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a b s t r a c t

This paper considers the consensus problem for multi-agent systems with inherent nonlinear dynamics
under directed topologies. A variable transformation method is used to convert the consensus problem
to a partial stability problem. Both first-order and second-order systems are investigated under fixed and
switching topologies, respectively. It is assumed that the inherent nonlinear terms satisfy the Lipshitz
condition. Sufficient conditions on the feedback gains are given based on a Lyapunov function method.
For first-order systems under a fixed topology, the consensus is achieved if the feedback gain related
to the agents’ positions is large enough. For first-order systems under switching topologies, the effect
of the minimum dwell time for the switching signal on the consensus achievement is considered. For
second-order systems under a fixed topology, the consensus is achieved if the feedback gains related
to the agents’ positions and velocities, respectively, are both large enough. For second-order systems
under switching topologies, a switching variable transformation is given. Then, the consensus problem
is investigated when all the digraphs are strongly connected and weighted balanced with a common
weighted vector. Finally, numerical simulations are provided to illustrate the effectiveness of the obtained
theoretical results.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

The consensus problem for multi-agent systems has drawn
much attention from researchers in recent years [1,2], due to its
broad range of applications in cooperative control of unmanned
air vehicles, formation control of mobile robots and flocking of
multiple agents. In the study of the consensus problem, the
final convergence state is an important factor. In [3–5], the
consensus problem was investigated for first-order and second-
order systems, respectively, where the agents’ final position
was a constant. In [6], the consensus problem was investigated
for second-order systems with relative damping introduced. It
was proved that using the algorithm with relative damping
introduced the agents’ final position was time-varying while
their final velocity was a constant. Whereas, the scenario for
networks of agents with a time-varying asymptotic velocity
exists ubiquitously in the study of synchronization [7]. Based
on the theory of synchronization, a nonlinear term describing
the intrinsic dynamics of each agent was incorporated in the
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consensus algorithms in [8,9]. The authors defined the generalized
algebraic connectivity for the strongly connected networks and
used the concept to derive sufficient conditions for the consensus
of networks of agents with a time-varying asymptotic velocity. But
the relationship between the generalized algebraic connectivity
and the eigenvalues of the Laplacian matrix was not direct.
The directed graph containing a directed spanning tree had to
be divided into the strongly connected components and the
generalized algebraic connectivity of each strongly connected
components should be calculated to give sufficient conditions
to ensure consensus. This obviously weakens the effectiveness
of the obtained results when the number of the agents was
large and the directed graph was complex. Moreover, the case of
switching topologies was not investigated in [8]. The work of [8]
was extended to the leader-following case via pinning control
in [10]. In [11], the finite-time consensus problem of multi-agent
networks with inherent nonlinear dynamics was considered by
the comparison method. But only the undirected topologies were
considered.Moreover, the convergence time could not be obtained.
In [12], the consensus problem for high-ordermulti-agent systems
with inherent nonlinear dynamics was investigated. The linear
matrix inequalities were used to give sufficient conditions to
ensure consensus. There, itwas also assumed that the topologywas
undirected.

http://dx.doi.org/10.1016/j.sysconle.2012.11.003
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
mailto:guangmingxie@pku.edu.cn
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In this paper, partly based on the ideas in [13,14], we utilize the
idea of variable transformation to investigate the consensus prob-
lem for multi-agent systems with inherent nonlinear dynamics
under directed topologies. By introducing the star transformation,
the consensus problem is converted to a partial stability problem
for the corresponding systems. Both first-order and second-order
systems are investigated under fixed and switching topologies,
respectively. The inherent nonlinear terms satisfy the Lipshitz
condition is assumed. Sufficient conditions on the feedback gains
are given based on a Lyapunov function method. For first-order
systems under a fixed topology, the consensus is achieved if the
feedback gain related to the agents’ positions is large enough.
For first-order systems under switching topologies, the effect of
the minimum dwell time for the switching signal on the consen-
sus achievement is considered. For second-order systems under a
fixed topology, the consensus is achieved if the feedback gains re-
lated to the agents’ positions and velocities, respectively, are both
large enough. For second-order systems under switching topolo-
gies, we define the switching star transformation. Then, the con-
sensus problem is investigated when all the digraphs are strongly
connected and weighted balanced. Here, the given sufficient con-
ditions are related to the matrices which are associated with the
Laplacian matrices and are defined in the given theorems and the
digraphs do not need to be divided into the strongly connected
components as in [8,9].

The paper is organized as follows. In Section 2, we give some
basic concepts in graph theory. Then, themodels are described and
the consensus algorithms are given. In Section 3, the consensus
problem for first-order systems under fixed and switching
topologies, respectively, is investigated. The star transformation
is introduced in this section. The consensus problem for second-
order systems under fixed and switching topologies, respectively,
is investigated in Section 4. The switching star transformation
is defined and analyzed in detail. Numerical simulations and a
conclusion are given in Sections 5 and 6, respectively.

The following notations are used throughout this paper. n =

{1, . . . , n} is an index set. Let In be the identitymatrix of dimension
n, 1n = [1, . . . , 1]T ∈ Rn, and 0n = [0, . . . , 0]T ∈ Rn. We
say X > 0 (resp., X < 0) if the matrix X ∈ Rn×n is positive
definite (resp., negative definite). Given a positive definite matrix
P ∈ Rn×n, we denote λmax(P) the maximum of the eigenvalues of P
and λmin(P) theminimumof the eigenvalues of P . diag{λ1, . . . , λn}

defines a diagonalmatrixwith diagonal elements beingλ1, . . . , λn.
Given ω = [ω1, . . . , ωn]

T
∈ Rn, denote the diagonal matrix with

ωi being the (i, i) element as diag{ω}. ⊗ denotes the Kronecker
product.

2. Preliminaries

In this section, we introduce the graph theory and formulate
the models with inherent nonlinear dynamics and the consensus
algorithms.

2.1. Graph theory

A weighted digraph G = (V , E , A) consists of a node set V = n,
an edge set E ⊆ V × V , and a weighted adjacency matrix A =

[aij] ∈ Rn×n satisfying aij > 0 if (j, i) ∈ E , while aij = 0, otherwise.
Here, we assume that (i, i) ∉ E and hence aii = 0 for all i ∈ n. The
set of neighbors of node i is denoted by Ni = {j ∈ V : (j, i) ∈ E }.
The Laplacianmatrix L = [lij]n×n of aweighted digraphG is defined
as lii =

n
j=1 aij and lij = −aij for i ≠ j. Obviously, L satisfies

L1n = 0. Denote Lsym =
1
2 (L + LT ).
A directed path between two distinct nodes i and j is a
finite ordered sequence of distinct edges of G with the form
(i, k1), (k1, k2), . . . , (kl, j). A digraph has a directed spanning tree if
there exists a node called the root such that there exist directed
paths from this node to every other node. A digraph is strongly
connected if there exists a directed path from every node to every
other node. A digraph G is called weighted balanced if there exists
a positive vector ω = [ω1, . . . , ωn] ∈ Rn satisfying

n
j=1 ωiaij =n

j=1 ωjaji for all i ∈ n. Here, the vector ω is called a weighted
vector. Note that if ω is a weighted vector, so is αω, where α ∈

R+. In the remainder of this paper, without loss of generality, we
assume that

n
i=1 ωi = 1.

Remark 1. The definition of the weighted balanced digraph will
be used to discuss the consensus problem under switching
strongly connected topologies. There are two important concepts
in the literature to discuss such a problem. One is the balanced
digraph [3], which demands

n
j=1 aij =

n
j=1 aji for all i ∈ n.

The other is the detailed balanced digraph [15], which demands
ωiaij = ωjaji with ωi, ωj > 0 for all i, j ∈ n. Obviously, the
definition of the weighted balanced digraph includes these two
definitions as special cases. Suppose that a strongly connected
digraph G is weighted balanced with the weighted vector ω and
L is its Laplacian matrix. It is not hard to see that ωT is the left
eigenvector of L associatedwith the zero eigenvalue. Since the sum
of each row of L is zero, it can be verified that Lki = Lkj with Lki
and Lkj, respectively, being the algebraic cofactor of (k, i) and (k, j)
elements of L, k, i, j ∈ n. This, together with det(L) = 0, implies
that [L11, . . . , Lnn]L = 0T

n . By Theorem 1 in [3] or Lemma 3.3 in [4],
we know that the rank of L is n − 1. So, all the left eigenvectors of
L associated with the zero eigenvalue form one dimension space.
Then, we have ωi = Lii/

n
i=1 Lii for all i ∈ n since we assume thatn

i=1 ωi = 1 for convenience.

The following lemma is needed in the following sections.

Lemma 1 ([16]). For any two real vectors a and b with the same
dimension, we have

2aTb ≤ aTΦa + bTΦ−1b,

where Φ is any positive definite matrix with an appropriate
dimension.

2.2. Models and consensus algorithms

Assume that the multi-agent system under consideration
consists of n agents each of which can be regarded as a node of
the information exchange digraph. Suppose that agent i, i ∈ n, is
modeled by first-order system with inherent nonlinear dynamics
as

ẋi = f (xi, t) + ui, (1)

where xi, ui ∈ Rm are the position and control input vectors
of agent i, respectively, and f (xi, t) is the inherent nonlinear
dynamics of agent i.

Assume the digraph at time t is G(t). A neighbor-based
consensus algorithm for system (1) is given by

ui(t) = k


j∈Ni(t)

aij(t)[xj(t) − xi(t)], i ∈ n, (2)

where k > 0 is the feedback gain, Ni(t) is the set of neighbors
of agent i at time t , and aij(t), i, j ∈ n, is the (i, j) element of the
weighted adjacencymatrix and denotes theweight on information
link (j, i) at time t . We say that the algorithm (2) asymptotically
solves the consensus problem for the system (1) if

lim
t→∞

(xi − xj) = 0, ∀i, j ∈ n.
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When agent i, i ∈ n, is modeled by a second-order system, we
have
ẋi = vi,
v̇i = f (xi, vi, t) + ui,

(3)

where xi, vi, ui ∈ Rm are the position vector, velocity vector and
control input vector of agent i, respectively, and f (xi, vi, t) is the
inherent nonlinear dynamics of agent i.

For the system (3), we consider two neighbor-based consensus
algorithms as follows:

ui(t) =


j∈Ni(t)

aij(t)[α1(xj(t) − xi(t))] − β1vi(t), i ∈ n, (4)

and
ui(t) =


j∈Ni(t)

aij(t)[α2(xj(t) − xi(t)) + β2(vj(t) − vi(t))], i ∈ n,

(5)
where αi > 0, βi > 0, i = 1, 2, are the feedback gains, Ni(t)
and ai(t) are defined the same as those in the algorithm (2). The
consensus for the system (3) using the algorithm (4) or (5) is
achieved if
lim
t→∞

(xi − xj) = 0, lim
t→∞

(vi − vj) = 0, ∀ i, j ∈ n.

For notational simplicity in the following analysis, we only
consider the casem = 1. The analysis is valid for any dimensionm
with the difference being that the expression should be rewritten
in terms of the Kronecker product.

3. First-order system

In this section, we analyze the consensus problem for the first-
order system (1). Differently from the existing results without
the inherent nonlinear dynamics, the final state of the agents
will be time-varying. More specifically, the final state depends
on the inherent nonlinear function f (x, t). We need the following
assumption for further discussion.

Assumption 1. The function f (x, t) satisfies the Lipschitz condi-
tion in xwith the Lipschitz constant l, i.e.,

|f (x2, t) − f (x1, t)| ≤ l|x2 − x1|, ∀ x1, x2 ∈ R, ∀t ≥ 0.

With the algorithm (2), the system (1) becomes

ẋi = f (xi, t) + k


j∈Ni(t)

aij(t)[xj(t) − xi(t)], i ∈ n. (6)

Let x = [x1, x2, . . . , xn]T . The system (6) can be written as

ẋ = f̄ (x, t) − kL(t)x, (7)
where f̄ (x, t) = [f (x1, t), . . . , f (xn, t)]T and L(t) is the Laplacian
matrix of G(t). To investigate the system (7), we introduce a
variable transformation called star transformation as follows:
y = Sx, (8)
where S ∈ Rn×n is the transformation matrix defined by

S =


1 0 0 · · · 0
1 −1 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · −1

 .

It is easy to verify that S = S−1. Denote y = [y1, yTe ]
T , where

ye = [y2, . . . , yn]T . By (8), we have y1 = x1 and
ye = [x1 − x2, x1 − x3, . . . , x1 − xn]T .
Rewriting (7) with respect to y, we have

ẏ = Sf̄ (y, t) − kSL(t)S−1y, (9)
where f̄ (y, t) = [f (y1, t), f (y1 − y2, t), . . . , f (y1 − yn, t)]T . Define
E = [1n−1 − In−1] and F = [0n−1 − In−1]

T . Note that L(t)1n = 0. It
follows that (9) can be rewritten as the following two subsystems

ẏ1 = f (y1, t) − kl1(t)Fye, (10)
ẏe = fe(y, t) − kEL(t)Fye, (11)

where l1(t) is the first row of L(t), fe(y, t) = [f (y1, t) − f (y1 −

y2, t), . . . , f (y1, t) − f (y1 − yn, t)]T .

Remark 2. Actually, we can also use another variable transforma-
tion called line transformation as follows:

z = Tx,

where T ∈ Rn×n is the transformation matrix defined by

T =


1 0 0 · · · 0 0
1 −1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −1

 .

It is easy to see that the two kinds of transformations are
similar. Actually, they have the same effect on the study of
consensus problem. We will depend on the transformation (8) in
the following.

3.1. First-order system under a fixed topology

In this subsection, we study the case where the digraph is fixed,
i.e., L(t) ≡ L. Note that, for the existence of nonlinear term, the
subsystems (10) and (11) are coupled.Wewill resort to the concept
of partial stability for which the reader may refer to [17] to analyze
the system (7). We have the following proposition to show the
relationship between the system (7) and the system given by (10)
and (11).

Proposition 1. The consensus is achieved for the system (7) if and
only if the system given by (10) and (11) is asymptotically stable with
respect to ye.

The proof is trivial. So, we omit it. Moreover, in the following
discussion, similar propositions to Proposition 1 also hold for each
part and will not be stated anymore. Now, we establish our first
theorem.

Theorem 1. Suppose the fixed digraph G has a directed spanning tree
and Assumption 1 holds. The algorithm (2) asymptotically solves the
consensus problem for the system (1) if the feedback gain k satisfies
the following condition

− k[(ELF)TP + P(ELF)] + l2λmax(P)In−1 + P < 0, (12)

where P ∈ R(n−1)×(n−1) is positive definite with (ELF)TP + P(ELF)
being positive definite. To simplify the condition (12), we can choose
P such that (ELF)TP + P(ELF) = In−1. Then, (12) is equivalent to
l2λmax(P)In−1 + P < kIn−1.

Proof. By Proposition 1, we only need to prove that the system
given by (10) and (11) is asymptotically stable with respect to ye.
Choose a Lyapunov function candidate as

V (t) = yTe (t)Pye(t).

Differentiating V (t) along the trajectories of (10) and (11) yields

V̇ (t) = −kyTe [(ELF)TP + P(ELF)]ye + 2yTe (t)Pfe(y, t).

Using Lemma 1 with aT = yTe (t), b = Pfe(y, t), and Φ = P ,
together with Assumption 1, it follows that

V̇ (t) ≤ −kyTe [(ELF)TP + P(ELF)]ye + f Te (ye, t)Pfe(ye, t) + yTe Pye
≤ −kyTe [(ELF)TP + P(ELF)]ye + l2λmax(P)yTe ye + yTe Pye.



K. Liu et al. / Systems & Control Letters 62 (2013) 152–162 155
By (12), we have V̇ (t) < 0 for ye ≠ 0, which implies that the
system given by (10) and (11) is asymptotically stable with respect
to ye.

Next, we verify the feasibility of (12). By Theorem 3.12 in [4],
we know that the algorithm ui =


j∈Ni

aij(xj − xi) can solve the
consensus problem for the system (1) with no inherent nonlinear
dynamics if and only if the digraph has a directed spanning tree.
Thus, it is not difficult to get that −ELF is Hurwitz stable. The rest
of the proof is trivial and is omitted. �

Remark 3. In Theorem 1, once the consensus is achieved, the final
state of all agents is a very important thingwhichwe are interested
in. From (10), it is easy to see that the final state as t → ∞ will
satisfy the following dynamics

dx
dt

= f (x, t), where x ∈ R.

That is, the final state as t → ∞ is time-varying. Moreover, if
the function f (x, t) is linear in x, that is, αf (x1, t) + βf (x2, t) =

f (αx1 + βx2, t), we can prove that the final state as t → ∞ is
related to the initial values of all agents, which is defined as the
X-consensus problem [3]. Specifically, choose pT = [p1, . . . , pn]
satisfying

n
i=1 pi = 1 to be the nonnegative left eigenvector of L

associated with the zero eigenvalue. Using pT to pre-multiply the
system (7), it is easy to get

d
dt

n
i=1

pixi = f


n

i=1

pixi, t


. (13)

That is, the weighted sum of the states of all agents satisfies the
dynamics (13). Since limt→∞(xi(t) − xj(t)) = 0, ∀ i, j ∈ n, we see
that the final state as t → ∞ satisfies the following dynamics with
initial value

dx
dt

= f (x, t),

x(0) =

n
i=1

pixi(0).

3.2. First-order system under switching topologies

In this subsection, we study the case where the digraph is time-
varying. We assume that the digraphs are taken from a finite set
Γ = {G1, . . . ,GM} anduse a switching signalσ : [0, +∞) → M ,
{1, . . . ,M} to describe which digraph is active at time t . Moreover,
suppose the digraph Gσ switches at tr , r = 0, 1, . . ., with t0 =

0 and remains unchanged during each interval [tr , tr+1), r =

0, 1, . . .. There exists a positive constant T such that tr+1 − tr ≥

T , r = 0, 1, . . .. The number T can be arbitrarily small and is called
the minimum dwell time for the switching signal σ . Let Li, i ∈ M ,
denote the Laplacian matrix associated with Gi.

We have the following theorem which gives sufficient condi-
tions for the consensus problem of the system (1) under switching
topologies.

Theorem 2. Suppose each of the digraphs contains a directed span-
ning tree and Assumption 1 holds. The algorithm (2) asymptoti-
cally solves the consensus problem for the system (1) under arbitrary
switching signal if the feedback gain k is large enough such that

λ

λ
exp


−

k

λ
+ l2

λ

λ
+ 1


T


< 1, (14)

where λ = maxi∈M{λmax(Pi)} and λ = mini∈M{λmin(Pi)} with Pi
being a positive definite matrix satisfying (ELiF)TPi + Pi(ELiF) =

In−1, i ∈ M.
Proof. Also, we only need to prove that the system given by (10)
and (11) is asymptotically stable with respect to ye. The proof for
the existence of Pi, i ∈ M , is the same as that of P in Theorem 1.
Choose the following Lyapunov function candidate

V (t) = yTe (t)Pσ ye(t).

Differentiating V (t) along the trajectories of (10) and (11), we have

V̇ (t) = −kyTe ye + 2yTe Pσ fe.

Note that we need to use the right derivative of V (t) at the
switching time to fit for the switching case. By virtue of Lemma 1
with aT = yTe , b = Pσ fe, and Φ = Pσ , together with Assumption 1,
we have

V̇ (t) ≤ −kyTe ye + f Te Pσ fe + yTe Pσ ye ≤ −kyTe ye + l2λmax(Pσ )yTe ye

+ yTe Pσ ye ≤


−

k

λ
+ l2

λ

λ
+ 1


V (t). (15)

Note (14) implies that −
k
λ

+ l2 λ
λ

+ 1 < 0. So, we have V̇ (t) < 0
for ye ≠ 0. Multiplying both sides of the above inequality with
exp


−


−

k
λ

+ l2 λ
λ

+ 1

t

, we get that

V (t)exp


−


−

k

λ
+ l2

λ

λ
+ 1


t

′

≤ 0.

Integrating the above inequality from tr to tr+1, with a mild
simplification, we have

V (t−r+1) ≤ V (tr)exp


−

k

λ
+ l2

λ

λ
+ 1


(tr+1 − tr)


.

It follows that

V (tr+1) ≤ λyTe (tr+1)ye(tr+1) ≤
λ

λ
V (t−r+1)

≤ V (tr)
λ

λ
exp


−

k

λ
+ l2

λ

λ
+ 1


T


. (16)

Because (14) holds, by the stability theory for switched sys-
tems [18], (15) and (16) imply that the asymptotic stability of the
system given by (10) and (11) with respect to ye holds. �

Remark 4. Actually, from the above proof, we can get that all the
agents converge to the final consensus state in the following rate
expressed by

V (t) ≤ V (0)γ mexp


−

k

λ
+ l2

λ

λ
+ 1


(t − mT )


(17)

with γ =
λ
λ
exp


−

k
λ

+ l2 λ
λ

+ 1

T

and m = ⌊

t
T ⌋ being the

maximum integer no larger than t
T . Note that, in Theorem 2, we

emphasize the effect of the feedback gain k on the consensus
achievement but do not care about how small the minimum dwell
time T is. From (17), it is not hard to see that the convergence
rate shown by V (t) will increase once the minimum dwell time
increases.

Remark 5. Comparing with [9], we focus on the global consensus
of first-order multi-agent systems in this section. For the general
network, we do not require to divide the digraph with a
directed spanning tree into the strongly connected components
to give sufficient conditions for the consensus achievement. This
facilitates the application of the obtained results. The consensus
problem under switching topologies was discussed in Remark 1
of [9]where each of the digraphswas strongly connected.Whereas,
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we study the case that each of the digraphs contains a directed
spanning tree and theminimumdwell time for the switching signal
which can be arbitrarily small exists.

4. Second-order system

In many practical applications, the acceleration rather than the
velocity is controlled.We hence discuss the consensus problem for
agents with second-order dynamics in this section.Wewill discuss
two kinds of algorithms (4) and (5). Before moving on, we also
assume that the function f in (3) satisfies the Lipschitz condition
in xi and vi as follows:

Assumption 2. There exists a nonnegative constant ρ such that

|f (x2, v2, t) − f (x1, v1, t)| ≤ ρ1/2


(x2 − x1)2 + (v2 − v1)2,

∀xi, vi ∈ R, i = 1, 2, ∀t ≥ 0.

Next, we first convert the consensus problem using the
algorithms (4) and (5), respectively, to a partial stability problem
for the corresponding systems by virtue of the star transformation.

The dynamics for agents described by (3) using the algorithm
(4) can be written as

ξ̇ =


0n×n In

−α1L(t) −β1In


ξ +


0n

f̄ (ξ , t)


, (18)

where ξ = [xT , vT
]
T with x = [x1, . . . , xn]T , v = [v1, . . . , vn]

T ,
and f̄ (ξ , t) = [f (x1, v1, t), . . . , f (xn, vn, t)]T . Let y = Sx and
v̂ = Sv, where S is defined after (8). Let yi and v̂i be, respectively,
the ith component of y and v̂. We have

η̇ =


0n×n In

−α1SL(t)S−1
−β1In


η +


0n

Sf̄ (η, t)


, (19)

where η = [yT , v̂T
]
T and f̄ (η, t) = [f (y1, v̂1, t), f (y1 − y2, v̂1 −

v̂2, t), . . . , f (y1 − yn, v̂1 − v̂n, t)]T . Define η1 = [y1, v̂1]
T , ηe =

[y2, . . . , yn, v̂2, . . . , v̂n]
T . We can rewrite the system (19) as the

following two subsystems

η̇1 =


0T
n−1 1

−α1l1(t)F −β1


[ηT

e1 v̂1]
T

+


0

f (y1, v̂1, t)


, (20)

η̇e =


0(n−1)×(n−1) In−1
−α1EL(t)F −β1In−1


ηe +


0n−1

fe(η, t)


, (21)

where y1 = x1, v̂1 = v1, ηe1 = [y2, . . . , yn], E = [1n−1 −

In−1], F = [0n−1−In−1]
T , l1(t) is the first row of L(t), and fe(η, t) =

[f (y1, v̂1, t) − f (y1 − y2, v̂1 − v̂2, t), . . . , f (y1, v̂1, t) − f (y1 −

yn, v̂1 − v̂n, t)]. Also note that the subsystems (20) and (21) are
not completely decoupled.

Next, we consider the system (3) using the algorithm (5). The
dynamics of the closed-loop system can be written as

ξ̇ =


0n×n In

−α2L(t) −β2L(t)


ξ +


0n

f̄ (ξ , t)


, (22)

where ξ and f̄ (ξ , t) are defined the same as those in (18). For
simplicity, we directly give the corresponding subsystems through
the star transformation (8) as

η̇1 =


0 1
0 0


η1 +


0T
n−1 0T

n−1
−α2l1(t)F −α2l1(t)F


ηe

+


0

f (y1, v̂1, t)


, (23)

η̇e =


0(n−1)×(n−1) In−1
−α2EL(t)F −β2EL(t)F


ηe +


0n−1

fe(η, t)


, (24)

where the notations are the same as those in (20) and (21).
4.1. Second-order System under a Fixed Topology

In this subsection, we consider the consensus problem for
second-order systems under a fixed topology, i.e., L(t) ≡ L.

Theorem 3. Suppose the fixed digraph G has a directed spanning
tree and Assumption 2 holds. Consensus of the system (3) using the
algorithm (4) is achieved if the feedback gains α1 and β1 satisfy the
following condition

−


α1In−1 α1(ELF)TP

α1P(ELF) 2(β1 − 1)P


+ I2 ⊗ (2ρλ̄In−1 + P) < 0, (25)

where P ∈ R(n−1)×(n−1) is the positive definite matrix satisfying
P(ELF) + (ELF)TP = In−1, β1 > 1, and λ̄ = λmax(P). To simplify
the choice of α1 and β1, we can let β1 =

1
2kα1 + 1 with k > 0

satisfying kP − P(ELF)(ELF)TP > 0. Then, once α1 is large enough,
the condition (25) will hold.

Proof. First, we see that the positive definite matrix P always
exists since it is easy to see that −ELF is Hurwitz stable under the
assumption thatG has a directed spanning tree. Choose a Lyapunov
function candidate as

V (t) = ηT
e


µP νP
νP γ P


ηe , ηT

e P̄ηe,

where µ, ν, γ are positive constants satisfying µγ > ν2 to
guarantee that V is positive definite. The values of these three
numbers will be given below. Differentiating V (t) along the
trajectories of the system given by (20) and (21), we have

V̇ (t) = ηT
e


P̄

0(n−1)×(n−1) In−1

−α1ELF −β1In−1


+


0(n−1)×(n−1) In−1

−α1ELF −β1In−1

T
P̄


ηe

+ 2ηT
e P̄


0n−1

fe(η, t)


= ηT

e


−α1νIn−1 (µ − β1ν)P − α1γ (ELF)T P

(µ − β1ν)P − α1γ P(ELF) 2(ν − β1γ )P


ηe

+ 2ηT
e diag{νP, γ P}


fe(η, t)
fe(η, t)


.

To meet our need, we choose µ = β1ν. Meanwhile, for simplicity,
we choose ν = γ = 1. So, µγ > ν2 since β1 > 1, which implies
that V is positive definite. Then, we get

V̇ (t) = −ηT
e


α1In−1 α1(ELF)TP

α1P(ELF) 2(β1 − 1)P


ηe + 2ηT

e diag{P, P}


fe(η, t)
fe(η, t)


≤ −ηT

e


α1In−1 α1(ELF)TP

α1P(ELF) 2(β1 − 1)P


ηe

+ ηT
e diag{P, P}ηe +


f Te (η, t) f Te (η, t)


diag{P, P}


fe(η, t)
fe(η, t)


≤ −ηT

e


α1In−1 α1(ELF)TP

α1P(ELF) 2(β1 − 1)P


ηe

+ ηT
e


I2 ⊗ (2ρλ̄In−1 + P)


ηe.

Here, Lemma 1 has been applied by choosing a = ηe and
b = diag{P, P}


f Te (η, t), f Te (η, t)

T to get the first inequality and
Assumption 2 has been used to obtain the second inequality.

Next, we show that the condition (25) is feasible for large
enough α1 and β1. The condition (25) is equivalent to the following
condition

−


In−1 0(n−1)×(n−1)

−P(ELF) In−1

 
α1In−1 α1(ELF)TP

α1P(ELF) 2(β1 − 1)P


×


In−1 0(n−1)×(n−1)

−P(ELF) In−1

T
+


In−1 0(n−1)×(n−1)

−P(ELF) In−1
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×

I2 ⊗ (2ρλ̄In−1 + P)

  In−1 0(n−1)×(n−1)
−P(ELF) In−1

T
< 0.

By direct calculation, the above condition can be simplified as
shown in Eq. (26) which is in Box I.

Obviously, (26) will hold only if α1 and β1 are large enough. By
letting β1 =

1
2kα1 +1with k > 0 satisfying kP −P(ELF)(ELF)TP >

0, we can guarantee (25) holds by only changing one parameter.
Now that (25) holds for large α1 and β1, then V̇ (t) < 0 for ηe ≠ 0.
So, the system given by (20) and (21) is asymptotically stable with
respect toηe, whichmeans the consensus of (3) using the algorithm
(4) is achieved. �

Next, we consider the consensus problem for the system (3) using
the algorithm (5).

Theorem 4. Suppose the fixed digraph G has a directed spanning
tree and Assumption 2 holds. Consensus of the system (3) using the
algorithm (5) is achieved if the feedback gains α2 and β2 satisfy the
following conditions

α2 > (3 + 2ρ)λ, (27)

β2 > max


α2(λ + 1), λ(1 + 2ρ)


, (28)

and

[α2
2 − α2λi − (α2 + β2)λρ] × [β2

2 − (2α2 + β2)λi

− (α2 + β2)λρ] − α2
2β

2
2


λi

λ + 1
− 1

2

> 0, 1 ≤ i ≤ n − 1,

(29)

where λi, 1 ≤ i ≤ n − 1, is the eigenvalue of P and λ = λmax(P)
with P ∈ R(n−1)×(n−1) being the positive definite matrix satisfying
P(ELF) + (ELF)TP = In−1.

Denote λ = λmin(P). To simplify the calculation for (29), we can
replace (27) and (29) with the following conditions, respectively,

α2 > max{(3 + 2ρ)λ, (2 + 4ρ)λ}, (30)

and

[α2
2 − α2λ − (α2 + β2)λρ] × [β2

2 − (2α2 + β2)λ

− (α2 + β2)λρ] − α2
2β

2
2


λ

λ + 1
− 1

2

> 0. (31)

If 1 ≤
λ
λ

< 2, besides (30), we can replace (28) and (29), respectively,
with the following conditions

β2 > max{


α2λ, λ(1 + 2ρ)}, (32)

and

[α2
2 − α2λ − (α2 + β2)λρ] × [β2

2 − (2α2 + β2)λ − (α2 + β2)λρ]

− α2
2β

2
2


λ

λ
− 1

2

> 0. (33)

Furthermore, if we let α2 = β2, the consensus of the system (3) us-
ing the algorithm (5) is achieved under the following condition

α2 > max


2(1 + ρ)λ,

[(2θ2
− 6) − 8ρ]λ

2θ − 4
,
θ2λ2

− (λ + 2ρλ)(3λ + 2ρλ)

(2θ − 4)λ − 4ρλ


,

(34)

where θ > 2(1 + ρ λ
λ
).

Proof. As in the proof of Theorem 3, we start with a Lyapunov
function candidate of the form
V (t) = ηT
e


µP νP
νP γ P


ηe , ηT

e P̄ηe,

where µ, ν, γ are positive constants satisfying µγ > ν2 to
guarantee that V is positive definite. The values of these three
numbers will be given below. Differentiating V (t) along the
trajectories of the system given by (23) and (24), we have

V̇ (t) = ηT
e


P̄

0(n−1)×(n−1) In−1

−α2ELF −β2ELF



+


0(n−1)×(n−1) In−1

−α2ELF −β2ELF

T
P̄


ηe + 2ηT

e P̄


0n−1
fe(η, t)



= ηT
e


−α2νP(ELF) µP − β2νP(ELF)
−α2γ P(ELF) νP − β2γ P(ELF)



+


−α2νP(ELF) µP − β2νP(ELF)
−α2γ P(ELF) νP − β2γ P(ELF)

T
ηe

+ 2ηT
e diag{νP, γ P}


fe(η, t)
fe(η, t)


.

We let ν = α2 and γ = β2 first. Then

V̇ (t) ≤ ηT
e


−α2

2 In−1 µP − α2β2In−1

µP − α2β2In−1 2α2P − β2
2 In−1


ηe

+ ηT
e


α2P 0(n−1)×(n−1)

0(n−1)×(n−1) β2P


ηe

+

f Te f Te

  α2P 0(n−1)×(n−1)
0(n−1)×(n−1) β2P

 
fe
fe


≤ ηT

e


−α2

2 In−1 µP − α2β2In−1

µP − α2β2In−1 2α2P − β2
2 In−1


ηe

+ ηT
e diag{α2P, β2P}ηe + (α2 + β2)λρηT

e ηe.

Next, we investigate how to guarantee that V̇ (t) < 0 if ηe ≠ 0.
It is equivalent to the positive definiteness of the matrix shown in
Box II. Since P is positive definite, there exists an orthogonalmatrix
U such that UTPU = diag{λ1, . . . , λn−1} , Λ. Using diag{UT , UT

}

and diag{U, U} to pre- and post-multiply Ω , respectively, we get
the similar matrix of Ω as given in Box III:

Then, Ω is positive definite is equivalent to all the following
matrices are positive definite
α2
2 − α2λi − (α2 + β2)λρ −µλi + α2β2

−µλi + α2β2 β2
2 − (2α2 + β2)λi − (α2 + β2)λρ


,

i = 1, . . . , n − 1.

By Vieta’s Theorem, we need to test that

[α2
2 − α2λi − (α2 + β2)λρ]

+ [β2
2 − (2α2 + β2)λi − (α2 + β2)λρ] > 0, (35)

[α2
2 − α2λi − (α2 + β2)λρ] × [β2

2 − (2α2 + β2)λi

− (α2 + β2)λρ] − (µλi − α2β2)
2 > 0. (36)

It is not difficult to get that (27) and (28) guarantee that (35)
holds.

Next, we analyze how to meet (36). Choosing µ =
α2β2
λ+1

, then

(36) becomes (29). Noting that −1 <
λi

λ+1
− 1 < 0, it is obvious

that (29) or (36) will hold once α2 and β2 are large enough. Noting
that we require µγ > ν2 to guarantee V being positive definite
at the beginning of the proof, we have β2 >


α2(λ + 1), which is

shown in (28).
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6)
−


α1In−1 0(n−1)×(n−1)

0(n−1)×(n−1) 2(β1 − 1)P − α1P(ELF)(ELF)TP


+


2ρλ̄In−1 + P −[2ρλ̄In−1 + P][(ELF)TP]

−[P(ELF)][2ρλ̄In−1 + P] [P(ELF)](2ρλ̄In−1 + P)[(ELF)TP] + (2ρλ̄In−1 + P)


< 0. (2

Box I.
Ω ,


α2
2 In−1 − α2P − (α2 + β2)λρIn−1 −µP + α2β2In−1

−µP + α2β2In−1 β2
2 In−1 − (2α2 + β2)P − (α2 + β2)λρIn−1


.

Box II.

α2
2 In−1 − α2Λ − (α2 + β2)λρIn−1 −µΛ + α2β2In−1

−µΛ + α2β2In−1 β2
2 In−1 − (2α2 + β2)Λ − (α2 + β2)λρIn−1


.

Box III.
Obviously, once n is large, the verification for (29) is boring.
Denote

h(λi) = [α2
2 − α2λi − (α2 + β2)λρ]

× [β2
2 − (2α2 + β2)λi − (α2 + β2)λρ].

We have

h′(λi) = −α2[β
2
2 − (2α2 + β2)λi − (α2 + β2)λρ]

− (2α2 + β2)([α
2
2 − α2λi − (α2 + β2)λρ])

= −α2
2[2α2 − (4λi + 3λρ)] − α2β2[α2 − (2λi + 4λρ)]

− β2
2 (α2 − λρ).

It is easy to see that h′(λi) < 0 if α2 > 2λi + 4λρ, which means
h(λi) decreases in λi. Note that α2

2β
2
2 (

λi
λ+1

− 1)2 decreases in λi for

0 < λi ≤ λ. (31), together with (30), implies that (36) holds.
If 1 ≤

λ
λ

< 2, denote the left polynomial about λi of (36) as
f (λi). Then,

f ′(λi) = h′(λi) − 2µ(µλi − α2β2).

Choosing µ =
α2β2

λ
, we have

0 ≤ µλi − α2β2 = α2β2


λi

λ
− 1


< 1.

So, f ′(λi) < 0 if α2 > 2λi +4λρ, whichmeans that f (λi) decreases
in λi. Then, we only need to show that (33) holds to guarantee that
f (λi) > 0 for all 1 ≤ i ≤ n − 1. Since 0 ≤

λ
λ

− 1 < 1, (33) holds
only if α2 and β2 are large enough. Also, from µγ > ν2, we have
β2 >

√
α2λ.

Summarizing the above analysis, we conclude that (27)–(29)
or (28) and (30) and (31) or (30), (32) and (33) guarantee that
V̇ (t) < 0 for ηe ≠ 0, which means the consensus of the system
(3) using the algorithm (5) is achieved.

When the feedback gains satisfy α2 = β2, we can choose a
Lyapunov function candidate as

V (t) = ηT
e


θP P
P P


ηe.

For simplicity, we directly give the two inequalities corresponding
to (35) and (36), respectively, to guarantee that V̇ (t) < 0 forηe ≠ 0
as follows:
(α2 − λi − 2ρλ) + (α2 − 3λi − 2ρλ) > 0,
i = 1, . . . , n − 1, (37)

(α2 − λi − 2ρλ)(α2 − 3λi − 2ρλ) − (θλi − α2)
2 > 0,

i = 1, . . . , n − 1. (38)

Obviously, (34) guarantees that (37) holds. Denote the left polyno-
mial about λi of (38) as g(λi). We have, through simplification,

g ′(λi) = −4α2 + 6λi + 8ρλ − 2θ(θλi − α2)

= (2θ − 4)α2 + 6λi + 8ρλ − 2θ2λi,

g ′′(λi) = 6 − 2θ2 < 0 for θ >
√
3.

Then, we only need to demand g ′(λ) = (2θ − 4)α2 + 6λ + 8ρλ −

2θ2λ > 0 to guarantee that g ′(λi) > 0 for all i = 1, . . . , n − 1,
which can be guaranteed by (34). By direct calculation, we have
that (38) is equivalent to

[(2θ − 4)λi − 4ρλ]α2 + (λi + 2ρλ)(3λi + 2ρλ) − θ2λ2
i > 0.

Noting g ′(λi) > 0 under (34), it follows that (34) implies that (38)
holds for all i = 1, . . . , n − 1. �

4.2. Second-order system under switching topologies

In this subsection, we consider the consensus problem under
switching topologies using algorithms (4) and (5), respectively.
We also assume that the digraphs G(t) are taken from a finite set
Γ = {G1, . . . ,GM} and use a switching signal σ : [0, +∞) →

M , {1, . . . ,M} to describe which digraph is active at time t . We
impose a stronger restriction on the switching digraphs, that is,
every digraph Gi, i ∈ M , is strongly connected.

To further our discussion, we modify the star transformation (8)
as the switching star transformation, that is, the transformation
is related to the switching signal. Define the switching star
transformation as

y = Sσ x (39)

with

Sσ =


ωσ1 ωσ2 ωσ3 · · · ωσ(n−1) ωσn
1 −1 0 · · · 0 0
...

...
...

. . .
...

...
1 0 0 · · · 0 −1

 ,

where [ωσ1, . . . , ωσn] is the left eigenvector associated with the
zero eigenvalue of the Laplacianmatrix Lσ for a strongly connected
digraph Gσ . For convenience, we require

n
i=1 ωσ i = 1. Then, by

direct calculation, we have the following lemma.
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Lemma 2. For the matrix Sσ defined above, we have

S−1
σ =


1 ωσ2 ωσ3 · · · ωσn
1 ωσ2 − 1 ωσ3 · · · ωσn
1 ωσ2 ωσ3 − 1 · · · ωσn
...

...
...

. . .
...

1 ωσ2 ωσ3 · · · ωσn − 1

 , (40)

and

S−T
σ diag{ωσ }S−1

σ = diag{1, S̄σ }, (41)

S−T
σ diag{ωσ }Lσ S−1

σ =


0 0T

(n−1)
0(n−1) F Tdiag{ωσ }Lσ F


, (42)

where ωσ = [ωσ1 , . . . , ωσn ]
T and S̄σ = [s̄σ ij](n−1)×(n−1) is a positive

definite matrix with s̄σ ij = −ωσ(i+1)ωσ(j+1) for i > j and s̄σ ii =

(1 − ωσ(i+1))ωσ(i+1), and F = [0n−1 − In−1]
T .

By [3], it is not difficult to show that the matrix diag{ω}L +

LTdiag{ω} has positive eigenvalues except for one simple zero
eigenvalue, where L is the Laplacian matrix associated with
a strongly connected digraph and ωT is its nonnegative left
eigenvector associated with the zero eigenvalue. So the following
lemma is direct using the form of (42).

Lemma 3. Suppose that the digraph G is strongly connected and its
Laplacian matrix is L. Then, the matrix F T (diag{ω}L + LTdiag{ω})F
is positive definite, where ωT is a nonnegative left eigenvector of L
associated with the zero eigenvalue and F = [0n−1 − In−1]

T .

Before moving on, we use the switching star transformation
(39) to convert the system (18) to the following two subsystems

η̇1 =


0 1
0 −β1


η1 +


0

fσ1(η, t)


, (43)

diag{S̄σ , S̄σ }η̇e =


0(n−1)×(n−1) S̄σ

−α1F Tdiag{ωσ }Lσ F −β1S̄σ


ηe

+


0n−1

S̄σ fe(η, t)


, (44)

where fσ1(η, t) =
n

i=1 ωσ if (xi, vi, t), S̄σ is defined as in (41)
and other notations are the same as the ones in (20) and (21).
We are now ready to establish the theorem which gives sufficient
conditions for the consensus problem of the system (3) under
switching topologies.

Theorem 5. Under Assumption 2, assume that all the digraphs
are strongly connected and weighted balanced with a common
weighted vector ω. Then, the consensus of the system (3) using the
algorithm (4) is achieved under arbitrary switching signal if the
feedback gains α1 and β1 satisfy, for all i ∈ M,

−

α1F T (diag{ω}Li)symF
1
2
α1F T LTi diag{ω}F

1
2
α1F Tdiag{ω}LiF (β1 − 1)S̄ω


+ I2 ⊗


ρµ̄In−1 +

1
2
S̄ω


< 0, (45)

where β1 > 1 and µ̄ = λmax(S̄ω) with S̄ω playing the role of
S̄σ in (41) because ωT is the common nonnegative left eigenvector
associated with the zero eigenvalue for all Li, i ∈ M, by Remark 1.
To simplify the choices of α1 and β1, we can let β1 =

1
2kα1 + 1

with k > 0 satisfying kS̄ω −
1

µmin
F Tdiag{ω}LiFF T LTi diag{ω}F > 0,

where µmin = mini∈M{λmin(F T (diag{ω}Li)symF)}. Then, once α1 is
large enough, the condition (45) will hold.
Proof. We only need to prove the system given by (43) and (44)
is asymptotically stable with respect to ηe. Choose a Lyapunov
function candidate as

V (t) =
1
2
ηT
e


β1S̄ω S̄ω

S̄ω S̄ω


ηe.

Differentiating V (t) along the trajectories of (43) and (44), we
have

V̇ (t) = −ηT
e

α1F T (diag{ω}Lσ )symF
1
2
α1F T LTσdiag{ω}F

1
2
α1F Tdiag{ω}Lσ F (β1 − 1)S̄ω

 ηe

+ ηT
e


S̄ωfe(η, t)
S̄ωfe(η, t)


.

The rest of the proof is similar to that of Theorem 3. So, we only
concentrate on the feasibility of (45). From Lemma 3, we know that
each F T (diag{ω}Lσ )symF is positive definite. To simplify the proof,
we verify a stronger condition

Φ , −

 α1µminIn−1
1
2
α1F T LTσdiag{ω}F

1
2
α1F Tdiag{ω}Lσ F (β1 − 1)S̄ω


+ I2 ⊗


ρµ̄In−1 +

1
2
S̄ω


< 0. (46)

Pre- and post-multiplying Φ with


In−1 0

−
1

2µmin
FT diag{ω}Lσ F In−1


and

its transpose, respectively, we get the equivalent condition of (46)
as follows:

−


α1µminIn−1 0(n−1)×(n−1)

0(n−1)×(n−1) (β1 − 1)S̄ω −
α1

4µmin
F Tdiag{ω}Lσ FF T LTσdiag{ω}F



+

ρµ̄In−1 +
1
2
S̄ω

−
1

2µmin
F Tdiag{ω}Lσ F


ρµ̄In−1 +

1
2
S̄ω


−

1
2µmin


ρµ̄In−1 +

1
2
S̄ω


F T LTσdiag{ω}F

1
4µ2

min
F Tdiag{ω}Lσ F


ρµ̄In−1+

1
2
S̄ω


F T LTσdiag{ω}F +


ρµ̄In−1+

1
2
S̄ω




< 0.

(47)

Obviously, (47) will hold only if α1 and β1 are large enough.
Moreover, by (47), we can let β1 =

1
4kα1 + 1 with k > 0

satisfying kS̄ω −
1

µmin
F Tdiag{ω}Lσ FF T LTσdiag{ω}F > 0 to simplify

the adjustment of the feedback gains. �

Next, we consider the consensus problem of the system (3)
using algorithm (5) under switching topologies. Also, we use the
switching star transformation (39) to convert the system (22) to
the following two subsystems

η̇1 =


0 1
0 0


η1 +


0

fσ1(η, t)


, (48)

diag{S̄σ , S̄σ }η̇e =


0(n−1)×(n−1) S̄σ

−α2F Tdiag{ωσ }Lσ F −β2F Tdiag{ωσ }Lσ F


ηe

+


0n−1

S̄σ fe(η, t)


. (49)

Then, we have the following theorem.

Theorem 6. Under Assumption 2, assume all the digraphs are
strongly connected and weighted balanced with a common weighted
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vector ω. Then, the consensus of the system (3) using the algo-
rithm (5) is achieved under arbitrary switching signal if the feedback
gains α2 and β2 satisfy, for all i ∈ M,

α2
2

β2
F T (diag{ω}Li)symF >

α2

β2
S̄ω +


α2

β2
+ 1


µ̄ρIn−1, (50)

and

β2F T (diag{ω}Li)symF >


α2

β2
+ 1


(S̄ω + µ̄ρIn−1), (51)

where µ̄ = λmax(S̄ω) with S̄ω playing the role of S̄σ in (41).

Proof. Choose a Lyapunov function candidate as

V (t) =
1
2
ηT
e

α2F T (diag{ω}Lσ + LTσdiag{ω})F
α2

β2
S̄ω

α2

β2
S̄ω S̄ω

 ηe.

By the Schur complement theorem, V (t) > 0 for ηe ≠ 0 if and only

if 2α2F T (diag{ω}Lσ )symF >
α2
2

β2
2
S̄ω . Obviously, (51) implies that this

condition holds. Differentiating V (t) along the trajectories of the
system given by (48) and (49), we have

V̇ (t) = −ηT
e

α2
2

β2
F T (diag{ω}Lσ )symF 0(n−1)×(n−1)

0(n−1)×(n−1) β2F T (diag{ω}Lσ )symF −
α2

β2
S̄ω

 ηe

+ ηT
e

α2

β2
S̄ωfe(η, t)

S̄ωfe(η, t)



≤ −ηT
e

α2
2

β2
F T (diag{ω}Lσ )symF 0(n−1)×(n−1)

0(n−1)×(n−1) β2F T (diag{ω}Lσ )symF −
α2

β2
S̄ω

 ηe

+ ηT
e diag


α2

β2
S̄ω, S̄ω


ηe + [f Te f Te ]diag


α2

β2
S̄ω, S̄ω

 fe(η, t)
fe(η, t)



≤ −ηT
e

α2
2

β2
F T (diag{ω}Lσ )symF 0(n−1)×(n−1)

0(n−1)×(n−1) β2F T (diag{ω}Lσ )symF −
α2

β2
S̄ω

 ηe

+ ηT
e


α2

β2
S̄ω +


α2

β2
+ 1


µ̄ρIn−1 0(n−1)×(n−1)

0(n−1)×(n−1) S̄ω +


α2

β2
+ 1


µ̄ρIn−1

 ηe.

By (50) and (51), we have V̇ (t) < 0 for ηe ≠ 0. Hence the system
given by (48) and (49) is asymptotically stable with respect to ηe,
which means that the consensus of (3) using (5) is achieved. �

Remark 6. In this subsection, we do not require the minimum
dwell time for the switching signal as in Section 3.2 since we
can no longer choose a Lyapunov function which is not related
to the feedback gains as in the proof of Theorem 2 when the
minimum dwell time for the switching signals exists. With our
approach, when all the digraphs are strongly connected and
weighted balancedwith a commonweighted vector,wehave given
the sufficient conditions to ensure consensus for second order
systems with no constraints at the switching instants. It will be
meaningful to study the general case when each digraph contains
a directed spanning tree. We expect that the average dwell time
theory for the stability of the switched systems in [19] might be
useful to investigate such a case and it will be our future direction.

Remark 7. In [8], sufficient conditions to ensure consensus for
second-order systems under a fixed topology were given by virtue
of a concept of the generalized algebraic connectivity which was
defined to the strongly connected digraph and the general digraph
needed to be divided into the strongly connected components. Our
results utilize the Laplacian matrix of the digraph directly and can
be applied more easily. Moreover, we investigate the consensus
problem for second-order systems under switching topologies.

5. Simulations

In this section, we give some numerical simulations to
demonstrate the effectiveness of the theoretical results. The
considered system consists of four agents. Fig. 1 shows three
digraphs G1 − G3 each of which contains a directed spanning tree.
For simplicity, assume all the adjacency matrices of G1 − G3 have
0 or 1 elements. Fig. 2 shows three digraphs G4 −G6 each of which
is strongly connected with the weights shown beside the edges.

Example 1. Consider the consensus of (1) under the topologies
represented by G1 − G3. The inherent nonlinear dynamics is given
as f (x, t) = xsin(t). By Theorem 1, when the feedback gain
k > 1.3954, the algorithm (2) asymptotically solves the consensus
problem for (1) under the fixed topology G1. Fig. 3(a) shows the
states of the closed-loop systemwith k = 1.4. By Theorem 2, when
the feedback gain k > 4.6398, the algorithm (2) asymptotically
solves the consensus problem for (1) under switching topologies
with the minimum dwell time T = 1 for the switching signal.
Fig. 3(b) shows the states of the closed-loop system with the
feedback gain k = 4.7 and the common dwell time T = 1 for
the switching signal. Note that the final state can no longer be
determined in advance because of the switching topologies.

Example 2. Consider the consensus of (3) under the fixed topology
represented by G4. For the algorithm (4), we consider the system
with the inherent nonlinear dynamics f (x, v, t) = x + sin(v). For
simplicity, we let the feedback gains satisfy β1 =

1
2kα1 + 1 with

k > 0. From Theorem 3, when α1 > 2.799 together with k = 1.4,
the algorithm (4) asymptotically solves the consensus problem for
the system (3). Fig. 4 shows the states when α1 = 2.9. Note that
because of the existence of the inherent nonlinear dynamics, the
velocities do not tend to zero, which is different from the case
where there is no inherent nonlinear dynamics. For the algorithm
(5), we consider the system with the inherent nonlinear dynamics
f (x, v, t) = −x + vsin(t). From Theorem 4, we can get that
α2 = β2 > 13.4654 ensures consensus. Fig. 5 shows the states
of the system (3) using the algorithm (5) with the feedback gains
α2 = β2 = 13.5.

Example 3. Consider the consensus of (3) using the algorithm (5)
under switching topologies represented by G4 −G6. For simplicity,
we also let α2 = β2. By direct calculation, we have that all the
digraphs are weighted balanced with the weighted vector ω =

[
2

√
10

1
√
10

2
√
10

1
√
10

]
T . When α2 = β2 > 1.5247, the algorithm

(5) asymptotically solves the consensus problem for (3) under
switching topologies. Fig. 6 shows the states when the inherent
nonlinear dynamics is f (x, v, t) =

1
√
2
(sin(x) − cos(v)) and α2 =

β2 = 3.

6. Conclusion

The consensus problem for multi-agent systems with in-
herent nonlinear dynamics under directed topologies has been
investigated. We have introduced a kind of variable transforma-
tion, i.e., star transformation, to convert the consensus problem to
a corresponding partial stability problem. By avoiding to use the
concept of the generalized algebraic connectivity for the strongly
connected digraph introduced in the existing work, we have given
the resultswhich aremore effectivewhen thenumber of the agents
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Fig. 1. Three digraphs G1 − G3 each of which contains a directed spanning tree.
Fig. 2. Three digraphs G4 − G6 each of which is strongly connected.
ba

Fig. 3. States of system (1) using the algorithm (2) under G1 and G1 − G3 , respectively.
Fig. 4. States of (3) using the algorithm (4) under the fixed topology G4 .
Fig. 5. States of (3) using the algorithm (5) under the fixed topology G4 .
is large and the directed graph is complex. The final consensus state
is time-varying. Specifically, it is related to the inherent nonlin-
ear term. So, we can also design the nonlinear term for the pur-
pose of application. In our futurework,wewill study the consensus
problem for the multi-agent systems with communication delays.
In addition, we will investigate more general switching topologies
(e.g., each digraph containing a spanning tree) for second-order
systems.
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Fig. 6. States of (3) using the algorithm (5) under switching topologies G4 − G6 .
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