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Evacuation Considering Blocking Effects on
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Abstract—In building emergency evacuation, the perception
of hazards can stress crowds, evoke their competitive behaviors,
and trigger disorder and blocking as they pass through narrow
passages (e.g., a small exit). This is a serious concern threatening
evacuees’ survivability and egress efficiency. How to optimize
crowd guidance while considering such effects is an important
problem. Based on advanced microscopic pedestrian models
and simulations, this paper establishes a new macroscopic net-
work-flow model where fire, smoke, and psychological factors can
evoke a crowd’s desire to escape—the desired flow rate. Disorder
and blocking occur when the desired flow rate exceeds the passage
capacity, resulting in a drastic decrease of crowd movement in
a nonlinear and random fashion. To effectively guide crowds, a
divide-and-conquer approach is developed based on groups to
reduce computational complexity and to reflect psychological
findings. Egress routes for individual groups are optimized by
using a novel combination of stochastic dynamic programming
and the rollout scheme. These routes are then coordinated so that
limited passage capacities are shared to meet the total need for
joint movement. Numerical testing and simulation demonstrate
that, compared with a strategy of merely using nearest exits, our
solution can evacuate more people more rapidly by preventing or
mitigating potential disorder and blocking at bottleneck passages.

Note to Practitioners—Effective building evacuation in case of
emergencies, such as fire and smoke, has long been recognized as
an important issue. Effective crowd guidance can improve evac-
uees’ survivability and egress efficiency. In practice, most guidance
(e.g., an exit sign) directs evacuees to the nearest exits. As crowds
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move and fire spreads over time, however, such guidance is ques-
tionable because some exits may be overcrowded or obstructed by
fire and smoke. This paper establishes a new network-flow model,
where crowd evacuation behaviors are supported by psychological
findings and simulation studies. Novel optimization techniques are
then used to find egress routes for effective evacuation. Numerical
results show that our solution will update guidance when the emer-
gency situation significantly changes. Compared with using nearest
exits, our solution can help evacuate people more efficiently.

Index Terms—Blocking effects, building emergency evacuation,
crowd movement, guidance optimization, macroscopic model, psy-
chological features.

1. INTRODUCTION

VACUEES were pushing against each other trying to get

to the front door as fast as possible, but they were tram-
pled underfoot and the door was simply blocked. Such a tragedy
happened in a Bangkok nightclub fire on January 1, 2009, and
as the fire spread through the entire building within 10 min,
61 people were killed and more than 200 injured in the hor-
rible moments of intense heat, smoke, and trampling (Mydans
[31]). Similar scenes of disorder and blocking were observed
in the Rhode Island nightclub fire in 2003 (Grosshandler et al.,
[13]) and several other building emergencies. How to optimize
building egress to prevent or mitigate such disasters is an im-
portant topic in egress study.

As identified by recent egress research, a fundamental cause
of such disorder and blocking is the psychological stress of
emergencies on crowd motion (Proulx [38]; Fahy and Proulx
[9]). Under intense stress, people may move faster than normal.
If they cannot move as desired (e.g., when passing through a
small exit), disorder and blocking at a bottleneck passage may
arise. However, disorder and blocking have long been ignored
in traditional egress models, where crowds were simply cap-
tured as an unthinking mass flowing in a passage-and-area net-
work. Such network-flow models enable optimization of egress
(Chalmet et al. [7], Hamacher and Tjandra [14]), but the vital
feature of blocking is ignored.

To better characterize crowd behaviors for egress analysis,
microscopic pedestrian models have been developed during
recent decades where an evacuee’s behavioral/psychological
status can be modeled and simulated. A representative model
is the social-force model by Helbing et al. [16]. In this model,
a key concept—desired velocity, was introduced to describe
the inner drive of an individual to escape, especially in a
stressful condition. By simulating many such individuals
collectively, blocking was observed at a narrow passage,
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and further intensified as the individuals’ desired velocity
increased. This simulation reflects what happens in reality, and
it yields emergent group-level behavior akin to a psychological
phenomena found in individuals: excess stress can degrade
human performance. However, such microscopic simulations
are computationally complex making it difficult to be used
directly for crowd guidance optimization.

Drawing from advances in psychological studies, behavioral
findings and pedestrian modeling and simulation, this paper es-
tablishes a new model for egress analysis. In this model, an im-
portant concept—the desired flow rate, is introduced as a macro-
scopic counterpart of the desired velocity in Helbing et al. [16],
and it aggregates individual-level motivation to escape in terms
of group-level flow dynamics. Disorder and blocking are then
characterized to occur when the desired flow rate exceeds the
maximum achievable rate as specified by the passage capacity,
resulting in a drastic decrease of crowd movement in a nonlinear
and probabilistic fashion. The desired flow rate and direction are
captured through a probabilistic graph in Section III, where po-
tential disorder and blocking can be predicted for egress perfor-
mance analysis. The key question here is how to select a set of
passages with proper capacities to maximize the egress speed.
Such an optimization problem is formulated in Section IV where
the optimized route will be conveyed to evacuees via informa-
tional devices (e.g., dynamic exit signs). Such guidance will
be assumed to be properly updated, and represents the decision
variables of the formulated problem.

In view of the nonlinearity and randomness of the egress
model, the optimization problem turns out to be a Markov deci-
sion problem. This problem is required to be solved in a timely
fashion because of the time-criticality of emergency response.
A divide-and-conquer approach is then developed in Section V,
where evacuees are divided into groups based on their rela-
tive proximity. Escape routes for each group are then individ-
ually optimized and coordinated with each other for an inte-
grated egress solution. Such a grouping method is also consis-
tent with existing social psychological studies—crowd evacua-
tion behaviors usually emerge at the level of groups (Santos and
Aguirre [40]).

Due to the nonlinearity of the crowd flow, a major difficulty
lies in how to decompose an overall crowd flow into group
subflows. To overcome this difficulty, a method is used where
each group is iteratively optimized. Limited passage capaci-
ties are thus properly shared among multiple groups to meet
their total need for joint movement. The Lagrangian relaxation
framework serves as a mathematical basis for operationalizing
this divide-and-conquer approach.

Numerical testing is presented in Section VI using two exam-
ples, where our optimized solution shows that, compared with
merely using the nearest exits, properly updating guidance can
improve the egress speed and safety by preventing or mitigating
disorder and blocking at bottleneck passages. For the valida-
tion of our entire approach, more efforts will be made in the
future, for example, in the form of fire drills or virtual reality
experiments.

A preliminary version of the work was presented at the 2008
IEEE Conference on Automation Science and Engineering.
Major improvements have been made in terms of stronger psy-
chological justification, complete mathematical formulation,

detailed method derivation, more numerical testing with video
simulation, as well as overall presentation.

II. LITERATURE REVIEW

This section reviews relevant literature on building egress
systems (Section II-A), emergency events (Section II-B) and
modeling and simulation of crowd evacuation (Section I1-C).

A. Building Egress Systems

A building egress system is mainly considered as a struc-
tural layout equipped with devices for information collection
and dissemination for safe and efficient evacuation in emer-
gencies. Various areas in the building and passages connecting
them are the structural aspects of an egress system. Such lay-
outs including the 3D-geometry, construction materials, etc.,
can be described by advanced microscopic simulators such as
building EXODUS (Galea et al. [12]), Simulex (Thompson and
Marchant [45]), Fire Dynamics Simulator with Evacuation (Ko-
rhonen and Hostikka [27]), etc., (Kuligowski and Peacock [28]).
By abstracting key ingredients from these simulators, macro-
scopic models have been established where each area is rep-
resented by a node with a specified capacity, and passages be-
tween areas by an arc with a specified capacity (Chalmet et al.
[7]; Hamacher and Tjandra [14]). These network models form
a basis for both egress performance analysis based on linear
system properties and for optimization by using network opti-
mization methods. Building egress systems also include devices
for information collection and dissemination such as smoke de-
tectors and exit signs. Recently, several new devices have been
developed, such as smart signs (Lijding ef al. [29]), as well as
new methods of fire detection (Toreyin et al. [46]). With tech-
nological advancements in these areas, we hope that providing
real-time guidance will be possible in the future.

B. Emergency Events

To study the propagation of fire and smoke in buildings, sim-
ulators (such as Fire Dynamics Simulator, McGrattan ef al. [32])
are widely used. Such simulators provide detailed results re-
garding fire spread and smoke movement in complex building
geometries, but require significant computational efforts and
cannot be used during a fire to optimize evacuation guidance.
Complementing the simulations, macroscopic models such as
Markov chains and cellular automata are extracted from the sim-
ulation to aid analysis of the spread of fire and smoke. These
high-level models mainly describe the likelihood of fire and
smoke spread (Hostikka and Keski-Rahkonen [18]; Aua et al.
[3]), and are used for hazard risk assessment. However, existing
macroscopic models do not include psychological factors.

C. Modeling and Simulation of Crowd Evacuation

Over the past decade, with advances in computer technology,
behavioral features of crowds have become incorporated into
microscopic pedestrian model and simulation. One of the most
well-known models is the social force model of Helbing et al.
[16]. This model characterizes each individual as a Newtonian
particle subject to both physical forces and psychological forces.
The psychological force is induced by the derivative of a vir-
tual velocity—the desired velocity, which specifies the speed
and direction that an individual desires to realize in escape.
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Fig. 1. The egress blocking effect.

From the viewpoint of psychology, the desired velocity rep-
resents the inner drive of an individual to escape, and it re-
flects how much the individual is stressed by perceiving the
surrounding hazard (Sime [43]; Proulx [38]; Fahy and Proulx
[9]). Therefore, the desired velocity (being psychological in na-
ture) can be interpreted as a measure of stress on evacuees.
By simulating a multitude of such individuals passing through
a bottleneck, a phenomena emerges that is akin to psycholog-
ical findings: moderate stress can improve the human perfor-
mance—speeding up egress; and excess of stress can diminish
such performance—slowing down egress. The negative effect
has been labeled the “faster-is-slower effect” by Helbing et al.
[16], which means a psychological increase in desired speed
may inversely decrease the crowd’s physical movement speed
(see Fig. 1).

The social-force model has been recently adopted in many
microscopic pedestrian models and simulations, and several ex-
tended versions of this model were also developed (Pan ef al.
[36]; Pelechano and Badler [37]). Recently, this model has been
integrated into a well-known fire simulator, the Fire Dynamics
Simulator (FDS) of NIST, with the new module “Fire Dynamics
Simulator with Evacuation” (FDS + Evac) simulating pedes-
trians’ behaviors within FDS (McGrattan et al. [32], and Ko-
rhonen and Hostikka [27]). Unfortunately, the version of FDS+
Evac when the simulations were run (2.1.0) lacks psychological
features affecting Helbing’s dynamic desired velocity. Instead,
its “unimpeded walking speed” for an evacuee remains con-
stant throughout a simulation except in the presence of smoke in
the immediate area around that evacuee. In this case, the unim-
peded walking speed will be reduced to reflect the visual dif-
ficulties of moving within smoke. We have been working with
the developers of FDS + Evac, and a psychological increase
in unimpeded walking speed due to stress from impatience has
already been implemented in the beta version of the program
based on Helbing’s model for nervousness (Helbing et al. [50];
see FDS + Evac Issue Tracker). Validation of the social-force
model and FDS + Evac has been carried out by comparing their
implications with data drawn from experiments (Helbing et al.
[15]; Hostikka et al. [19] and [20]) as well as observations from
natural events (Helbing et al. [15] and [17]; Hostikka e? al. [19]
and [20]; Johansson, et al. [22] and [23]). Nevertheless, this is
an ongoing process as additional features are still being added
to better represent the behaviors of evacuees.

In contrast to microscopic-level pedestrian models and simu-
lations, crowds have also been viewed as a homogeneous mass
that behaves like a fluid flowing along corridors with a speci-
fied rate. Such macroscopic flow models can be embedded into
an egress network, resulting in a network-flow model serving as
a basis for optimization of building egress (Chalmet et al. [7];
Hamacher and Tjandra [14]). Theoretically, such models hold
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Fig. 2. Crowd flow dynamics at a passage.

the promise of being useful in real-time evacuation guidance.
However, these models have not considered vital psychological
features of individuals involved in the crowd, and thus ignore
the blocking effect during egress.

Through the above literature review, a gap can be identified
between the traditional crowd flow model without the blocking
effect considered and the advanced simulation model with this
feature captured. Thus, our first task is bridging the gap, i.e., es-
tablishing a model that captures the blocking effect at a macro-
scopic level so that it can be properly used in building egress op-
timization. The basis of our modeling is the social-force model
and simulations.

III. AN EGRESS MODEL WITH BLOCKING EFFECTS

Based on recent advances in psychology, behavioral studies
and pedestrian modeling and simulation, a new egress model
is established in this section. In this model, a key concept, the
desired flow of crowds, is first presented as the macroscopic
counterpart of the desired velocity of Helbing et al [16]
(Section ITI-A). It reflects the intrapersonal drives underlying
crowd movement in terms of flow dynamics, and it arises as
crowds are stressed by fire/smoke (Section III-B). The out-
comes of disorder and blocking are then modeled when the
desired flow rate exceeds the achievable rate as specified by
the passage capacity, resulting in a drastic decrease of crowd
movement. With this model, interdependencies among crowd
flows, hazards and passage capacities are captured, allowing
for a shift to the important issue of how to select the passages
with proper capacities (Section ITI-C).

A. The Blocking Effect on Crowd Movement

Existing egress research clearly indicates that disorder and
blocking occur at bottlenecks in a structural layout (e.g., the
doorway). Our study will focus on crowd movement at such bot-
tlenecks rather than in open areas, and the key egress scenario
to be modeled is how crowds move from one area to another via
a passage. In this section, the crowd movement will be modeled
in an elementary layout, as shown in Fig. 2, where two areas,
vy and vq, are connected by a passage. To model the blocking
effect at a macroscopic level, a novel concept—the desired flow
rate, will be first established based on the concept of desired ve-
locity (Helbing et al. [16]).

The desired velocity in Helbing et al. [16] specifies two as-
pects of motion that an individual desires to realize—their di-
rection and speed. As many such individuals move collectively
through a passage of width [, as shown in Fig. 2, this micro-
scopic concept can be transformed to the macroscopic level of a
crowd, representing people by a density of p. The average speed
of crowd movement can be abstracted along the direction of the
passage, and is obtained by averaging each individual’s speed,
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Fig. 3. The egress blocking effect.

denoted by |v%|. The crowd’s flow rate can thus be represented
as the product of these terms

¢ =vp. )

The magnitude |¢?| denotes the average number of people
who desire to move through a passage per time unit and the sign
of ¢ represents the direction of their desired movement. With
the direction of a passage specified (e.g., the directed arc of the
network in Fig. 2), ¢? is positive if the crowd desires to move
along with this direction, and negative if they desire to move
oppositely. From a psychological perspective, a crowd’s desire
to move is due to the experience of stress, and it is particularly
related to perception of hazards. Thus, ¢¢, as an indicator for
demand of escape, can also be viewed as a measure of the stress
that evacuees experience.

What will occur if the crowd’s desire to move keeps on
increasing? Existing egress research indicates that, when
the demand increases beyond a certain threshold, disorder
and blocking may arise (Kachroo, et al. [24]). In our model,
blocking may occur when the desired flow rate exceeds the
achievable rate as specified by the passage capacity, resulting
in an undesirable decrease in crowd movement.

To quantify the blocking effect, the crowd flow rate and pas-
sage capacity are further defined. The crowd flow rate g reflects
the physical movement that the crowd actually achieves: |q| de-
notes the number of individuals who pass through a passage per
time unit, and sgn(q) denotes the direction of such movement.
Clearly, the physical movement is directed by their psycholog-
ical motivation. Thus, the crowd flow rate ¢ is directed by the
desired flow rate ¢%, i.e., sgn(q) = sgn(q?). For the passage ca-
pacity, it is the maximal number of people who can pass through
the passage per time unit, i.e., ¢ = max{|q|}. With the above
quantification in terms of flow dynamics, the blocking effect is
restated as: when the desired flow rate is below the passage ca-
pacity, the crowd can move as fast as desired, i.e., ¢ = ¢?. If the
desired flow rate exceeds the capacity, the probability of dis-
order and blocking increases. This will then result in a decrease
of the expected crowd flow rate in a nonlinear fashion, as shown
in Fig. 3.

Comparing Fig. 3 with Fig. 1 in Helbing’s simulation, it can
be seen that the two curves are similarly shaped. This can be
partly considered as a validation of our macroscopic flow model
of the egress blocking effect. The following probability distri-
bution exemplifies the curve shown in Fig. 3.

a) If |¢?| > c, q equals ¢¢ with probability 1, i.e.,

1, forg=g¢?
P dey=3 0 I=9 2
wald’e) {O, otherwise @

b) If |¢%| > ¢, the probability of disorder and blocking in-
creases as the difference between ¢ and c increases, i.e.,
1—ex ( _"i), if ¢ = sgn(q?) - c
Pr(g| ¢*,c) = Plmp) Ha=snld) e

C.
3)
Here, cP!° denotes a small flow rate when the passage is
blocked, and o > 0 is a parameter that affects the slope
of the curve in Fig. 3 when |¢?| > c. In the psycholog-
ical sense, o reflects the level of competitiveness in the
crowd: as « goes to zero, F(q | %) tends to decrease
more sharply, implying an increase in the probability of
disorder and blocking. As « increases, E(q | ¢%) tends to
decrease less sharply, implying a decrease of the proba-
bility of blocking. The extreme case of &« — oo implies
an ideal situation where the evacuees are absolutely altru-
istic, resulting in no probability of disorder and blocking.

exp I?TI#"_—C if g = sgn(q?) - ¢

B. The Relation of Hazard and Stress

Psychological findings indicate that hazards can stress people
and induce them to escape. In building fires, people desire to
move faster as they perceive more urgent threats (Ozel [35];
Staal [41]). As aresult, the demand of egress, as indicated by the
desired flow rate g2, is dependent on emergency status. In this
paper, we will call this effect the “impatience effect on evac-
uees.” To model this at the macroscopic level, a probabilistic
method is developed where the binomial distribution is applied
to transform individuals’ impatience at the microscopic level to
the collective impatience of a crowd at the macroscopic level.

Let probability pin;, denote the probability that an individual
desires to move in the next time slot. The total number of in-
dividuals desiring to move within a time slot forms the de-
sired flow rate |¢%|. As a result, |g¢| is binomially distributed:
lg?| ~ Bin(|w|, pimp), with

Pr(j¢’| = k

w,s") = Cﬁul(pimp)k(l —pimp)lw]—k- 4

Here, £k = [0, |w|], and |w]| is the number of individuals who
decide to take a certain path to escape, and s denotes the fire/
smoke status in the egress layout.

The discrete parameter pim, depends on the fire and smoke
status, and pimp increases as fire or smoke gets closer to the lo-
cation of people. With the layout, as shown in Fig. 2, the prob-
ability pimp can be specified as

pfnp, if fire/smoke propagates to an area
Dimp = immediately adjacent to v; orva  (5)
Pip,  Otherwise.

C. Guidance and Way-Finding

The way people select their escape route is an important
issue affecting how to effectively guide them to safety. Existing
studies show that people’s way-finding procedure can be con-
sidered as a process of fusing external information (e.g., exit
signs) with internal information (e.g., their prior knowledge
of exit locations). For external information, people often put
more trust in personalized guidance (e.g., instructions from a
group leader) than impersonalized ones (e.g., exit signs). For
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internal information, people tend to use paths they are familiar
with rather than those they are unfamiliar with (Proulx [38];
Johnson and Feinberg, 1997).

To model the above, a stochastic method is used where a bi-
nomial distribution similar to (4) is used to transform an in-
dividual probability measure to a collective probability mea-
sure. Specifically, given a guidance u, each individual is as-
sumed to follow the guidance with a probability p.,. Let = de-
note the total number of people in a location, then the number of
people who follow the guidance is binomially distributed, i.e.,
|w| ~ Bin(z, p.; ). From a psychological viewpoint, p., reflects
the level of trust that people have in the guidance, and is de-
scribed by

pH . if u is personalized instruction or u
Dex = guides people to a familiar path ~ (6)
pL,  otherwise.

By combining the probability distributions as given in the
above three subsections, a probabilistic graph is established, as
shown in Fig. 4. Each node of the graph denotes a factor being
considered and their interdependencies are captured through the
probability distributions of one factor conditioned on another.
The guidance u, fire/smoke status s¥', capacity ¢ and number
of people z are the input to this graphical model. The crowd
flow rate q is the output random variable and can be denoted by
q = q(u, ¢, s, z). The probability distribution of g is

Pr(q | ’U/, c? SF?"L.)
= Pr(al ¢, ¢)Pr(g? | w,s) Pr(w | w,2). ()
gt w

In the above probabilistic model [(1)—(7)], the unknown pa-
rameters include the social bond parameter o, impatience pa-
rameter pimyp, and trust parameter p,. Each has a psychological
meaning and can be estimated with statistics, given appropriate
data sets. Such data sets can be acquired from various designed
experiments. For example, a psychological experiment can be
conducted to find the way-finding preference of occupants in
an apartment building. Video recordings can be reviewed to
determine the flow rate of a passage under certain conditions
(Muir et al. [34]). Additionally, virtual reality experiments have
recently been conducted to determine the effect of various emer-

Fig. 5. An egress network.

gency signs on evacuees’ way-finding activities (Tang et al.
[44]). Nevertheless, estimating unknown parameters is not the
focus of this paper. In Sections [IV-VII, it will be assumed that
the guidance is in good credence, and we shall examine how to
guide crowds when individuals behave impatiently and compet-
itively in emergency egress.

In sum, excessive stress can lead to disorder and blocking in
emergency egress. The model established in this section char-
acterizes this effect at the macroscopic level. It describes how
situational information (i.e., perceived hazards or received guid-
ance) affects psychological factors (e.g., the desired flow rate
q%) and how these factors further affect the physical movement
of crowds in egress.

IV. AN OVERALL OPTIMIZATION FORMULATION

In this section, the model established above will be extended
in both spatial and temporal dimensions, and a Markovian
network-flow model will be presented to capture crowd move-
ment through a building in a dynamic manner (Section IV-A).
Fire and smoke information will also be described by a
Markovian process and be integrated into this network-flow
model (Section IV-B). To properly guide crowds to safety, a
snapshot problem is formulated as a Markov decision problem
with the objective to maximize both the egress speed and
number of people evacuated (Section IV-C).

A. Network-Flow Dynamics

The structural layout of an egress system is represented as
anetwork G = (V, E) (Hamacher and Tjandra, 2001), where
each area is denoted by a vertex v € V and each passage con-
necting areas is denoted by an arc e € E. Because an egress
network abstracts a layout for evacuation, its arcs are usually
directed to the exits or the safety areas. Fig. 5 illustrates a planar
layout and the corresponding network model.

By embedding the crowd flow in a network, a network-flow
model is obtained. Let g.(¢) be the extension of ¢ in both the
temporal and spatial dimensions. The magnitude |g.(¢)| denotes
the number of people passing through arc e during the interval
[t,¢ + At, and the sign sgn[g.(¢)] denotes the direction of their
motion in the same interval. Let z,(t) denote the number of
evacuees in area v at time ¢. As the crowd moves through each
area, the number of people z,(t) is updated according to the
following mass balance equation:

Tyt +1) = 2 (t) + D b(v, €)qe(t) ®)
ecE

where the arc direction is indicated by

1, if arc e is directed into vertex v
b(v,e) =< —1, ifarce is directed from vertex v )
0, otherwise.
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Fig. 6. The matrix representation of an egress network in Fig. 5.

The set of such equations can be put in the matrix form

z(t+1) = z(t) + Bq(t), (10)

which is a standard linear network-flow model. For the example
in Fig. 5, B is represented by the matrix below.

In the literature, a network-flow model takes the flow rate ¢(t)
as decision variables (Chalmet et al. [7]), implying that we can
control how many evacuees will move through each passage
during each time step. This assumption is questionable since
humans cannot be viewed as machines or robots under our com-
plete control. Rather, humans initiate actions in response to their
subjective impressions of emergency events. Ignoring such sub-
jective initiative may lead to disorders or blocking as we dis-
cussed in Section III.

The traditional model can be improved by capturing
critical human factors. Our new crowd flow dynamics,
as presented in Section III, is incorporated into this mass
balance equation where the flow rate g.(¢) is replaced by
ge ((t), ue(t), s¥'(t), ¢), which includes several psychological
factors

oy (t+ 1) = 2, (t

)+ 3 b, e)a. (. (8),u

ecE

(1), sF(t),ce) )
1)

In(11), ¢, ¢*, w, and u are extended in both temporal and spatial
dimensions, resulting in g.(t), ¢2(t), we(t), and u,(¢). The pas-
sage capacity c is labeled with only the arc index, i.e., c., as it
is derived from the dimensional size of a doorway or stairs. The
fire/smoke status s¥ denotes the overall hazard status within
the egress layout, and is thus labeled only with the time index
s (t). Here, the guidance w,(t) is considered a decision vari-
able instead of the flow rate g.(t) as in the traditional model.

The guidance u.(t) is specified as
if along with the direction of arc e

+1,
ue(t) = { —1, if opposite to the direction of arc e
0, if arc e should not be used.

(12)

By vectorizing q.(t), q2(t), we(t), and wu,(t) with arc sub-
scripts, an overall crowd flow equation can be obtained, and a
restatement of (10) is given below

= z(t) + Bq(z(t),u(t), s¥ (), c). (13)

In the event of a complicated building layout, the model can be
simplified by only keeping prominent choices based on experi-
mental data or heuristics. The vector u(t) = [uy(t) - - - u g ()]
specifies an egress decision at each passageway at time ¢. These
decisions, when put together, can provide egress routes for indi-
vidual groups. Fig. 7 illustrates three candidate routes for either
Group 1 or Group 2 in the building.

Egress decisions will be conveyed to evacuees through the
building guidance system, e.g., exit signs, audio broadcasting,

z(t+1)

l | Group 2
Gr oup:l Exit 2 ‘l Exit 2
11

Fig. 7. Evacuation routes and strategies.

or through personalized guidance such as instructions from
safety staff (Aguirre, 1994; Pelechano and Badler [37]).

B. Fire/Smoke Propagation

As fire and smoke propagate in an egress network, the net-
work-flow model given in (13) requires incorporation of fire/
smoke information. Such information is described in a proba-
bilistic sense in this paper. A cellular automaton model is used
to characterize the likelihood of the spread of fire and smoke
in buildings. In this automaton, a cell represents an area of the
egress network and the cell’s state represents its hazard status

ro ) 1, ifareaw is on fire at time ¢
sy (£) = { 0, otherwise. (14)
The overall fire/smoke state at time ¢ is then
T
$7(t) = (sT (), 55 () 5Ty (1)) (15)

The transitions of cell states are governed by the conditional
probabilities that fire or smoke propagates to an area given the
status of its direct adjacencies, i.e.,

N=1-JJ

{v'}

Pr(sf(t+1) = o) =1))

(16)
where {v'} denotes the set of direct adjacencies of area v, and
pyiuT is the conditional probability that fire or smoke will prop-
agate from v’ to v

- pf’v Pr (S

Pon =Pr(sf(t+1)=1[s5(t)=1). (17

The conditional probabilities can be estimated via statistical
methods based on experimental data. The resulting model is a
Markov process. Since the fire and smoke dynamics as specified
in (16) are uncontrollable, our decision will be to properly select

and update a set of passages for safe egress.

C. Formulation for the Optimization Problem

To select or update a set of passages in emergency egress, an
optimization problem is formulated, consisting of system dy-
namics, constraints and an objective function.

To capture the overall egress situation, the system dynamics
consists of the network-flow model (13) with the fire/smoke
dynamics (16), where (z(t), s¥'(t)) is the system state and the
guidance strategy u(t) is the system input. Here, the evolution
of z(t) can be described by

a(t+1) = f(z(t),s" (1),

u(t)). (18)
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Similarly, the evolution of s¥'(t) is specified by
sE(t+1) = h(s¥ (1)) (19)

resulting in a Markov process.

The constraints for the problem can be categorized in two
sets. The first set refers to the size of a passage that constrains
the speed of crowd movement as described by (2) and (3). The
second set refers to the rationality of the disseminated crowd
guidance—the guidance should not lead evacuees to an area that
is currently on fire, contains smoke or will soon be hazardous.
These constraints are given as

ue(t) #1, if Pr(sf(t+k)=1) > B,
fork=0,1,2-- K. (20)

Here, 3 is a threshold for fire risk measure, and K is the length
of the future to take into account. Symbol v’ denotes an area di-
rectly adjacent v as in (16). Since our problem does not consider
fire-fighting efforts, the probability of an area catching fire will
increase over time, and this implies that (20) can be simplified
to

ue(t) # 1, if Pr(sf(t+K)=1) > 3. 1)

To goal of crowd guidance is to evacuate as many people as
possible and as rapidly as possible. The objective function to be
maximized is thus a weighted sum of the expected number of
total people evacuated and the expected cumulative number of
people evacuated. Given a time horizon [0, 7', the total expected
number of people evacuated is evaluated by

Ri= Y Elz,(T). (22)

ve{exit}

To evacuate people as fast as possible, the cumulative number
of people evacuated is evaluated by

T-1
Ry=Y > Elz,(t) (23)

t=0 ve{exit}
The corresponding objective function is then
Maximize J, with J = cayg - B1 + Ra, (24)

where c.g i3 a weight.

With the above objective function in a time additive form,
the optimization problem is formulated as a Markov decision
problem. The people’s locations and fire/smoke status form its
state space {(z(t),s¥(¢))}, and crowd guidance makes up its
decision space {u(¢)}.

The above problem will be used as a snapshot problem
and solved in the moving window manner. In view of the
nonlinearity and randomness of the above formulation, it has
a high computational complexity. Solving the problem in a
timely fashion is challenging because of the time-criticality of
emergency operations.

V. SOLUTION METHODOLOGY

To efficiently solve the optimization problem formulated in
(18)—(24), a divide-and-conquer approach is developed. Evac-
uees are divided into groups based on their initial locations, and

Exit1 Exit1 Exit1
Group 2 1| Group 2

© T I o

] ke T

2
L

i

Groupt 11 Groupt 1 I 1]
Exit 2 Exit2 Exit 2

Fig. 8. Grouping of evacuees.

the evacuation route for each group is optimized. These routes
are then coordinated with each other for an overall egress solu-
tion. To prevent potential disorder and blocking in group evac-
uation, the desired flow rates of evacuees are used to coordinate
multiple groups so that the limited path capacities can be prop-
erly allocated. The Lagrangian relaxation framework is used
to operationalize such coordination (Section V-A), and each
group subproblem is solved by using the dynamic programming
method and the rollout scheme (Section V-B).

A. The Divide-and-Conquer Approach

To develop a divide-and-conquer approach, crowds will be
first divided into groups, as shown in Fig. 8. Grouping is an
important vehicle for accelerating computation in optimiza-
tion since we can then deal with individual groups in areas
as opposed to dealing with all the crowds simultaneously in
the building. Also, grouping reflects a well-accepted social
psychology finding in egress research—people are drawn to
evacuate with others rather than alone (Cornwell [8]) and
their movement toward exits is influenced by others’ behavior
(Santos and Aguirre [40]). For example, individuals move
in directions that they see others move (Low [30]) and they
will delay evacuation if others are not moving. Moreover,
individuals seek confirmation from others as to whether an
emergency is even occurring (Aguirre et al. [2]), and they often
strive to exit with others they know (Sime [42]). Thus, dividing
crowds into groups enables us to capture these psychological
findings by using different parameters and motion features in
the group subdynamics. The overall crowd dynamics (18) can
be decomposed into group subdynamics as

2t +1) = fa' (1), 57 (1), i (1), &),
fori=1,2---1I, (25)

where I is the total number of groups under consideration. For
simplicity, it is assumed that the groups will not merge or sep-
arate within the time horizon, and that they are able to receive
separate sets of guidance.

The above group subdynamics is not as simple as one might
think. Groups are coupled when they come into contact with
each other by using the same passages at the same time. As
seen in Fig. 3, the nonlinear crowd dynamics is described by
a piecewise function, where a linear segment is for qu(t)| > ce
and a nonlinear segment is for |q§(t)[ > ce. The linear segment
represents that the passage capacity is sufficient for the crowd’s
desire to move. The nonlinear segment implies that the passage
capacity is not sufficient, and groups compete for the limited
passage capacity in a nonlinear and complicated fashion. As a
result, the overall crowd dynamics cannot be decomposed into
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independent group dynamics. A surrogate method is therefore
developed to approximate such nonlinear coupling of groups,
where each group subproblem is solved with the aggregation of
the latest results from all other groups (Zhao et al. [49]).

Whether the system evolves in the linear segment or not is de-
cision-dependent, making it important to coordinate the groups
so that the egress evolves in the linear segment as much as pos-
sible. This coordination is also used to approximate the overall
system dynamics when the egress has to evolve in the non-
linear segment. A soft constraint is therefore imposed to limit
the crowd flow dynamics within the linear segment, thus pre-
venting the nonlinearity of disorder and blocking

i) coforVee E,t=0,1,...T. (26)

This inequality can be viewed as a criterion for preventing dis-
order and blocking, and implies that the egress demand should
not exceed the total passage capacity. The psychological inter-
pretation of (26) is that the stress on people should not exceed
a limit for safe egress. From the perspective of optimization,
(26) expresses our hope that the optimized solution will be in
the linear segment (without the risk of disorder or blocking).

Inequality (26) can be transformed into a group form based
on the additive property of ¢%(t), i.e., the total desired flow rate
is equal to the sum of each group’s desired flow rate. Because
counterflows are not considered in our egress model, this addi-
tivity is expressed by

I

FHOIEDS

3 qf(ﬂ‘ :

forVee E,t=0,1,...T.

@7

By plugging (27) into (26) and taking expectation on both sides,
a linear inequality is obtained as

With the above, the objective function (24) is correspond-
ingly transformed into a group form as

qéii(t)H _gce, forVee E,t=0,1,...T. (28)

I
Maximize J, with J = Z Jt, where
i=1
T =cavg Y, E[zi(T)]
ve{exit}
T-1 .
+> > EEL®)]. 29
t=0 ve{exit}

Equations (19), (25), (28), and (29) specify our new problem
formulation. To solve it, (28) is first relaxed by using Lagrangian
multipliers {A(¢, e)}. The Lagrangian is

I
L=ty Y, > E[z(T)]

ve{exit} =1

+TZ—1 > iE [ ()]

t=0 ve{exit} i=1
I
27|

- jf > {)\(t,e)

t=0 e€c E

& 0] - ce} } (30)

t The Overall Evacuation Problem

h 7
Coordination Strategy to Simplify
Group Coup]illlg Constraints

Y

Lagrangian Relaxation for
Decomposition into Groups
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Fig. 9. The flow chart of the computation method.

By collecting all the terms related to group ¢, subproblem ¢ is
formulated as:

max L' with L' = coyg Z E [z;(T)]

veE{exit}

+TZ_1 > Ele®)]

t=0 ve{exit}

. TZ—I 3 {)\(t,e)E [

t=0 eecFE

@[]} 6y

In view that the groups are coupled through (3) in a compli-
cated manner, surrogate optimization is used where each group
subproblem is solved with the aggregation of the latest results
from all other groups (Zhao et al. [49]). Specifically for (3), an
available passage capacity for Group ¢ is obtained by subtracting
from the total capacity of that passage the latest flow rates of
other groups. The subproblem is then to maximize a time-ad-
ditive objective function with group subdynamics specified by
(26) as specified above. This can be solved by using stochastic
dynamic programming (Bertsekas [6]). Individual groups are
then coordinated by iteratively updating the Lagrangian multi-
pliers {A(¢, e)} (Bertsekas [5]; Zhao et al. [49]). The flowchart
of the solution process is presented in Fig. 9. Here, A(¢, €) spec-
ifies the penalty that is given based on the likelihood of disorder
and blocking on passage e at time ¢. Such multipliers provide
a marginal value of the passage capacity (called the “shadow
price”), and are valuable for egress analysis.

B. The Dynamic Programming Method

The group subproblem is solved by using stochastic dynamic
programming. Given the subsystem state (z},sf’) at time ¢,
the problem is to select uy to obtain the optimal reward-to-go
Li (x,ﬁ, sf) based on the following Bellman Equation:

Li (:B;,Sf) =Gt (1;755)

i i F i JF
+ max {Ezi+l,sf+l [L;+1 (m£+175t+1) | 2%, sy a’u‘;] } (32)

Uy
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Here, g (z},s{) denotes the stage-wise reward at time ¢.
Solving the subproblem by directly using (32), however, is
computationally intensive (Bertsekas [6]). To reduce the com-
putational complexity, state space reduction is used by revising
the dynamic programming method as presented next.

A state for group 4 at time ¢ includes two components—a
crowd component 2% and a fire/smoke component s{". The state
space can be reduced because our model treats s¥ as an uncon-
trollable component, therefore s can be viewed as a “distur-
bance” rather than as a part of the state, and Li only depends
on the crowd component 2% (Bertsekas, 2005). Here, the term
“disturbance” is slightly different from the common concept of
disturbance because s can be observed before u! is optimized
while the common disturbance occurs after u¢ is applied. The
optimal reward-to-go in (32) at time ¢ is thus represented by

L (z;) E,r {LL (mt,st ) T4}
and the dynamic programming equation is then given by
Ly (z}) = g¢ (z)

+E {max By, (B (aka) Labof ul] 1ot} 09

(33)

Equation (33) implies that the reward-to-go can be computed
with a significantly reduced state space.

Besides state space reduction, a rollout scheme is also used
(Bertsekas [6]). Its main idea is to employ heuristics to approx-
imate the optimal reward-to-go in Bellman’s equation several
steps into the future. For our problem the heuristic of using the
nearest exit, an empirical method widely used in egress practice,
is adopted.

Although the above method enables us to compute guidance
decisions in a moving window fashion, such decisions should
not be updated frequently since frequent changes can cause
confusion on evacuees and reduce the credibility of guidance
(Proulx [38]; Fahy and Proulx [9]). Infrequent updating also
works to our advantage by reducing the problem complexity,
i.e., reducing the decision variables in the timeline because
the guidance will be kept unchanged within a certain time
period [t,t + 6At]. As a result, given a current subsystem
state (x%(t), s¥'(t)), the optimal guidance during [t, + §A¢t] is
optimized by

L (a1, 57) = g¢ (3)
+IIL%XE1L'::+AL {Li-l-At (zi+At) | 23, Sf,ui} SN ER)

Here, E; LAt (r; " At) is an approximation of future re-
ward-to-go after time point ¢ + At, and is approximated based
on the nearest-exit heuristics and by treating the fire/smoke
state components as “disturbances.”

It may be necessary to consider the possibility that the infor-
mation network is damaged, either due to sensor failure or guid-
ance failure. In the event of sensor damage, evacuees should be
directed away from the affected area, due to the possibility of
hazards. If the guidance fails, it can be assumed that evacuees in
the affected area will use a self-guided strategy, such as nearest

1 1

|_L]_lOlI__,1H1L_.|L1|
02 H L2 |02'_’lH2|‘_‘L2|
03‘|H3|L3 |o3|——"H3]‘—1L3|

11 N

Fig. 10. An egress network.

exits. Normal guidance can resume when groups emerge from
damaged areas.

VI. TESTING AND SIMULATION RESULTS

Numerical testing is presented by using two examples. The
first example uses a small layout to compare our network-flow
model and method with traditional ones. The second example
uses a larger layout (following Pan ef al. [36]), and compares
our optimization-based strategies with the strategy of using
the nearest exits. For either example, an evacuation process is
first simulated by FDS + Evac 2.1.0 using the default settings
for adult evacuees. A macroscopic model is abstracted from
the simulation results, and the egress route is then optimized
based on this model in Matlab. To compare our optimized
egress strategy versus other strategies, our optimized result
is executed in FDS + Evac, where guidance is implemented
by dynamically opening or closing certain exits. As stated
in Section II-C, the current version of FDS + Evac lacks
the feature of dynamic desired velocity. An evacuee has an
“unimpeded walking speed,” which is reduced by the presence
of smoke. Nevertheless, simulation is still meaningful when
comparing our results with those of using nearest exits. The
reason is that if a future version of FDS + Evac with the feature
of dynamic desired velocity is used, the comparison would be
even drastic. This is due to more blocking by using the nearest
exits caused by the increase in desired velocities, whereas
changes to results using our method would be small because
our guidance is designed to minimize blocking caused by high
desired flow rates. Both examples run in the current version
of FDS + Evac demonstrate that our optimized guidance can
speed up egress by preventing potential blocking at bottleneck
passages.

1) Example 1: This example studies an egress scenario in
which two groups of people are guided to exits within a small
planar layout. By dividing the layout into areas and passages, an
egress network is abstracted, as shown in Fig. 10. Let the time
unit be 8 ds. Exit 2 is of small capacity, namely, 5 persons per
time unit, and Exit 1 is of relatively large capacity, 15 persons
per time unit. Group 1 consists of 30 evacuees and Group 2
consists of 20 evacuees. Fig. 11 shows the initial locations of
the two groups and the initial status of fire and smoke. Based
upon analysis, there is little probability of smoke in the initial
three time steps in the lounge areas (H1, H2 and H3), and thus
Exit 2 is safe for egress within the initial three time slots.
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e

Fig. 11. Initial guidance att = 1.

Fig. 12. Guidance updated att = 5.

To find a good egress route, the guidance is optimized by
using network-flow techniques. In this case the guidance is op-
timized in 20 sequential time steps. For each time step, we look
ahead five time steps to formulate a snapshot problem as pre-
sented in Section I'V.

If our network-flow model is used, the optimized route for the
initial time step is as shown in Fig. 11. This route is chosen be-
cause our model and method predict that disorder and blocking
will occur if people are guided to pass through the narrow pas-
sage from Office 3 to Exit 2. Thus, Exit 2 is not chosen for
egress, and evacuees are guided to Exit 1. At ¢ = 5, the guid-
ance is updated, as shown in Fig. 12, because fire/smoke may
propagate to the lounge area soon, affecting the availability of
the previously chosen egress routes. The average optimization
computation time at each ¢ is 2.95 s (with Dell Vostro 1700; Intel
Core™?2 Duo CPU with 2G memory; Window Vista).

If the blocking effect is ignored, and the traditional network-
flow model (10) is used to optimize the egress routes, the op-
timized solution for the initial three time steps is as shown in
Fig. 13, where Group 1 is guided to Exit 2. The solution will be
updated later, as shown in Fig. 12. This result actually suggests
the strategy of using the nearest exits—each group is guided to
the nearest exit with respect to their locations.

Comparing the two sets of guidance above, a major issue is
whether or not to use Exit 2. To answer this question, two sets
of guidance are executed in the simulation: one with and one
without using Exit 2. The simulation results show that blocking
occurs when the large group of evacuees in Office 3 heads to
Exit 2, and after 20 time steps there are still 13 evacuees who
have not been successfully evacuated. Please see the video seg-
ment attached to this paper. A snapshot of the video is shown in
Fig. 14, where individuals are represented by small blue arrows.

However, if the large group of evacuees is instead guided to
Exit 1 based on our results, the simulation shows a smoother and

Lixit 1
] L

BRI
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G%l?p Exit 2 {‘ 4

Fig. 13. Optimal guidance by the traditional model (t = 1).

Fig. 14. Example 1 by using the nearest exits. (Video).

Fig. 15. Example 1 by using our optimized solution. (Video).

faster evacuation process. After 20 time steps, there are only
5 people left as compared with 13 in the previous case. Thus,
the simulation results verify not using Exit 2 because of the
bottleneck from Office 3 to Exit 2, even though Exit 2 is nearest
to Group 1. A snapshot of the video is shown in Fig. 15.

In summary, our model and method considers the blocking
effect as Group 1 moves towards Exit 2, while the traditional
model does not. Thus, our optimized solution suggests leading
Group 1 to Exit 1, and this speeds up egress.

One possibility to be mentioned here is to guide a small por-
tion of Group 1 to Exit 2, while the remaining evacuees go to
Exit 1. In this case the egress seems to be even faster. This so-
lution implies that a group can be split, but splitting a group is
unlikely to happen in a real evacuation unless a human leader
can intervene and direct individuals to use different paths. Thus,
in our approach as presented in Section V, once groups are de-
fined they will not be split or merged.

Additionally, our method with grouping is compared with
the same approach but without grouping. The latter solves the
problem formulated in Section IV without decomposition based
on groups. The results on guidance for this particular small ex-
ample turned out to be identical to the results with grouping,
however, with a longer CPU time of 5.95 s (as compared to
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Fig. 16. An egress structural layout.

EL2 R2 R4 RS
(b)

Fig. 17. An egress network abstracted.

2.95 s with grouping). It is expected that the CPU times will in-
crease fast as the problem size increases for the method without
grouping.

2) Example 2: An egress problem motivated by Pan et al.
[36] is used as our second example. Although Pan’s simula-
tion was able to demonstrate that crowds’ competitive behaviors
could induce blocking and thus delay egress, no solution was
given to prevent such blocking. Our model and method provide
a solution to this problem by seeking better routes to speed up
egress.

Following Pan’s example, an egress layout is created in
FDS + Evac, as shown in Fig. 15. Let the time unit be 5 s. The
doorway connecting RS and L1 has a small capacity of 10 per-
sons per time unit. Other doorways have large capacities from
15 to 20 persons per time unit. A network model is abstracted
from this layout, as shown in Figs. 16 and 17.

In this egress layout, 110 evacuees are located in areas from
R1 to R5, and fire/smoke starts from L4. Five groups are formed
based on their initial locations in R1 to R5. The network-flow
dynamics of these groups are established and their guidance is
optimized in 30 sequential time steps. To be consistent with
Pan’s simulation, the competitiveness of evacuees is tuned to be
intensive, and this leads to a relatively small value of « in (3).
Based on analysis using (16) there is little probability of fire or
smoke observed in L1 within the initial 30 s. Exits ER1 and ER2
are thus considered safe for egress during this time period.

Based on the abstracted network-flow dynamics, the group
guidance is optimized and the solution recommends Guidance
Scheme 1 (Fig. 18) during the initial five time steps because
there is little probability of hazard in L1 during this time pe-
riod. Thus, exit EL 1 is safe for egress. As the smoke propagates,
guidance is updated according to Guidance Scheme 2 (Fig. 19)
from the sixth time step and onward because the small capacity
of the passage connecting R5 and L1 cannot support people’s

ER1 R1

©®=O=0 &
@=Q-0) o/'

ER2 R2

Fig. 18. Guidance scheme 1.

ERI1 R1 R3
®e() %O wO
ER2 R2

Fig. 19. Guidance scheme 2.

Fig. 21.

Example 2: Using our optimized solution (Video).

rush to Exit ER1. The average computation time at each time
point is 3.3 s.

The optimized guidance strategy is simulated to compare our
method with the strategy of using the nearest exits, shown in
Figs. 20 and 21. A major difference between these two strategies
is whether or not the passage connecting R5 and L1 should be
used. Our solution suggests that this passage should only be
used by a small group of people within the initial time slots, and
guidance should be updated (switched to Scheme 2) as the risk
of disorder and blocking significantly increases on this passage.
The remaining people are then guided to Exit EL1 or EL2, At
the end of the simulation, 3 people are left in this layout after
100 s. Each run of the simulation takes roughly 12 min.
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By contrast, when the nearest exit strategy is used, a large
number of people may be guided to EL1. This inevitably makes
a large number of people use the narrow passage between RS
and L1, and this may result in blocking. As shown in the sim-
ulation results, after 100 s there are 14 people left. Compared
with 3 people in the previous case, it is clear that the nearest-exit
strategy is not the optimal choice for this example.

VII. CONCLUSION

Based on advanced microscopic pedestrian models and
simulations, this paper establishes a new macroscopic net-
work-flow model where fire, smoke, and psychological factors
can evoke a crowd’s desire to escape. Our model forms a basis
for the optimization of egress routes and crowd guidance in an
evacuation. A divide-and-conquer approach is then developed
to reduce computational complexity and to reflect psycholog-
ical findings based on groups. By time-sharing passages and
avoiding narrow passages to prevent potential disorder and
blocking, numerical testing results demonstrate that, compared
with the traditional network-flow techniques and the empirical
strategy of the nearest exits, our solution can evacuate more
people more rapidly.

Future efforts will be focused on validating our model and im-
proving computation efficiency. For validation we plan to per-
form fire drills and virtual reality experiments to study the psy-
chological state of evacuees. Computation efficiency can poten-
tially be improved through model simplification and method re-
finement. New technologies such as cloud computing may also
prove useful to provide a burst of computation power on de-
mand in an emergency.
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