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Background. Treatment switching commonly occurs in
clinical trials of novel interventions in the advanced or met-
astatic cancer setting. However, methods to adjust for
switching have been used inconsistently and potentially
inappropriately in health technology assessments (HTAs).
Objective. We present recommendations on the use of
methods to adjust survival estimates in the presence of
treatment switching in the context of economic evaluations.
Methods. We provide background on the treatment switch-
ing issue and summarize methods used to adjust for it in
HTAs. We discuss the assumptions and limitations associ-
ated with adjustment methods and draw on results of a sim-
ulation study to make recommendations on their use.
Results. We demonstrate that methods used to adjust for
treatment switching have important limitations and often
produce bias in realistic scenarios. We present an analysis
framework that aims to increase the probability that suit-
able adjustment methods can be identified on a case-by-
case basis. We recommend that the characteristics of

clinical trials, and the treatment switching mechanism
observed within them, should be considered alongside the
key assumptions of the adjustment methods. Key assump-
tions include the ‘‘no unmeasured confounders’’ assump-
tion associated with the inverse probability of censoring
weights (IPCW) method and the ‘‘common treatment effect’’
assumption associated with the rank preserving structural
failure time model (RPSFTM). Conclusions. The limitations
associated with switching adjustment methods such as the
RPSFTM and IPCW mean that they are appropriate in dif-
ferent scenarios. In some scenarios, both methods may be
prone to bias; ‘‘2-stage’’ methods should be considered,
and intention-to-treat analyses may sometimes produce
the least bias. The data requirements of adjustment meth-
ods also have important implications for clinical trialists.
Key words: survival analysis; prediction; treatment switch-
ing; treatment crossover; economic evaluation; modeling;
technology assessment; statistical methods. (Med Decis
Making XXXX;XX:XXX–XXX)

Treatment switching, in which patients random-
ized to the control group of a clinical trial are

permitted to switch to the experimental treatment
group, is common in trials of oncology treatments
for both ethical and practical reasons. Ethically,
when there are no other nonpalliative treatments
available, it may be deemed inappropriate to deny
control group patients the new treatment if interim

analyses indicate a positive treatment effect. Practi-
cally, it may be difficult to recruit patients to a trial
that does not allow treatment switching. In addition,
pharmaceutical companies have responded to in-
centives associated with the acceptance of progres-
sion-free survival (PFS) as a primary end point for
drug regulatory approval by agencies such as the
US Food and Drug Administration (FDA) and the
European Medicines Agency (EMA).1,2 Randomized
controlled trials (RCTs) of cancer treatments are
often powered to investigate the difference in PFS
rather than overall survival (OS). Hence, there is less
motivation for pharmaceutical companies to ensure
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that randomized groups are maintained beyond dis-
ease progression. Treatment switching is likely to
cause more serious problems for health technology
assessment (HTA) agencies than for licensing bod-
ies. While showing an OS advantage may not be
essential for gaining a license, a lifetime horizon is
generally advocated in economic evaluations, espe-
cially for interventions that impact survival3–6; thus,
estimates of the treatment effect on OS are required.

Typically, evidence on the effectiveness of new
treatments is taken from RCTs and used within eco-
nomic models to generate cost-effectiveness esti-
mates. However, when patients in the control group
switch to, and benefit from, the experimental treat-
ment, a standard intention-to-treat (ITT) analysis (a
comparison of groups as randomized) will underesti-
mate the ‘‘true’’ survival benefit associated with the
new treatment, that is, the benefit that would have
been observed if switching had not been permitted.
Hence, such an analysis would not meet the

requirements of the economic evaluation decision
problem, whereby a state of the world in which the
new therapy is used for treatment is compared to one
in which it is not. Statistical methods have been devel-
oped specifically to take into account treatment switch-
ing, but these have been little used in HTAs, as
demonstrated in Appendix A. In this article, we sum-
marize available treatment switching adjustment meth-
ods and assess their assumptions, limitations, and
practical applicability specifically for an economic
evaluation context. Our objective is to make recommen-
dations on the use of switching adjustment methods.

In this article, treatment switching is defined as the
switch from a control treatment to an experimental
treatment by patients randomized to the control
group of an RCT. It is worthy of note that some
authors use the term ‘‘treatment crossover’’ rather
than ‘‘treatment switching’’; here, we have used
‘‘switching’’ because ‘‘crossover’’ may evoke cross-
over trials, which are a different entity. As defined
here, treatment switching does not involve experi-
mental group patients switching to the control treat-
ment or patients randomized to either group
receiving other poststudy treatments. The reason
that these treatment changes are not included within
our definition of treatment switching is that they can
both form part of a realistic treatment pathway, mean-
ing that an appraisal of the relevant economic evalu-
ation decision problem is still possible. Generally, an
economic evaluation seeks to compare a state of the
world in which the novel intervention is used and
is given to a cohort of indicated patients to a state of
the world in which the novel intervention is not
used and standard treatments are received. If an
experimental group patient discontinues the novel
therapy and receives a standard treatment (either
that received in the control group or a separate stan-
dard treatment), this is likely to have occurred
because of treatment failure, toxicity, tolerability, or
adverse events. Such events and subsequent treat-
ment switches are likely to occur in reality, and there-
fore, they form a relevant part of the analysis of
outcomes in the state of the world in which the new
treatment is available. Hence, in general, we would
not wish to adjust for these treatment changes in
our economic analysis. Similarly, if control (or exper-
imental) group patients received poststudy therapies
that do not include the experimental treatment, this
reflects a realistic treatment pathway, and we would
not wish to adjust for this in our economic analysis.
Even if differential proportions of patients receive
different poststudy therapies, this may reflect appro-
priate treatment pathways given the initial treatment.
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Unless this can be shown not to be the case, it would
be inappropriate to adjust for these differences in the
economic analysis.

In addition, in this article, we focus on survival or
time-to-event outcomes. We recognize that these are
not the only important outcomes that may be affected
by treatment switching. For instance, costs and qual-
ity of life scores collected within an RCT and attrib-
uted to randomized groups will be subject to
confounding. Adjusting for these outcomes lies out-
side the scope of this article, although we refer to
this again in our discussion.

First, we set out the treatment switching problem in
the context of an economic evaluation. Then, we sum-
marize the key switching adjustment methods, outlin-
ing their pivotal assumptions and limitations as well as
their practical applicability in an economic evaluation
context. We include details on the use of these methods
in an HTA context based on a review of technology
appraisals (TAs) undertaken in the UK by the National
Institute for Health and Care Excellence (NICE). This
review is presented in Appendix A. Results of a previ-
ously reported simulation study are then drawn upon
to make recommendations on the practical use of
adjustment methods in the form of an analysis frame-
work before final conclusions are made.

Research assessing the performance of switching
adjustment methods has previously been published
in the statistical literature,7 but the use of these
methods to inform economic models represents
a neglected research area. Different adjustment meth-
ods provide different statistical outputs, which
impact the ways in which these can be incorporated
within an economic model. Our research fills this
gap by considering adjustment methods specifically
in the context of an economic evaluation.

TREATMENT SWITCHING: THE PROBLEM

Treatment switching is an important problem for
economists and decision makers because it typically
leads to a treatment pathway that is not relevant for
the decision problem defined in an HTA. Treatment
switching causes a mismatch between what has
been studied in the clinical trial and the economic
analysts’ decision problem; the comparator arm
becomes contaminated due to treatment switching.

In this article, we define bias as the difference
(error) between the estimated treatment effect and
the effect that would have been observed in the
absence of treatment switching. The bias that may
be created by treatment switching and the theoretical
problems that it creates for the economic analysis are

illustrated in Figure 1. The first 2 rows (‘‘Control
Treatment’’ and ‘‘Intervention’’) illustrate the ‘‘per-
fect’’ trial in which no treatment switching occurs.
Survival time is on the x-axis, and in this example,
the new intervention extends PFS and postprogres-
sion survival (PPS). This results in the ‘‘true OS dif-
ference’’ identified in the diagram. In this case,
a standard ITT analysis will usually give us the infor-
mation that we need for our economic model (ignor-
ing any need for extrapolation), as this perfectly
satisfies the economic evaluation decision problem
of comparing a state of the world in which the exper-
imental treatment is available to one in which the
experimental treatment is not available. However,
the third row (‘‘Control �! Intervention’’) demon-
strates what may happen to survival in the control
group if treatment switching is permitted (in this
case, after disease progression). PPS is extended com-
pared to the ‘‘Control Treatment’’ comparator, under
the assumption that some control group patients
switch and benefit from the new intervention after dis-
ease progression. The result of this is that the OS differ-
ence observed in the RCT’s ITT analysis (labeled ‘‘RCT
OS difference’’ in Figure 1) is smaller than the true OS
difference that would have been observed if no treat-
ment switching had occurred, and the ITT analysis
would not appropriately address the economic evalua-
tion decision problem. The simple ITT analysis will
result in bias equal to the difference between the
‘‘true OS difference’’ and the ‘‘RCT OS difference’’
when treatment switching occurs. The extent of this
bias will be unknown, as the true OS difference will
be unobserved. However, it is clear that provided that
switching patients benefit to any extent from the new
intervention, some bias will exist. An economic evalu-
ation that relied on this ITT analysis would produce
inaccurate cost-effectiveness results (in this case, the
incremental cost-effectiveness ratio [ICER] would be
overestimated), and inappropriate resource allocation
decisions may be made. An economic evaluation that
incorporated the costs of the treatment to which the
patient switched may dilute this bias, but the extent
to which this would reflect an accurate estimate of
what the ICER would have been in the absence of
switching would be unknown because of the likelihood
that switchers are selected based on prognosis and their
potentially reduced capacity to benefit: these issues
may cause the ICER to be importantly different in
switchers compared to patients randomized to the
experimental group. To address the economic evalua-
tion decision problem, it would be preferable to accu-
rately adjust survival estimates for switching and to
exclude the costs of switching treatments.
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SUMMARY OF METHODS

In this section, we introduce various treatment
switching adjustment methods. We begin with rela-
tively simple methods before moving on to more com-
plex methods. The simpler methods are more
commonly used in HTAs, as demonstrated by our
review of NICE TAs presented in Appendix A. We
reviewed all NICE TAs that had been completed by
December 2009 and identified those that were in the
area of advanced or metastatic cancer. Forty-five TAs
were identified and included in the review, and of
these, treatment switching occurred in 25 (55.6%).
The methods used to address treatment switching in
these appraisals are summarized in Table 1. Not all
the simple methods listed in Table 1 are described in
detail in this section because our focus is on methods
that attempt to adjust observed survival estimates to
account for switching rather than methods that do not
make any use of the observed postdisease progression
data (such as those that only model PFS, assume equal
OS or an equal risk of death following disease progres-
sion, or simply include the costs of the treatment to
which the patient switched in the economic model).

Here, we discuss the key assumptions and limita-
tions of the key methods before considering how they
may be incorporated within an economic model. We
focus on the key principles of the methods rather than
their mathematics, although further details on the
more complex methods are provided in Appendix B.

Simple Methods

Intention to treat. An ITT analysis does not
attempt to adjust for treatment switching but was

used in 7 (28%) of the 25 NICE TAs that were
affected by treatment switching (Table 1 and Appen-
dix A). Groups are compared as randomized, and
thus, the randomization balance of the trial is
respected. The ITT analysis represents a valid com-
parison of randomized groups, but in the presence of
treatment switching, this is unlikely to be what is
required for an economic evaluation because the
‘‘true’’ survival benefit associated with the novel
intervention will be diluted due to the switching
of control group patients to the novel therapy.

Per protocol: excluding and censoring switchers.
In 11 (44%) of the 25 NICE TAs reviewed, a per-pro-
tocol analysis was used to adjust for treatment
switching (Table 1 and Appendix A). Data from
patients who switched were either excluded entirely
from the analysis or were censored at the point of the
switch. Such analyses are prone to selection bias
because the randomization balance between groups
is broken if switching is associated with prognostic
patient characteristics, for instance, if patients with
either a good or poor prognosis are more likely to
switch.8,9 This is highly likely in the case of treat-
ment switching in clinical trials; clinicians decide
whether it is appropriate for individual patients to
switch, and this decision will be made based on
patient characteristics rather than being random.

Complex Methods

Inverse probability of censoring weights (IPCW).
The IPCW method has been used in recent
HTAs.10,11 It represents an approach for adjusting
estimates of a treatment effect in the presence of

Survival time
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Figure 1 The potential impact of treatment switching illustrated. OS = overall survival; PFS = progression-free survival; PPS = postprog-
ression survival; RCT = randomized controlled trial.
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any type of informative censoring. In the context of
treatment switching, patients are artificially cen-
sored at the time of switching, and remaining obser-
vations are weighted based on covariate values and
a model of the probability of being censored. This
allows patients who have not been artificially cen-
sored to be weighted in order to reflect their similar-
ities to patients who have been censored in an
attempt to remove selection bias.

The key assumption made by the IPCW method is
the ‘‘no unmeasured confounders’’ assumption; that
is, data must be available on all baseline and time-
dependent prognostic factors for mortality that inde-
pendently predict informative censoring (switching),
and models of censoring risk must be correctly spec-
ified.12 In practice, this is unlikely to be perfectly
true, but the method is likely to work adequately if
the ‘‘no unmeasured confounders’’ assumption is
approximately true; that is, there are no important
independent predictors missing. If this is the case,
the selection bias associated with the dependence
between censoring and failure can be corrected by
replacing the Kaplan-Meier estimator, log-rank test,
and Cox partial likelihood estimator of the hazard
ratio (HR) with their IPCW versions.12

The ‘‘no unmeasured confounders’’ assumption
represents a key limitation of the IPCW method. It
cannot be tested using the observed data13,14 and is
particularly problematic in an RCT context. The
IPCW method represents a type of marginal structural
model, which was originally developed for use
with observational data.15,16 Typically, RCT datasets
are much smaller than observational datasets, and

when fewer data are available (particularly on control
group patients who do not switch), the IPCW method
may become less stable, and confidence intervals
may become wide. In addition, some key predictors
of treatment switching are usually not collected in
RCTs (such as patient preference for switching), and
often, data collection on key indicators is stopped at
some point (e.g., upon treatment discontinuation or
disease progression), which hampers the applicabil-
ity of the IPCW method. Finally, the IPCW method
cannot work if there are levels of any covariates that
ensure (i.e., the probability equals 1) that treatment
switching will occur.14–16

Rank preserving structural failure time model
(RPSFTM). The RPSFTM method was designed spe-
cifically for an RCT context and has been used
recently in HTAs.10,11,17 It uses a counterfactual
framework to estimate the causal effect of the treat-
ment in question,18 where counterfactual survival
times refer to those that would have been observed
if no treatment had been given. It is assumed that
counterfactual survival times are independent of
treatment group, and g-estimation is used to deter-
mine a value for the treatment effect that satisfies
this constraint. The RPSFTM is an instrumental var-
iables (IV) method; such methods are often used
when the data available are unlikely to capture all
factors that predict both treatment and outcome
(i.e., the ignorability assumption does not hold). In
the context of treatment switching, where switching
is highly likely to be associated with prognostic
factors, this is likely to be the case. Under the IV

Table 1 Methods Used to Account for Switching in NICE TAs (2000–2009)

Method No. of TAs that Use the Method

‘‘Simple’’ methods
Intention-to-treat analysis (no attempt to adjust for switching) 7 (TAs 3, 30, 55, 91, 124, 162, 172)
Censored patients 6 (TAs 28, 86, 129, 169, 178, 179)
Excluded patients 5 (TAs 34, 70, 86, 169, 178)
Included costs of switching treatments 4 (TAs 101, 116, 118, 121)
Modeled based on progression-free survival, not overall survival 2 (TAs 6, 33)
Used sequencing models 2 (TAs 93, 176)
Applied same risk of death on disease progression 1 (TA 118)
Assumed equal overall survival for the 2 treatment groups 1 (TA 119)

More complex methods
Rank preserving structural failure time model 1 (TA 179)
Adjusted survival estimates using a case-mix approach 1 (TA 34)
Used external data 1 (TA 171)

Note: For a discussion of the use of these methods in National Institute for Health and Care Excellence (NICE) technology appraisals (TAs) and a commen-
tary on the use of complex methods in more recent appraisals, see Appendix A. Also note that the numbers in this table do not sum to 25 because in 6 TAs,
more than 1 method was used.
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approach, the instrument is a variable (in this case,
the randomized treatment group) that is predictive
of the treatment that is used to estimate causal treat-
ment effects. The instrument must affect the out-
come only through its effect on an intermediate
variable (here, treatment), which is an assumption
that is known as the exclusion restriction (see
Hernan and Robins19 for further discussion on IV
methods).

The RPSFTM does not rely on the ‘‘no unmeasured
confounders’’ assumption and identifies the treat-
ment effect using only randomization of the trial,
observed survival, and observed treatment history.
It is assumed that if 2 patients have the same observed
event time and neither has received treatment, those
2 patients would also have the same event time if they
both received treatment. This assumption is linked to
the associated assumptions that the treatment effect
(an ‘‘acceleration factor,’’ or ‘‘time ratio’’) is equal
(relative to the time for which the treatment is taken)
for all patients no matter when the treatment is
received (the ‘‘common treatment effect’’ assump-
tion) and that randomization of the trial means that
there is only random variation between treatment
groups at baseline, apart from the treatment allocated;
untreated survival times must be independent of the
randomized treatment group.18 The RPSFTM’s pri-
mary limitations involve the ‘‘common treatment
effect’’ assumption and the randomization assump-
tion. The latter should be reasonable in the context
of an RCT, but the potential remains for important dif-
ferences at baseline in small and larger trials.20 It is
therefore relevant to note that it is possible to adjust
for baseline covariates within an RPSFTM analysis,
which is useful to increase power.21 The ‘‘common
treatment effect’’ assumption is more problematic. If
patients who switch to the experimental treatment
partway through the trial receive a different treatment
effect compared to patients originally randomized to
the experimental group, the RPSFTM estimate of the
treatment effect received by patients in the experi-
mental group will be biased. Given that treatment
switching is often only permitted after disease pro-
gression, at which time the capacity for a patient to
benefit may be different compared to before progres-
sion, the ‘‘common treatment effect’’ assumption
may not be clinically plausible. As for the ‘‘no unmea-
sured confounders’’ assumption, it is unlikely that
the ‘‘common treatment effect’’ assumption will
ever be exactly true. However, of more concern is
whether the assumption is likely to be approximately
true, that is, that the treatment effect received by
switchers can at least be expected to be similar to

the effect received by patients initially randomized
to the experimental group.

Iterative parameter estimation (IPE). Branson and
Whitehead22 extended the RPSFTM method using
parametric methods, developing a novel IPE proce-
dure. The same accelerated failure time model is
used, but a parametric failure time model is fitted
to the original unadjusted ITT data to obtain an ini-
tial estimate of the treatment effect. The failure times
of switching patients are then re-estimated using
this, and this iterative procedure continues until
the new estimate is very close to the previous esti-
mate, at which point the process is said to have con-
verged.22 To our knowledge, this method has not yet
been used in a published HTA.

The IPE procedure makes similar assumptions as
the RPSFTM method; for example, the randomization
assumption is made, as is the ‘‘common treatment
effect’’ assumption. An additional assumption is
that survival times follow a parametric distribution,
and thus, it is important to identify suitable paramet-
ric models, which in itself can be problematic.23

Alternative ‘‘2-Stage’’ Methods

In addition to the ‘‘standard’’ adjustment methods
described so far, ‘‘2-stage’’ methods might be consid-
ered; to our knowledge, these have not yet been used
in HTAs. These methods involve first estimating
a treatment effect specific to switching patients and
then using this to derive a counterfactual dataset
unaffected by switching. Then, a treatment effect spe-
cific to patients randomized to the experimental
group can be estimated. Robins and Greenland13

and Yamaguchi and Ohashi14 have previously used
such an approach, making use of a structural nested
failure time model (SNM) with g-estimation to esti-
mate the treatment effect in switchers. The SNM is
essentially an observational version of the RPSFTM
and attempts to account for time-dependent con-
founding using the ‘‘no unmeasured confounders’’
assumption. It therefore has similar limitations as
the IPCW.

A previously unused 2-stage approach that does
not rely on g-estimation may provide a good fit to
the treatment switching mechanism often observed
in oncology RCTs. When switching is only permitted
after disease progression, the time of progression can
be used as a secondary baseline. Using this secondary
baseline, a parametric accelerated failure time model
(such as a Weibull model) that includes covariates
measured at the time of progression could be fitted
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to the postprogression control group data. This model
could be used to estimate the effect of switching to the
treatment after progression by contrasting outcomes
in those control group patients who switch after pro-
gression with those who do not. The resulting accel-
eration factor can then be used to ‘‘shrink’’ the
survival times of switching patients in order to derive
a counterfactual dataset unaffected by switching.
These methods effectively recognize that the clinical
trial is randomized up until the point of disease pro-
gression, but beyond that point, it essentially
becomes an observational study. This is a simplifica-
tion of the method used by Robins and Greenland13

and Yamaguchi and Ohashi14 because no attempt is
made to adjust for time-dependent confounding
beyond disease progression. However, if switching
is likely to happen soon after disease progression,
any time-dependent confounding associated with
the lag between disease progression and treatment
switch would be small. Such a method may not be
generalizable because it is reliant on the ability to
identify a secondary baseline, and it requires the
‘‘no unmeasured confounders’’ assumption to hold
at the point of the secondary baseline. However, it
does not require data to be collected on these con-
founders at other time points and does not make the
‘‘common treatment effect’’ assumption.

Summary

It is clear that alternative complex adjustment
methods make very different assumptions and work
in very different ways; hence, they are likely to pro-
duce different results. This has been demonstrated
in HTAs; in the NICE appraisal of pazopanib for the
first-line treatment of metastatic renal cell carcinoma
(RCC), the IPCW method produced an ICER of
approximately £49,000 per quality-adjusted life year
(QALY) gained, whereas the RPSFTM method pro-
duced an ICER of approximately £33,000 per QALY
gained (see Appendix A for further details).10 Our
review of NICE appraisals presented in Appendix A
demonstrates that there has been a trend towards
using more complex methods in HTAs, but there
remains evidence of uncertainty around which meth-
ods are appropriate for adjusting to treatment switch-
ing as well as an important lack of understanding of
what these methods entail. For example, in the
NICE appraisals of pazopanib for the first-line treat-
ment of metastatic RCC and of everolimus for the sec-
ond-line treatment of advanced RCC, the weakness of
the IPCW method due to its ‘‘no unmeasured con-
founders’’ assumption was highlighted, whereas the

‘‘common treatment effect’’ assumption made by
the RPSFTM method was not discussed in any
detail.10,11 Hence, while the RPSFTM method
appeared to be preferred in these appraisals, the
advantages and disadvantages associated with each
method did not appear to have been fully taken into
account, and it is not clear that the most appropriate
switching adjustment method was identified. Two-
stage methods appear to be potentially useful meth-
ods that have not previously been used in HTAs.

APPLICATION TO ECONOMIC EVALUATIONS

Theoretical Limitations

It is important to consider the theoretical limita-
tions associated with the treatment switching adjust-
ment methods when considering their suitability for
use within an economic evaluation. For the IPCW
and 2-stage methods, this involves a consideration
of the plausibility of the ‘‘no unmeasured confound-
ers’’ assumption. Although this assumption cannot
be tested, an assessment of the measured covariates
alongside findings from previous studies in similar
disease areas, combined with an elicitation of expert
clinical opinion, may provide valuable information.
The treatment switching mechanism within the trial
of interest should also be explored to ascertain how
and why treatment switching decisions were made,
as this may provide information on whether data on
key switching indicators were collected. Linked to
this data issue is that of sample size and event num-
bers. The IPCW method bases its adjustment on the
survival experiences of control group patients who
do not switch treatments; if almost all patients
switch, and/or very few events are observed in
patients who do not switch, the method is unlikely
to perform reliably.

For the RPSFTM and IPE methods, the clinical and
biological plausibility of the ‘‘common treatment
effect’’ assumption is critical. In circumstances
where treatment switching occurs after disease pro-
gression, it may not be credible to assume that switch-
ers, who now suffer a more advanced disease, receive
the same benefit (per unit of time) from treatment
as those in the experimental group who received
the treatment from randomization. In an attempt to
relax the ‘‘common treatment effect’’ assumption,
analysts have attempted to apply a multiparameter
version of the RPSFTM. However, these have not
been successful, with meaningful point estimates
for causal effects difficult to determine.13,24,25 While
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some assessment of the ‘‘common treatment effect’’
assumption may be made using trial data (e.g., by esti-
mating the treatment effect received by switchers
compared to nonswitchers), such analyses are likely
to be prone to time-dependent confounding and are
therefore unreliable. If patients with varying levels
of disease progression were randomized to the trial
of interest, comparing the treatment effect in groups
based on the initial disease stage may be useful,
although in end-stage metastatic cancer trials, this
may not be possible. Hence, understanding the mech-
anism of action of the intervention and eliciting clin-
ical expert opinion on its likely effectiveness at
different points of the disease progression pathway
are important.

Use of the RPSFTM and IPE methods is also prob-
lematic if the comparator treatment used in the RCT is
active. The RPSFTM and IPE counterfactual survival
model requires that patients are either ‘‘on treatment’’
or ‘‘off treatment’’ at any 1 time. If patients in the con-
trol group receive an active treatment followed by
supportive care upon treatment failure, the ‘‘off treat-
ment’’ category represents more than 1 type of treat-
ment, and the counterfactual survival model is not
appropriate unless additional causal parameters are
added to the model, but as stated above, attempts to
apply multiparameter RPSFTMs have not been suc-
cessful. Standard RPSFTM or IPE methods could still
be applied, but several important assumptions about
treatment strategies and their effectiveness in the
experimental and control groups would be required.
Linked to this, the RPSFTM and IPE counterfactual
survival model assumes that the treatment effect is
only received while a patient is ‘‘on treatment’’; it dis-
appears as soon as treatment is discontinued. The
clinical plausibility of this assumption should be
considered. If a continuing treatment effect is
expected, the RPSFTM or IPE methods could be
applied, assuming a lagged treatment effect or on
a ‘‘treatment group’’ basis in which patients in the
experimental group are always considered to be ‘‘on
treatment’’ and patients who switch remain ‘‘on treat-
ment’’ from the time of switching until death. This
analysis ignores treatment discontinuation times
and requires there to be a common treatment effect
associated with the sequence of treatments received
by patients randomized to the experimental group
and the sequence of treatments received by switchers
after the point of switching. Any benefits associated
with poststudy treatments will be attributed to the
experimental treatment, although similarly, any ben-
efits from poststudy treatments received by control
group nonswitchers would be attributed to the

control group. If the poststudy treatments received
in all groups represent realistic treatment pathways,
this approach may appropriately address the eco-
nomic evaluation decision problem particularly if
the costs of the poststudy treatments are also incorpo-
rated within the economic model. Hence, such an
approach might be considered if the comparator is
active or if a continuing treatment effect is expected.

It is worthy of note that the randomization-based
methods (RPSFTM and IPE) typically lose power in
the presence of treatment switching, like the ITT
analysis. By design, they maintain the significance
level associated with the ITT analysis, and therefore,
their confidence intervals are often relatively wide.
Observation-based methods such as the IPCW and
2-stage methods are not restricted in this way, but
their confidence intervals may also be wide if data
are relatively sparse.

Practical Limitations

The practical limitations associated with com-
bining treatment switching adjustment methods
with economic evaluations must also be considered.
Latimer23 provided recommendations on how the
extrapolation of survival data should be undertaken
for use in economic models. Two main approaches
were described: extrapolation using parametric mod-
els fitted independently to treatment groups; and
extrapolation undertaken based on a proportional
treatment effect assumption, whereby 1 parametric
model is fitted to both treatment groups combined,
with the treatment group included as a covariate.
Issues with both of these arise when treatment
switching adjustment methods are used. The
RPSFTM, IPE, and 2-stage methods provide a counter-
factual dataset that is adjusted for treatment switch-
ing, and thus, either extrapolation approach can be
undertaken. However, White and others24 demon-
strated that recensoring is required for the RPSFTM
and IPE methods to avoid bias, and this is also true
for 2-stage methods. Recensoring is required because
a positive or negative treatment effect may increase or
decrease the probability that the survival time of an
individual is censored, and where treatment switch-
ing occurs, the treatment received is likely to be
associated with the prognosis. This means that coun-
terfactual censoring times may be related to the prog-
nosis and may therefore be informative (see
Appendix B for more details).24 Recensoring involves
data being recensored at an earlier time point to avoid
informative censoring and is therefore associated
with a loss of longer term survival information.
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Some observed events will become censored if the
recensoring time is shorter than the counterfactual
event time. The time point at which recensoring
occurs is related to the magnitude of the estimated
treatment effect; the larger the treatment effect, the
earlier the recensoring time point. Loss of long-term
information is likely to be detrimental to the extrapo-
lation of survival data, which is of particular impor-
tance in the context of economic evaluations
because of the requirement to estimate the mean sur-
vival advantages associated with novel interven-
tions.3–6,23,26 In addition, recensoring may lead to
biased estimates of the ‘‘average’’ treatment effect in
circumstances where proportional treatment effect
assumptions do not hold because longer term data
on the effect of treatment may be lost.

The IPCW method provides an estimate of the
treatment effect in the form of an adjusted HR as
well as a weighted Kaplan-Meier (WKM) curve,
which is associated with a counterfactual dataset.
However, it is not simple to fit parametric models to
the IPCW counterfactual dataset because of the
weightings associated with each observation. Novel
methods for the extraction of survival times from
Kaplan-Meier curves could be used to generate
a replacement counterfactual dataset using the
WKM curve,27 after which any of the extrapolation
methods described by Latimer23 could be applied.
Alternatively, a variation on proportional hazards–
based extrapolation could be undertaken using the
IPCW HR by fitting a parametric model to the
observed experimental group’s survival data (which
is unaffected by treatment switching) and multiply-
ing the hazard function by the inverse of the IPCW
HR to obtain the control group’s hazard function,
from which the control group survivor function could
be derived. This may produce a degree of error
because an HR is applied to an independently fitted
parametric model, but this error is likely to be
minimal.

RESULTS OF A SIMULATION STUDY

In a previous work, we conducted an extensive
simulation study that evaluated the performance of
treatment switching adjustment methods across
a wide range of scenarios.28 We used a joint longitudi-
nal and survival model to simultaneously generate
a time-dependent prognostic covariate and survival
times. Parameter values were selected such that sim-
ulated survival times were reflective of the type of
data often observed in metastatic cancer trials. We

tested different levels of switching proportion, treat-
ment effect, and censoring and different switching
mechanisms. In each simulation, the true survival
differences between treatment options were known,
allowing us to apply each switching adjustment
method and assess their performance with respect
to bias, mean squared error, and coverage. Our results
confirmed those found in another simulation
study7—that is, the RPSFTM and IPE methods per-
form very well when the ‘‘common treatment effect’’
assumption holds, while simple methods produce
very high levels of bias—but also provided evidence
on the comparative performance of relevant methods
in scenarios in which their key assumptions did not
hold.28

We demonstrated that the IPCW method repre-
sented a substantial improvement compared to sim-
ple methods but produced higher bias than the
RPSFTM and IPE methods when the ‘‘common treat-
ment effect’’ assumption held.28 This was likely to be
due to the error associated with applying an observa-
tion-based method to a relatively small RCT dataset
(with a sample size of 500) and was in line with find-
ings previously reported by Howe and others.29 Bias
associated with the IPCW method became extremely
high in scenarios in which the proportion of control
group patients who switched treatments increased
to approximately 90%, leaving approximately 20
patients in the control group who did not switch.28

We also found that excluding a covariate that influ-
enced the probability of treatment switching (thus
violating the ‘‘no unmeasured confounders’’ assump-
tion) only had a minimal impact on the bias produced
by the method; however, this was likely to be due to
the high level of correlation between the simulated
prognostic covariates. The IPCW method resulted in
substantially lower bias than the simple censoring
method, which demonstrated the importance of the
‘‘no unmeasured confounders’’ assumption, as the
IPCW reduces to simple censoring when all con-
founders are unmeasured.

In scenarios in which the treatment effect received
by switchers was approximately 15% lower than the
average effect received by patients initially random-
ized to the experimental group, we found that the
RPSFTM, IPE, and IPCW methods produced similar
levels of bias in their estimates of the treatment
effect.28 All produced important levels of bias, equiv-
alent to approximately 5% to 10% of the treatment
effect. In scenarios in which the treatment effect
received by switchers was approximately 25% lower
than the average effect received by patients initially
randomized to the experimental group, the IPCW
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method produced lower bias than the RPSFTM and
IPE methods (which often produced bias of .10%),
and in these scenarios, the ITT analysis often pro-
duced the least bias (0%–5%) if the treatment effect
was relatively low (equivalent to an HR of ~0.75 in
experimental group patients).28 This is logical because
in these scenarios, patients who switch receive very
little benefit from the experimental treatment.

In addition to the ‘‘standard’’ treatment switching
adjustment methods described so far, in our simula-
tion study, we tested two ‘‘2-stage’’ methods: an
SNM with g-estimation, and a simple 2-stage Weibull
approach. The SNM performed poorly in our simula-
tions, particularly when switching proportions were
very high.28 The simple Weibull model performed
much better, producing relatively low bias across all
scenarios. It generally produced lower bias and was
much less sensitive to the switching proportion
than the IPCW method, perhaps reflecting its lower
data and modeling requirements. While the RPSFTM
and IPE methods produced less bias than the 2-stage
Weibull method when the ‘‘common treatment
effect’’ assumption held, the opposite was true
when that assumption was violated. The results asso-
ciated with the 2-stage Weibull method should be
interpreted with some caution because it was well
suited to the switching mechanism incorporated
within the simulation study; in particular, switching
could only occur soon after disease progression.
However, it is noteworthy that the switching mecha-
nism that was simulated was similar to that observed
in metastatic cancer trials, and thus, the good results
associated with the 2-stage Weibull method should
not be ignored. This method is worthy of consider-
ation in situations in which treatment switching can
only occur after an identifiable secondary baseline;
switching occurs soon after that secondary baseline;
data on important prognostic factors are available at
that secondary baseline; and the RPSFTM, IPE, and
IPCW methods seem inappropriate.

PRACTICAL RECOMMENDATIONS

Based on knowledge of the theoretical assump-
tions and limitations associated with the treatment
switching adjustment methods, the practicalities of
their application in an economic evaluation context,
and their performance in simulation studies, it is pos-
sible to make practical recommendations on how
they should be used in future economic evaluations.
Given the limitations associated with the switching
adjustment methods, these recommendations cannot

be entirely conclusive or specific, but given the cur-
rent lack of understanding of these methods in the
HTA arena, they remain useful to make. We would
expect these recommendations to evolve with further
research. The recommendations are presented in the
form of an analysis framework in Figure 2.

Step 1 involves assessing the treatment switching
mechanism. This should demonstrate whether and
which adjustment methods are potentially applica-
ble. For instance, it may become apparent whether
data on relevant switching indicators were collected.
The time at which patients became able to switch
treatments is also important to determine. For step
2, the proportion of treatment switching should be
assessed. If more than 90% of control group patients
switch, the IPCW method is highly prone to bias,
given a sample size in the region of 500. This is likely
to be the case for most cancer clinical trials because
sample sizes are rarely larger than the 500 (250 in
each arm) tested in our simulation study. It is likely
that the sample size would need to be substantially
greater than 500 for the IPCW to produce unbiased
results when the proportion of patients who switch
is as high as 90%. Randomization-based methods
are relatively less affected by high levels of switching
and therefore should be given precedence (unless
there is evidence of a strong time-dependent treat-
ment effect or the comparator included in the RCT
is active, rendering the standard counterfactual sur-
vival model inappropriate).

Step 3 involves drawing upon steps 1 and 2 and
assessing the pivotal assumptions of each of the
adjustment methods to further determine which
may be potentially appropriate. For the RPSFTM
and IPE algorithm, the ‘‘common treatment effect’’
assumption should be assessed. Survival models
with the randomized group included as a covariate
and a switching indicator variable may be used, but
the potential bias associated with these should be rec-
ognized. Depending on the extent to which treatment
switching occurred, log-cumulative hazard and
quantile-quantile plots may remain useful for assess-
ing the proportionality of hazards and the constancy
of the acceleration factor over time. If patients with
different stages of disease were randomized to the tri-
al, the treatment effect in these subgroups should be
investigated to offer further evidence on the ‘‘com-
mon treatment effect’’ assumption, although this
may also be prone to bias due to switching. Given
the limitations associated with assessing the ‘‘com-
mon treatment effect’’ assumption using trial data,
external data sources should be sought, and expert
opinion on the clinical and biological plausibility of
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• What was the comparator?
• When was switching allowed?

1. Assess the treatment switching mechanism
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Based upon

2. Assess the switching propor�on in rela�on to the sample size

• Are observa�onal methods likely to be appropriate or not?

• Why did switching occur?
• What covariate data were collected?

Which methods may be poten�ally appropriate?

p
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trial data

3. Assess pivotal assump�ons and likely bias, partly drawing upon (1) and (2). Consider ITT
analysis and two-stage methods

RPSFTM / IPE
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IPCW
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Two-stage methods
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-Is the treatment effect likely to
con�nue a�er discon�nua�on?
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-Was data collec�on stopped at
some point?

-Are there unmeasured
confounders at the secondary
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4. Examine output and performance of methods

RPSFTM / IPE
-What is the extent of
recensoring?
-Compare to a
“treatment group”
approach?
-Assess success of g-

IPCW
-Analyse es�mated
weights – are any
par�cularly high?

Two-stage methods
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switchers and for
experimental group
pa�ents differ?
-Is the treatment effect
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-What was the size of
the treatment effect?
-Was the effect �me-
dependent?

5. Perform extrapola�on accordingly given sta�s�cal output of method
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l
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d

Two-stage methods
l
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es�ma�on common?
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-But consider impact of
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-Re-create ataset to
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extrapolate, or
-Use propor�onal
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independently to
counterfactual dataset
-But consider impact of
recensoring
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propor�onal treatment
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as recommended by
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6. Sensi�vity analysis

• Which methods can be ruled out?
• Are several methods poten�ally appropriate?

If so present analyses for each alongside a cri�que of their strengths and weaknesses and their poten�al bias

Figure 2 Treatment switching analysis framework.
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the assumption must be considered. If these analyses
suggest that the ‘‘common treatment effect’’ assump-
tion holds, an RPSFTM or IPE approach may be used.
However, consideration should also be given to the
comparator included in the RCT (i.e., whether it is
active or not) and the duration of the treatment effect
(i.e., whether it is likely to be maintained to any extent
after treatment discontinuation). If it is likely that the
treatment effect may be maintained beyond treatment
discontinuation, a ‘‘treatment group’’ application of
the RPSFTM or IPE algorithm might be considered.

For the IPCW, the ‘‘no unmeasured confounders’’
assumption should be considered. The likelihood
that data on important covariates were not collected
should be informed by clinical expert opinion as
well as an assessment of covariate data reported
from other trials in similar disease areas. This alone
is not sufficient to guarantee that the ‘‘no unmeasured
confounders’’ assumption is satisfied because
unknown confounders may exist. It is necessary to
record all prognostic information that may have
influenced decisions to switch; this includes the
clinician’s opinion on whether a patient is suitable
for switching and patient circumstances and their
preference for switching. Information on these factors
is not routinely collected in RCTs. Combined with
this, consideration should be given to whether the
collection of covariate data stopped at any point dur-
ing the trial (e.g., at the point of disease progression),
as this restricts the applicability of the IPCW method.
These issues should be considered in combination
with those specified in steps 1 and 2.

When considering the use of 2-stage methods, the
existence of an appropriate secondary baseline
(such as disease progression) is pivotal. These will
only exist if there is a time point before which treat-
ment switching could not occur. If such a time point
exists, 2-stage methods are possible to apply, but their
potential bias will be related to how soon after this
point switching occurs; if there are long delays until
switching, the potential for bias associated with
time-dependent confounding becomes important.

After applying the switching adjustment methods,
step 4 involves a review of the output of the methods
to help identify whether the methods are likely to
have performed well. For the RPSFTM and IPE meth-
ods, this includes a consideration of the degree of
recensoring and possibly a comparison of standard
RPSFTM and IPE findings to results when these
methods are applied on a ‘‘treatment group’’ basis
in order to identify whether the treatment effect
may have continued beyond treatment discontinua-
tion. It is also important to assess the g-estimation

output in order to identify the success with which
the RPSFTM method has identified a unique treat-
ment effect and whether the RPSFTM and IPE meth-
ods produce treatment effects that result in equal
counterfactual survival times between randomized
groups. For the IPCW, it is particularly important to
assess the weights calculated for each patient over
time; instances where certain patients are allocated
particularly high weights are likely to lead to errone-
ous IPCW results. Outputs from 2-stage methods may
be used to help determine the appropriateness of
other methods; for instance, if the 2-stage methods
produce estimates of the treatment effect in the
switching patients that are (not) similar to the effect
estimated for patients randomized to the experimen-
tal group, the RPSFTM/IPE methods may (not) be
appropriate.

In tandem with a consideration of complex switch-
ing adjustment methods, a standard ITT analysis
should be considered, as if other methods are likely
to have performed poorly, the ITT analysis may pro-
vide the least bias. If the treatment effect is small
(with an HR of ~0.75–1.00 in the experimental group)
and there is evidence of switchers receiving a treat-
ment effect that is around 15% lower than that
received by experimental group patients, an ITT anal-
ysis is likely to be preferable to the IPCW and
RPSFTM/IPE methods (although this will still con-
tain bias). If the decrement in the treatment effect
received by switchers is stronger, around 25%, the
ITT analysis is even more likely to be preferable to
the IPCW and RPSFTM/IPE methods unless the treat-
ment effect is high (equivalent to an HR of ~0.50).
Given the limitations associated with switching
adjustment methods, the ITT analysis should always
be presented. All other things being equal, in situa-
tions where switching proportions are low and/or
the treatment effect is low and/or the treatment effect
is likely to be much reduced in switchers, the ITT
analysis may provide the least bias.

Step 5 addresses combining the adjustment meth-
ods with an extrapolation approach (if required)
based on the statistical output of the applied adjust-
ment method. Finally, when a preliminary analysis
of trial data suggests that the choice of a preferable
adjustment method is unclear, a sensitivity analysis
should be undertaken to demonstrate the uncertainty
associated with the methodology used.

DISCUSSION

Treatment switching adjustment methods have
often been used poorly and have been inadequately
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described in economic evaluations. Our review of
NICE TAs (summarized in Table 1 and discussed in
Appendix A) demonstrates that while some poten-
tially appropriate methods have been used, more
often, simple methods that are highly prone to bias
have been relied on. Where more complex, poten-
tially appropriate methods such as the RPSFTM and
IPCW have been used, discussion of these methods
within the appraisal documents has been lacking,
failing to consider their key limitations.10,11 This is
important because the application of switching
adjustment methods within an economic model often
drastically alters the estimated ICER. Through a con-
sideration of the theoretical properties of available
adjustment methods and the results of a simulation
study, we have developed an analysis framework
that can be used in future HTAs affected by switching
to reduce the use of inappropriate and inconsistent
methods.

Because the RPSFTM and IPCW methods work in
very different ways and make very different assump-
tions, one is unlikely to always be better than the
other. Trial and switching characteristics must be
considered on a case-by-case basis to assess which
switching adjustment method is likely to be valid.
The IPCW has observational data origins, and its reli-
ance on the ‘‘no unmeasured confounders’’ assump-
tion represents a very important limitation that may
be difficult to justify in an RCT setting. The RPSFTM
and IPE methods are limited by the ‘‘common treat-
ment effect’’ assumption, which may appear clini-
cally implausible in situations where treatment
switching occurs after disease progression. Previ-
ously unused, simple 2-stage methods should be con-
sidered, particularly in circumstances in which the
RPSFTM, IPE, and IPCW methods are highly prone
to bias. These require a suitable secondary baseline
to be present but do not make the ‘‘common treatment
effect’’ assumption and only require the ‘‘no unmea-
sured confounders’’ assumption to hold at the sec-
ondary baseline time point. However, simple 2-
stage methods remain prone to time-dependent con-
founding, although this may be limited where switch-
ing occurs soon after the secondary baseline. In our
simulation study, we chose a Weibull model when
we tested this 2-stage approach, but in reality, a pre-
ferred model could be identified by examining the
goodness of fit of a variety of accelerated failure
time models to the control group postprogression
dataset.

While our analysis framework attempts to enhance
the probability that inappropriate adjustment
methods are avoided, in some scenarios, no ‘‘good’’

methods are available. In situations where the ‘‘com-
mon treatment effect’’ assumption appears unreason-
able and the proportion of patients who switch is very
high (e.g., ~90% in a control group sample size in the
region of 250 patients), the RPSFTM and IPE methods
may not be appropriate, and the IPCW method is
prone to high levels of bias. Very high switching pro-
portions combined with small sample sizes are likely
to cause 2-stage methods also to become prone to
error and bias; although this was not demonstrated
in our simulation study,28 these methods should be
used with caution in such circumstances. This
reflects the current lack of suitable methods to
address realistic scenarios, and hence, research into
novel methods would be highly valuable. In addition,
while our simulation study provided important evi-
dence on the use of switching adjustment methods
in realistic scenarios, running further scenarios
with different treatment effects, switching propor-
tions, and data-generating mechanisms would be
useful.

Our analyses also demonstrate that the use of sev-
eral treatment switching adjustment methods require
the collection of suitable data in clinical trials. Data
on patient characteristics that are prognostic and
that are predictive of treatment switching are
required at baseline and over time. If switching is to
be permitted, clinical trialists should develop proto-
cols that ensure that the required data are collected
during the trial to enhance the likelihood that appro-
priate adjustments can be made for subsequent HTA
analyses.

It is worth reiterating that the ITT analysis remains
important even in the presence of treatment switch-
ing. If the novel treatment is found to be cost-effective
under an ITT analysis, despite treatment switching,
this may increase decision makers’ confidence that
it represents a cost-effective use of resources. In addi-
tion, when switchers are expected to receive a much
lower treatment effect than patients randomized to
the experimental treatment, an ITT analysis may
result in relatively low bias.

We have focused on adjusting survival time esti-
mates in the presence of treatment switching from
the control treatment to the experimental treatment.
In some circumstances, it may be desirable to also
adjust for switching from the experimental treatment
to the control treatment or for switching to other alter-
native therapies, although often, such switches may
represent realistic treatment pathways that do not
require adjustment within an economic evaluation
context. The RPSFTM and IPE methods are designed
to cope with treatment switching in either direction
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(provided that the control treatment is placebo, or
nonactive) but are not suitable when switching is to
a third treatment. In such circumstances, a multipa-
rameter RPSFTM would be required, but this has
been shown to perform poorly in practice.13,24,25 The-
oretically, the IPCW and 2-stage methods could be
adapted to adjust for switching in any direction to
any treatment, with models being applied to different
groups as appropriate. However, increasing the num-
ber of adjustments made to the observed dataset may
further compound the data requirements associated
with these methods, potentially rendering them
prone to increasing bias.

It is important to note that other parameters
included in an economic evaluation are likely to be
affected by treatment switching. Where quality of
life and cost data are collected within a clinical trial
affected by switching, ITT analyses of these outcomes
will be confounded. Aside from simply excluding the
direct costs of treatments that were switched to,10,11

we are unaware of attempts to adjust for the effects
of switching on these outcomes in HTAs. The prob-
lem may not be as serious as for survival estimates;
quality of life scores are often based on health states
rather than the treatment group, and direct and indi-
rect costs are often based on assumption or external
sources10,11; yet, where trial data are used, the con-
founding represents an important issue. Switching
to a beneficial treatment is likely to have an effect
on quality of life and resource use, and failure to
adjust for this may result in the economic evaluation
providing biased estimates of the relative cost-effec-
tiveness of the treatment. Methods to undertake
such adjustments are available; when the mean out-
come is of interest, a structural mean model may be
suitable, and with repeated outcomes, a structural
nested mean model may be appropriate30–33; how-
ever, further research on the use of these methods
within an economic evaluation context would be
extremely valuable. Our simulation study28 only con-
sidered re-estimation of survival times, and so, in this
sense, its scope was not sufficient to fully address the
treatment switching issue in the context of an eco-
nomic evaluation.

Finally, it is important to recognize that we have
focused on the use of within-trial statistical methods
to address the treatment switching problem rather
than methods that make use of external data. Often,
suitable external data (e.g., external trials not con-
founded by switching, or registry data) will not be
available, but where it is, methods to formally synthe-
size data would have value. This is particularly
important because the statistical adjustment methods

focused on in this article often produce highly
uncertain estimates of the treatment effect, with
wide confidence intervals, reflecting the uncertainty
associated with estimating counterfactual survival
times and treatment effects. Related to this, we have
considered only situations where patient-level data
are available; research into the potential for making
adjustments for switching without such data, partic-
ularly for use within indirect comparisons, would
be of high value.

CONCLUSIONS

It is clear that treatment switching is an important
factor in a substantial proportion of HTAs, particu-
larly in the oncology setting. Our article offers recom-
mendations on the use of treatment switching
adjustment methods that, if used, enhance the likeli-
hood that appropriate methods are identified and
used in future HTAs. In addition, we recommend
that clinical trialists ensure that suitable data are col-
lected within RCTs to allow switching adjustment
methods to be applied.
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