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Abstract
We present a study of in vitro cell migration in two dimensions as a first step towards
understanding the mechanisms governing the motility of glioma cells. Our study is based on a
cellular automaton model which aims at reproducing the kinetics of a lump of glioma cells
deposited on a substrate of collagen. The dynamical effects of cell attraction and motion
inertia are introduced through adequate automaton rules. We compare the density profiles
given by the model to those obtained experimentally. The result of the best fit indicates a
substantial cell–cell attraction due to cell–cell communication through gap junctions
(or chemotaxis) and negligible inertia effects during migration. Tracking of individual
migrating cells indicates highly convoluted cell trajectories.

1. Introduction

In contrast to normal tissues, malignant tumours are
characterized by unrestrained proliferation and invasion that
perturb first local and ultimately general tissue homoeostasis.
Although clinically and biologically diverse, all malignant
tumours grow by cell proliferation creating an abnormal
bulk and invading host tissues thereby assuring tumour cell
spread. Numerous modelling studies have set out to define the
general rules underpinning the growth behaviour of tumours
(see [1, 2] for reviews of modelling approaches and tissue-
specific examples). In the case of gliomas, invasion (cell
diffusion) is a major component of tumour growth, together
with cell proliferation. This is the main conclusion of the
prototypical modelling study of Burgess et al [3]. These
authors have introduced a simple model for glioma growth
based on cell proliferation and cell diffusion from an initial
tumour lump. Their assumptions are spherical symmetry,
homogeneous diffusion and exponential growth, incorporated
in the equation:

∂ρ

∂t
= D∇2ρ + κρ . (1.1)

The Burgess model stipulates that glioma growth results from
an interplay between cell diffusion and cell proliferation.

It is through cell migration (diffusion) that gliomas occupy
progressively vaster regions in the tumour-harbouring brain;
cell proliferation is responsible for the formation of tumour
bulk. This very general concept of tumour kinetics is in
accord with most clinical and experimental data (for reviews
see [8, 9]). Moreover, this model appears valid whatever
the presumptive driving forces of glioma invasion: intrinsic
abnormal high motility of glioma cells [4], influence of
chemotactic and growth factors [5], availability of nutrients
[1], or anaerobic metabolism gradients [6, 7]. These numerical
studies are largely corroborated by numerous clinical and
experimental observations (for reviews see [8, 9]) pointing
to the unique locally invasive behaviour of gliomas. From the
very onset of their development, these tumours, commonly
consisting of a central bulk and halo of diffusely invasive
cells, fan out to distant areas of the brain (e.g. the contralateral
brain hemisphere), largely defeating the effect of surgery and
other local therapies [8]. Left-out infiltrated cells were shown
to be the substrate of the inevitable and ultimately fatal glioma
recurrences after surgery.

The model of Burgess et al and subsequent work based
on its reasoning (e.g. [10]) examine invading glioma cells
at the level of the tumour itself where diffusion is the main
component of tumour growth. However, important insights
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into the invasive properties of gliomas could also be gained
by examination of the behaviour of migrating single cells or
population of cells in vitro, and indeed several methodological
approaches have been applied [4, 5, 9, 11, 12]. In order to
understand diffusion as a kinetic parameter, it is but natural to
consider its source, namely the motility of the glioma cells.

The present work is devoted to the study of the diffusion
properties of glioma cells during migration. As such, our study
does not aim at a description of in vivo glioma growth neither
do we pretend that our results can be directly extrapolated to
a realistic situation. Here we are concentrating on questions
of two-dimensional diffusion of glioma cells over a collagen
substrate, examining the motility of cells and their interaction.
Our cell spheroids contain cells counted in hundreds, rather
than the billions in a real glioma, the period of study is
limited to 48 h rather than months or years; and moreover, no
significant proliferation or apoptosis is present. The diffusion
properties of glioma cells will be examined in the theoretical
part of our study with the help of a cellular automaton. Models
based on cellular automata have already been considered for
the description of tumour growth [2, 13, 14]. Here, however,
we shall be limiting ourselves to the study and modelling of
the migration alone (no net proliferation and no necrosis). The
advantage of an approach based on a cellular automaton is that
the latter is a dynamical system with simple dynamics.

Malignant tumour cells in vivo can have interaction with
other tumour cells and also with normal astrocytes. This
interaction could play a role in tumour growth and tumour
invasiveness. One example of cell interaction that exists in
the case of gliomas is gap junction mediated attraction. For
instance, gap junctions exist between tumour cells as well as
between tumour cells and normal astrocytes [15]. It is still not
clear which interaction is involved in tumour growth (perhaps
both). In a recent study, it has been shown that the tumour
cell–tumour cell gap junctional communication (GJC) and the
tumour cells–astrocyte GJC could play different roles [16].
In this paper, we decided, for simplicity, to restrict our study
to interactions between tumour cells. Thus, we studied the
migration of tumour cells on a collagen substrate, where only
tumour cell interactions are possible.

The various effects can be incorporated with the help of
some simple well-chosen rules. The numerical simulations are
not particularly demanding and the interpretation of results is
straightforward in most cases. The results of the model will
be compared to experimental data obtained with the method
summarized below. We show that data analysis by means of
a cellular automaton model makes possible the formulation of
hypotheses concerning the motility of glioma cell as well as
their interaction.

2. Materials and methods

2.1. Cell lines and spheroids

In these experiments, we used a highly motile established
human glioma cell line (GL15) extensively studied in
[16–18]. Spheroids were derived through the overlay-culture
methods as previously described [18]. Briefly, GL15 cells

from trypsinized stock flasks were seeded at 2×104 cell cm−2

in 3 ml of GL15 culture in 3.5 cm Petri dishes coated with
an attachment limiting surface (agar). Cells were kept in a
standard cell culture incubator and approximately half of the
overlay medium was discarded and replenished with a fresh
medium every other day. Under these conditions, GL15 cells
form spheroids (200–1200 µm in diameter) in 10–14 days.

2.2. Migration-out-of-spheroid assay

For the migration assay, the bottoms of standard 3.5 cm Petri
dishes were coated with collagen IV, a substrate permissive
for glioma cell migration during 12 h at room temperature.
Collagen IV aliquots were thawed at 4 ◦C overnight, diluted in
sterile water, and poured into the Petri dishes; the concentration
chosen corresponded to 1 µg cm−2, assuming that all of
the collagen IV present in the solution was absorbed on the
polystyrene surface. After the collagen IV solution was
aspirated, bottoms of the dishes were covered with a thin
layer of sterile BSA. Individual spheroids selected under
an inverted microscope were pipetted onto the bottom of
the Petri dish in 200 µl of a GL15 medium, and left in a
incubator for 6 h to allow spheroid attachment, after which
3 ml of a fresh GL15 medium was added. Microscopic
observation began at t0 = 6 h when cell viability and spheroid
attachment were verified and lasted 48 h during which time
spheroids were photographed at 12 h intervals (t0–t4) using
an inverted Leica microscope coupled with a Coolsnap CCD
camera. Cells were kept in a standard cell incubator between
observations. During these experiments, the rate of cell
proliferation (assessed by the proportion of cells in S-phase
as demonstrated by BrDU incorporation) is around 5% and
is nearly compensated by the rate of apoptosis around 3%,
(assessed by nuclear morphology after DAPI nuclear staining).
We designed another set of experiments to evaluate cell
velocity and paths of individual migrating cells in time-lapse
mode. Cells incubated in an environmental chamber mounted
on an inverted Axiophot 2 miscroscope were photographed as
phase-contrast images every 10 or 20 min for up to 5 h with
an AxioCam CCD using the time-lapse option of AxioVision
3.0 (all software and hardware was from Zeiss, Germany).
The field of observation corresponded to a microscopic field
(×20) selected in immediate vicinity to the spheroid. All cells
entirely present in field during the observation period were
tracked.

2.3. Treatment of experimental results

Four typical photographs of spheroids and migrating cells are
shown in figure 1. In order to extract the density profiles
of the cell distribution, we superimposed on each photo, at
various times, a system of concentric circles, closely spaced.
We then counted the number of cells in each circular ring.
Since we have worked throughout with spheroids that were
not completely depleted after the 48 h evolution, a central
zone of each picture was excluded since it corresponded to the
diffusing spheroid. In figure 2, we show the density profiles
obtained from the various photographs at times 12, 24, 36 and
48 h after t0. In figure 3, we also present, superimposed, the
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Figure 1. Cell migration pattern over 12, 24, 36 and 48 h, starting from an initial spheroid.
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Figure 2. Experimental density profiles obtained after 12, 24 36 and
48 h.

upper and lower density profiles obtained at the same moment
of the evolution in order to give an idea of the dispersion of
the data.

To determine velocities and migration paths in the
time-lapse experiments, phase-contrast images of cells were
segmented using edge-detection algorithms (KS400 3.0 image
analysis software). Typically, for each cell, at each time-
point, several (up to 5) binary mask images were obtained by
detecting edges of different shallowness and space gradient
(valley algorithm). These images of cell contour fragments
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Figure 3. Mean density at 36 h together with the upper and lower
density profiles.

were then combined by means of an XOR logical operator.
The summed final image, manually corrected if necessary,
represented the entire cell contour, permitting us to define the
centre of gravity (mass) of the cells. Displacements of this
centre were used to calculate short-term (20 min) and long-
term (5 h) mean velocities, as well as the paths of individual
migrating cells. The distributions obtained have been fitted
by a Gaussian a e(v−v0)

2/σ 2
yielding estimates for the median

values of the two mean velocities (as well as of the width of the
distributions). The quantity we are particularly interested in is
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Figure 4. Example of a possible cell move. A grey hexagon denotes
the presence of a glioma cell. The cell does not move to an occupied
hexagon. In the case of maximal attraction the cell can only move
next to an occupied hexagon i.e. in a hexagon shown by a
continuous arrow.

the ratio of the medians for the long- and short-interval mean
velocities. This ratio is a measure of the complexity of the
trajectory of the centre of mass of the cell. The value obtained
for the experimental data we analysed was 5.2, indicating a
really ‘crooked’ trajectory.

3. The model

3.1. The geometry

The cellular automaton we shall introduce here for the
description of the glioma cell migration is based upon a
hexagonal lattice. This choice was dictated by the fact that the
hexagonal lattice is the most isotropic among all lattices that
pave the plane periodically. The centres of the hexagons form
a triangular lattice. Thus, in order to define the position of the
centre of a given hexagon, we can introduce three coordinates
along axes in 2π/3 angles with respect to each other. If we
normalize the coordinates by the distance a between the centres
of two adjacent hexagons, the three coordinates become integer
numbers i, j and k. Such a system is a priori redundant
but it suffices to remark that a point with i = j = k is
equivalent to (0, 0, 0). Thus any triplet (i, j, k) is equivalent
to (i − k, j − k, 0) and we are reduced to just two coordinates.

3.2. The evolution

Each hexagon can be occupied by a single cell at any given
time. Thus a cell may move only to a free hexagon. At each
update of the automaton we define a random order of all ejected
cells and then we evolve them one after the other. When the
position of a cell is to be updated a new position among its six
neighbours is chosen. If this position is occupied, the cell does
not move (shown in figure 4 by the crossed-out dashed arrow).
A central part of the lattice is occupied by the equivalent
of the glioma cell spheroid, which, we assume, may eject an
unlimited number of cells. Once a free position in the hexagons
surrounding the centre is created, it is immediately occupied
by a cell ‘ejected from the centre’. Cell proliferation is not
considered since we have seen in our experimental conditions

that the processes of mitosis and apoptosis practically cancel
out.

The rules we have just described would correspond to
diffusion of cells without interaction other than that imposed
by the constraint of a single cell per hexagon. However, this
motion is not quite realistic when it comes to describing living
cells. Thus we further introduced more dynamical rules in our
‘box and ball’ system [19].

The first effect that we included in the model is that
of cell attraction. The attraction factor between tumoural
cells could include several effects. This factor could account
for cell–cell attraction through the cadherin–catenin system,
homotype chemotaxis or cell–cell communication through gap
junctions. Cadherin are membrane proteins which mediate
homotype cell adhesion. It has been suggested that instability
and disorganisation of cadherin-mediated junctions favours
migration and invasiveness in glioblastoma cell lines [20].
Sander and Deisboeck [5] suggested that the production of
an autocrine/paracrine stimulus promotes attraction between
cells (homotype chemoattraction). Finally, gap junctions
could also account for the attraction factor between cells. In
almost all mammalian tissues, cells in contact can directly
exchange ions and small molecules through intercellular
channels known as gap junctions. GJC is believed to be
involved in the regulation of cell proliferation, differentiation
and apoptosis. Many tumour-promoting agents such as
oncogenes or growth factors inhibit GJC. The expression
of gap junction proteins (connexins), particularly cx43, is
frequently decreased in brain cancer cells [21] and restoration
of GJC by transfection of cx43 genes reverses the transformed
phenotype in many types of cancer cells, including rat C6
glioma [22]. Apart from their role in gap junction formation,
it has been shown that connexins also have adhesive properties
and have been associated with the property of glioma cells to
aggregate [23].

The way we are accounting for cell attraction in our model
is to favour motion towards a hexagon next to one occupied
by a cell. We introduce a threshold p (a number between
0 and 1) and for each evolution pick a random number r
between 0 and 1. If r < p the cell moves to a position
with occupied nearest neighbours and the opposite if r > p.
At this point we considered two strategies. The first is that
if the chosen motion is impossible, the cell does not move.
With these assumptions a threshold p > 0.5 corresponds to
cell attraction (p = 1 i.e. maximum cell attraction, means
that a cell can only move to a position next to an occupied
one, as shown in figure 4 by the continuous arrows), while
p < 0.5 corresponds in fact to cell repulsion. The second
strategy forces the cell to move, provided there is an adjacent
free hexagon. As we shall see in the analysis of the model,
experimental results seem to favour the former strategy.

The second effect considered in the model is that of inertia,
by which we mean that when cells migrate they may tend to
keep the same direction of motion over a distance of some
cell diameters. The consequence of this inertia is that a cell
cannot abruptly reverse its direction of motion. We have
implemented this feature in the model by allowing movement
only in the forward direction i.e. keeping the memory of the
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Figure 5. Number of ejected cells as a function of the automaton
iterations together with the best linear fit (obtained by neglecting the
first 100 iterations).

latest movement of the cell and allowing it to move only
towards the three hexagons that are in the forward direction.

The notion of inertia in the motion of a cell is first a
physical concept based on the idea that an extended object
cannot suddenly reverse the direction of its motion. But
inertia could also be due to cellular signalling, as suggested
by Deisboeck et al [24]. They recently showed that if cells
from different types of gliomas have very dispersed velocities
[25, 26], these velocities are positively correlated with higher
directionality in the cell migration paths [24]: a higher average
velocity calculated on a short time scale (10 min) corresponds
to a more linear trajectory (plotted on a long time scale of
24 h). For simplicity, we decided to choose one spatial step
of the automaton as the ‘memory’ distance. We believe that
a more pronounced motion inertia would not improve our
density comparisons.

4. Calibration of the model

In order to be able to compare the results of the experiment
to that of the automaton it is necessary to establish a
correspondence between the two physical quantities which
play a role in both, namely time and space.

4.1. Time calibration

It is clear that the number of updates of the automaton does
not have any immediate physical meaning. The quantity that
we can easily link to physical time is the number of ejected
cells. In figure 5, we give the dependence of the latter on the
automaton updates. We can infer from this graphic that the
relation is essentially linear (except at the very beginning of
the evolution, for which we do not have experimental data).
Next we turn to the experimental results and examine the
dependence of the number of ejected cells on physical time.
From figure 6, we conclude that the relation is, again, roughly
linear. Thus the number of the automaton updates can be
related to physical time in a straightforward way through the
relation of both to the number of ejected cells.
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Figure 6. Number of ejected cells as a function of time, obtained
from the experiment.
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Figure 7. Density profiles for the automaton results, for various
values of the lattice spacing.

4.2. Space calibration

Concerning space calibration the main difficulty stems from
the fact that we assume in our model that the cells occupy
hexagons of the same size while in practice both cell size
and shape vary. Thus we are led to define an effective cell
diameter which can be related to the lattice parameter. We
start by remarking that the experimental mean cell density ρ,
typically in a circular ring, is given as the number of cells
per unit surface. The quantity that comes naturally from the
automaton, on the other hand, is d, the number of the occupied
sites divided by the number of sites available. In order to relate
the latter to the former, it suffices to divide by the surface of an
elementary hexagon which, in terms of the lattice parameter
(distance between two centres) a, is given by s =

√
3a2/2.

We expect the parameter a to be roughly equal to the effective
cell diameter.

In order to assign a value to a we compare the
experimentally obtained density profile ρ(r) to that given by
the automaton d(r)/s for various values of a. We point out here
that, in the case of the automaton, the distance from the centre
of the spheroid is measured in lattice spacings n. In order to
convert it to a length we must multiply it by the lattice size a,
i.e. r = na. In figure 7, we compare the density profiles given

97



M Aubert et al

by the automaton for various values of a. Since the profile is
rather sensitive to the value of a we can by inspection infer a
value for the latter, resulting in a ≈ 35 µm.

5. Results

Having fixed the model and its parameters, we can now present
some typical simulation results. The size of the initial spheroid
is chosen in accordance with that observed experimentally: a
mean diameter of 220 µm, which corresponds roughly to six–
seven cells across.

In figure 8 we present cell migration snapshots, starting
from the same initial spheroid, at the end of 48 h obtained for
different values of the threshold p (as explained in section 3)
while neglecting the inertia effect. We give three representative
situations for probabilities 1, 0.5 and 0, respectively. The case
p = 1 corresponds to maximal cell attraction, p = 0.5 is
close to pure diffusion while p = 0 is a situation where cells
are repelled rather than attracted (a biologically unrealistic
behaviour). As expected, lowering p leads to more diffuse
distributions, corresponding to increased motility.

The corresponding density profiles are shown in figure 9.
It is clear that the sensitivity with respect to the value of p is
so large that one expects to be able to extract a value for p
from the best fit of the experimental result. In figure 10, we
show a comparison of the experimental profile with the results
of the simulation for values of p, 0.5 and 1, at time t = 24 h.
We computed the χ2 of the fit of density distributions for
various values of p to the experimental one. It turns out that
the smallest χ2 is the one corresponding to p = 1. As a
matter of fact, the ratio of χ2 for p = 0.5 to p = 1 cases
is 65. Moreover, we computed the χ2 of the density fit of a
cell distribution obtained with the second rule introduced in
section 3, i.e. the cells move whenever possible even if this
means violating the preference set by the probability threshold.
The optimal value for this rule occurs close to p = 0.5. Still,
the comparison of the χ2 favours the first rule: the ratio of this
χ2 to that of the p = 1 previously obtained is 2.

We turn now to the inertia effect. In figure 11, we present
this effect on the extreme case of p = 1 attraction. It is clear
that the inclusion of this effect results in stronger diffusion of
the cells. Comparing the density profiles to the experimental
ones, we can conclude that a p = 1 attraction combined with
the inertia effect does not improve the comparison with the
experimental data. Indeed the ratio of χ2 of the two fits is 41.

We complement our analysis by a study of the velocity
distributions obtained in the simulation. A word of caution
is necessary at this point. The time scale of 20 min used in
the experimental study is particularly short: it corresponds to
slightly over two updates of the automaton. Moreover, the use
of a hexagonal lattice for the automaton imposes a motion of
the centre of the cell of, minimally, a full cell diameter i.e.
35 µm in our model. Thus the comparison of the absolute
values of the model velocities to the experimental ones is not
particularly interesting. On the other hand, the ratio of the
short- to long-interval mean velocities does have a meaning
since it is a measure of the crookedness of the trajectory of
the centre of mass of the cell. The value we have obtained

Figure 8. Cell migration patterns over 48 h, obtained from the
automaton, for values of the probability threshold 1, 0.5 and 0,
respectively.

for this quantity is 5.8 which is very close to that given by
the experiment. At this point we must mention the result for
the same ratio obtained with the variant of the attraction rule
mentioned above: a value close to 2.3 was found, indicating
much straighter trajectories.

As another interesting datum on the velocities, we have
followed the cells ejected during the first 12 h and computed
their mean velocities at the end of the 48 h evolution and
present the velocities distribution in figure 12. At these times
scales the distance covered by the cells is much longer than the
minimal step in our model and thus the fact that the latter is
equal to a full cell diameter will have a minimal effect on the
velocities distribution. It would be interesting to compare data
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Figure 9. Density profiles over 36 h obtained for various values of
the probability threshold.
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Figure 10. Comparison of the experimental data (after 24 h) with
the results of the automaton for p = 0.5 and p = 1.
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Figure 11. Comparison of the experimental data (after 24 h) with
the results of the automaton for p = 1 with and without the inertia
effect.

on velocities for this long-time evolution to experimental data
(although the acquisition of the latter would be particularly
difficult).

6. Conclusion and outlook

In this paper, we have presented a study of the migration
properties of glioma cells in two dimensions over a collagen
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Figure 12. Histogram of the mean velocities of the cells ejected
during the first 12 h, obtained after a 48 h evolution.

substrate. Our theoretical approach was based on a cellular
automaton which models the migration of glioma cells
and compared the theoretical results to experimental data
previously obtained. Two rules were introduced in the
automaton evolution, in order to simulate dynamical effects.
The first is meant to reproduce cell attraction: the cells
preferably move next to other cells (depending on a threshold
as explained in section 3). From the fit of the experimental
data it turns out that the best results are obtained for maximal
attraction: the cells can only move next to other cells
(otherwise they do not move). As explained above, this
condition could account for different mechanisms such as
cadherin or gap junction mediated attraction, or chemotaxis.
A variant of this rule, where if there is no possible motion next
to a neighbour the cell moves in a random direction, was also
explored but it led to less satisfactory results. The other effect
we investigated was that of inertia: the cells tend to move in
a forward direction. The effect of inertia was rather small on
the density profiles and it did not improve the overall fit.

To conclude with our model of glioma cells migration,
we find that there is an attraction between tumour cells
based on chemotaxis or GJC. This attraction is necessary in
order to reproduce the experimental data. This effect has
as a consequence that our model differs from the diffusion
migration i.e. the cells do not migrate randomly. Although
this experiment is far from the in vivo situation, we believe
that cell attraction could play a role in tumour growth.

We have also examined the velocity distributions of the
cells. While the constraints of the migration on a lattice are
non-negligible for short-time evolutions, it is interesting to
note that the ratio of the long-to-short time-interval mean
velocities is in fact in agreement with the experimental values.
The latter is a good indicator of the convoluted character of
the trajectory. Finally we have presented a histogram of the
velocity distribution of the early-ejected cells at the end of
48 h. No experimental results exist yet for this quantity.
It would be interesting to study these velocities and their
evolution over time (both experimentally and theoretically)
since we expect the migration, in the long run, to depend
heavily upon them.
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The system presented here is intentionally very simple.
It has the advantage of limiting the number of biologically
relevant parameters which are used in the model: only tumour
cell–tumour cell interactions are involved. On the other hand,
this system is far from the in vivo situation. In order to get
closer to a realistic situation, we plan to extend our model so
as to describe the migration of glioma cells in co-cultures with
astrocytes. This more realistic situation will allow us to study
the interaction between tumour cells in the presence of tumour
cell–normal astrocytes interaction.

Glossary

Apoptosis. Programmed cell death. Cells commit suicide as
a result of a signal.

Autocrine stimulus. Signal in response to secretion of a
substance, like growth factor, that stimulates the secretory
cell itself.

Box and ball. Cellular automaton system in which the
evolution rules allow a single occupation of a given site, just
like a game with balls and boxes in which one cannot put
more than a single ball in each box.

Chemotaxis. Directed migration of cells controlled by a
chemical gradient.

GL15. Human glioma cell line.

Glioma. Central nervous system tumour originated from
glial cells.

Growth factor. Signalling molecule between cells that binds
to specific receptors on the surface of a target cell and that
activates cell differentiation, proliferation and even cell
apoptosis.

Paracrine stimulus. Local signal in which a cell secretes a
substance, like growth factor, that stimulates the cells in its
neighbourhood without stimulating itself.
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