each institution, or their suppliers, and are
accepted as plausible by the authors. Since there is a risk
with living collections of mislabeling or misidentification,
we have been cautious to use only such plants as seem to
be correctly labeled according to our understanding of the
taxa. For some Ontario taxa, we have attempted to sample
morphological variation and for this we have used the dis-
cussions of variation in the recent revisions by Phipps and
Muniyamma (1980) and by Voss (1985). At the present
time it is not always possible to identify some plants below
the level of taxonomic series, and we found it necessary to
omit some plants from the sample because even that level
of identification proved impossible.

Nomenclature

For the sake of simplicity, we have grouped varieties and
cultivars to the species level. The bi-level classification of
Crataegus into sections and series is based on the world
checklist by Phipps et al. (1990) and on Christensen’s
(1992) monograph. Some adjustments to that classification
come from later publications (Kasumova 1991; Phipps
1995, 1997; Gladkova 1996; Phipps and O’Kennon 2002;
Phipps et al. 2003a, 2003b), and J.B. Phipps (personal com-
munication, 2005) has suggested the placement of C. shus-
wapensis within series Douglasianae, C. enderbyensis
within series Purpureofructi, and C. munda within series
Lacrimatae. For known hybrids, we have used nothosections
and nothoseries rather than follow those authors who group
hybrids with one of the parents. The placement of series
Flavae within section Lacrimatae is our best guess, and we
follow Palmer’s recommendation (Rehder et al. 1938) to use
the name C. calpodendron (Ehrh.) Medik. rather than the
ambiguous C. tomentosa L.

If a chromosome count exists for an American microspe-
cies name that has not been included in Phipps et al.’s
checklist (1990), we have used Kruschke’s assessment of its
affinity if he offered an opinion (Kruschke 1965). For Eura-
sian species and varieties that were not included in the
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checklist or in Christensen’s (1992) monograph, we have
followed Cinovskis (1971). If one of these microspecies or
varieties would be synonymized to a different species by
Kruschke or Cinovskis, the names appear in braces with the
original name followed by the revision, for example, {C.
treleasei Sarg. /| C. dispessa Ashe}. Other microspecies that
have not received a recent revision, but were placed into
series by Palmer (1925), are shown in braces, for example,
{C. apposita Sarg.}.

Flow cytometry protocol

Preparation of the plant tissue involved mixing a buffer
solution containing propidium iodide stain (buffer B) with
free nuclei extracted (using buffer A) from tissue chopped
with a razor blade, as detailed below. The DNA amount
was calculated by comparison with that of Pisum sativum,
which is a well-established standard with a signal close
enough to the Crataegus values for accurate comparison but
still readily distinguished from them (Greilhuber and Ebert
1994; Price and Johnston 1996; Temsch and Greilhuber
2001). Calculations used a value of 8.84 pg DNA for Pisum
sativum (Greilhuber and Ebert 1994).

For leaf, petal, and bud tissue, the Pisum standard was in-
ternal: aliquots of prepared, unstained, Pisum suspension
were mixed with the Crataegus preparation as the staining
buffer was added.

Buffer solutions

Following Burton and Husband (1999), we used a chop-
ping buffer (buffer A) from Bino et al. (1992) and a staining
buffer (buffer B) from Arumuganathan and Earle (1991). The
chopping buffer contained 15 mmol/L. HEPES, 1 mmol/L
EDTA, 80 mmol/L potassium chloride, 20 mmol/L sodium
chloride, 300 mmol/L sucrose, 0.2% (w/v) triton X-100,
0.1% B-mercaptoethanol, and 0.5 mmol/L spermine. The
staining buffer contained 10 mmol/L magnesium sulphate
heptahydrate, 1 mg/mL dithiothreitol, 10% (w/v) triton X-
100, 2% propidium iodide stock solution (5 mg/mL) and
0.24% DNAase-free RNAase. However, because of solubil-
ity problems in the propidium iodide stock solution, we
routinely added twice as much to the final buffer.

Preparation of material

Preparation of the Pisum sativum standard follows Burton
and Husband (1999). Approximately 0.5 cm? of leaf tissue
was chopped in 0.5 mL of buffer over crushed ice. Then
1.0 mL of buffer was added before filtering first through
coarse fabric of about 200-pm mesh, then through 37-pm
mesh, and finally through 15-pm mesh. The filtrate was cen-
trifuged at 13000 rpm for 20 s. The pellet was resuspended
in 120 pL of resuspension buffer (buffer B without the pro-
pidium iodide stain) and then divided into aliquots of 10 pL,
one for each of 12 Crataegus samples.

For Crataegus leaf tissue, the volume of chopping buffer
was increased to reduce the viscosity that can destroy the
nuclei during filtering, centrifuging times were increased,
and more care was necessary to remove a sticky precipitate
that formed in some samples and caused problems with the
cytometer. No more than 0.5 cm? of leaf tissue was chopped
in 0.5 mL of chopping buffer, then 2.5 mL of chopping buf-
fer was added before filtering through 37-pm mesh. The fil-
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trate was centrifuged at 13 000 rpm for 4 min, and the pellet
with an aliquot of the Pisum standard was resuspended in
170 pum of staining buffer. After standing on ice for 20-
30 min, any precipitate was discarded.

Crataegus petals were prepared in the same way as leaf
tissue, although less dilution was required. We found that
winter buds are more problematic than leaves and benefitted
from even more dilution.

Cytometry

The flow cytometer, located in the University of Toronto
Faculty of Medicine, is a Becton Dickinson machine from
BD Biosciences, Franklin Lakes, New Jersey, USA, model
FacsCalibur. Since our emphasis was on extensive surveys
of polyploidy rather than on detecting small variation in
DNA amounts, we ran the samples through the machine at
high speed.

The side-scatter measurement plotted against fluorescence
intensity has proved to be most useful for recognizing a sig-
nal from the nuclei in order to reject the signals from par-
ticles other than intact nuclei (Fig. 1A; Matzk et al. 2000)).
Doublet signals (nuclei that are stuck together) were selected
out using a plot of the height of the fluorescence signal
against width, as is normal practice (Fig. 1B). The final his-
togram shows a peak for each plant with the mean and
standard deviation for each interval selected (Fig. 1C). It is
usual with Pisum, and uncommon with Crataegus leaf, to
obtain a second peak at twice the fluorescence of the first,
which would correspond to cells in the G2 phase of the cell
cycle or to endopolyploid nuclei.

Calculations

The variance of the fluorescence intensity from particles
observed by the cytometer is sensitive to how well the prep-
aration is flowing through the machine and will increase if
the machine is partly clogged. The mean of the measure-
ments may also be affected. There is no independent meas-
ure of obstruction in the machine, so the variance is used as
a guide (Ormerod 1994). We have followed the method con-
tributed by Warren Lamboy (Dickson et al. 1992) to calcu-
late the standard deviation of the fluorescence measurement
from the distributions of both the Crataegus signal and the
Pisum standard. The peaks corresponding to nuclei from the
two plants did not overlap, so they were measured in the
same preparation (Fig. 1C). The adjusted variance (c2) and
the adjusted mean (p) were calculated as follows:

0% = i/ + 05 X i/ i3

=884 X iy /py

where subscripts 1 and 2 refer to the sample and the stan-
dard, respectively.

To map fluorescence measurements to ploidy levels, we
chose a core sample of trees growing in Ontario (Figs. 2
and 3). These are taxa that we are confident about assigning
by morphology to groups whose ploidy level has been at
least moderately well established in the publications listed
in Table 1. This group includes three individuals for which
we have chromosome counts (4x: D950 and D652 (listed in-
correctly as D752), and 3x: D668 = JBP4454; Muniyamma
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and Phipps 1979a; Dickinson and Phipps 1986). Trees grow-
ing outside Ontario were excluded, even if morphologically
well-defined, on the grounds that climatic differences might
affect the DNA measurement. We also included a segregate
of C. succulenta found at two separate localities that is dis-
tinctive in appearance, and because it is male-sterile, we
suspected that it might be triploid. The last addition is a pos-
sible C. macracantha — C. punctata intermediate of un-
known ploidy but very distinctive in appearance and very
fertile.

In Figs. 2 and 3, it is clear that there are three groups of
measurements that mirror the known ploidy levels, except
that a few near-diploid aneuploids might be present. There
is some variation within taxa, but with error bars to repre-
sent the standard deviation calculated from both the sample
and the DNA standard, there is no overlap between these
groups (Fig. 3). We initially chose by eye some conservative
ranges as initial estimates of ploidy level, omitting the appa-
rently anomalous individuals at the high end of the diploid
range and at both ends of the tetraploid range, reasoning
that these might include the aneuploids that have sometimes
been reported with 34+1 or with 68+4 chromosomes.

These initial ranges were 1.4-1.65 pg with a midpoint of
1.525 pg, and a range of 0.25 pg for diploids; 2.2-2.4 pg
with a midpoint of 2.3 pg, and a range of 0.2 pg for trip-
loids; 2.8-3.2 pg with a midpoint of 3 pg and a range of
0.4 pg for tetraploids. Using the midpoint of these ranges to
estimate the DNA amount per genome gives three independ-
ent estimates: 0.76, 0.77, and 0.75 pg, and an average of
0.76 pg/genome.

The standard deviations of the measurements depend on
how well the cytometer is running. The adjusted standard
deviations from the core taxa measurements mostly fall
within 10% of the mean. We have chosen +10% as the devi-
ation from the midpoints of the ranges as an estimate of
which plants fall into each ploidy group. This allowance
seems generous for this group of tetraploids, but it omits
some plants close to the diploid range (Fig. 2 and Table 2).

Extending these estimates to pentaploid (3.42—4.18 pg)
and hexaploid (4.10-5.02 pg) produces some confidence in
our ability to distinguish pentaploids and hexaploids from
tetraploids, but for single measurements from each plant,
these ranges should not be used to distinguish a hexaploid
from a pentaploid.

Results

DNA measurements

DNA measurements are listed in Table 1, along with
ploidy-level estimates from the ranges derived from our
core group of taxa (Figs. 2 and 3, and Table 2). We have
used +£12% as a guide to which plants fall just outside one
of the euploid ranges rather than between two ranges. These
ploidy interpretations are compared with the published chro-
mosome counts and placed on the best current estimate of
the classification of the two genera as extracted from recent
taxonomic revisions (Table 1).

Comparison with previous measurements
Previous measurements of nuclear DNA exist for two of
the species studied here, one from Mespilus germanica
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Fig. 1. Cleaning the signal in the flow cytometer; the sample shown is from NT306, a still unidentified Crataegus seedling, with Pisum
nuclei as the internal standard. (A) Recognizing the nuclei by the narrow band of their side-scatter values (a measurement that relates to the
light-reflecting properties of the particles) and partly cleaning the signal by selecting region RS for exclusion. (B) Excluding signals with a
greater width (duration) than usual. These probably represent particles stuck together. (C) The final histogram of the cleaned fluorescence
signal is used to select intervals for statistical analysis, from which the arithmetic means of the fluorescence peaks are combined and ad-
justed as described in the text. Interval M1 is from the Crataegus sample and M2 is from the Pisum standard. The third peak has twice the
fluorescence of the main Pisum peak and represents endotetraploid nuclei or nuclei resting in G2 phase of the cell cycle. A G2-phase peak
from Crataegus leaf tissue appears only rarely but is more common with other tissues such as petals.
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(1.48 pg) and one from Crataegus crus-galli (2.71 pg)
(Dickson et al. 1992). Dickson et al. (1992) used chicken
red blood cells (2.33 pg DNA) rather than a plant DNA
standard, which should not produce a discrepancy (Temsch
and Greilhuber 2001), but for comparison we also measured
some other members of the family (Table 3). Our measure-
ments correspond well to those of Dickson et al. (1992) ex-
cept for some instances where it is likely that the plants are
different species or cultivars.

Dickson et al.’s (1992) measurement of 2.71 pg DNA (SD =
0.24) for a sample of C. crus-galli (ploidy level unknown
but expected to be triploid or tetraploid) falls a little below
our estimate of the usual tetraploid range, but two of our
own measurements from this group are similar, and it is
notable that the C. crus-galli s. 1. measurements are low
compared with members of other series, the diploids even
more so than the tetraploids. For M. germanica, our meas-
urements also agree very well, though there is some variation
within them: two of the cultivated plants gave measurements

higher than our diploid range and higher than the plants
grown at the Morton Arboretum from wild-collected seed.
These are cultivated selections with large fruit (NT210,
probably ‘Nottingham’, is also extremely parthenocarpic),
which may be unusual genotypes. Another possibly excep-
tional genotype was one of the plants from wild-collected
seed, which gave a lower measurement than the other
plants.

Uniformity of the measurements

To supplement the measurements from different trees
(Table 2), we repeated measurements from two trees of C.
monogyna at different times of year, in different years, and
in petal and bud tissue as well as leaves (Table 4). It is more
difficult to get a clean preparation of nuclei from winter
buds, but it is possible to use this tissue if necessary.

Crataegus punctata is one of the better-studied taxa, and
certain plants have been shown to be sexual diploids
(Longley 1924; Muniyamma and Phipps 1985; Dickinson
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Fig. 2. Using a group of core Crataegus taxa from Ontario, the DNA measurements (calculated as described in the text from data as in
Fig. 1C) suggest diploid, triploid, and tetraploid groups, from which we derived an average estimate of 0.76 pg/genome. The ranges shown
for each ploidy level derived from this average +10% are 1.37-1.67 pg (1.52 pg) for diploids, 2.05-2.51 pg (2.28 pg) for triploids, and
2.74-3.34 pg (3.04 pg) for tetraploids. These taxa are known diploids: C. punctata (34 trees), C. monogyna — C. punctata hybrids (10 trees),
C. monogyna (9 trees), C. xlavallei (1 tree), C. xmedia (1 tree), Mespilus germanica (1 tree); these taxa are known triploids: C. ?grandis (1
tree), to which is added four trees of C. succulenta that are male-sterile and suspected to be triploid (Table 1); these taxa are known tetra-
ploids: C. crus-galli var. pyracanthifolia (34 trees), C. douglasii (17 trees), C. Xpersimilis (19 trees), C. macracantha var. macracantha (9
trees) to which is added six trees of a very fertile, apparently tetraploid, possible C. macracantha — C. punctata intermediate.

Ploidy estimates from the core taxa

3.5
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and Phipps 1986; Wells and Phipps 1989). We have sampled
this species extensively in Ontario and attempted to cover
the spectrum of morphological variation, which is far greater
than in most hawthorn taxa. Most of our plants have rather
narrow leaves with pointed lobes and double teeth, but some
had relatively broad lobed leaves (e.g., NT52, NT226), and
one plant had unlobed leaves with single teeth (NT57).
Anther colors include white, pale pink, medium pink, dark
pink, and deep red. Most of the fruit were various shades of
red, some elongated, some not, about 1-1.5 cm in diameter,
with varying textures when ripe. Some have exceptionally
large fruit (e.g., NT186, at 2 cm diameter). Some had yellow
fruit about 1.5 cm in diameter (C. punctata var. punctata f.
aurea (Aiton) Rehder, e.g., NT47, NT54, NTS5), and some
had yellow fruit with a red blotch (C. punctata var. punctata
f. intermedia Kruschke, e.g., NT68). Not only are all the
plants diploid, but their DNA measurements vary less than
the spectrum of diploid values as a whole (Table 2, Fig. 2).

The DNA measurements from tetraploids occupy a
broader range of values than those from diploids and trip-
loids, and some of this variation is traceable to the identity
of the plant (Figs. 2, 4). Chromosome counts of 2n = 72
rather than 2n = 68 have been noted (Table 1), including in
C. phaenopyrum from which we sampled both cultivated
and wild forms. Thus, we speculate that the range of DNA
measurements from tetraploids could reflect real differences

triploid or suspected triploid taxa  []

tetraploid taxa

in chromosome number, although the accuracy of the meas-
urements is not sufficient to be certain without repeating
measurements from the same tree.

Comparison to chromosome counts

The ploidy levels derived from the DNA measurements
accord very well with the published chromosome counts
(Table 1). For the two species of Mespilus, there are pre-
vious chromosome counts that have M. germanica as diploid
(Moffett 1931) and M. canescens as triploid (M. Mu-
niyamma, personal communication, 1990) and these also ac-
cord well with our estimates calculated from Crataegus.

Some taxa do not fall neatly into the ploidy categories es-
timated from our core group of plants (Fig. 4, Table 1), but
for some of these groups we have enough samples with suf-
ficient consistency to suggest that the DNA amount is differ-
ent, and that could be taxonomically interesting. Such groups
are C. uniflora, C. brachyacantha, the two cultivated speci-
mens of C. hupehensis, and the southern plants that we cur-
rently consider to be diploids from C. crus-galli sensu lato.

Discussion

Chromosome number
A comparison with published chromosome counts shows
that cytometric determination of DNA amount in leaf tissue

© 2005 NRC Canada
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Fig. 3. The same group of core Crataegus taxa from Ontario as in Fig. 2 with errors bars representing the standard deviation of the mean
adjusted to take account of the variance of the Pisum standard, as described in the text. With these taxa, discrimination between the ploidy
levels is good, although proportionality of the error would make higher ploidy levels less distinct from one another.

Core taxa, DNA amount with standard deviation

35

25

*

Adjusted mean of DNA amount (picograms)

05 I

=

can be a convenient and effective substitute for direct chro-
mosome counts to determine ploidy level (although not nec-
essarily exact chromosome number) for both Eurasian and
North American Crataegus and Mespilus species (Table 1).
Chromosome counts require tissue that is difficult to obtain,
but flow cytometry has no such restriction. As with other
Rosaceae, Crataegus tissues can be a frustrating subject for
flow cytometry (E.E. Dickson, personal communication,
1992), but we have found that consistent results can be ob-
tained by diluting to reduce the viscosity of the chopped-
tissue suspension before filtering.

Our measurements from Crataegus and other selected Ro-
saceae are similar to previous measurements (Dickson et al.
1992). The cytometry involves a certain amount of error, as
can be seen by repeated measurements. However, the uncer-
tainty of the cytometry is not great enough to affect the as-
signment of most of the measurements into ploidy groups,
and unassigned values may represent aneuploid individuals.
We have verified that the cytometric results are repeatable
at different times of year and in different years. By survey-
ing representatives from the majority of taxonomic series in
both Crataegus (30 series, 7 nothoseries, 72 or more species
and nothospecies) and Mespilus (2 species), it is apparent
that the DNA amount for each 1x block of 17 chromosomes
varies little. Our range of 1.37-1.67 pg of DNA for the dip-
loids encompasses the measurements for several other dip-
loid Maloideae: Amelanchier, Cydonia, and Pyracantha
coccinea (Table 3), as well as measurements by Dickson et
al. (1992) for Sorbus alnifolia, Sorbus americana, and Erio-
botrya japonica. Some other Maloideae have less DNA than
this (Dickson et al. 1992), but with the exception of the cul-

tivar Pyracantha ‘Royal’ (only 0.99 pg), the measurements
are close to one another, averaging 1.17 pg: Pyrus communis
‘Bartlett’ (1.11 pg), Pyrus calleryana (1.26 pg), Cotoneaster
melanocarpa (2.24 pg, 4x), and Chaenomeles speciosa (1.20
pg). Goldblatt (1976) and, more recently, Evans and Camp-
bell (2002) consider the most likely origin of the x = 17
base chromosome number of the Maloideae to be from
members of subfamily Spiraecoideae with x = 9, by doubling
followed by the loss of one chromosome. We therefore
checked the DNA amount in Gillenia, which Evans and
Campbell (2002) placed as a sister to Maloideae sensu lato
(the clade that contains both the pome-fruited Maloideae
sensu stricto and the non-pome-fruited taxa with x = 17).
The measurements from the two Gillenia species are signifi-
cantly different from one another and they do not appear to
represent a polyploid series, but rather suggest that the ge-
nome size differs in the two species (Table 3). If we accept
our measurement as typical of diploid G. trifoliata, further
assume that all chromosome sizes are equal, and calculate
an equivalent genome size for a diploid Crataegus with x =
17, the resulting figure of 1.57 pg of DNA is surprisingly
close to the 1.53 pg that we estimated as the midpoint of
the range for diploid Crataegus. (An equivalent calculation
for G. stipulata gives 1.91 pg, between the 2x and 3x ranges
for Crataegus.) On the basis of this very slight evidence, we
hypothesize that the genome size of Crataegus and of sev-
eral other Maloid genera might have changed little from an
ancestral state.

Of the measurements reported here, 38 species match
published chromosome counts for the same species, and for
12 of the 30 series and nothoseries, our assessment of poly-
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Table 2. DNA amounts (ranges)
that we chose to accept as repre-
senting each ploidy level in Cratae-
gus.

Ploidy level DNA amount (pg)

2x 1.368-1.672
3x 2.052-2.508
4x 2.736-3.344
Sx 3.420-4.180
6x 4.104-5.016

ploidy is the first that we are aware of. Rather than match-
ing Gu and Spongberg’s (2003) report of a hexaploid, our
data suggest the presence of pentaploids.

Although the small chromosome size and the variability
in the measurement makes the detection of aneuploids un-
certain, they appear to be rare. Previous chromosome counts
have included some individuals with 72 rather than 68 chro-
mosomes (Table 1), and this appears to be mirrored in the
DNA measurements, but we found only individuals rather
than groups with this higher measurement. It is interesting
that by flow cytometry our C. Xlavallei plant has a similar
DNA reading to other diploid Crataegus; this plant is con-
sidered diploid (e.g., Wells 1985) but Sax (1931) saw only
16 pairs of chromosomes and cited it along with irregular
meiosis in some other plants to suggest that counts of 32
rather than 34 from earlier workers were not necessarily
mistaken. It should be possible to survey for aneuploidy us-
ing flow cytometry, even close to the diploid number of
chromosomes, by mixing unknown samples with a reference
sample. For example, we have mixed samples from tetra-
ploid C. phaenopyrum (tree 2002-10, separately measured at
3.14 pg DNA with SD = 0.29) and C. crus-galli (tree NT32,
2.96 pg DNA, SD = 0.22) to give a double peak. However,
since the fluorescence distributions from the two trees over-
lap, and since the numbers of nuclei extracted from the two
samples need to correspond, false negatives are likely.

Tetraploids form the majority of our sample of native
North American plants, and diploids are the next most fre-
quent. This is a contrast to Longley’s results (1924) where
triploids predominated amongst the taxa that had been col-
lected and propagated at the Arnold Arboretum. We have
concentrated on the forms whose morphological identifica-
tion and taxonomic position are less problematic with the
aim of detecting cryptic polyploidy, and we believe that the
early emphasis by taxonomists on building a collection of
unusual forms was responsible for the perception that most
hawthorns are triploid.

Some interesting “species”

The data on polyploidy that we have so far are a rich
source of research questions about particular taxa, some of
which we will outline here.

Until the discovery of Mespilus canescens in North Amer-
ica (Phipps 1990), the genus was considered monotypic,
consisting only of Eurasian M. germanica. The triploid chro-
mosome count from M. canescens (M. Muniyamma, per-
sonal communication, 1990), which is now confirmed by
DNA measurements from nine individuals, raises the ques-

Can. J. Bot. Vol. 83, 2005

tion of whether the range extension of the genus is due to
diploid—tetraploid hybridization of M. germanica with a na-
tive Crataegus species following very early settlement of
Europeans in Arkansas. We hope that it will prove feasible
to test this hypothesis, using DNA sequences, against the
rather more exciting possibility that the two genera dis-
persed independently in prehistoric times between conti-
nents.

Crataegus collina is included in C. punctata by some au-
thors, but in North Carolina the two taxa appear to be dis-
tinct, with C. collina blooming early and C. punctata
blooming late, though C. punctata occurs at higher eleva-
tions (R.W. Lance, personal communication, 2004). Cratae-
gus collina has been previously recorded as diploid, but we
found only polyploids in the parts of North Carolina that we
sampled, whereas in a much larger but very distant area of
Ontario, the C. punctata appear to be diploid only. Our sur-
vey has also extended the records of diploids in series Crus-
galli from two cultivated plants to wild populations in two
US states; tetraploids that are classified in that series are
present in the same general area as well as much further
away. So we see that in section Crus-galli, the two series
Punctatae and Crus-galli each contain at least one diploid—
polyploid sequence, and the putative hybrids between dip-
loid C. punctata and tetraploid C. crus-galli in Ontario
(Dickinson 1983), if they in fact are hybrids, may have
formed between rather distantly related parents rather than
between a diploid and its autotetraploid. Section Crus-galli
would therefore be a worthy candidate for quite extensive
phylogenetic and phylogeographic investigation.

Crataegus uniflora has a quite uniform DNA amount
across a considerable geographic range and appears to be
triploid, or a tetraploid with an exceptionally small genome;
the one chromosome count for it is triploid. If it is triploid,
then it would be likely to reproduce by apomixis and may
be a highly successful clonal plant. There is morphological
variation by locality (Phipps et al. 2003b) that suggests mul-
tiple origins, but we are unaware of any candidates for the
diploid or tetraploid ancestors of this plant. Some triploid
apomictic plants are known to achieve genetic diversity
through pollen transfer to diploids or via a tetraploid gener-
ation to re-create apomictic triploids (e.g., Taraxacum offici-
nale, Asteraceae; Tas and Van Dijk 1999; Verduijn et al.
2004), but once again we know of no indication from mor-
phology of likely partners for C. uniflora in such a repro-
ductive strategy. This plant invites thorough investigation.

Diploid—diploid hybridization is known to occur between
Eurasian species (Byatt 1975) and between Eurasian C. mo-
nogyna and two diploid North American species (Love and
Feigen 1978; Wells and Phipps 1989). It has long been sug-
gested that sympatric diploid American species are hybridiz-
ing (Camp 1942), but actual evidence is slight. A survey of
polyploidy by flow cytometry would be a foundation for a
study to find possible cases of diploid—diploid hybridization
and eventually to quantify its occurrence. For example, C.
spathulata is the only species currently placed in series Mi-
crocarpae and it is diploid in our sample. It has been sug-
gested that in a number of attributes it resembles C.
phaenopyrum, the sole species in series Cordatae (Beadle
1913; Phipps 1998), but that species has so far proved pol-
yploid. If we suppose that the degree of dissection of the
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Fig. 4. DNA amounts from leaves of all Crataegus and Mespilus individuals. When all sampled trees (695 individuals) are included, the 2x,
3x, and 4x groups are less clearly distinguished and some very high and very low values appear. As discussed in the text, although some of
the intermediate readings are likely to correspond to aneuploid individuals, it is clear that some taxa consistently fall in these ranges. (A)
The low measurements (more than 12% below the midpoint of the diploid range, below 1.337 pg DNA) are 10 of the 11 southeastern
diploid C crus-galli (series Crus-galli), and half of our measurements from series Aestivales, namely both C. aestivalis and one of the C.
opaca. (B) The interval between 2x and 3x (between 1.702 and 2.006 pg DNA) contains all eight individuals of C. brachyacantha (Brevis-
pinae), both C. hupehensis (sect. Hupehenses), and the single C. sargentii (Intricatae). It also contains some individuals of Mespilus ger-
manica, C. monogyna (Crataegus), C. marshallii (Apiifoliae), C. viridis (sect. Virides), C. spathulata (sect. Microcarpae), series Lacrimatae,
C. rufula (Aestivales), C. saligna (Brevispinae), C. suksdorfii (Douglasianae), C. collina (Punctatae), C. triflora (Triflorae), C. mollis and
C. viburnifolia (Molles), and C. calpodendron (Macracanthae). (C) The interval between 3x and 4x (between 2.554 and 2.675 pg DNA)
contains three of the four C. uniflora (Parvifoliae), two C. crus-galli (Crus-galli) that are the southeastern United States form that is some-
times referred to as C. berberifolia Torr. & A. Gray, as well as individuals of C. collina (Punctatae), C. pruinosa (Pruinosae), and C.
chrysocarpa (Rotundifoliae). (D) The high values (above 3.405 pg DNA) include the possible C. lassa of series Flavae, our highest DNA
measurement, as well as individuals from other series: three of the four measurements from series Intricatae of which one is labeled C.
flavida at the Arnold Arboretum, two individuals each of C. ashei (Bracteatae) and C. phaenopyrum (Cordatae), and in series Douglasianae
one each of C. douglasii and C. castlegarensis. The figure appears on the following two pages.

Table 3. DNA measurements from other Rosaceae.

2C value from  SD from

Voucher  2C value Dickson et al.  Dickson et

Species No. (pg) SD (1992) (pg) al. (1992) Ploidy level*
Amelanchier alnifolia Nutt.

‘Smoky’ NT216 2.68 0.27 — — 4x
Amelanchier arboria (Michx. f.)

Fernald 2003-01 1.39 0.12 1.31 0.25 2x
Aronia pyrifolia Lam. — — — 2.57 0.20 2x, 4x
Aronia sp. 2003-02  3.03 0.22 — — —
Cydonia oblonga Mill. NT324 1.54 0.08 1.45 0.14 2x
Gillenia stipulata (Willd.) Nutt. 2000-51 1.01 0.19 — — —
Gillenia trifoliata (L.) Moench 2000-52 0.83 0.09 — — 2x (x=9)
Photinia parvifolia (E. Pritz)

C.K.Schneid. — — — 2.29 0.26 —
Potentilla indica (Andr.) Focke NT136a  3.58 0.26 3.00 0.14 6x, 12x (x=7)
Pyracantha coccinea M.Roem. 2003-12 1.49 0.12 1.41 0.31 2x

Note: Ploidy levels are those compiled from the literature by Dickson et al. (1992) except for Gillenia trifoliata (Robertson 1974
as Porteranthus trifoliatus) and Amelanchier alnifolia *‘Smoky’, which has been reported to occur in nature as diploids or tetraploids
(Pruski et al. 1991). We infer from the DNA measurements that our specimen of A. alnifolia ‘Smoky’ is tetraploid and that A.
arborea is diploid. 2C values, the unreplicated amount of DNA in a somatic nucleus irrespective of the ploidy level.

“x=17 except as noted.

Table 4. Uniformity of DNA amount in repeated measurements from
Crataegus monogyna.

Voucher No. Collection date Tissue  DNA (pg) SD

NT114 22 August 2002 Leaf 1.52 0.09
NT114 21 August 2003 Leaf 1.59 0.15
NT114 11 September 2003 Leaf 1.57 0.10
NT114 1 October 2003 Leaf 1.53 0.14
NT114 9 January 2004 Buds 1.48 0.09
NT117 7 July 2003 Leaf 1.46 0.11
NT117 7 July 2003 Petals 1.47 0.11

leaves is a better clue to relationships than other characters lii (of the monotypic series Apiifoliae), which has highly
such as overall leaf shape, then a hypothesis of diploid— dissected leaves and is sympatric with C. spathulata.
diploid hybridization could be considered, with C. spathu-

lata a diploid hybrid between one of the diploid species Mixed ploidy levels

with narrow entire-margined leaves and diploid C. marshal- The data about polyploidy that we have accumulated to
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this point leave us with a major question about these plants:
why is it that certain groups in certain geographical areas
consist of a variety of ploidy levels, but this is not the case
throughout the distribution of each “species”? It seems that
the answer may have several parts and it would be advisable
to study different groups separately.

Some Crataegus “species” are geographically widespread
but seem to consist of only one ploidy level; examples are
C. punctata sensu stricto (diploid), C. wuniflora (triploid),
and C. rivularis and C. douglasii sensu stricto (tetraploid).
Many other groups that are currently classified as species
contain a range of ploidy levels, for example North Ameri-
can C. suksdorfii, C. calpodendron, and C. triflora, and Eur-
asian C. pinnatifida. In some cases we have found that
ploidy-level differences are better predicted by locality than
by morphology, since nearby sites may hold plants of differ-
ent ploidy levels that are not readily separable by morphol-
ogy; C. collina and C. triflora are examples. Thus we have a
situation that has been seen in other plants, truly cryptic pol-
yploidy where there is no apparent effect on the phenotype
from the extra copy or copies of the genome. This could
conceivably be autopolyploidy, but investigation of the re-
petitive DNA in some other plants whose morphology sug-
gests autopolyploidy has instead suggested cryptic
allopolyploidy (e.g., Hordeum mirinum Taketa et al. 2000).

It seems likely that morphology could equally well lead
us to falsely infer allopolyploidy if the ancestral diploid
plants had varied morphology and extinctions have obscured
the relationships. Autopolyploids with multiple origins could
vary in morphology if they derived from variable diploids,
and C. calpodendron and C. suksdorfii are possible exam-

ples that could repay further investigation. We hope to gain
more insight on this question with work in progress on sec-
tion Douglasianae.

Allopolyploidy in Crataegus is indicated by some trip-
loids (C. ?grandis) that are considered to be hybrids be-
tween diploid C. punctata and tetraploid C. crus-galli sensu
stricto (Dickinson 1983; Dickinson and Phipps 1986), two
species that we decided above are rightly considered mem-
bers of different series. More investigation will be needed
to discover whether allopolyploidy is a common origin for
triploids. It has been suggested that some tetraploids are in-
ter-series hybrids (e.g., C. Xpersimilis as a hybrid of
C. crus-galli sensu lato and C. succulenta sensu lato; Eg-
gleston 1908; Palmer 1950; Phipps 1988b; Phipps et al.
2003b), but it is not known whether this is a tetraploid—
tetraploid sexually derived hybrid or an allopolyploid de-
rived from the diploid or triploid members of the ancestral
“species”. Beyond the mechanisms of diploid-diploid hy-
bridization and diploid—tetraploid hybridization to form al-
lotriploids, we know little about interbreeding.

At this stage it is likely that the lack of diploids in some
groups is a sampling artifact since diploids are relatively
rare in some other groups (Table 1): only one diploid from
series Coccineae has been recorded (without a species iden-
tification, Table 1), a diploid count for C. cuprea is excep-
tional in series Intricatae, and series Crus-galli, for which
Longley’s diploid chromosome count had seemed anoma-
lous (Longley 1924), still has a vast geographic range in
which only polyploids have been recorded. However, with
the information that we have so far, some taxonomic series
appear to consist only of triploids and tetraploids; two exam-
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ples are Pruinosae, and Tenuifoliae, groups that have proved
particularly difficult to partition by morphology and that
have received different treatments from different authors. In
contrast to these, series Cordatae and Parvifoliae are much
less variable. It is tempting to look for differing biology be-
tween the variable and the non-variable polyploid groups:
perhaps some of them readily cross among themselves and
with diploids and tetraploids from other series, while others
act as solid biological species. It will be very interesting to
discover the true evolutionary role of apomixis in this genus,
which on the one hand might be to reduce the potential for
hybridization while creating a multitude of true-breeding
variant forms, but on the other hand might enhance the po-
tential for hybridization and for some rather dramatic
changes of chromosome numbers as has been noted in some
Poaceae (e.g., Clausen 1961; de Wet and Harlan 1970).

Geographic distributions

The relative distributions of diploids and polyploids in
Crataegus are intriguing, but more data are needed and
larger geographical areas should be surveyed for each taxon.
There is much evidence from other plants that the distribu-
tions of polyploids and of apomicts can spread well beyond
the distributions of their ancestral diploids (much of the evi-
dence was reviewed, for example, by Lewis (1980) and
Grant (1981), and in North America we suspect that Pleisto-
cene refugia might produce a very strong pattern of this
type. Probably the strongest evidence so far to suggest this
pattern is series Crus-galli, where the known diploids are re-
stricted to the southeastern United States, but polyploids
spread up into Canada (Table 1). In Ontario series Molles

and series Macracanthae, the species that appear to be
largely or entirely diploid (C. mollis and C. calpodendron)
are distributed in the more southerly Carolinian zone, while
the putative tetraploids (C. submollis and C. macracantha)
spread North of the 45th parallel (Table 1, and Phipps and
Muniyamma 1980). Not all of the most northerly species
are polyploid, however, as C. punctata appears to be uni-
formly diploid even as far North as our most northerly sam-
ples from southern Bruce Co. Ontario (44.54°N).

Hybrid derivatives also might spread beyond their ances-
tors into equally warm areas, and our data on ploidy levels
add an intriguing twist to a particularly neat example of hy-
bridization in the southeastern United States that has been
studied morphologically by Phipps (1988a). “Occurring as
it does at the exact interface of C. aestivalis (more easterly)
and C. opaca (more westerly), as well as being intermediate
in almost all respects between those two species, C. rufula
represents a presumed hybrid swarm or its descendants,
probably with some elements fixed by apomixis.” Our sam-
ples from the parental species in this complex were diploid,
and the C. rufula samples appeared to be triploid, which fur-
ther suggests that polyploid apomixis has indeed played role
in the development of this geographically separated hybrid.

Models of evolution in Crataegus

Camp (1942) proposed a hybridization-based model of the
development of taxonomic complexity in Crataegus. Build-
ing on the insight of Sax and Rickett that apomixis was
prevalent in the genus (Sax 1931; Rickett 1936), and on
Longley’s finding more triploids than either diploids or tet-
raploids (Longley 1924), he drew parallels to the then re-
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cently published model of Crepis (Babcock and Stebbins
1938) and began with primary hybrids between diploid spe-
cies, noting that: “in other groups such hybrids are notorious
for the production of at least some unreduced gametes. It
would therefore seem likely that, in the North American
population of Crataegus, there is a series of basic sexual
diploids on which is super-posed a large and morphologi-
cally complex group of derived, asexual, apomictic triploids,
to which may be appended a scattered series of tetraploids,
some of which may be sexual and others apomictic.”

Although we have seen above that cryptic polyploidy
might be common, and that this might include autopoly-
ploidy, we find ourselves in agreement with Camp (1942)
in thinking it very likely that polyploid offshoots of diploid
species can be triggered by some kind of hybridization
event and that apomictic triploids would have a strong se-
lective advantage over sexually sterile triploids. But are hy-
bridization and polyploidy likely to be simultaneous or
consecutive events, and how do apomictic tetraploids fit
into the picture?

Various authors have studied the patterns evident in other
taxa, most often the Asteraceae, and have tended to favor
different sequences of events. Since apomixis requires mul-
tiple mutations (at least two and perhaps three) to achieve a
fully functional system, Stebbins (1980) saw even-multiple
polyploidy, not triploidy, as a precursor for apomixis. He
noted that polyploidy can correlate with a perennial habit
(though the strength of this correlation has been debated;
Fagerlind 1944) and this would provide greater opportunity
for successful reproduction (Stebbins 1942). Stebbins also
saw the duplicate genes of polyploids as providing greater
opportunity for the mutations necessary for apomixis to
arise, while providing a buffering effect against deleterious
mutation. The buffering effect extended to environmental
adaptation and meant that polyploids could invade marginal
habitats where reproductive isolation could produce selec-
tion for apomixis. He concludes that “There is good reason
for believing that among angiosperms sexual polyploidy
precedes apomixis” and ‘“hybridization not only increases
the number of different kinds of alleles that are present and
might interact favorably with each other, but it also reduces
the number of alleles present as duplicates that would mini-
mize the effects of many mutations” (Stebbins 1980). So
his view is that polyploids are derived from chromosome
doubling, and that apomixis is subsequently more likely to
evolve, particularly in polyploids of hybrid origin.

Other authors have seen the question quite differently. It
has been argued that a diploid apomict is likely to produce
polyploid offspring through fertilization of the meiotically
unreduced egg cell (Fagerlind 1944), and so apomixis,
whether as a result of hybridization or not, would predate
polyploidy. Since Fagerlind’s time, however, the scarcity of
diploid apomicts has become more firmly established as bio-
logical fact rather than as a sampling artifact and there is
also more evidence that polyploids originate from unreduced
gametes in predominantly sexual diploids, whether those pa-
rents were hybrids or not (Harlan and Wet 1975; Ramsey
and Schemske 1998). We do not know, of course, that fertil-
ization of the egg cells in diploid apomictic Crataegus could
result in higher-ploidy offspring, and since diploid apomicts
of any flowering plant are so rare, there is no added support

Can. J. Bot. Vol. 83, 2005

for this phenomenon from other diploid plants with pseu-
dogamous apomixis (Nogler 1984). We do, however, have
some unpublished data (Talent and Dickinson, in prepara-
tion) to show that fertilization of the meiotically unreduced
egg cell is possible in triploid and tetraploid apomictic Cra-
taegus.

It has long been argued that apomixis offers an “escape
from sterility” for otherwise sterile hybrids (Darlington
1939, 1958; Stebbins 1941). It has even been argued that
production of unreduced female gametophytes will confer a
selective advantage because they are an evolutionary step to-
wards apomixis (Marshall and Brown 1981), even though
other mutations would be needed to produce a fully func-
tional system of apomixis. Crataegus is equipped with a
multicellular archesporium, a prerequisite for apospory, one
of the mechanisms for producing chromosomally unreduced
female gametophytes (Nogler 1984). Marshall and Brown’s
model is a modification of Fagerlind’s (1944) in which hy-
bridization is followed by multistep selection for apomixis,
which is followed by polyploidy. As well as the difficulty
presented by multi-mutation selection where the individual
mutations are deleterious (bypassing meiosis or avoidance
of fertilization of the egg cell, if they are separate mutations,
would change the ploidy of the offspring, whereas autono-
mous endosperm development might have less severe conse-
quences), this model presents the same difficulty as
Fagerlind’s (1944) , that we do not (yet) have evidence that
successful diploid hybrid apomicts occur in Crataegus.

Importance of triploids and pollination

Camp’s (1942) model is unusual in specifying that the
first polyploids would be triploid, whereas Fagerlind (1944)
and Marshall and Brown (1981) do not specify whether they
would be triploid or tetraploid or a mixture of these. A trip-
loid stage of evolution has the very appealing property that
selection for genetic combinations that confer apomixis
could be very strong among triploids that would otherwise
be largely sterile. It has frequently been suggested that since
apomixis is often associated with a hybrid origin, a tendency
to apomixis might result from unusual gene combinations or
from developmental instability in hybrids (Nogler 1984;
Carman 2001), so it is plausible that some allotriploids
could perpetuate themselves through apomictic reproduction
without necessarily needing to accumulate all the mutations
necessary for efficient seed production.

Evidence from other plant groups (where apomixis is not
necessarily present), suggests a mechanism for producing
triploid, rather than diploid, hybrids directly from particular
combinations of distantly related diploid parent species
when mismatched genetic components fail to act together to
abort triploid embryos (Hakansson and Ellerstrom 1950; Lin
1984; Carputo et al. 1999). Paradoxically for this discussion,
the mechanism involved is known as the “triploid-block”
effect since it prevents the formation of intraspecific triploid
embryos through failure in the endosperm. This argument
suggests that the putative partly apomictic allotriploids
might have been the immediate result of the diploid—diploid
hybridization.

The first tetraploids might have arisen from triploids ei-
ther through sexual hybridization or through fertilization of
an unreduced egg cell by pollen from a diploid. There is no

© 2005 NRC Canada



Talent and Dickinson

need to suppose that these first tetraploid derivatives were
strongly apomictic, but they might have had some such abil-
ity. It has often been noted that apomixis has the advantage
of rapid multiplication of a well-adapted genotype (the Ford
Model-T analogy; Clausen 1954) and under simple genetic
models will spread to fixation except for a residual capacity
for some sexual reproduction (e.g., Stebbins 1980; Marshall
and Brown 1981; Mogie 1992; Noirot 1993) and apomixis
in tetraploid Crataegus appears to offer still other advantages
that might have further enhanced its selective advantage.
Seed development is pseudogamous, that is, fertilization is
still required for development of the endosperm, and pollen
meiosis is generally normal. It seems that it might be possi-
ble for the apomictic tetraploids to pollinate diploids and
thus confer apomixis genes on a new generation of triploid
offspring with eventual gene transfer to tetraploids.

Crataegus species are ruderal shrubs, and the first poly-
ploids might be isolated genetically, even if they could inter-
breed with diploids. The pollen self-compatibility in some
tetraploid apomictic Crataegus is in strong contrast to the
self-incompatibility of diploids (Dickinson and Phipps 1986;
Dickinson et al. 1996; Macklin 2001), but it would seem to
be disadvantageous for sexual tetraploids to risk inbreeding
depression by self compatibility. Pollen self compatibility is
likely to be an immediate result of polyploidy, as has been
seen to occur in other dicot taxa with a 1-locus gameto-
phytic system of self-incompatibility (Grant 1981; Ramsey
and Schemske 2002), including Pyrus communis, another
member of Rosaceae subfamily Maloideae (Crane and
Lewis 1942), and in this connection it is interesting that the
pollen-to-ovule ratios of the few self-compatible polyploid
Crataegus that have been examined (Dickinson and Phipps
1986; Dickinson et al. 1996) do not show the dramatic re-
duction that Cruden suggests would be expected with such
a change in the breeding system (Cruden 1977), and pollen
production is well above the level needed to produce some
pseudogamous apomictic seed. This may be selected for by
the need to continue to attract pollinating insects, and by the
reproductive success that paternity confers. Pollinators are
required for selfing these flowers, as well as for transporting
pollen to and from unrelated plants for what we hypothesize
is a significant rate of out-crossing whenever a megagameto-
phyte is fertilized.

Since we have not yet encountered any groups where we
can demonstrate Camp’s (1942) model in operation with
diploid hybrids subsequently giving rise to triploid apomicts,
we would tentatively amend his model by suggesting that
triploid first-generation hybrids from diploid parents may
prove to be at least as important as diploid hybrids. In sub-
sequent generations the triploids that derive from diploid—
tetraploid crosses may also figure in gene transfer. Selection
for apomixis in both triploids and tetraploids might be par-
ticularly strong forces in this genus.

Further research on polyploidy

Because it provides such a wealth of groups in which it
seems that parallel events may have occurred relatively re-
cently, Crataegus (possibly including Mespilus) may be one
of the more promising genera in which to investigate the
origins of polyploidy and of apomixis. A logical next step
in research would be to derive a phylogeny of the known
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diploids in the group, which will likely not prove as difficult
a task as Camp’s (1942) original model with rampant dip-
loid hybridization would have implied. Although we are in-
clined to think that recent authors are refining the groupings
within Crataegus in such a way that most series will eventu-
ally prove to contain diploid members, this might not be
true of some “hybrid polyploid series” that may be compli-
cating the overall picture of the genus (possible examples
are series Pruinosae and Tenuifoliae).

To investigate allopolyploidy, it seems wise not just to
rely on phylogenetic reconstructions but also to study some
species groups in depth. Unfortunately for the task of find-
ing likely study groups, taxonomic authors rarely include
hints about the degree of morphological variation within a
group. Some hints that variation exists might be found
where later authors have grouped species names as taxo-
nomic synonyms, but there are many other reasons for syn-
onymy, some of which result from the sheer volume of
names within these genera. Variety descriptions may be a
more fruitful source of clues about morphological variation
than synonymy would be.

It is to be hoped that we will soon have a complete pic-
ture of the relationship between Mespilus and Crataegus
and the other Maloideae, and of the genetic relationships be-
tween the major groups of hawthorn taxa, so that characters
such as apomixis can be placed in an evolutionary context.
Is it true that only polyploids are apomictic? Are there
“culprit” species that have hybridized with many others and
spread apomixis and polyploidy through the hawthorn taxa
of two continents? Does the reduced stamen number of
many American tetraploids correlate with a shared ancestry
or will we see it as the result of a slight relaxation in selec-
tion for pollen production in apomictic plants with self-com-
patible pollen (Dickinson et al. 1996)? The research
questions in these plants are of great theoretical interest and
flow cytometry will be a fundamental tool in what promises
to be a much more satisfying and efficient attack on “the
Crataegus problem” than has ever before been possible.
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