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morphic deformable registration methods exist in the literature, application of
these methods in the presence of space-occupying lesions is not straightforward. The motivation of this work
is spatial normalization of MR images from patients with brain tumors in a common stereotaxic space,
aiming to pool data from different patients into a common space in order to perform group analyses.
Additionally, transfer of structural and functional information from neuroanatomical brain atlases into the
individual patient's space can be achieved via the inverse mapping, for the purpose of segmenting brains and
facilitating surgical or radiotherapy treatment planning. A method that estimates the brain tissue loss and
replacement by tumor is applied for achieving equivalent image content between an atlas and a patient's
scan, based on a biomechanical model of tumor growth. Automated estimation of the parameters modeling
brain tissue loss and displacement is performed via optimization of an objective function reflecting feature-
based similarity and elastic stretching energy, which is optimized in parallel via APPSPACK (Asynchronous
Parallel Pattern Search). The results of the method, applied to 21 brain tumor patients, indicate that the
registration accuracy is relatively high in areas around the tumor, as well as in the healthy portion of the
brain. Also, the calculated deformation in the vicinity of the tumor is shown to correlate highly with expert-
defined visual scores indicating the tumor mass effect, thereby potentially leading to an objective approach
to quantification of mass effect, which is commonly used in diagnosis.

© 2009 Elsevier Inc. All rights reserved.
Introduction

Population-based statistical image analysis methods have been
utilized in a variety of studies of normal brain development and aging,
as well as of brain diseases such as Alzheimer's or mild cognitive
impairment (Thompson et al., 2001; Ashburner et al., 2003), but they
haven't been applied in studies of brain cancer. For example, studying
the tumor origin and location relative to brain structures, especially to
white matter pathways, for different types of tumors could potentially
have predictive value in terms of tumor progression (Geer and
Grossman, 1997; Bernstein et al., 1989a, 1989b). Moreover studying
imaging patterns in brain tumor patients can potentially help identify
tissue that has been significantly infiltrated and should be treated
more aggressively. Finally, evaluating the relationship between spatial
distributions of radiation dose and clinical progression/outcome can
potentially offer insights into better optimizing radiation treatment.
These potential studies require the integration of a variety of patient
data, such as conventional MRI, perfusion, and DTI of a large
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number of patients, into the same space, using deformable registra-
tion methods.

Deformable registration can also be useful in assisting neurosurgi-
cal treatment planning. Specifically, atlaseswith segmented structures
of interest or with integrated information about anatomical and
functional variability can be mapped into the patient's image space,
and be further utilized in determining treatment plans that minimize
the risk for significant functional impairment.

While the problem of co-registering brain images of healthy subjects
has been addressed in the literature, the spatial normalization of images
affected by tumor pathology is still a very challenging problem that has
motivated ourwork. The application of registrationmethodsdesigned to
register generally normal neuroanatomies (Pluim et al., 2003) can lead
to poor registration when applied to brain images with tumors, due to
large deformations and lack of clear definition of anatomical detail in a
patient's images owing to edema and tumor infiltration. Specifically, in
the images with tumor, the fundamental assumption of topological
equivalence between the atlas and the patient's image, which is almost
ubiquitous in deformable registrationmethods, is violated due to (i) the
anatomical changes caused by tissue death and tumor emergence and
(ii) the large distortions caused by the mass effect of a growing tumor,
which are not in agreementwith the usual assumption of smoothness of
the deformation fields.
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In order to address the first violation point, most methods first
create topologically equivalent images by either removing the tumor
from the patient (Kyriacou et al., 1999), or by placing a small tumor
seed in the atlas. Other methods just ignore the regions within and
around the tumor during image matching since they are regarded as
non-informative or unreliable (Stefanescu et al., 2004a, 2004b; Brett
et al., 2001) or use feature points that exist in each image to establish
the correspondence relationship (Xu and Nowinski, 2001). As pointed
in Cuadra et al. (2006), seeding the atlas with a tumor mass is an
essential step, since it ensures the continuity of the transformation in
the tumor area and preserves from any irregularities that could appear
in this region due to the lack of equivalent image content between
atlas and patient images. The atlas seeding represents the biological
phenomenon of brain tissue loss and replacement by tumor and
renders the registration process non-diffeomorphic. Although mode-
ling of brain tissue loss hasn't been emphasized before, it is an
important step towards ensuring high accuracy in very small distances
around the tumor.

Regarding the second violation point, some methods simulate the
tumor-induced deformation, in order to resolve the geometric discre-
Fig. 1. Illustration of our framework for registration between a brain atlas and a patient's im
growth. The atlas with tumor (after simulation of mass effect) is then registered to the p
optimum is reached.
pancies from the physiologic process of tumor growth prior to
registration. They either use advanced tumor simulation models of
mass-effect and invasion without further accounting for the inter-
subject differences (Clatz et al., 2005), or simplified radial growth
models (Nowinski and Belov, 2005; Ganser et al., 2004) refined by a
non-rigid deformation based on optical flow (Cuadra et al., 2006;
Polio et al., 2005; Dawant et al., 1999). Other methods, in order to
allow large deformations around the tumor during registration,
control locally the amount of regularization (Duay et al., 2004)
instead of simulating tumor growth. A more analytical survey and
classification of those methods according to the type of registration
and main limitations is presented by Cuadra et al. (2006).

It is reasonable to expect that incorporating a model of deforma-
tion induced by the tumor is desirable and likely to lead to better
registration accuracy. In particular, biomechanical models of tumor-
induced deformation based on elasticity properties of brain tissue and
structures (e.g. some structures, like the falx, are more rigid than
others) can guide the registration more successfully compared to
oversimplified growth models, such as radial expansion, especially
due to the fact that brain tumor images often lack distinct features
age. The red arrow points to the seed that is placed in the atlas for simulating tumor
atient's image. The algorithm iterates for different tumor model parameters until the



Fig. 2. Estimation of the tumor model parameters, θ, by evaluating and maximizing an
objective function f in a subdomain of the subject space (region around the tumor).
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around the tumor which would guide the registration process with
success. Like all models, tumor growth models that simulate tissue
loss and displacement utilize a set of parameters. Methods that use
theminimum set of parameters (e.g. only the location of a single voxel
seed) (Cuadra et al., 2006; Polio et al., 2005) simulate pure
displacement of the brain structures with zero tissue loss and can
therefore be applied for extracerebral lesion (such as meningioma)
growth, but are not appropriate for gliomas and brain metastases. The
simulation of brain tissue loss requires a larger number of parameters
in order to characterize the size and shape of the seed. Also, the
number of parameters increases as more advanced biophysical
models, that reflect the effects of peritumoral edema and tumor
infiltration, are incorporated (Hogea et al., 2008; Clatz et al., 2005;
Bondiau et al., 2008; Swanson et al., 2003; Miga, 2000; Prastawa et al.,
2005). In this study we apply a modeling framework that simulates
tumor emergence and tumor growth, and also simplistically diffe-
rentiates between tumor mass effect and tumor infiltration.

In particular, the study presented in this paper is based on the
ORBIT framework (Zacharaki et al., 2006, 2008a) and includes (i)
estimation of tumor model parameters (for tumor emergence and
growth), (ii) simulation of tumor-induced deformation and (iii)
calculation of a dense deformation field that maps the (deformed)
atlas with simulated tumor to the patient's image. The registration
component is based on the assumption that there is equivalent image
content between the atlas with simulated tumor and the patient's
image, and the deformation between those images is smooth, similar
to normal-to-normal image registration. A previous work of our group
in this area focused on the development of statistical models for
simulating tumor growth by training PCA models across subjects
(Mohamed et al., 2006) or within the same subject (Zacharaki et al.,
2008a). The statistical approach was chosen to reduce the high
computational cost of the finite element based biomechanical models
for tumor growth simulation (Mohamed and Davatzikos, 2005)
leaving the burden of simulations to off-line training. Statistical
models, however, are not very accurate and also are limited by the
parameters used during training. For example, training a model for
irregularly shaped seeds would require an inhibitive large number of
training cases. Recently, Hogea et al. (2007) proposed a biomechanical
model developed in an Eulerian formulation and solved using regular
grids, which is significantly faster than common finite element
models. Thus, here we employ this model as constraints for an
objective function in a model-based registration framework that
attempts to maximize the similarity between atlas and patient's
images. Also, in comparison to Zacharaki et al. (2008a), here we focus
on increasing the speed of the estimation of the tumor model
parameters by optimizing the objective function with the parallel
optimization method, APPSPACK (Asynchronous Parallel Pattern
Search).

Furthermore, we show a clinical application of this registration
framework, namely how to quantitatively characterize the tumor
mass effect. The tumor mass effect has been used as a descriptor for
classifying gliomas according to their clinical grade (Li et al., 2006) or
as an independent predictor of survival (Lacroix et al., 2001) and is
therefore an important factor in the characterization of brain tumors.
In this study, we investigate how well the estimated parameters
(tumor seed and deformation field) help predicting the mass effect.

The basic components of the proposed method, i.e., the tumor
emergence and growth simulation, the registrationmethod for images
of tumor pathology, and the estimation criterion for the tumor model
parameters, are described in the Methods section. Results of the
method are presented in the Results section, and involve the
registration assessment of 21 brain tumor cases (gliomas and
metastases), prediction of the tumor origin, and quantification of
the mass effect induced by each tumor. The mass effect is estimated
based on the calculated deformation fields and is compared against
expert human readings.
Methods

Fig. 1 illustrates the whole framework for registration of a normal
atlas with a brain image of tumor pathology (patient's image), which
involves three components: (i) simulation of tumor growth in the
atlas image for a set of tumor model parameters, (ii) deformable
registration between the atlas with simulated tumor and the patient's
image, and (iii) registration assessment, i.e. evaluation of the
optimality criterion. By iterating between the three components, the
best tumor model parameters are determined as the ones optimizing
the objective function (optimality criterion). Brain tissue loss and
tumor emergence is simulated by seeding the atlas. The approach we
use to simulate the tumor growth is based on a biomechanical model
employing incremental linear elasticity (Hogea et al., 2007). The atlas
with simulated tumor is subsequently registered with the patient's
image using a deformable registration method, as in the ORBIT
registration framework (Zacharaki et al., 2008a) which follows a
deformation strategy that is robust to the confounding factors caused
by the presence of tumor.

Next, the overall framework is described more analytically. The
first task is to remove skull from the brain (Smith, 2002) and segment
the atlas and individual MR images into white matter (WM), gray
matter (GM) and cerebrospinal fluid (CSF), e.g. using FAST (FMRIB's
Automated Segmentation Tool) (Zhang et al., 2001). After tissue
segmentation, different labels are assigned to ventricular CSF and
cortical CSF by using a modified version of HAMMER (Shen and
Davatzikos, 2002). The tumor is manually delineated by an expert in
the patient's original image. We should note that we didn't use a
separate label for the segmentation of edema for the results presented
in this paper, although the algorithm provides this option. Subse-
quently, the segmented images are co-registered as illustrated in
Fig. 2. The patient's image is first registered globally with the tumor-
free template (indicated as normal atlas A0 in Fig. 2) by applying an
affine transformation (Jenkinson et al., 2002). The transformed image
is denoted as affine transformed subject in Fig. 2. The tumor model
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parameters, θ, are estimated by optimizing a function that reflects
feature-based similarity and elastic stretching energy. The optimiza-
tion is implemented in a coarse to fine resolution scheme. For each
resolution level, the optimization is performed in parallel via
APPSPACK (Gray and Kolda, 2006). An initial estimate of the defor-
mation field at each level is obtained by elastically registering the
affine transformed subject to the normal atlas in the whole image
domain initiated from the upsampled deformation field of the
previous resolution level. Since the deformation field displays almost
negligible changes in the regions far away from the tumor during the
iterative process of optimizing θ, the optimization is performed only
in a subdomain of the subject space in order to considerably speed up
the implementation.

The three components of this framework (tumor growth simula-
tion, deformable registration and estimation of model parameters) are
described with more details in the sections Tumor growth simulation,
Deformable registration of brain tumor images, and Estimation of the
tumor model parameters, respectively.

Tumor growth simulation

Since brain tumor images often exhibit large tumors, the
biomechanical simulator needs to be robust to large deformations
and also computationally efficient, particularly for registration
purposes. In Zacharaki et al. (2008b) we have evaluated the impact
that two biomechanical simulators have on the accuracy of deform-
able registration in order to determine whether potential gain in
accuracy of the computationally more expensive simulator warrants
the additional computational load it imposes. The first simulator
(Mohamed and Davatzikos, 2005), used in Thompson et al. (2001)
and Polio et al. (2005), is based on a finite element model of non-
linear elasticity (Miller and Chinzei, 2002) and unstructured meshes
using the commercial software package ABAQUS. The main draw-
backs of this simulator are that: (i) unstructured meshes deteriorate
significantly in the presence of large deformations induced by a
growing brain tumor, thus frequent remeshing may be needed
(Mohamed and Davatzikos, 2005), and (ii) the method is computa-
tionally slow, since construction of efficient solvers for the resulting
algebraic system of equations is difficult. The second approach (Hogea
et al., 2007) was proposed to bypass these inherent difficulties
associated with the previous simulator. An incremental pressure,
linear elasticity, model was developed in an Eulerian formulation and
solved using regular grids. This approach circumvents the need for
mesh generation and remeshing. Thus, large deformations can be
captured and efficient solvers can be employed. The comparison of the
two simulators (Hogea et al., 2007; Mohamed and Davatzikos, 2005)
on a limited number of subjects showed that, although the simulator
in Mohamed and Davatzikos (2005) was more accurate in simulating
tumor growth, after registration (which furthermore improves the
structure's displacement) the gain in accuracy was insignificant
compared to the additional computational load imposed by it.
Therefore, although for modeling tumor growth in a single subject
over time we would prefer a more accurate non-linear model, such as
the simulator in Mohamed and Davatzikos (2005), for atlas registra-
tion methods, such as in this study, which require iterative tumor
simulations for all possible parameters, we prefer the computationally
inexpensive simulation framework in Hogea et al. (2007) that we shall
refer to as Piecewise Linear Eulerian (PLE).

More specifically, in the PLE simulator, the brain is approximated as
an inhomogeneous isotropic linear elastic medium, with different
material properties in white matter, gray matter and ventricles. The
ventricles are treated as a soft compressible elastic material and zero
displacements are imposed at the skull. The target domain (brain) is
embedded in a larger computational cubic domain (box), with
material properties and distributed forces chosen so that the imposed
boundary conditions on the true boundary (here consisting of the
brain surface and the tumor boundary, respectively) are approximated.
An Eulerian formulation is employed to capture large deformations,
with a level-set based approach for evolving fronts. The problem is
solved using a regular grid discretization with a fast matrix-free
multigrid solver for the resulting algebraic system of equations. The
methodology is described in detail in Hogea et al. (2007). The
following material properties were used for white matter, gray matter
and ventricles, in order to produce the results of this paper: Young's
modulus (stiffness) Ewhite=Egray=2100 Pa, Eventricles=500 Pa, and
Poisson's ratio (compressibility) νwhite=νgray=0.45, νventricles=0.1.

Tumor model parameters
For the simulations in this paper, we assume that the parameters

pertaining to the biomechanical model, such as material properties of
brain and ventricles, are similar across patients and we don't include
them in the optimization process. The remaining parameters, that
need to be estimated, relate to the patient-specific tumor characte-
ristics. Specifically, the tumor seed is created by first uniformly
eroding the tumor in the patient's image and then (optionally)
creating the convex hull of it (O'Rourke, 1998). Amore complex model
could potentially use additional parameters to describe the shape of
the tumor seed, at the expense of having to estimate these parameters
along with the rest. The size of the eroded tumor and the location in
the atlas are the 4 parameters pertaining to the tumor seed. The tumor
seed is placed in the atlas and the tumor-induced deformation is
calculated by the act of outward forces normal to the tumor boundary.
In order to simplistically distinguish between tumor expansion
(causing brain tissue displacement) and tumor infiltration (not
causing displacement) we introduce a 5th parameter, the mass effect
factor. This factor is a parameter that allows the simulation of tumor
growth to terminate before the tumor in the atlas has reached the size
of the tumor in the subject, motivated by the fact that part of the
tumor might be infiltrating and therefore causing minimal displace-
ment. In other words, the mass effect factor reflects the amount of
deformation that is applied by a growing tumor to nearby brain tissue,
and does not necessarily represent the total amount of cancerous
tissue in the brain. Since for many tumor types it is very difficult to
distinguish the boundary between tumor bulk and tumor infiltration/
edema, this parameter is estimated from the observed pattern of
deformation.

Deformable registration of brain tumor images

The deformable registration method is described in Zacharaki et al.
(2008a) and also summarized here for completeness. The elastic
deformation field is calculated in a multiresolution scheme according
to the hierarchical approximation of an energy function, which
consists of the similarity matching criterion defined in the template
space, a constraint on the inverse matching, and smoothness
constraints on the displacement field, following the general frame-
work of the HAMMER algorithm (Shen and Davatzikos, 2002). The
similarity criterion is designed based on the similarity of attribute
vectors, which are defined for each voxel in the image in order to
capture the anatomical context (including healthy and malignant
tissue) around it. Specifically, the attribute vector, a(x)=[a1 (x) a2 (x)
a3 (x) a4 (x) a5 (x)], reflects edge type (a1), tissue type (a2), and
geometric moment invariants (a3={a3

(j), j=1,…,K}) from all tissue
types, respectively. a1 and a2 are scalars taking discrete labels, whereas
a3 is a 1×K vector comprising the geometric moment invariants of
each tissue and is used to capture shape information, as described
more analytically in (Shen and Davatzikos, 2002). In this application,
only zero-order regular moments are used. The number of tissue types
depends on the segmentation method applied to labeling brain tissue.
In this study we used K=5 tissue types (white matter, gray matter,
ventricular CSF, cortical CSF, and tumor). Besides the attributes that
capture brain structure information, the attribute vector captures also



Fig. 3. Registration example between topologically equivalent and non-equivalent
images (without modeling mass effect). The 1st row shows the reference image in gray
level with a tumor on the left and after segmentation into GM (dark gray), WM (white)
and tumor (light gray) on the right. The 2nd and 3rd row show two template images
before registration (left) and after registration (right) to the reference image. Perfect
registration of tumor and surrounding healthy tissue can not be performed with a
diffeomorphic transformation if the tumors between subject and atlas are not
equivalent, as shown in 2nd row. Overlap of structures is achieved if the tumors are
equivalent, as indicated by red arrows in 3rd row.

766 E.I. Zacharaki et al. / NeuroImage 46 (2009) 762–774
the geometric location relative to the brain tumor. Specifically, the
signeddistance from the tumor boundary (a4) and the angular location
with respect to the tumor center (a5) are also used as attributes. All
attributes are normalized in the range [0, 1] by linear scaling.

The elastic deformation field that spatially warps the template to the
patient's image is calculated by maximizing a similarity criterion
reflecting the distance of attributes, constrained by a smoothness
term. The similarity of two voxels x and y is defined as the weighted
summation of two terms: (i) a similarity criterion matching the brain
structures, SimB, which is based on the distance of attributes a1, a2, a3
and (ii) a similarity criterionmatching the tumor geometry, SimT, which
measures how well the tumors are matched based on the attributes a4
and a5. The two similarity terms are non-linear functions of the distance
of attributes expressed by the L1-norm, di(x, y)=|ai(x)−ai(y), i=1,
…,5, as shown below:

SimB x; yð Þ = f 0; if d1 x; yð Þ≠ 0

1− d2 x; yð Þð Þ �
YK
j=1

1−d jð Þ
3 x; yð Þ

� �
; otherwise and

SimT x; yð Þ = exp −c1 � d4 x; yð Þð Þ � exp −c2 � d5 x; yð Þð Þ:

The constant c1 and c2 determine how much the attribute vector
dissimilarity is penalized. We selected c1 = c2 = 10, which cause a
rapid decrease in the similarity value with increasing distance of
attributes a4 or a5. The combined similarity function is given below:

Sim x; yð Þ = 1− w x; yð Þð Þ � SimB x; yð Þ + w x; yð Þ � SimT x; yð Þ ð1Þ

wherew(x, y) is a weighting factor which decreases with the distance
of x and y from each tumor respectively:

w x; yð Þ =
1; inside the tumor

c3
a4 xð Þ � a4 yð Þ ; otherwise

(

If at least one of the two images is normal (without tumor), the
distance from tumor boundary becomes infinite, w becomes zero (for
the region outside the tumor) and the similarity criterion matches
only the brain structures. The use of spatially adapted weights ensures
that the identification of corresponding points is drivenmainly by one
of the twomatching criteria, whereas the spatially smooth decrease of
w makes the total similarity, Sim, smooth. The constant c3 determines
the distance in which the two similarity criteria, SimB and SimT, get
equal weight (w(x, y)=0.5). We chose this distance to be 8 mm from
the tumor boundary and therefore set c3=4 (we scaled it linearly in
the range [0, 1] using the same normalization factor as used for a4).

Matching during optimization of θ (non-equivalent geometries)
In order to determine correspondences, distinctive points (land-

marks) are selected by the algorithm on the tumor boundaries and on
the healthy structures following the hierarchical mechanism
described in Shen and Davatzikos (2002). However, if two images
are not topologically equivalent, there is no diffeomorphic deforma-
tion field that can map the one to the other. Hence, if the tumor seed
corresponds to the tissue that actually died, then a diffeomorphic field
exists that can warp the one image to the other, which can be
calculated bymaximizing the proposed similarity criterion, whereas if
the seed placed in the atlas is not correct, such a field does not exist. In
the latter case, maximization of SimT (matching tumor boundaries)
will cause minimization of SimB, and therefore the total similarity can
never achieve a high value. If the total similarity drops below a
threshold, no landmark correspondences will be found and the
deformation will be primarily driven by the deformations of the
neighboring structures. This mechanism is similar to warping the
cortex which also presents fundamental morphological differences
between subjects (e.g. “one versus two” sulci).
Moreover, the displacement of voxels is not determined directly by
the similarity forces, but is subject to constraints as in the case of
normal brain images, i.e. the deformation is performed in small steps
following local and global transformations (to control the amount of
elasticity) and smoothing (to minimize the Laplacian of the deforma-
tion). Therefore, although there is no explicit step that guarantees
diffeomorphism, the applied deformation mechanism prevents
deformation field intersections, even for topologically non-equivalent
images. A registration example of two images that are not topologi-
cally equivalent is shown in Fig. 3, which illustrates that complete
overlap of structures cannot be achieved in that case. Other details on
the deformation mechanism and the mechanism for improving the
robustness of the method when tumors are present can be found in
Zacharaki et al. (2008a).

Matching after optimization of θ (nearly equivalent geometries)
Upon tumor parameters estimation and tumor growth simulation,

the registration is performed by relaxing all forces that prioritize the
matching of the tumor boundaries. The reason is that the final
registration should not be affected by not accurately estimated tumor
seeds and by the residual variability in the tumor vicinity which is
primarily due to fundamental differences in the growth process
between a real and a simulated tumor (e.g. presence of edema and
tumor infiltration). Forces that prioritize thematching of tumors come
from: (i) the selection of landmark points on the tumor boundaries
and (ii) the similarity criterion matching the tumors (SimT). Therefore
after estimating the tumor model parameters and simulating tumor
growth the algorithm does not select landmark points on the tumor
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boundaries and also sets the weighting factor w(x, y) to zero.
According to this mechanism, the smooth continuity of the deforma-
tion field in the tumor neighborhood is preserved.

Presence of edema
If a lot of edema is present in the subject's image, an additional

label can be used to indicate this area of low confidence in order to
avoid operations in this area (similar to masking out). This step
however is not very crucial, because the deformation mechanism
relaxes the matching forces when the degree of similarity is low, as
is the case in tissue displaying edema. The deformation is then
driven primarily by the deformations of the neighboring landmark
points.

Estimation of the tumor model parameters

We described the forward model for tumor growth. However,
given a patient's image, the tumor model parameters θaRn that best
represent the specific tumor are unknown and must be estimated. We
achieve this goal by solving a constrained non-linear optimization
problem:

minf θð Þ
s:t:L V θ V U

ð2Þ

where f : RnYR is an empirical non-linear function designed to
assess the registration accuracy and validity for a given θ, as described
next, and L and U are lower and upper bounds on θ, respectively. In
this application, we focus only on the model parameters that are
patient-specific, such as the origin of the tumor (3D Cartesian
coordinates), the amount of brain tissue that died due to the tumor
appearance, and the mass effect factor. The bounds L enforce
physically valid tumors; also, they constrain the solution to be close
to the initial estimate for the solution. For example, the search for the
optimal tumor center is bounded within 12 mm from the center of
mass of tumor in the rigidly registered subject's image. Non-linear
constraints on the tumor center describing the complex brain do-
main – which excludes the ventricles – are not explicitly handled;
instead, a penalty function is imposed to inhibit invalid tumor
simulations (e.g. outside the brain). The upper bound on the mass
effect factor (amount of expansion) is such that the simulated tumor
does not exceed in size the tumor in the subject's image.

Objective function
The objective function used for optimizing the tumor model

parameters is based on the hypothesis that the optimal tumor
parameters minimize the discrepancies between the co-registered
images and also produce realistic deformation maps when trying to
match the atlas with simulated tumor with the patient's image. The
objective function, f, reflects the success of registration and the
validity of the calculated deformation field and is expressed as
feature-based similarity and elastic stretching energy, respectively.
Specifically, it is defined as the combination of (i) the overlap of the
co-registered segmented images (E1), (ii) the feature-based similarity
as in Eq. (1) (E2) (Zacharaki et al., 2008a), and (iii) the Laplacian of the
inter-subject deformation field (E3) which is a measure of smooth-
ness. Overall, the objective function is given by

f =
X3
k=1

X
x∈Ω

ckwk xð ÞEk x; θð Þ: ð3Þ

E1 and E2 are calculated from the warped template image and the
subject image, whereas E3 is based on the deformation field values.
Specifically, if h(x) defines the mapping from the tumor-deformed
template domain T into the domain of the tumor-deformed subject S,
h: ΩT→ΩS, then the template image IT at x should look similar to the
subject image IS at h(x). For methods that are using segmented
images, such as our approach, IS and IT are actually indicator functions
and the degree of non-overlap can be defined as

E1 xð Þ = 1; if IT xð Þ≠ IS h xð Þð Þ
0; otherwise ;

�

E2 is the attribute vectors' dissimilarity between the template and
subject's image

E2 xð Þ = 1− Sim x;h xð Þð Þ;
where Sim is defined in Eq. (1).

E3 reflects smoothness of the deformation field and is measured by
the magnitude of the vector Laplacian (▿2) of the displacement field u
(x)=h(x)−x, as shown below

E3 xð Þ = j jj2u xð Þ j j :

The constants ck are used to assign different weights on different
measures. They were determined by following three steps and

satisfying
P3
k=1

ck = k1 at each step. First, they were set to act as

normalization constants scaling each measure Ek, k=1,…,3 in the
same range. The calculated values were then adjusted to equally
penalize the dissimilarity term, which consists of two measures (E1
and E2) with the smoothness term, which consists of a single measure
(E3), i.e. c3 received double weight. Finally, experiments were
performed with perturbations around the calculated values for a
representative range of tumor types. The experiments showed that for
a few cases, usually having large tumors, the resulting deformation
fields (for the optimized tumor model parameters) were not smooth
enough close to the tumor. Therefore the constant c3 was increased
more in order to promote smooth deformations for most tumor cases.

wk(x) is used to assign different weights according to the voxel's
location x and is selected to decreasewith the distance from the tumor
boundary for all three measures, and to increase on voxels lying on
edges particularly for the image-related measures, i.e., E1 and E2. The
assignment of higher weights on voxels lying on edges is due to the
distinctiveness of the features of those voxels. More details on the
selection of ck and definition of wk(x) can be found in Zacharaki et al.
(2008a).Ω is the domain over which f is calculated, and it is defined in
the subject's image outside the tumor and within a small distance
from tumor boundary, where the effects of mis-registration are ex-
pected to be more prominent. The distance from the tumor boundary
defining Ω is decreased after each resolution level since the estimate
of the tumor model parameters is improved. The part of the image,
which has no tissue label due to low confidence in tissue segmenta-
tion (e.g. peritumoral edema), is excluded from Ω.

Optimization method
The tumor parameters θ are optimized by solving Eq. (2).We chose

a derivative-free method to obtain a solution to Eq. (2), because the
objective function contains discontinuities and the approximations of
the derivatives with finite differencing may be unreliable. Pattern
Search methods are suitable for such problems (Fowler et al., 2008;
Audet and Dennis, 2003; Kolda et al., 2003). They are directional
methods that make use of a finite number of directions with
appropriate descent properties. Since the majority of the computa-
tional cost is the function evaluation, we apply an Asynchronous
Parallel Pattern Search method, called APPSPACK (Gray and Kolda,
2006), which takes advantage of parallel platforms. APPSPACK targets
simulation-based optimization problems characterized by a small
number of parameters. The “asynchronous” algorithm dynamically
initiates actions in response tomessages, rather than routinely cycling
through a fixed set of steps, allowing to effectively balancing the
computational load across all available processors. This property is
important for our application, since the function evaluation cost varies
significantly according to the parameters applied (simulations of
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small tumors or simulations starting with large initial seeds terminate
faster).

Due to the complicated form of our objective function, it is not
guaranteed that a global optimum exists. We set an upper limit of 120
iterations in the optimization process. Usually a minimum was
reached and the optimization terminated before reaching this limit.
However in a few cases, usually with tumors very close to boundaries
(e.g. between the ventricles), the defined upper limit was not large
enough to achieve convergence, so the best value until this moment
was selected as optimum.

Mass effect characterization

One application of inter-subject registration of brain tumor
images may involve identifying differences in the tumor growth
process among populations of subjects. For example, the tumor
mass effect has been used as a descriptor for classifying gliomas
according to their clinical grade (Li et al., 2006) or as an inde-
pendent predictor of survival (Lacroix et al., 2001). There is there-
fore the need for an objective method that quantitatively
characterizes the mass effect. In this study, we investigated how
well the estimated tumor seeds and the calculated transformations
help predicting the mass effect.

In order to obtain an indicator of mass effect based on the pro-
posed registration method, we evaluated how much the calculated
deformation fields deviated from the range observed in a normal
population. Specifically we calculated the Jacobian determinant of the
deformation fields that spatially warp the atlas (used in this study) to
the brain tumor images, as well as to a population of healthy subjects
(60 individuals with age less than 68 years). We smoothed all
Jacobian images with a Gaussian filter (with standard deviation=1),
in order to reduce the noise and small mis-registration effects, and
calculated the voxel-wise standard score, in order to normalize the
amount of deformation at each brain location, since the tumors
appear in different locations in the brain for different subjects. The
standard score Zi for each voxel i is Zi=(Ji−μi)/σi, where Ji is the
smoothed Jacobian at voxel i, and μi and σi are the mean and
standard deviation of the normal population at voxel i. The sum of
the standard scores over the tumor seed defined in the common atlas
space is a quantity that represents the distance between the total
deformation and the population mean and is used as an indicator of
mass effect.

In order to assess the results, the mass effect estimated by our
method was compared against expert ratings. Specifically, similarly to
the ratings definition provided in Li et al. (2006), two independent
expert neuroradiologists provided their scores by examining the
Fig. 4. Illustration of the registration steps applied after estimation of tumor model param
indicate WM, tumor, GM, and CSF, correspondingly. Edema is segmented as GM by FAST (Zh
tumor growth modeling, (c) warped atlas after deformable registration, (d, e) rigidly registe
used for manual tumor delineation in (e).
images and quantifying the tumor mass effect using the following
scale:

0 – Absent: adjacent tissue is not compressed, the structure is
preserved
1 – Light: shape change, thickening or thinning of adjacent
structure
2 – Middle: displacements, adjacent tissue and/or ventricles are
slightly shifted
3 – Heavy: large displacements, middle line structure is shifted to
the opposite direction

Under the assumption that both measurements of mass effect
(through our modeling framework or by expert ratings) are susceptible
to errors, high correlationbetween the twomeasurements is an indicator
that the measurements are consistent and therefore acts as a means of
validation of our registration/estimation framework.Moreover, it should
be noted that our method for quantitatively characterizing the mass
effect allows studying the tumor growth process among populations of
subjects based on reproducible and rater independent techniques.

Results

We applied the proposed framework for registration of 21 brain
MRI datasets including tumors of different types, grade and sizes. The
brain masses were histologically diagnosed and graded based on
World Health Organization (WHO) criteria. Specifically the data sets
included 5 metastases (MET), 4 oligodendrogliomas (OLIGO) (1 of
grade II and 3 of grade III), 2 astrocytomas (ASTRO) (1 of grade II and 3
of grade III), 1 ganglioglioma (GANGLIO), 1 oligoastrocytoma grade III,
and 8 glioblastomas (GBM) (grade IV). All images were registered
with a normal brain image serving as a template, with image size
256×256×198 voxels and voxel size 1×1×1 mm3. One registration
example of a diffuse and infiltrative tumor is shown in Fig. 1 as part of
the illustration of the proposed framework. Fig. 4 shows the
registration of another brain tumor case and specifically it illustrates
the three main steps involved after estimation of the optimal tumor
model parameters: (a) seeding the atlas, (b) simulating tumor growth
in the atlas and (c) registering the deformed atlas to the subject.

Atlas-based segmentation

Fig. 5 illustrates atlas-based segmentation results obtained by
warping the normal atlas (shown on the first row) onto three brain
images with tumor. Three labeled regions on the atlas, i.e., thalamus,
caudate nuclei, and ventricles (shown with lila, green and pink,
eters. (a–d) skull-stripped and segmented images; the gray levels from bright to dark
ang et al., 2001). (a) atlas with estimated tumor seed, (b) deformed atlas obtained via
red subject: segmented target image in (d) and contrast enhanced T1-weighted image



Fig. 5. Illustration of atlas-based segmentation of brain tumor images with the proposedmethod. Contours of the thalamus, caudate nuclei, and ventricles, shownwith lila, green, and
pink, respectively, are registered and superimposed from the normal atlas to three patient's images. Each row shows the axial, sagittal and coronal view, as well as a zoomed snapshot
of the coronal view.
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respectively), are mapped after registration onto the patient's images,
in order to visualize the registration performance on anatomical
structures deformed by the tumor. The results show that the
segmented structures are consistent with the patient's anatomy.

Besides providing the qualitative results based on visual assessment,
we calculated a quantitative rater-independent measure, such as the
surface distance of the ventricles (VN-dist) between the co-registered
images. We calculated VN-dist as the mean Euclidean distance of the
ventricular boundaries in both directions, from the patient's image to
the warped atlas image and reversely. We selected the ventricles for
validation, because they are structures with distinct boundaries
providing accurate (automatic) segmentation. Table 1 shows VN-dist
for 21 patient's images calculated over the whole ventricular boundary
Table 1
VN-dist (in mm) for 21 patient's images.

Total boundary No. 1–7 1.394 0.998 1.118 0.986 0.872 2.758 0.785
No. 8–14 0.997 0.752 1.021 1.254 1.050 1.000 0.897
No. 15–21 1.010 1.895 0.857 0.880 0.829 0.956 0.724

In tumor vicinity No. 1–7 1.578 1.098 1.165 1.349 1.099 3.662 0.578
No. 8–14 1.430 0.657 2.350 1.436 1.039 1.479 2.076
No. 15–21 2.745 1.860 1.252 1.125 0.926 1.300 0.443
(top rows), as well as only on the part that lies closer to the tumor, in
order to emphasize possible limitations of the method due to the
presence of tumor (bottom rows). These results show that the distance
of ventricles is larger in the tumor vicinity than over the total ventricular
boundary. Specifically, the error is at voxel accuracy for the ventricular
part that is far from the tumor and at the order of the diagonal voxel
distance for the region close to the tumor, for all cases except for one.
Thisworst case,which is highlighted inTable 1, has anerror of 2.758mm
and 3.662mmrespectively and is shown in Fig. 6. It can be seen that this
is a very difficult case, from image registration perspective, since the
anatomy is highly obscured by tumor infiltration and edema, and the
ventricles cannot be clearly segmented.

Moreover, the current method is compared with ORBIT for the 10
patient images presented in Zacharaki et al. (2008a). The change of
VN-dist when using the current method is shown as a percentage
rate in Table 2 for the whole tumor boundary as well as for the tumor
vicinity. Positive numbers indicate decrease of VN-dist, whereas
negative numbers indicate increase. The numbering of the patients
corresponds to the numbering in Zacharaki et al. (2008a). It can be
noticed that for the majority of cases the error was reduced with the
currentmethod by up to 55%. The overall error reductionmight be due
to amore accurate estimate of the tumormodel parameters or due to a
better simulation of the tumor-induced deformation providing a



Fig. 6. Registration of a normal atlas image to the patients' images with the highest error (VN-dist=2.758 mm). The 1st row illustrates a section of the skull stripped T1-weighted
patient's image (axial, sagittal, or coronal). It can be seen that the anatomy is highly obscured by tumor infiltration and edema. The 2nd row shows the corresponding section of the
atlas warped with the proposed framework. The warped atlas image is produced by applying the deformation field (calculated using segmented images) on the original gray level
image including the estimated tumor seed; the intensity level for the simulated tumor is randomly chosen.
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better (possibly smoother) initialization to the registration algorithm.
In some cases, the error in the tumor vicinity increased, whereas the
total error almost stayed constant (patient 6) or decreased (patient 3).
First, it should be noted that the tumor in those two patients was
located far from the ventricles and therefore the error in the tumor
vicinity, evaluated on a very small part of ventricular boundaries, is
not very representative. Moreover, the value of VN-dist for patient 3
was especially small (only 0.578 mm which is the smallest value
across all patients) and therefore the 20% change (=0.116 mm) is not
considered significant.

The parameters estimated with the current method are compared
with the ones estimated in Zacharaki et al. (2008a). The difference (Δ)
between the corresponding parameters (θ) is shown at the bottom
part of Table 2. The median difference (over the 10 patients) in tumor
seed location is 11.7 mm, in seed size 2.15 mm and in estimated final
tumor size (due to mass effect) 1.15 mm. The difference in the esti-
mated parameters possibly indicates the presence of local minima in
the objective function. By using different tumor growth simulation
approaches and optimization methods the optimization process
converged to different solutions.

In order to further evaluate the registration accuracy and compare
with our previous framework, we also calculated the volume of
overlap between the subject and the warped template for all three
brain tissue classes (WM, GM and VN) using the DICE metric (Dice,
1945). For the same 10 patient shown in Table 2 the average and
standard deviation for the DICE score (without removing areas with
confounding effects, like edema) was 0.744±0.025, 0.668±0.025
and 0.735±0.101 for WM, GM and VN respectively, when using the
current framework, versus 0.714±0.026, 0.637±0.026, 0.703±0.106
Table 2
Percental decrease of VN-dist (in mm) when using the current method as opposed to usin
tumor model parameters (Δθ) in mm.

Patient 1 2 3 4

VN-dist
Total boundary 10% 12% 25% 24%
In tumor vicinity 20% 15% −20% −7%

Δθ (mm)
Δ(Seed center) 4.9 10.9 11.3 12.1
Δ(Seed size) 0.2 0.5 1.7 4.1
Δ(Tumor size) 1.3 1.0 0.6 1.6

Δθ is shown as Euclidean distance of seed centers (defined by 3 spatial coordinates), absol
means

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3= 4πð ÞVolume3

p
).
when using the framework in Zacharaki et al. (2008a). The volume of
overlap has increased for all three brain tissue classes. We don't
measure the volume of overlap for the tumors because we treat the
tumors as infiltrating structures with only approximate boundaries.

Spatial normalization

The construction of diffeomorphic registration fields is important in
order to preserve topology (one-to-onemapping) and allow inversion of
the mapping. Ashburner (2007) presents a review on diffeomorphic
registration approaches and provides detailed definitions. In order to
study theproperties of thedeformationfield constructedbyourmethod,
we calculated the determinant of the Jacobian of the total deformation
field, which maps the normal atlas to the subject with tumor (forward
field), and also for the inverse field, which normalizes the images of
tumor pathology into the atlas space. Negative Jacobian determinants in
the deformation component simulating tumor growth are mostly
attributed to the selection of a linear elasticity model for the brain in
conjunctionwith not adequately small pressure increments. Decreasing
the pressure increments or incorporating a non-linear elastic model
might preserve the one-to-onemapping property, but also increases the
computational cost. Since the parameters were not adjusted for each
case separately (e.g. same pressure increments were applied for all
cases), 2 (out of 21) forward deformation fields have small negative
Jacobian determinants. Deformation fields with negative Jacobian
determinants could be reconstructed subsequently by applying the
method described inKaracali andDavatzikos (2004) to recover topology
preserving mappings. The results presented here are produced without
the reconstruction step.
g ORBIT for the 10 patients in Zacharaki et al. (2008a) and difference in the estimated

5 6 7 8 9 10

9% −0.1% 12% 20% 22% 53%
2% −30% 0.1% 13% 21% 55%

21.9 9.5 14.1 7.3 12.4 14.9
3.4 2.0 0.8 2.3 4.1 13.6
1.0 0.3 3.1 0.9 3.5 9.9

ute difference of initial seed size and absolute difference of simulated tumor size (size



Fig. 7. Spatial normalization of 7 subjects. The subjects are shown before and after warping in the 1st and 2nd row respectively. The corresponding slices in the atlas image are shown
in the 3rd row. The initial tumor seed indicating the tumor origin is shownwith light gray color (2nd row). The blurred region around some tumors corresponds to the surrounding
peritumoral edema or infiltration, as mapped in the normal atlas.

Table 3
Tumor origin as calculated after spatial normalization of 21 brain images with tumor,
and expert ratings for the tumor mass effect (the scale is defined in the Mass effect
characterization section).

No. Tumor type Tumor origin Mass
effect

1 OLIGO-ASTRO-III Precentral gyrus, frontal lobe WM 1
2 OLIGO-III Cingulate region, frontal lobe WM 2
3 GBM Superior parietal lobule, parietal lobe WM 2
4 OLIGO-III Frontal lobe WM 3
5 OLIGO-II Parietal lobe WM, superior parietal lobule 2.5
6 GBM Lateral front-orbital gyrus 3
7 OLIGO-III Frontal lobe WM 3
8 GBM Superior temporal gyrus, temporal lobe WM 2
9 MET Frontal lobe WM, precentral gyrus 1
10 GBM Temporal and frontal lobe WM 2.5
11 GBM Temporal lobe WM, middle temporal gyrus 3
12 GBM Frontal lobe WM 1.5
13 MET Superior occipital gyrus 2
14 MET Parietal and temporal lobe WM 2.5
15 MET Superior temporal gyrus, temporal lobe WM 2
16 MET Frontal lobe WM, superior frontal gyrus 3
17 GBM Superior parietal lobule, cuneus 2.5
18 ASTRO-II Medial occipitotemporal gyrus, occipital lobe WM 2
19 ASTRO-III Thalamus, temporal lobe WM 1.5
20 GBM Parietal lobe WM, postcentral gyrus 2
21 GANGLIO-II Superior and middle temporal gyrus 1.5
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The inverse of the spatial transformation is calculated by an iterative
algorithm using linear interpolation and is applied for spatial normal-
ization of the brain tumor images. Fig. 7 shows examples of brain images
with tumor warped in the normal atlas space. This warping causes
relaxation of themass effect and removal of the inter-subject differences
facilitating the detection of two tumorous regions: (i) the initial seed (as
estimated by our method) which indicates the location of initial tumor
appearance and brain tissue loss, and (ii) the surrounding region that is
infiltrated by tumor or edema. The spatially normalized images look
realistic without artificial deformations due to tumor shrinkage. The
estimated tumor origin is displayed for all subjects inTable 3. However it
should be noted that these results are mostly qualitative since themain
focus of the method is to improve registration accuracy and not to
accurately estimate the complex biological process of tumor growth.

Validation of mass effect characterization

It is interesting to investigate whether the estimated tumor seed
location and the atlas-to-subject deformation field can be used to
predict the mass effect of the respective tumor. We used as an indicator
of mass effect the sum, over all voxels in the estimated tumor seed
region, of the normalized (using statistics from a healthy population)
Jacobian determinant, as explained in the sectionMass effect character-
ization. We calculated these scores for the 21 subjects in this study and
compared them against visual ratings provided by 2 expert neuror-
adiologists. The visual ratings of mass effect, used as gold standard and
averagedover the two raters, are shown inTable 3. Noneof the caseswas
rated with 0 (absent mass effect) and the values never fluctuated by
more than 1 scale between the two raters. The correlation between our
scores estimating tumor mass effect and the visual ratings is 0.763 and
0.618 for the two raters respectively and 0.744 for the average ratings,
whereas the correlation between the 2 visual ratings is 0.679.

We also investigated if the brain size is correlated with the mass
effect. Specifically, in order to remove the effects due to differences in
brain size we normalized our measurements by dividing with the
average Jacobian determinant inside the brain. This additional step
didn't help increasing the correlation with the visual ratings. This
could be due to the noise present in the data or the noise introduced
by the processing steps, but it also could indicate that the mass effect
is not correlated with the brain size.

Fig. 8 shows on the top row the normal population mean and
standard deviation of the Jacobian determinant and on the bottom
row, left, one example of normalized Jacobian determinant calculated
from the deformation field that maps the atlas to a brain image with
tumor. It is easy to notice that the deformation in the tumor seed
region is significantly larger than the one observed in the normal
population. The average image of the Jacobian determinants of the



Fig. 8. Mass effect estimation by the Jacobian determinant. Top row: The normal
population mean (left) and standard deviation (right) of the Jacobian determinant.
Bottom row: The normalized Jacobian determinant (standard score) (left) and the total
atlas-to-subject displacement field (right) for the patient shown in Fig. 1.
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normal population has a standard deviation over all voxels equal to
1.042 with a mean value of 1.0 (when size differences are removed)
and a maximum value of 2.703.

Discussion and conclusions

In this study we present a method for brain atlas registration in the
presence of tumors. Such a method (i) makes possible the pooling of
data from different patients into a common space, thereby enabling
the performance of group analyses, (ii) allows the mapping of atlases
with segmented structures of interest into the patient's image space
for optimization of the surgical or radiotherapy treatment planning,
(iii) estimates the brain tissue loss and replacement by tumor, as well
as the mass effect of the tumor, thereby helps identifying differences
in the tumor growth process among populations of subjects. The
method is based on the idea of decoupling the total deformation into
the tumor-induced deformation and the deformation due to inter-
subject differences, similarly to Zacharaki et al. (2006, 2008a) and
Mohamed et al. (2006). The current framework adds to previous work
of our group in this area, in the following respects:

(i) Tumor simulation: The current framework uses a piecewise
linear elasticity model and regular grids (PLE simulator), versus
a finite elementmodel of non-linear elasticity and unstructured
meshes in Mohamed et al. (2006) and a local-PCA based model
in Zacharaki et al. (2008a). PCA-based tumor growth simula-
tions are extremely fast, since they are achieved via linear
combination of principal components (deformations), thereby
leaving the burden of simulations to off-line training using
costly biomechanical models. However PCA-based simulations
are not very accurate, since the expansion coefficients are not
known in advance and can only be approximated. Moreover,
PCA-based models are not flexible, since they can only
reproduce deformations in the range of parameters used during
training. On the other hand, non-linear biomechanical simula-
tors (Mohamed et al., 2006) are flexible and more accurate, but
also computationally very expensive. As shown in Zacharaki et
al. (2008b), the use of the robust and computationally efficient
PLE simulator did not significantly affect the final registration
accuracy in comparison to non-linear biomechanical simula-
tors. Therefore the PLE simulator seems to provide the best
trade off between accuracy, flexibility and computational cost
and was therefore chosen here. It should also be noted that the
PLE simulator, is a stand-alone programwhich does not require
the use of commercial packages, such as ABAQUS.

(ii) Optimization of the tumor model parameters: It applies the
APPSPACK optimization package for parallel optimization
(using mpi) of 5 tumor-related parameters, versus the Down-
hill Simplex method in Zacharaki et al. (2008a) for serial
optimization of 4 parameters, and a statistical approach in
Mohamed et al. (2006), not based on optimization, applied for a
different sets of parameters (edema was also defined in
Mohamed et al., 2006). This allows us to search over a large
range of parameters in a computationally efficient way.

(iii) Definition of the tumor model parameters: It applies irregular
shaped seeds, versus spherical seeds in Mohamed et al. (2006).
The use of irregular seeds allows the creation of an atlas with
tumor that is more similar to the subject's image.

(iv) Registration method: It maximizes a similarity criterion that
matches both the brain structures and the tumor geometry using
locally adaptedweights, as in Zacharaki et al. (2008a), versus the
regular HAMMER registration algorithm developed for normal
brains in Mohamed et al. (2006). Since the tumor in atlas and
patient's image might be in non corresponding anatomical
locations (e.g. if the estimate of the tumor location is inaccurate),
it is not guaranteed that a diffeomorphic deformation field, that
maps one image to the other,will exist. Therefore, the registration
method here, and in Zacharaki et al. (2008a), applies different
deformation strategy close and far from the tumor, in order to
maintain robust registration of the healthy part of the brain.

The implementation of different registration methods and cou-
pling of themwith a tumor growth simulation model is also possible.
We chose a registrationmethod based on labeled (segmented) images
because (i) methods that are based on gray level information (e.g.
maximization of mutual information) will be affected by the choice of
intensity profile for the simulated tumor; modeling intensity changes
due to tumor evolution is an open and challenging problem, and (ii)
the tumor growth model applied is a pressure-based biomechanical
one, which preserves labels. Extensions of the tumor simulation
methodology to include modeling of tumor infiltration (Hogea et al.,
2008) might require a different or modified registration method.

The warped images in atlas space or subject's space, shown in
Figs. 4–7, indicate that the proposed method performs well in both
areas around the tumor and in the healthy portion of the brain. The
distance of the ventricular boundaries between warped atlas and
patient's images (Table 1) over the 21 patients was 1.097±0.459 mm.
When evaluated only in the tumor vicinity, where the largest errors
are expected, the ventricular distance was 1.459±0.752 mm. These
results show that the average registration error of the ventricles is at
the order of diagonal voxel distance. Also, the results in Table 2, as well
as the DICE metric measuring overlap of WM, GM and CSF, indicate
that the registration accuracy overall has improved as compared to
ORBIT (Zacharaki et al., 2008a). More validation is required in order to
assess the accuracy on other structures of interest.

The computational time is considerably decreased in comparison
to our previous work (Zacharaki et al., 2008a), due to the use of
parallel optimization for the parameters of the tumor growth model.
The execution time for optimizing the parameters in the subdomain,
only in the middle resolution level and using 20 parallel processors
(CPUs) in a Linux cluster consisting of 102 CPUs in total (Intel Xeon
CPU 3.4 GHz and Intel Woodcrest Core2Duo CPU 1.6 GHz) with 4 or
8 GB RAM, ranged from 1.1 h to 4 h. The cost depends on the load of the
processors, the closeness of the initial estimate to the optimumand the
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size of the tumor (tumor growth simulation is more expensive for
larger tumors). The whole framework which includes all steps
(implemented serially in a single processor) before and after
optimization required ∼2 additional hours. These steps include the
calculation of the global alignment, an initial estimate of the
deformationfield in thewhole imagedomain before tumor parameters
optimization and the calculation of the deformation field in the whole
image domain after optimization (refinement in full resolution).

The tumor model parameters are important for achieving topolo-
gical equivalence between the atlas and patient's image, and any
assumptions on those limit the possible simulation outcomes.However,
it seems that the estimation of the tumor parameters ismore important
in the case of spatially normalizing brain tumor images into a common
(atlas) space, than in the case of atlas-based segmentation (when a
normal atlas ismapped into the patient's image space). Small variations
in the tumor seedhave a small effect in the registration of the atlas to the
subject space, although the image differences are prominent in the
original, undeformed atlas space. Therefore, methods that have been
originally developed with the purpose of atlas-based segmentation
often apply simplistic models of tumor growth (e.g. radial expansion)
(Polio et al., 2005), ignore the information contained within the lesion
(Stefanescu et al., 2004a), or do not perform any algorithmic
adjustments due to the presence of lesions (Bondiau et al., 2005). On
the other hand, for the purpose of performing population-based
statistics, the flexibility of the tumor growth simulation and the ability
of estimating themodel parameters describing the tumordevelopment,
becomes essential. Although the parameters estimation requires
additional computational cost,webelieve that the better understanding
of the tumordevelopment, such as knowledge of the origin of the tumor
or the amount of tissue death, is of high clinical importance.

As an application example we used the spatial transformations to
quantify the mass effect of the growing tumors. The mass effect has
been used as a feature in classification of brain tumors into different
types. The automated calculation of the mass effect helps avoid
descriptive criteria that are rater-dependent and require prior
knowledge (the help of experts). We based our calculations on the
deviation of the deformations from the range observed in a normal
population. The correlation between the estimated mass effect and
the expert ratings was higher than the inter-rater variability.

A current limitation of our approach is that it is based on the prior
tissue segmentation, which poses considerable difficulties in practice,
especially in the region around the tumor that often displays edema
and infiltration. The proposed framework is mostly suitable for tumors
with distinct tumor boundaries, which are not very challenging from
segmentation perspective. However, it is important to note that the
current implementation is robust to inaccuracies in tumor segmenta-
tion because the simulated tumor is not forced to expand until it
reaches the manually segmented tumor in the patient's image. The
amount of tumor expansion is rather determined by optimizing the
defined optimality criterion. Therefore we do not expect the manual
segmentation of the tumor boundary to match with the simulated
tumor. One future extension of the proposed registration method
could be the transition from hard tissue segmentation into a fuzzy or
probabilistic segmentation framework, which is more appropriate for
the inherently diffuse and infiltrative brain tumors cases, since in those
cases the tumorous area can only be characterized through probabil-
istic tissue abnormalitymaps. On-goingwork in our laboratory (Verma
et al., 2008; Batmanghelich et al., 2008) investigates pattern classi-
ficationmethods that usemulti-acquisition imaging profiles, including
T1, T1-enhanced, FLAIR, DTI, and aims to achieve amore accurate tissue
classification, thereby assisting in the registration process.

Acknowledgments

The authors would like to thank Drs. Sumei Wang and Naomi
Morita in the Department of Radiology, University of Pennsylvania
for providing the visual ratings of mass effect and Drs. Elias R.
Melhem and Ron Wolf in the Department of Radiology, University
of Pennsylvania, for providing the patient's data. We also thank
Dr. R. Nick Bryan for discussions regarding the estimation of mass
effect.

A portion of this work was presented at the SPIE Medical Imaging
2008: Image Processing, San Diego, California, 2008.

Grant support: NIH Grant RO1-NS042645.

References

Ashburner, J., 2007. A fast diffeomorphic image registration algorithm. NeuroImage 38,
95–113.

Ashburner, J., Csernansky, J.G., Davatzikos, C., Fox, N.C., Frisoni, G.B., Thompson, P.M.,
2003. Computer-assisted imaging to assess brain structure in healthy and diseased
brains. The Lancet (Neurology) 2, 79–88.

Audet, C., Dennis Jr., J.E., 2003. Analysis of generalized pattern searches. SIAM J. Optim.
13, 889–903.

Batmanghelich, N., Wu, X., Zacharaki, E.I., Markowitz, C.E., Davatzikos, C., Verma, R.,
2008, Multiparametric Tissue Abnormality Characterization using Manifold
Regularization, SPIE Medical Imaging 2008: Computer-Aided Diagnosis, vol. 6915,
Issue 1, article 16, 1–6.

Bernstein, J., Goldberg, W., Laws, E.J., 1989a. Human malignant astrocytoma xenografts
migrate in rat brains: a model for central nervous system cancer research.
J. Neurosci. Res. 22 (2), 134–143.

Bernstein, J., Goldberg, W., Laws, E.J., 1989b. Immunohistochemistry of human
malignant astrocytoma cells xenografted into rat brain: apolipoprotein E.
Neurosurgery 24 (4), 541–546.

Bondiau, P.Y., et al., 2005. Atlas-based automatic segmentation of MR images: validation
study on the brainstem in radiotherapy context. Int. J. Radiat. Oncol. Biol. Phys. 61
(1), 289–298.

Bondiau, P.-Y., et al., 2008. Biocomputing: numerical simulation of glioblastoma growth
using diffusion tensor imaging. Phys. Med. Biol. 53, 879–893.

Brett, M., Leff, A.P., Rorden, C., Ashburner, J., 2001. Spatial normalization of brain images
with focal lesions using cost function masking. NeuroImage 14, 486–500.

Clatz, O., et al., 2005. Realistic simulation of the 3D growth of brain tumors inMR images
coupling diffusion with mass effect. IEEE Trans. Med. Imaging 24, 1334–1346.

Cuadra, M.B., De Craene, M., Duay, V., Macq, B., Pollo, C., Thiran, J.-Ph., 2006. Dense
deformation field estimation for atlas-based segmentation of pathological MR brain
images. Comput. Methods Programs Biomed. 84, 66–75.

Dawant, B.M., Hartmann, S.L., Gadamsetty, S., 1999. Brain atlas deformation in the
presence of large space-occupying tumours. Lecture Notes in Computer Science:
MICCAI 1999, pp. 589–596.

Dice, L.R., 1945. Measure of the amount of ecological association between species.
Ecology 26, 297–302.

Duay, V., D' Haese, P., Li, R., Dawant, B., 2004. Non-rigid registration algorithm with
spatially varying stiffness properties. Proceedings of the IEEE International
Symposium on Biomedical Imaging (ISBI): From Nano to Macro, 15–18
April,2004, Arlington, VA, USA, pp. 408–411.

Fowler, K.R., et al., 2008. A comparison of derivative-free optimization methods for
groundwater supply and hydraulic capture community problems. Adv. Water
Resour. 31 (5), 743–757.

Ganser, K.A., Dickhausa, H., Metznerb, R., Wirtzb, C.R., 2004. A deformable digital brain
atlas system according to Talairach and Tournoux. Med. Image Anal. 8, 3–22.

Geer, C.P., Grossman, S.A., 1997. Interstitial fluid flow along white matter tracts: a
potentially important mechanism for the dissemination of primary brain tumors.
J. Neurooncol. 32, 193–201.

Gray, A., Kolda, T.G., 2006. Algorithm 8xx: APPSPACK 4.0: asynchronous parallel pattern
search for derivative-free optimization. ACM Trans. Math. Softw. 32 (3), 485–507.

Hogea, C.S., Biros, G., Abraham, F., Davatzikos, C., 2007. A robust framework for soft
tissue simulations with application to modeling brain tumor mass effect in 3D MR
images. Phys. Med. Biol. 52, 6893–6908.

Hogea, C.S., Biros, G., Davatzikos, C., 2008. An image-driven parameter estimation
problem for a reaction-diffusion glioma growth model with mass effects. J. Math.
Biol. 56 (6), 793–825.

Jenkinson, M., Bannister, P.R., Brady, J.M., Smith, S.M., 2002. Improved optimisation for
the robust and accurate linear registration and motion correction of brain images.
Neuroimage 17, 825–841.

Karacali, B., Davatzikos, C., 2004. Estimating topology preserving and smooth
displacement fields. IEEE Trans. Med. Imaging 23 (7), 868–880.

Kolda, T.G., Lewis, R.M., Torczon, V., 2003. Optimization by direct search: new
perspectives on some classical and modern methods. SIAM Rev. 45, 385–482.

Kyriacou, S., Davatzikos, C., Zinreich, S., Bryan, R., 1999. Nonlinear elastic registration of
brain images with tumor pathology using a biomechanical model. IEEE Trans. Med.
Imaging 18, 580–592.

Lacroix, M., et al., 2001. A multivariate analysis of 416 patients with glioblastoma
multiforme: prognosis, extent of resection, and survival. J. Neurosurg. 95, 190–198.

Li, G., Yang, J., Ye, C., Geng, D., 2006. Degree prediction of malignancy in brain glioma
using support vector machines. Comput. Biol. Med. 36 (3), 313–325.

Miga, M., 2000. In vivo analysis of heterogeneous brain deformation computation for
model updated image guidance. Comput. Methods Biomech. Biomed. Eng. 3,129–146.

Miller, K., Chinzei, K., 2002. Mechanical properties of brain tissue in tension. J. Biomech.
35, 483–490.



774 E.I. Zacharaki et al. / NeuroImage 46 (2009) 762–774
Mohamed, A., Davatzikos, C., 2005. Finite element modeling of brain tumor mass-effect
from 3D medical images. MICCAI, Palm Springs, CA, pp. 400–408.

Mohamed, A., Zacharaki, E.I., Shen, D., Davatzikos, C., 2006. Deformable registration of
brain tumor images via a statistical model of tumor-induced deformation. Med.
Image Anal. 10, 752–763.

Nowinski, W.L., Belov, D., 2005. Toward atlas-assisted automatic interpretation of MRI
morphological brain scans in the presence of tumor. Acad. Radiol. 12, 1049–1057.

O'Rourke, J., 1998. Computational Geometry in C (Second Edition).
Pluim, J.P.W., Maintz, J.B.A., Viergever, M.A., 2003. Mutual-information-based registra-

tion of medical images: a survey. IEEE Trans. Med. Imaging 22 (8), 986–1004.
Polio, C., Cuadra, M.B., Cuisenaire, O., Villemure, J.-G., Thiran, J.-Ph., 2005. Segmentation of

brain structures inpresence of a space-occupying lesion. Neuroimage 24 (4), 990–996.
Prastawa, M., Bullitt, E., Gerig, G., 2005. Synthetic ground truth for validation of brain

tumor MRI segmentation. MICCAI 2005 8 (Pt 1), 26–33.
Shen, D., Davatzikos, C., 2002. HAMMER: hierarchical attribute matching mechanism

for elastic registration. IEEE Trans. Med. Imaging 21, 1421–1439.
Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17,

143–155.
Stefanescu, R., et al., 2004a. Non-rigid atlas to subject registration with pathologies

for conformal brain radiotherapy. MICCAI, Saint-Malo, France, September 26–29,
pp. 704–711.

Stefanescu, R., et al., 2004b. Non-rigid atlas to subject registration with pathologies for
conformal brain radiotherapy. Lecture Notes in Computer Science: MICCAI 2004,
Part I, Saint-Malo, France, pp. 704–711.
Swanson, K.R., Bridge, C., Murray, J.D., Alvord, E.C., 2003. Virtual and real brain tumors:
using mathematical modeling to quantify glioma growth and invasion. J. Neurol.
Sci. 216, 1–10.

Thompson, P.M., et al., 2001. Cortical change in Alzheimer's disease detected with a
disease-specific population-based brain atlas. Cereb. Cortex 11, 1–16.

Verma, R., et al., 2008. Multi-parametric tissue characterization of brain neoplasms and
their recurrence using pattern classification of MR images. Acad. Radiol. 15,
966–977.

Xu, M., Nowinski, W.L., 2001. Talairach–Tournoux brain atlas registration using a
metalforming principle-based finite element method. Med. Image Anal. 5,
271–279.

Zacharaki, E.I., Shen, D., Mohamed, A., Davatzikos, C., 2006. Registration of brain
images with tumors: towards the construction of statistical atlases for therapy
planning. 3rd IEEE International Symposium on Biomedical Imaging (ISBI 2006),
pp. 197–200.

Zacharaki, E.I., Shen, D., Lee, S.-K., Davatzikos, C., 2008a. ORBIT: a multiresolution
framework for deformable registration of brain tumor images. IEEE Trans. Med.
Imaging 27 (8), 1003–1017.

Zacharaki, E.I., Hogea, C.S., Biros, G., Davatzikos, C., 2008b. A comparative study of
biomechanical simulators in deformable registration of brain tumor images. IEEE
Trans. Biomed. Eng. 55 (3).

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brainMR images through a hidden
Markov random field model and the expectation maximization algorithm. IEEE
Trans. Med. Imaging 20, 45–57.


	Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth
	Introduction
	Methods
	Tumor growth simulation
	Tumor model parameters

	Deformable registration of brain tumor images
	Matching during optimization of θ (non-equivalent geometries)
	Matching after optimization of θ (nearly equivalent geometries)
	Presence of edema

	Estimation of the tumor model parameters
	Objective function
	Optimization method

	Mass effect characterization

	Results
	Atlas-based segmentation
	Spatial normalization
	Validation of mass effect characterization

	Discussion and conclusions
	Acknowledgments
	References




