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Perturb and Simplify: Multi-level Boolean Network Optimizer

Shih-Chieh Chang and Malgorzata Marek-Sadowska
Electrical and Computer Engineering Department, University of California Santa Barbara, CA 93106

In this paper, we discuss the problem of optimizing a multi-level logic combinational Boolean
network. Our techniques apply a sequence of local perturbations and modifications of the
network which are guided by the automatic test pattern generation ATPG based reasoning. In
particular, we propose several new ways in which one or more redundant gates or wires can be
added to a network. We show how to identify gates which are good candidates for local
functionality change. Furthermore, we discuss the problem of adding and removing two wires,
none of which alone is redundant, but when jointly added/removed they do not affect
functionality of the network. We also address the problem of efficient redundancy computation
which allows to eliminate many unnecessary redundancy tests. We have performed experiments
on MCNC benchmarks and compared the results to those of misll[4] and RAMBO[6].
Experimental results are very encouraging.
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Multi-Level Logic Optimization by Implication Analysis
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Abstract

This paper proposes a new approach to multilevel logic optimization based on ATPG (Automatic
Test Pattern Generation). Previous ATPG-based methods for logic minimization suffered from
the limitation that they were quite restricted in the set of possible circuit transformations. We
show that the ATPG-based method presented here allows (in principle) the transformation of a
given combinational network C into an arbitrary, structurally different but functionally
equivalent combinational network C’. Furthermore, powerful heuristics are presented in order to
decide what network manipulations are promising for minimizing the circuit. By identifying
indirect implications between signals in the circuit, transformations can be derived which are
“good” candidates for the minimization of the circuit. In particular, it is shown that Recursive
Learning can derive “good” Boolean divisors justifying the effort to attempt a Boolean division.
For 9 out of 10 ISCAS-85 benchmark circuits our tool HANNIBAL obtains smaller circuits than
the well-known synthesis system SIS.
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Incremental Synthesis
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Abstract

A small change in the input to logic synthesis may cause a large change in the output
implementation. This is undesirable if a designer has some investment in the old implementation
and does not want it perturbed more than necessary. We describe a method that solves this
problem by reusing gates from the old implementation, and restricting synthesis to the modified
portions only.
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Abstract

This paper defines a new optimization problem that arises in the use of a Field-Programmable
System (FPS). An FPS consists of a set of Field-Programmable Gate Arrays and memories, and
is used both for emulation of ASICs and computation. In both cases the application circuits will
include a set of memories which may not match the number and aspect ratio of the physical
memories available on the FPS. This can often require that the physical memories be time-
multiplexed to implement the required memories, in a circuit we call a memory organizer. We
give a precise definition of the packing optimization problem and present an algorithm for its
solution. The algorithm has been implemented in a CAD tool that automatically produces a
memory organizer circuit ready for synthesis by a commercial FPGA tool set.
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Integrating Program Transformations in the Memory-Based Synthesis of Image and Video
Algorithms
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Abstract

In this paper we discuss the interaction and integration of two important program transformations
in high-level synthesis--Tree Height Reduction and Redundant Memory-access Elimination.
Intuitively, these program transformations do not interfere with one another as they optimize
different operations in the program graph and different resources in the synthesized system.
However, we demonstrate that integration of the two tasks is necessary to better utilize available
resources. Our approach involves the use of a “meta-transformation” to guide transformation
application as possibilities arise. Results observed on several image and video benchmarks
demonstrate that transformation integration increases performance through better resource
utilization.
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Dataflow-driven Memory Allocation for Multi-dimensional Signal Processing Systems
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Abstract

Memory cost is responsible for a large amount of the chip and/or board area of customized video
and image processing systems. In this paper, a novel background memory allocation and
assignment technique is presented. It is intended for a behavioural algorithm specification, where
the procedural ordering of the memory related operations is not yet fully fixed. Instead of the
more restricted classical scheduling-based explorations, starting from procedurally interpreted
specifications in terms of loops, a novel optimization approach - driven by data-flow analysis - is
proposed. Employing the estimated silicon area as a steering cost, this allocation/assignment
technique yields one or (optionally) several distributed (multi-port) memory architecture(s) with
fully-determined characteristics, complying with a given clock cycle budget for read/write
operations. Moreover, our approach can accurately deal with complex multi-dimensional signals
by means of a polyhedral data-flow analysis operating with groups of scalars.
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Abstract

Bridge-type defects play a dominant role in state-of-the-art CMOS technologies. This paper
describes a combined functional and overcurrent-based test generation approach for CMOS
circuits, which is optionally based on layout information. Comparative results for benchmark
circuits are given to demonstrate the feasibility of voltage-based versus IDDQ-based testing.
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Abstract

Simulation-based test vector generators require much less computer time than deterministic ATPG
but they generate longer test sequences and sometimes achieve lower fault coverage. This is due to
the divergence in the search process. In this paper, we propose a correction technique for
simulation-based ATPG. The technique is based on identifying the diverging state and on
computing a fault cluster (faults close to each other). A set of candidate faults from the cluster is
targeted with a deterministic ATPG and the resulting test sequence is used to restart the search
process of the simulation-based technique. This above process is repeated until all faults are
detected or proven to be redundant/untestable. The program implementing this approach has been
used to generate tests with very high fault coverage, and runs about 10 times faster than traditional
deterministic techniques with very good test quality in terms of test length and fault coverage.
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Abstract

Static tests are key in reducing the current high cost of testing analog and mixed-signal ICs. A
new DC test generation technique for detecting catastrophic failures in this class of circuits is
presented. To include the effect of tolerance of parameters during testing, the test generation
problem is formulated as a minimax optimization problem, and solved iteratively as successive
linear programming problems. An analytical fault modeling technique, based on manufacturing
defect statistics is used to derive the fault list for the test generation. Using the technique
presented here an efficient static test set for analog and mixed-signal ICs can be constructed,
reducing both the test time and the packaging cost.
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Abstract

We consider the problem of bipartitioning a circuit into two balanced components that minimizes
the number of crossing nets. Previously, the Kernighan and Lin type (K&L) heuristics, the
simulated annealing approach, and the spectral method were given to solve the problem.
However, network ow techniques were overlooked as a viable approach to min-cut balanced
bipartition due to its high complexity. In this paper we propose a balanced bipartition heuristic
based on repeated max-ow min-cut techniques, and give an efficient implementation that has the
same asymptotic time complexity as that of one max-ow computation. We implemented our
heuristic algorithm in a package called FBB. The experimental results demonstrate that FBB
outperforms the K&L heuristics and the spectral method in terms of the number of crossing nets,
and the efficient implementation makes it possible to partition large circuit instances with
reasonable runtime. For example, the average elapsed time for bipartitioning a circuit S35932 of
almost 20K gates is less than 20 minutes.
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Abstract

In this paper, we study the area-balanced multi-way partitioning problem of VLSI circuits based
on a new dual netlist representation named the hybrid dual netlist (HDN). Given a netlist, we
first compute a K-way partition of the nets based on the HDN representation, and then transform
a K-way net partition into a K-way module partitioning solution. The main contribution of our
work is the formulation and solution of the K-way module contention (K-MC) problem, which
determines the best assignment of the modules in contention to partitions, while maintaining
user-specified area requirements, when we transform the net partition into a module partition.
Under a natural definition of binding factor between nets and modules, and preference function
between partitions and modules, we show that the K-MC problem can be reduced to a min-cost
max-flow problem. We present efficient solutions to the K-MC problem based on network flow
computation. Extensive experimental results show that our algorithm consistently outperforms
the conventional K-FM partitioning algorithm by a significant margin.
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A General Framework for Vertex Orderings, With Applications to Netlist Clustering
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Abstract

We present a general framework for the construction of vertex orderings for netlist clustering.
Our WINDOW algorithm constructs an ordering by iteratively adding the vertex with highest
attraction to the existing ordering. Variant choices for the attraction function allow our
framework to subsume many graph traversals and clustering objectives from the literature. The
DP-RP method of [3] is then applied to optimally split the ordering into a k-way clustering. Our
approach is adaptable to user-specified cluster size constraints. Experimental results for
clustering and multi-way partitioning are encouraging.
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Abstract

We present a fully implicit encoding algorithm for minimization of average power dissipation in
sequential circuits, based on the reduction of the average number of bit changes per state
transition. We have studied two novel schemes for this purpose, one based on recursive
weighted non-bipartite matching, and one on recursive mincut bi-partitioning. We employ ADDs
(Algebraic Decision Diagrams) to computate the transition probabilities, to measure potential
area saving, and in the encoding algorithms themselves. Our experiments show the effectiveness
of our method in reducing power dissipation for large sequential designs.
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Abstract

We address the problem of optimizing logic-level sequential circuits for low power. We present
a powerful sequential logic optimization method that is based on selectively precomputing the
output logic values of the circuit one clock cycle before they are required, and using the
precomputed values to reduce internal switching activity in the succeeding clock cycle. We
present two different precomputation architectures which exploit this observation. We present
an automatic method of synthesizing pre-computation logic so as to achieve maximal reductions
in power dissipation. We present experimental results on various sequential circuits. Upto 75%
reductions in average switching activity and power dissipation are possible with marginal
increases in circuit area and delay.
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Abstract

The problem of minimizing power consumption during the state encoding of a finite state
machine is considered. A new power cost model for state encoding is proposed and encodig
techniques that minimize this power cost for two- and multi-level logic implementations are
described. These techniques are compared with those which minimize area or the switching
activity at the present state bits. Experimental results show significant improvements.
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Abstract

Given a set of specifications for a targeted application, algorithm selection refers to choosing the
most suitable algorithm for a given goal, among several functionally equivalent algorithms. We
demonstrate an extraordinary potential of algorithm selection for achieving high throughput, low
cost, and low power implementations. We introduce an efficient technique for low-bound
evaluation of the throughput and cost during algorithm selection and propose a relaxation-based
heuristic for throughput optimization. We also present an algorithm for cost optimization using
algorithm selection. The effectiveness of methodology and algorithms is illustrated using
examples.
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Abstract

Previously, we had presented the system COSYMA for hardware/software co-synthesis of small
embedded controllers [ErHeBe93]. Target system of COSYMA is a core processor with
application specific co—processors. The system speedup for standard programs compared to a
single 33MHz RISC processor solution with fast, single cycle access RAM was typically less
than 2 due to restrictions in high-level co—processor synthesis, and incorrectly estimated back
end tool performance, such as hardware synthesis, compiler optimization and communication
optimization. Meanwhile, a high-level synthesis tool for highperformance co—processors in co-
synthesis has been developed. This paper explains the requirements and the main features of the
high-level synthesis system and its integration into COSYMA. The results show a speedup of 10
in most cases. Compared to the speedup, the co—processor size is very small.
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Synthesis of Concurrent System Interface Modules with Automatic Protocol Conversion
Generation

Bill Lin, Steven Vercauteren
IMEC, Kapeldreef 75, B-3001 Leuven, Belgium,
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Abstract

We describe a new high-level compiler called Integral for designing system interfacemodules.
The input is a high-level concurrent algorithmic specification that can model complex concurrent
control flow, logical and arithmetic computations, abstract communication, and low-level
behavior. For abstract communication between two communicating modules that obey different
I/O protocols, the necessary protocol conversion behaviors are automatically synthesized using a
Petri net theoretic approach. We present a synthesis trajectory that can synthesize the necessary
hardware resources, control circuitry, and protocol conversion behaviors for implementing
system interface modules.
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An Efficient Procedure for the Synthesis of Fast Self-Testable Controller Structures

Sybille Hellebrand, Hans-Joachim Wunderlich

Institute of Computer Structures, University of Siegen, Germany
Abstract

The BIST implementation of a conventionally synthesized controller in most cases requires
the integration of an additional register only for test purposes. This leads to some serious
drawbacks concerning the fault coverage, the system speed and the area overhead. A synthesis
technique is presented which uses the additional test register also to implement the system
function by supporting self-testable pipeline-like controller structures. It will be shown, that if
the need of two different registers in the final structure is already taken into account during
synthesis, then the over-all number of flipflops can be reduced, and the fault coverage and
system speed can be enhanced. The presented algorithm constructs realizations of a given finite
state machine specification which can be trivially implemented by a self-testable structure. The
efficiency of the procedure is ensured by a very precise characterization of the space of suitable
realizations, which avoids the computational overhead of previously published algorithms

References

1 V. D. Agrawal, C. R. Kime, K. K. Saluja: A Tutorial on Built-In Self-Test, Part 1: Principles, IEEE Design & Test
of Computers, Vol. 10, No. 1, March 1993, pp. 73-82

2 P. Ashar, S. Devadas: Irredundant Interacting Sequential Machines Via Optimal Logic Synthesis, IEEE Trans. on
CAD, Vol. 10, No. 3, March 1991, pp. 311-325

3 P. Ashar, S. Devadas, A. R. Newton: A Unified Approach to the Decomposition and Re-decomposition of
Sequential Machines, Proc 27th ACM/IEEE Int. Design Automation Conf., 1990, pp. 601-606

4 Z. Barzilai, D. Coppersmith, A. L. Rosenberg: Exhaustive Generation of Bit Patterns with Applications to VLSI
Self-Testing, IEEE Trans. on Computers, Vol. c-32, No. 2, February 1983, pp. 190 -194

5 R. K. Brayton, G. D. Hachtel, C. T. McMullen: Logic Minimization Algorithms for VLSI Synthesis, Kluwer
Academic Publishers, Boston, The Hague, Dordrecht, Lancaster, 1984.

6 R. K. Brayton et al.: MIS: A Multiple-Level Logic Optimization System, IEEE Trans. on CAD, Vol. CAD-6,
No.6, 1987, pp. 1062-1081

7 V. D. Agrawal, K.-T. Cheng: Finite State Machine Synthesis with Embedded Test Function, Journal of Electronic
Testing Theory and Applications, Vol. 1, No. 3, October 1990, pp. 221-228

8 K.-T. Cheng, V. D. Agrawal: State Assignment for Testable Design, Int. Journal of Computer Aided VLSI Design,
Vol. 3., March 1991

9 W. Daehn, J. Mucha: Hardware Test Pattern Generation for Built-In Test, Proc. IEEE Int. Test Conf.,
Philadelphia, 1981, pp. 100 - 113

10 S. Devadas, K. Keutzer. A Unified Approach to the Synthesis of Fully Testable Sequential Machines, IEEE
Trans. on CAD, Vol. 10, No. 1. January 1991, pp. 39-50

11 S. Devadas et al.: MUSTANG: State Assignment of Finite State Machines Targeting Mulitlevel Logic
Implementations, IEEE Trans. on CAD, Vol, 7, No. 12, Dec. 1988, pp. 1290-1300

12 B. Eschermann, H.-J. Wunderlich: Parallel Self-Test and the Synthesis of Control Units, Proc. 2nd European
Test Conf., Munich, 1991

13 B. Eschermann, H-J. Wunderlich: Optimized Synthesis Techniques for Testable Sequential Circuits, IEEE
Trans. on CAD, Vol. 11, No. 3, March 1992, pp. 301-312.

14 R. Gage: Structured CBIST in ASICS; Proc. IEEE Int. Test Conf., Baltimore, Maryland, 1993, pp. 332-338
15 Martin Geiger, Thomas Miiller-Wipperfiirth: FSM Decomposition Revisited: Algebraic Structure Theory
Applied to MCNC Benchmark FSMs, Proc. 28th ACM/IEEE Design_Automation Conf., San Francisco, 1991,
pp. 182-185



16 J. Harttmanis, R E. Stearns: Algebraic Structure Theory of Sequential Machines, Prentice Hall, Englewood
Cliffs, 1966

17 S. Hellebrand, H.-J. Wunderlich, O. Haberl: Generating Pseudo-Exhaustive Vectors for External Testing;
Proc. IEEE Int. Test. Conf, Washington, D. C. 1990, pp. 670-679

18 S. Hellebrand, H.-J. Wunderlich: Synthesis of Self-Testable Controllers, in: Proc. EDAC/ETC/EuroAsic
'94, Paris, Feb. 1994, pp. 380-585

19 K. Kim, D. Ha, J. Tront: On Using Signature Registers as Pseudorandom Pattern Generators in Built-in Self
Testing, IEEE Trans. on CAD, Vol. 7. 1988, pp. 919-

20 B. Koenemann, J. Mucha, G. Zwiehoff: Built-in Logic Block Observation Techniques, Proc. IEEE Int.
Test Conf., Cherry Hill, N. J.,1979, pp. 37 - 41

21 K. McElvain: IWLS'93 Benchmark Set: Version 4.0, distributed as part of the IWLS'93 benchmark
distribution

22 1. Pomeranz, S. M. Reddy: Design and Synthesis for Testability of Synchronous Sequential Circuits Based
on Strong-Connectivity, Proc. IEEE 23rd Int. Symp. on Fault-Tolerant Computing, FTCS-23, Toulouse, June
1993, pp. 492-501

23 G. Saucier, M. C. De Paulet, P. Sicard: ASYL: A RuleBased System for Controller Synthesis, IEEE Trans.
on CAD, Vol. CAD-6, No. 6, Nov. 1987, pp. 1088-1097

24 T. Villa, A. Sangiovanni-Vincentelli: NOVA: State Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations, Proc. 26th ACM/IEEE Design Automation Conf., Las Vegas, 1989. pp. 327-332
25 P. Weiner, E. J. Smith: Optimization of Reduced Dependencies for Synchronous Sequential Machines,
IEEE Trans. on Electronic Computers, Vol. EC-16, No. 6, Dec. 1967, pp. 835-847

26 H.-J. Wunderlich: Self Test Using Unequiprobable Random Patterns, Proc. IEEE 17th Int. Symp. on Fault-
Tolerant Computing, FTCS-17, Pittsburgh, 1987, pp. 258-263



ICCADY4, Pages 117-124

Test Pattern Generation Based On Arithmetic Operations

Sanjay Gupta, Janusz Rajski and Jerzy Tyszer
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Abstract

Existing built-in self test (BIST) strategies require the use of specialized test pattern generation
hardware which introduces significant area overhead and performance degradation. In this paper,
we propose a novel method for implementing test pattern generators based on adders widely
available in data-path architectures and digital signal processing circuits. Test patterns are
generated by continuously accumulating a constant value and their quality is evaluated in terms
of the pseudo-exhaustive state coverage on subspaces of contiguous bits. This new test
generation scheme, along with the recently introduced accumulator-based compaction scheme
facilitates a BIST strategy for high performance datapath architectures that uses the functionality
of existing hardware, is entirely integrated with the circuit under test, and results in at-speed
testing with no performance degradation and area overhead.
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Random Pattern Testable Logic Synthesis
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Abstract

Previous procedures for synthesis of testable logic guarantee that all faults in the synthesized
circuits are detectable. However, the detectability of many faults in these circuits can be very low
leading to poor random pattern testability. A new procedure to perform logic synthesis that
synthesizes random pattern testable multilevel circuits is proposed. Experimental results show
that the circuits synthesized by the proposed procedure tstfx are significantly more random
pattern testable and smaller than those synthesized using its counterpart fast extract (fx) in SIS.
The proposed synthesis procedure designs circuits that require only simple random pattern
generators in built-in self-test, thereby obviating the need for complex BIST circuitry.
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Compression-Relaxation: A New Approach to Performance Driven Placement for Regular
Architectures

Anmol Mathur, C. L. Liu
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Abstract

We present a new iterative algorithm for performance driven placement applicable to regular
architectures such as FPGAs. Our algorithm has two phases in each iteration: a compression
phase and a relaxation phase. We employ a novel compression strategy based on the longest path
tree of a cone for improving the timing performance of a given placement. Compression might
cause a feasible placement to become infeasible. The concept of a slack neighborhood graph is
introduced and is used in the relaxation phase to transform an infeasible placement to a feasible
one using a mincost flow formulation. Our analytical results regarding the bounds on delay
increase during relaxation are validated by the rapid convergence of our algorithm on benchmark
circuits. We obtain placements that have 13% less critical path delay (on the average) than those
generated by the Xilinx automatic place and route tool (apr) on technology mapped MCNC
benchmark circuits with significantly less CPU time than apr.
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A Loosely Coupled Parallel Algorithm for Standard Cell Placement
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Abstract

We present a loosely coupled parallel algorithm for the placement of standard cell integrated
circuits. Our algorithm is a derivative of simulated annealing. The implementation of our
algorithm is targeted toward networks of UNIX workstations. This is the very first reported
parallel algorithm for standard cell placement which yields as good or better placement results
than its serial version. In addition, it is the first parallel placement algorithm reported which
offers nearly linear speedup, in terms of the number of processors (workstations) used, over the
serial version. Despite using the rather slow local area network as the only means of
interprocessor communication, the processor utilization is quite high, up to 98% for 2 processors
and 90% for 6 processors. The new parallel algorithm has yielded the best overall results ever
reported for the set of MCNC standard cell benchmark circuits.
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Delay and Area Optimization for Compact Placement by Gate Resizing and Relocation
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Abstract

In this paper, we first present an efficient algorithm for the gate sizing problem. Then we propose
an algorithm which performs delay and area optimization for a given compact placement by
resizing and relocating cells in the circuit lay-out. Since the gate sizing procedure is embedded
within the placement adjustment process, interconnect capacitance information is included in the
gate size selection process. As a result, the algorithm is able to obtain superior solutions.
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Edge-Map: Optimal Performance Driven Technology Mapping for Iterative LUT Based
FPGA Designs

Honghua Yang and D. F. Wong
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Abstract

We consider the problem of performance driven lookup-table (LUT) based technology mapping
for FPGAs using a general delay model. In the general delay model, each interconnection edge
has a weight representing the delay of the interconnection. This model is particularly useful
when combined with an iterative retechnology mapping process where the actual delays of the
placed and routed circuit are fed-back to the technology mapping phase to improve the mapping
based on the more realistic delay estimation. Well known technology mappers such as FlowMap
and Chortle-d only minimize the number of levels in the technology mapped circuit and hence
are not suitable for such an iterative re-technology mapping process. Recently, Mathur and Liu in
[ML94] studied the performance driven technology mapping problem using the general delay
model and presented an effective heuristic algorithm for the problem. In this paper, we present
an efficient technology mapping algorithm that achieves provably optimal delay in the
technology mapped circuit using the general delay model. Our algorithm is a non-trivial
generalization of FlowMap. A key problem in our algorithm is to compute a K-feasible network
cut such that the circuit delay on every cut edge is upper-bounded by a specific value. We
implemented our algorithm in a LUT based FPGA technology mapping package called Edge-
Map, and tested Edge-Map on a set of benchmark circuits.
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Abstract

Technology mapping algorithms for LUT (Look Up Table) based FPGAs have been proposed to
transfer a Boolean network into logic-blocks. However, since those algorithms take no lay-out
information into account, they do not always lead to excellent results. In this paper, a
simultaneous technology mapping, placement and global routing algorithm for FPGAs, Maple, is
presented. Maple is an extended version of a simultaneous placement and global routing
algorithm for FPGAs, which is based on recursive partition of layout regions and block sets.
Maple inherits its basic process and executes the technology mapping simultaneously in each
recursive process. Therefore, the mapping can be done with the placement and global routing
information. Experimental results for some benchmark circuits demonstrate its efficiency and
effectiveness.
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Abstract

In this paper the problem of selecting an appropriate programmable cell structure for FPGA
architecture design is addressed. The cells studied here can be configured to the desired
functionality by applying input permutation, negation, bridging or constant assignment, or output
negation. A general methodology to determine logic description of such cells, which are capable
of being configured to a given set of functions is described. Experimental results suggest that the
new cell behaves as well as the Actel 2 cell in terms of logic power but requires substantially less
area and wiring overhead.
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Abstract

Identifying mutual exclusiveness between operators during behavioral synthesis is important in
order to reduce the required number of control steps or hardware resources. To improve the
quality of the synthesis result, we propose a representation, the Condition Graph, and an
algorithm for identification of mutually exclusive operators. Previous research efforts have
concentrated on identifying mutual exclusiveness by examining language constructs such as IF-
THEN-ELSE statements. Thus, their results heavily depend on the description styles. The
proposed approach can produce results independent of description styles and identify more
mutually exclusive operators than any previous approaches. The Condition Graph and the
proposed algorithm can be used in any scheduling or binding algorithms. Experimental results on
several benchmarks have shown the efficiency of the proposed representation and algorithm.
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Abstract

We present in this paper a novel control synthesis technique for system-level specifications that
are better described as a set of concurrent synchronous descriptions, their synchronizations and
constraints. The proposed synthesis technique considers the degrees of freedom introduced by
the concurrent models and by the environment in order to satisfy the design constraints.
Synthesis is divided in two phases. In the first phase, the original specification is translated into
an algebraic system, for which complex control-flow constraints and quantifiers of the design are
determined. This algebraic system is then analyzed and the design space of the specification is
represented by a finite-state machine, from which a set of Boolean formulas is generated and
manipulated in order to obtain a solution. This method contrasts with usual high-level synthesis
methods in that it can handle arbitrarily complex control-flow structures, concurrency and
synchronization by allowing the scheduling of the operations to change dynamically over time.
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Abstract

In this paper, we present a comprehensive technique for lower bound estimation (LBE) of
resources from behavioral descriptions. Previous work has focused on LBE techniques that use
very simple costmodels which primarily focus on the functional unit resources. Our cost model
accounts for storage resources in addition to functional resources. Our timing model uses a finer
granularity that permits the modeling of functional unit, register and interconnect delays. We
tested our LBE technique for both functional unit and storage requirements on several high-level
synthesis benchmarks and observed near-optimal results.
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Abstract

This paper presents a technique called regionwise quadratic (RWQ) modeling that allows highly
accurate MOS models, as well as measured I-V data, to be used in fast timing simulation. This
technique significantly increases the accuracy of fast timing simulation while maintaining
efficiency by permitting analytical solutions of node equations. A fast timing simulator using
these RWQ models has been implemented. Several examples of RWQ modeling are provided,
and comparisons of simulation results with SPICE3 are shown to demonstrate accuracy and
efficiency. Speedups of two to three orders of magnitude for circuits containing up to 2000
transistors are observed.
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Abstract

Accurate timing simulations are crucial to the design of MOS VLSI circuits, but can take
prohibitively large amounts of time. This paper describes dynamic regionization techniques
applied to an event based simulator for MOS timing simulation that have proven to be more
efficient and as accurate as the static regionization method. The MOS network is first statically
partitioned into groups of strongly coupled nodes called regions. Big regions are then
incrementally and dynamically partitioned into and replaced by subregions. Subregions are
treated just like normal regions in the event based simulation process. This simulator has been
used to verify the timing and functionality of several large VLSI chips. Performance is 3 to 7
times faster than a static regionization method.
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Abstract

This paper presents one of the first attempts to statistically characterize signal delays of basic
CMOS digital combinational circuits using the transistor level approach. Hybrid
analytical/iterative delay expressions in terms of the transistor geometries and technological
process variations are created for basic building blocks. Local delays of blocks along specific
signal paths are combined together for the analysis of complex combinational VLSI circuits. The
speed of analysis is increased by 2 to 4 orders of magnitude relative to SPICE, with about 5-10%
accuracy. The proposed approach shows good accuracy in modeling the influence of the “noise"
parameters on circuit delay relative to direct SPICE-based Monte Carlo analysis. Examples of
statistical delay characterization are shown. The important impact of the proposed approach is
that statistical evaluation and optimization of delays in much larger VLSI circuits will become
possible.
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Simultaneous Driver and Wire Sizing for Performance and Power Optimization
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Abstract

In this paper,we study the simultaneous driver andwire sizing (SDWS) problem under two
objective functions: (i) delay minimization only, or (ii) combined delay and power dissipation
minimization. We present general formulations of the SDWS problem under these two objectives
based on the distributed Elmore delay model with consideration of both capacitive power
dissipation and short-circuit power dissipation. We show several interesting properties of the
optimal SDWS solutions under the two objectives, including an important result (Theorem 3)
which reveals the relationship between driver sizing and optimal wire sizing. These results lead
to polynomial time algorithms for computing the lower and upper bounds of optimal SDWS
solutions under the two objectives, and efficient algorithms for computing optimal SDWS
solutions under the two objectives. We have implemented these algorithms and compared them
with existing design methods for driver sizing only or independent driver and wire sizing.
Accurate SPICE simulation shows that our methods reduce the delay by up to 11%—47% and
power dissipation by 26%—63% compared with existing design methods.
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Low-Cost Single-Layer Clock Trees With Exact Zero Elmore Delay Skew
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Abstract

We give the first single-layer clock tree construction with exact zero skew according to the
Elmore delay model. The previous Linear-Planar-DME method [11] guarantees a planar solution
under the linear delay model. In this paper, we use a Linear-Planar-DME variant connection
topology to construct a low-cost zero skew tree (ZST) according to the Elmore delay model.
While a linear-delay ZST is trivially converted to an Elmore-delay ZST by “detouring" wires, the
key idea is to defer this detouring as much as possible to reduce tree cost. Costs of our planar
ZST solutions are comparable to those of the best previous non-planar ZST solutions, and
substantially improve over previous planar clock routing methods.
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Abstract

In this paper we investigate the problem of computing a lower bound on the number of buffers
required when given a maximum clock frequency and a predefined clock tree. Using generalized
properties of published CMOS timing models, we formulate a novel non-linear and a simplified
linear buffer insertion problem. We solve the later optimally with an O(n) algorithm. The basic
formulation and algorithm are extended to include a skew upper bound constraint. Using these
algorithms we propose further algorithmic extensions that allow area and phase delay tradeoffs.
Our results are verified using SPICE3e2 simulations with MCNC MOSIS 2.0p models and
parameters. Experiments show our buffer insertion algorithms can be used effectively for high-
speed clock designs.
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Effcient Implementation of Retiming
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Abstract

Retiming is a technique for optimizing sequential circuits. It repositions the registers in a circuit
leaving the combinational cells untouched. The objective of retiming is to find a circuit with the
minimum number of registers for a specified clock period. More than ten years have elapsed
since Leiserson and Saxe first presented a theoretical formulation to solve this problem for
single-clock edge-triggered sequential circuits. Their proposed algorithms have polynomial
complexity; however naive implementations of these algorithms exhibit O(n’) time complexity
and O(n?) space complexity when applied to digital circuits with n combinational cells. This
renders retiming ineffective for circuits with more than 500 combinational cells. This paper
addresses the implementation issues required to exploit the sparsity of circuit graphs to allow
min-period retiming and constrained min-area retiming to be applied to circuits with as many as
10,000 combinational cells. We believe this is the first paper to address these issues and the first
to report retiming results for large circuits.
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Retiming With Non-Zero Clock Skew, Variable Register, and Interconnect Delay
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Abstract

A retiming algorithm is presented which includes the effects of variable register, clock
distribution, and interconnect delay. These delay components are incorporated into retiming by
assigning Register Electrical Characteristics (RECs) to each edge in the graph representation of
the synchronous circuit. A matrix (called the Sequential Adjacency Matrix or SAM) is presented
that contains all path delays. Timing constraints for each data path are derived from this matrix.
Vertex lags are assigned ranges rather than single values as in standard retiming algorithms. The
approach used in the proposed algorithm is to initialize these ranges with unbounded values and
continuously tighten these ranges using localized timing constraints until an optimal solution is
obtained. The algorithm is demonstrated on modified MCNC benchmark circuits and both
increased clock frequencies and elimination of all race conditions are observed
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Optimal Latch Mapping and Retiming within a Tree
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Abstract

We propose a technology mapping algorithm that takes existing structural technology-mapping
algorithms based on dynamic programming [1,3,4] and extends them to retime pipelined circuits.
If the circuit to be mapped has a tree structure, our algorithm generates an optimal solution
compatible with that structure. The algorithm takes into account gate delays and capacitive loads
as latches are moved across the logic. It also supports latches with embedded logic: i.e., cells that
combine a D latch with a combinational gate at little extra cost in latch delay.
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Abstract

Current extended value set dynamic timing analyzers are not sophisticated enough to detect the
subtle timing relationships upon which timing-critical systems depend, and exhaustive
simulation achieves very accurate results but at tremendous computational cost. MTV is a
simulator that strikes a balance between accuracy and efficiency.

MTYV is more accurate than other extended value set simulators because it respects the ordering
of events. It is more efficient than exhaustive simulators because it efficiently simulates
overlapping events and requires only a single waveform to represent a signal. Features of MTV
include: elimination of common ambiguity, symbolic delays, correlated delays, and sophisticated
algorithms to detect ordered events. This paper concludes with simulation results from the
ISCASS8S5 benchmark suite.
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Abstract

Today's digital design systems are running out of steam, when it comes to meeting the challenges
presented by simultaneous switching, power consumption and reliability constraints emerging in
VLSI circuits. In this paper a new technique to accurately estimate the transient behavior of large
CMOS cell-based circuits in a reasonable amount of time is presented. Gate-level simulation and
a consistent modeling methodology are employed to compute the time-domain waveforms for
signal voltages, supply currents, power consumption and Al noise on power lines. This can be
done for circuit blocks and complete designs by our new tool POWTIM, which adds SPICE-like
capabilities to digital design systems.
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Abstract

The Inversion Algorithm is an event-driven algorithm, whose performance rivals or exceeds that
of Levelized Compiled code simulation, even at activity rates of 50% or more. The Inversion
Algorithm has several unique features, the most remarkable of which is the size of the run-time
code. The basic Algorithm can be implemented using no more than a page of run-time code,
although in practice it is more efficient to provide several different variations of the basic
algorithm. The run-time code is independent of the circuit under test, so the algorithm can be
implemented either as a compiled code or an interpreted simulator with little variation in
performance. Because of the small size of the run-time code, the runtime portions of the
Inversion Algorithm can be implemented in assembly language for peak efficiency, and still be
retargeted for new platforms with little effort.
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Abstract

In this paper, we describe the complete MOSFET model developed for circuit simulation. The
model describes all transistor characteristics as functions of surface potentials, which are
calculated iteratively at each applied voltage under the charge-sheet approximation. The key idea
of this development is to put as much physics as possible into the equations describing the
surface potentials. Since the model includes both the drift and the diffusion contributions, a
single equation is valid from the subthreshold to the saturation regions. The unified treatment of
our model allows all transistor characteristics to be calculated without any nonphysical fitting
parameters. Additionally the calculation time is drastically reduced in comparison with a
conventional piece-wise model.
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A Precorrected-FFT method for Capacitance Extraction of Complicated 3-D Structures
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Abstract

In this paper we present a new approach to three-dimensional capacitance extraction based on a
precorrected FFT scheme. The approach is compared to the now commonly used multipole-
accelerated algorithms for a variety of structures, and the new method is shown to have
substantial performance and memory advantages.
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Abstract

This paper presents a new methodology for measuring MOS transistor currentmismatch and a
new transistor currentmismatch model. The new methodology is based on extracting the
mismatch information from a fully functional circuit rather than on probing individual devices;
this extraction leads to more efficient and more accurate mismatch measurement. The new model
characterizes the total mismatch as a sum of two components, one systematic and the other
random. For our process, we attribute nearly half of the mismatch to the systematic component,
which we model as a linear gradient across the die. Furthermore, we present a new model for the
random component of the mismatch which is 60% more accurate, on average, than existing
models.
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Abstract

Given a topology of clock tree and a library of buffers, we propose an efficient skew sensitivity
minimization algorithm using dynamic programming approach. Our algorithm finds the optimum
buffer sizes, its insertion levels in the clock tree, and optimum wire widths to minimize the skew
sensitivity under manufacturing variations. Careful fine tuning by shifting buffer locations at the
last stage preserves the minimum skew sensitivity property and reduce the interconnect length.
For a given clock tree of n points and a library of s different buffer sizes, the run time of the
presented algorithm is O(log’n's?).

Experimental results show a significant reduction of clock skews ranging from 87 times to 144
times compared to the clock skews before applying the proposed algorithm. We also observe a
further reduction of the propagation delay of clock signals as a result of applying the proposed
skew sensitivity algorithm.
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Process-Variation-Tolerant Clock Skew Minimization

Shen Lin and C. K. Wong
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Abstract

In this paper,we propose a novel hierarchical multiple-merge zero skew clock routing algorithm.
The routing results produced by our approach will have zero skew in the nominal case and
minimal skew increase in the presence of worst process variations. In order to construct such a
clock routing, we formulate the linear placement withmaximumspread problem and provide an
O(n min{n, P}logn log P) algorithm for optimally solving this problem, where 7 is the number
of cells to be placed and P is the maximum spread. Experimental results show that our algorithm
can indeed reduce the skew in various manufacturing variations effectively.
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Abstract

Clock routing to minimize the clock skew is very necessary to make high performance LSIs. Our
clock routing method: (1) realizes the specified delay to each input terminal and provides a zero
skew; (2) uses multiple routing layers for pin-to-pin routing; and (3) considers the delay arising from
the resistance of a through-hole. Experimental results show that the delay is within 1% error
compared to the specified delay and the skew can be controlled within pico second order.
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Abstract

This work presents techniques for computing the switching activities of all circuit nodes under
pseudorandom or biased input sequences and assuming a zero delay mode of operation. Complex
spatiotemporal correlations among the circuit inputs and internal nodes are considered by using a
lag-one Markov Chain model. Evaluations of the model and a comparative analysis presented for
benchmark circuits demonstrates the accuracy and the practicality of the method. The results
presented in this paper are useful in power estimation and low power design.
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Abstract

This paper presents accurate estimation of signal activity at the internal nodes of CMOS
combinational logic circuits. The methodology is based on stochastic model of logic signals and
takes correlations and simultaneous switching of signals at logic gate inputs into consideration.
In combinational logic synthesis, in order to minimize spurious transitions due to finite propaga-
tion delays, it is crucial to balance all signal paths and to reduce the logic depth [4]. As a result of
balancing delays through different paths, the inputs to logic gates may switch at approximately
the same time. We have developed and implemented an technique to calculate signal probability
and switching activity of the CMOS combinational logic circuits. Experimental results show that
if simultaneous switching is not considered the switching activities of the internal nodes can be
off by more than 100% compared to simulation based techniques. In contrast, our technique is on
the average within 2% of logic simulation results.
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