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In this paper, we discuss the problem of optimizing a multi-level logic combinational Boolean 
network. Our techniques apply a sequence of local perturbations and modifications of the 
network which are guided by the automatic test pattern generation ATPG based reasoning. In 
particular, we propose several new ways in which one or more redundant gates or wires can be 
added to a network.  We show how to identify gates which are good candidates for local 
functionality change. Furthermore, we discuss the problem of adding and removing two wires, 
none of which alone is redundant, but when jointly added/removed they do not affect 
functionality of the network. We also address the problem of efficient redundancy computation 
which allows to eliminate many unnecessary redundancy tests.  We have performed experiments 
on MCNC benchmarks and compared the results to those of misII[4] and RAMBO[6]. 
Experimental results are very encouraging. 
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Abstract  
 
This paper proposes a new approach to multilevel logic optimization based on ATPG (Automatic 
Test Pattern Generation). Previous ATPG-based methods for logic minimization suffered from 
the limitation that they were quite restricted in the set of possible circuit transformations. We 
show that the ATPG-based method presented here allows (in principle) the transformation of a 
given combinational network C into an arbitrary, structurally different but functionally 
equivalent combinational network C’. Furthermore, powerful heuristics are presented in order to 
decide what network manipulations are promising for minimizing the circuit. By identifying 
indirect implications between signals in the circuit, transformations can be derived which are 
“good” candidates for the minimization of the circuit. In particular, it is shown that Recursive 
Learning can derive “good” Boolean divisors justifying the effort to attempt a Boolean division. 
For 9 out of 10 ISCAS-85 benchmark circuits our tool HANNIBAL obtains smaller circuits than 
the well-known synthesis system SIS. 
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Abstract 
 
A small change in the input to logic synthesis may cause a large change in the output 
implementation. This is undesirable if a designer has some investment in the old implementation 
and does not want it perturbed more than necessary. We describe a method that solves this 
problem by reusing gates from the old implementation, and restricting synthesis to the modified 
portions only. 
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Abstract 
 
This paper defines a new optimization problem that arises in the use of a Field-Programmable 
System (FPS). An FPS consists of a set of Field-Programmable Gate Arrays and memories, and 
is used both for emulation of ASICs and computation. In both cases the application circuits will 
include a set of memories which may not match the number and aspect ratio of the physical 
memories available on the FPS. This can often require that the physical memories be time-
multiplexed to implement the required memories, in a circuit we call a memory organizer. We 
give a precise definition of the packing optimization problem and present an algorithm for its 
solution.  The algorithm has been implemented in a CAD tool that automatically produces a 
memory organizer circuit ready for synthesis by a commercial FPGA tool set. 
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Abstract 
 
In this paper we discuss the interaction and integration of two important program transformations 
in high-level synthesis--Tree Height Reduction and Redundant Memory-access Elimination. 
Intuitively, these program transformations do not interfere with one another as they optimize 
different operations in the program graph and different resources in the synthesized system. 
However, we demonstrate that integration of the two tasks is necessary to better utilize available 
resources. Our approach involves the use of a “meta-transformation" to guide transformation 
application as possibilities arise. Results observed on several image and video benchmarks 
demonstrate that transformation integration increases performance through better resource 
utilization. 
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Abstract 
 
Memory cost is responsible for a large amount of the chip and/or board area of customized video 
and image processing systems. In this paper, a novel background memory allocation and 
assignment technique is presented. It is intended for a behavioural algorithm specification, where 
the procedural ordering of the memory related operations is not yet fully fixed. Instead of the 
more restricted classical scheduling-based explorations, starting from procedurally interpreted 
specifications in terms of loops, a novel optimization approach - driven by data-flow analysis - is 
proposed. Employing the estimated silicon area as a steering cost, this allocation/assignment 
technique yields one or (optionally) several distributed (multi-port) memory architecture(s) with 
fully-determined characteristics, complying with a given clock cycle budget for read/write 
operations. Moreover, our approach can accurately deal with complex multi-dimensional signals 
by means of a polyhedral data-flow analysis operating with groups of scalars. 
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Abstract 
 
Bridge-type defects play a dominant role in state-of-the-art CMOS technologies. This paper 
describes a combined functional and overcurrent-based test generation approach for CMOS 
circuits, which is optionally based on layout information. Comparative results for benchmark 
circuits are given to demonstrate the feasibility of voltage-based versus IDDQ-based testing. 
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Abstract 
 
Simulation-based test vector generators require much less computer time than deterministic ATPG 
but they generate longer test sequences and sometimes achieve lower fault coverage. This is due to 
the divergence in the search process. In this paper, we propose a correction technique for 
simulation-based ATPG. The technique is based on identifying the diverging state and on 
computing a fault cluster (faults close to each other). A set of candidate faults from the cluster is 
targeted with a deterministic ATPG and the resulting test sequence is used to restart the search 
process of the simulation-based technique. This above process is repeated until all faults are 
detected or proven to be redundant/untestable. The program implementing this approach has been 
used to generate tests with very high fault coverage, and runs about 10 times faster than traditional 
deterministic techniques with very good test quality in terms of test length and fault coverage. 
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Abstract 
 
Static tests are key in reducing the current high cost of testing analog and mixed-signal ICs. A 
new DC test generation technique for detecting catastrophic failures in this class of circuits is 
presented. To include the effect of tolerance of parameters during testing, the test generation 
problem is formulated as a minimax optimization problem, and solved iteratively as successive 
linear programming problems. An analytical fault modeling technique, based on manufacturing 
defect statistics is used to derive the fault list for the test generation. Using the technique 
presented here an efficient static test set for analog and mixed-signal ICs can be constructed, 
reducing both the test time and the packaging cost. 
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Abstract 
 
We consider the problem of bipartitioning a circuit into two balanced components that minimizes 
the number of crossing nets. Previously, the Kernighan and Lin type (K&L) heuristics, the 
simulated annealing approach, and the spectral method were given to solve the problem. 
However, network ow techniques were overlooked as a viable approach to min-cut balanced 
bipartition due to its high complexity. In this paper we propose a balanced bipartition heuristic 
based on repeated max-ow min-cut techniques, and give an efficient implementation that has the 
same asymptotic time complexity as that of one max-ow computation.  We implemented our 
heuristic algorithm in a package called FBB. The experimental results demonstrate that FBB 
outperforms the K&L heuristics and the spectral method in terms of the number of crossing nets, 
and the efficient implementation makes it possible to partition large circuit instances with 
reasonable runtime.  For example, the average elapsed time for bipartitioning a circuit S35932 of 
almost 20K gates is less than 20 minutes. 
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Abstract 
 
In this paper, we study the area-balanced multi-way partitioning problem of VLSI circuits based 
on a new dual netlist representation named the hybrid dual netlist (HDN). Given a netlist, we 
first compute a K-way partition of the nets based on the HDN representation, and then transform 
a K-way net partition into a K-way module partitioning solution. The main contribution of our 
work is the formulation and solution of the K-way module contention (K-MC) problem, which 
determines the best assignment of the modules in contention to partitions, while maintaining 
user-specified area requirements, when we transform the net partition into a module partition.  
Under a natural definition of binding factor between nets and modules, and preference function 
between partitions and modules, we show that the K-MC problem can be reduced to a min-cost 
max-flow problem. We present efficient solutions to the K-MC problem based on network flow 
computation. Extensive experimental results show that our algorithm consistently outperforms 
the conventional K-FM partitioning algorithm by a significant margin. 
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Abstract 
 
We present a general framework for the construction of vertex orderings for netlist clustering. 
Our WINDOW algorithm constructs an ordering by iteratively adding the vertex with highest 
attraction to the existing ordering. Variant choices for the attraction function allow our 
framework to subsume many graph traversals and clustering objectives from the literature. The 
DP-RP method of [3] is then applied to optimally split the ordering into a k-way clustering.  Our 
approach is adaptable to user-specified cluster size constraints. Experimental results for 
clustering and multi-way partitioning are encouraging. 
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Abstract 
 
We present a fully implicit encoding algorithm for minimization of average power dissipation in 
sequential circuits, based on the reduction of the average number of bit changes per state 
transition.  We have studied two novel schemes for this purpose, one based on recursive 
weighted non-bipartite matching, and one on recursive mincut bi-partitioning. We employ ADDs 
(Algebraic Decision Diagrams) to computate the transition probabilities, to measure potential 
area saving, and in the encoding algorithms themselves. Our experiments show the effectiveness 
of our method in reducing power dissipation for large sequential designs. 
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Abstract 
 
We address the problem of optimizing logic-level sequential circuits for low power. We present 
a powerful sequential logic optimization method that is based on selectively precomputing the 
output logic values of the circuit one clock cycle before they are required, and using the 
precomputed values to reduce internal switching activity in the succeeding clock cycle. We 
present two different precomputation architectures which exploit this observation.  We present 
an automatic method of synthesizing pre-computation logic so as to achieve maximal reductions 
in power dissipation. We present experimental results on various sequential circuits. Upto 75% 
reductions in average switching activity and power dissipation are possible with marginal 
increases in circuit area and delay. 
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Abstract 
 
The problem of minimizing power consumption during the state encoding of a finite state 
machine is considered. A new power cost model for state encoding is proposed and encodig 
techniques that minimize this power cost for two- and multi-level logic implementations are 
described. These techniques are compared with those which minimize area or the switching 
activity at the present state bits. Experimental results show significant improvements. 
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Abstract 
 
Given a set of specifications for a targeted application, algorithm selection refers to choosing the 
most suitable algorithm for a given goal, among several functionally equivalent algorithms.  We 
demonstrate an extraordinary potential of algorithm selection for achieving high throughput, low 
cost, and low power implementations.  We introduce an efficient technique for low-bound 
evaluation of the throughput and cost during algorithm selection and propose a relaxation-based 
heuristic for throughput optimization.  We also present an algorithm for cost optimization using 
algorithm selection. The effectiveness of methodology and algorithms is illustrated using 
examples. 
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Abstract 
 
Previously, we had presented the system COSYMA for hardware/software co-synthesis of small 
embedded controllers [ErHeBe93]. Target system of COSYMA is a core processor with 
application specific co–processors. The system speedup for standard programs compared to a 
single 33MHz RISC processor solution with fast, single cycle access RAM was typically less 
than 2 due to restrictions in high-level co–processor synthesis, and incorrectly estimated back 
end tool performance, such as hardware synthesis, compiler optimization and communication 
optimization.  Meanwhile, a high-level synthesis tool for highperformance co–processors in co-
synthesis has been developed.  This paper explains the requirements and the main features of the 
high-level synthesis system and its integration into COSYMA. The results show a speedup of 10 
in most cases. Compared to the speedup, the co–processor size is very small. 
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Abstract  
 
We describe a new high-level compiler called Integral for designing system interfacemodules. 
The input is a high-level concurrent algorithmic specification that can model complex concurrent 
control flow, logical and arithmetic computations, abstract communication, and low-level 
behavior. For abstract communication between two communicating modules that obey different 
I/O protocols, the necessary protocol conversion behaviors are automatically synthesized using a 
Petri net theoretic approach. We present a synthesis trajectory that can synthesize the necessary 
hardware resources, control circuitry, and protocol conversion behaviors for implementing 
system interface modules. 
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Abstract 
 

The BIST implementation of a conventionally synthesized controller in most cases requires 
the integration of an additional register only for test purposes. This leads to some serious 
drawbacks concerning the fault coverage, the system speed and the area overhead. A synthesis 
technique is presented which uses the additional test register also to implement the system 
function by supporting self-testable pipeline-like controller structures. It will be shown, that if 
the need of two different registers in the final structure is already taken into account during 
synthesis, then the over-all number of flipflops can be reduced, and the fault coverage and 
system speed can be enhanced. The presented algorithm constructs realizations of a given finite 
state machine specification which can be trivially implemented by a self-testable structure. The 
efficiency of the procedure is ensured by a very precise characterization of the space of suitable 
realizations, which avoids the computational overhead of previously published algorithms 
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Abstract 
 
Existing built-in self test (BIST) strategies require the use of specialized test pattern generation 
hardware which introduces significant area overhead and performance degradation. In this paper, 
we propose a novel method for implementing test pattern generators based on adders widely 
available in data-path architectures and digital signal processing circuits. Test patterns are 
generated by continuously accumulating a constant value and their quality is evaluated in terms 
of the pseudo-exhaustive state coverage on subspaces of contiguous bits. This new test 
generation scheme, along with the recently introduced accumulator-based compaction scheme 
facilitates a BIST strategy for high performance datapath architectures that uses the functionality 
of existing hardware, is entirely integrated with the circuit under test, and results in at-speed 
testing with no performance degradation and area overhead. 
 
References 
[1] P.H. Bardell, W.H. McAnney, and J. Savir. Built-in Test for VLSI: Pseudorandom Techniques. John Wiley & 
Sons, 1987. 
[2] B. Koenemann, J. Mucha, and G. Zwiehoff. Built-in test for complex integrated circuits. IEEE J. Solid State 
Circuits, SC-15:315-318, June 1980. 
[3] J. Rajski and J. Tyszer. Accumulator-based compaction of test responses. IEEE Tr. Comp., 42(6):643- 450, June 
1993. 
[4] P.D. Hortensius et al. Cellular-automata-based pseudo-random number generators for built-in self test. IEEE Tr. 
CAD, 7(8):842-859, Aug. 1989. 
[5] D.E. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, 2nd edition, 1981. 
[6] D.T. Tang and L.S. Woo. Exhaustive test pattern generation with constant weight vectors. IEEE Tr. Comp., 
32(12):1145-1150, Dec. 1983. 
[7] E.J. McCluskey. Verification testing - a pseudoexhaustive test technique. IEEE Tr. Comp., 33(6):541-546, June 
1984. 
[8] J. Rajski and J. Tyszer. Recursive pseudo-exhaustive test pattern generation. IEEE Tr. Comp., 42(12):1517-
1521, Dec. 1993. 
[9] S. Gupta, J. Rajski, and J. Tyszer. Arithmetic generators of pseudo-exhaustive test patterns. Submitted to IEEE 
Tr. Comp. 
 
 



ICCAD94, Pages 125-128 
Random Pattern Testable Logic Synthesis 

 
Chen-Huan Chiang and Sandeep K. Gupta 

University of Southern California, Los Angeles, CA 90089-2562 
 
Abstract 
 
Previous procedures for synthesis of testable logic guarantee that all faults in the synthesized 
circuits are detectable. However, the detectability of many faults in these circuits can be very low 
leading to poor random pattern testability. A new procedure to perform logic synthesis that 
synthesizes random pattern testable multilevel circuits is proposed. Experimental results show 
that the circuits synthesized by the proposed procedure tstfx are significantly more random 
pattern testable and smaller than those synthesized using its counterpart fast extract (fx) in SIS. 
The proposed synthesis procedure designs circuits that require only simple random pattern 
generators in built-in self-test, thereby obviating the need for complex BIST circuitry. 
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Abstract 
 
We present a new iterative algorithm for performance driven placement applicable to regular 
architectures such as FPGAs. Our algorithm has two phases in each iteration: a compression 
phase and a relaxation phase. We employ a novel compression strategy based on the longest path 
tree of a cone for improving the timing performance of a given placement. Compression might 
cause a feasible placement to become infeasible. The concept of a slack neighborhood graph is 
introduced and is used in the relaxation phase to transform an infeasible placement to a feasible 
one using a mincost flow formulation. Our analytical results regarding the bounds on delay 
increase during relaxation are validated by the rapid convergence of our algorithm on benchmark 
circuits. We obtain placements that have 13% less critical path delay (on the average) than those 
generated by the Xilinx automatic place and route tool (apr) on technology mapped MCNC 
benchmark circuits with significantly less CPU time than apr. 
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Abstract 
 
We present a loosely coupled parallel algorithm for the placement of standard cell integrated 
circuits. Our algorithm is a derivative of simulated annealing. The implementation of our 
algorithm is targeted toward networks of UNIX workstations. This is the very first reported 
parallel algorithm for standard cell placement which yields as good or better placement results 
than its serial version. In addition, it is the first parallel placement algorithm reported which 
offers nearly linear speedup, in terms of the number of processors (workstations) used, over the 
serial version. Despite using the rather slow local area network as the only means of 
interprocessor communication, the processor utilization is quite high, up to 98% for 2 processors 
and 90% for 6 processors. The new parallel algorithm has yielded the best overall results ever 
reported for the set of MCNC standard cell benchmark circuits. 
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Abstract 
 
In this paper, we first present an efficient algorithm for the gate sizing problem. Then we propose 
an algorithm which performs delay and area optimization for a given compact placement by 
resizing and relocating cells in the circuit lay-out. Since the gate sizing procedure is embedded 
within the placement adjustment process, interconnect capacitance information is included in the 
gate size selection process. As a result, the algorithm is able to obtain superior solutions. 
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Abstract 
 
We consider the problem of performance driven lookup-table (LUT) based technology mapping 
for FPGAs using a general delay model. In the general delay model, each interconnection edge 
has a weight representing the delay of the interconnection. This model is particularly useful 
when combined with an iterative retechnology mapping process where the actual delays of the 
placed and routed circuit are fed-back to the technology mapping phase to improve the mapping 
based on the more realistic delay estimation. Well known technology mappers such as FlowMap 
and Chortle-d only minimize the number of levels in the technology mapped circuit and hence 
are not suitable for such an iterative re-technology mapping process. Recently, Mathur and Liu in 
[ML94] studied the performance driven technology mapping problem using the general delay 
model and presented an effective heuristic algorithm for the problem. In this paper, we present 
an efficient technology mapping algorithm that achieves provably optimal delay in the 
technology mapped circuit using the general delay model. Our algorithm is a non-trivial 
generalization of FlowMap. A key problem in our algorithm is to compute a K-feasible network 
cut such that the circuit delay on every cut edge is upper-bounded by a specific value. We 
implemented our algorithm in a LUT based FPGA technology mapping package called Edge-
Map, and tested Edge-Map on a set of benchmark circuits. 
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Abstract 
 
Technology mapping algorithms for LUT (Look Up Table) based FPGAs have been proposed to 
transfer a Boolean network into logic-blocks. However, since those algorithms take no lay-out 
information into account, they do not always lead to excellent results. In this paper, a 
simultaneous technology mapping, placement and global routing algorithm for FPGAs, Maple, is 
presented. Maple is an extended version of a simultaneous placement and global routing 
algorithm for FPGAs, which is based on recursive partition of layout regions and block sets. 
Maple inherits its basic process and executes the technology mapping simultaneously in each 
recursive process. Therefore, the mapping can be done with the placement and global routing 
information. Experimental results for some benchmark circuits demonstrate its efficiency and 
effectiveness. 
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Abstract 
 
In this paper the problem of selecting an appropriate programmable cell structure for FPGA 
architecture design is addressed. The cells studied here can be configured to the desired 
functionality by applying input permutation, negation, bridging or constant assignment, or output 
negation. A general methodology to determine logic description of such cells, which are capable 
of being configured to a given set of functions is described.  Experimental results suggest that the 
new cell behaves as well as the Actel 2 cell in terms of logic power but requires substantially less 
area and wiring overhead. 
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Abstract 
 
Identifying mutual exclusiveness between operators during behavioral synthesis is important in 
order to reduce the required number of control steps or hardware resources. To improve the 
quality of the synthesis result, we propose a representation, the Condition Graph, and an 
algorithm for identification of mutually exclusive operators. Previous research efforts have 
concentrated on identifying mutual exclusiveness by examining language constructs such as IF-
THEN-ELSE statements. Thus, their results heavily depend on the description styles. The 
proposed approach can produce results independent of description styles and identify more 
mutually exclusive operators than any previous approaches. The Condition Graph and the 
proposed algorithm can be used in any scheduling or binding algorithms. Experimental results on 
several benchmarks have shown the efficiency of the proposed representation and algorithm. 
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Abstract 
 
We present in this paper a novel control synthesis technique for system-level specifications that 
are better described as a set of concurrent synchronous descriptions, their synchronizations and 
constraints. The proposed synthesis technique considers the degrees of freedom introduced by 
the concurrent models and by the environment in order to satisfy the design constraints. 
Synthesis is divided in two phases. In the first phase, the original specification is translated into 
an algebraic system, for which complex control-flow constraints and quantifiers of the design are 
determined. This algebraic system is then analyzed and the design space of the specification is 
represented by a finite-state machine, from which a set of Boolean formulas is generated and 
manipulated in order to obtain a solution. This method contrasts with usual high-level synthesis 
methods in that it can handle arbitrarily complex control-flow structures, concurrency and 
synchronization by allowing the scheduling of the operations to change dynamically over time. 
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Abstract 
 
In this paper, we present a comprehensive technique for lower bound estimation (LBE) of 
resources from behavioral descriptions. Previous work has focused on LBE techniques that use 
very simple costmodels which primarily focus on the functional unit resources. Our cost model 
accounts for storage resources in addition to functional resources. Our timing model uses a finer 
granularity that permits the modeling of functional unit, register and interconnect delays. We 
tested our LBE technique for both functional unit and storage requirements on several high-level 
synthesis benchmarks and observed near-optimal results. 
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Abstract 
 
This paper presents a technique called regionwise quadratic (RWQ) modeling that allows highly 
accurate MOS models, as well as measured I-V data, to be used in fast timing simulation. This 
technique significantly increases the accuracy of fast timing simulation while maintaining 
efficiency by permitting analytical solutions of node equations. A fast timing simulator using 
these RWQ models has been implemented. Several examples of RWQ modeling are provided, 
and comparisons of simulation results with SPICE3 are shown to demonstrate accuracy and 
efficiency. Speedups of two to three orders of magnitude for circuits containing up to 2000 
transistors are observed. 
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Abstract 
 
Accurate timing simulations are crucial to the design of MOS VLSI circuits, but can take 
prohibitively large amounts of time. This paper describes dynamic regionization techniques 
applied to an event based simulator for MOS timing simulation that have proven to be more 
efficient and as accurate as the static regionization method. The MOS network is first statically 
partitioned into groups of strongly coupled nodes called regions. Big regions are then 
incrementally and dynamically partitioned into and replaced by subregions. Subregions are 
treated just like normal regions in the event based simulation process. This simulator has been 
used to verify the timing and functionality of several large VLSI chips. Performance is 3 to 7 
times faster than a static regionization method. 
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Abstract 
 
This paper presents one of the first attempts to statistically characterize signal delays of basic 
CMOS digital combinational circuits using the transistor level approach. Hybrid 
analytical/iterative delay expressions in terms of the transistor geometries and technological 
process variations are created for basic building blocks. Local delays of blocks along specific 
signal paths are combined together for the analysis of complex combinational VLSI circuits. The 
speed of analysis is increased by 2 to 4 orders of magnitude relative to SPICE, with about 5-10% 
accuracy. The proposed approach shows good accuracy in modeling the influence of the “noise" 
parameters on circuit delay relative to direct SPICE-based Monte Carlo analysis. Examples of 
statistical delay characterization are shown. The important impact of the proposed approach is 
that statistical evaluation and optimization of delays in much larger VLSI circuits will become 
possible. 
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Abstract 
 
In this paper,we study the simultaneous driver andwire sizing (SDWS) problem under two 
objective functions: (i) delay minimization only, or (ii) combined delay and power dissipation 
minimization. We present general formulations of the SDWS problem under these two objectives 
based on the distributed Elmore delay model with consideration of both capacitive power 
dissipation and short-circuit power dissipation. We show several interesting properties of the 
optimal SDWS solutions under the two objectives, including an important result (Theorem 3) 
which reveals the relationship between driver sizing and optimal wire sizing. These results lead 
to polynomial time algorithms for computing the lower and upper bounds of optimal SDWS 
solutions under the two objectives, and efficient algorithms for computing optimal SDWS 
solutions under the two objectives. We have implemented these algorithms and compared them 
with existing design methods for driver sizing only or independent driver and wire sizing. 
Accurate SPICE simulation shows that our methods reduce the delay by up to 11%–47% and 
power dissipation by 26%–63% compared with existing design methods. 
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Abstract 
 
We give the first single-layer clock tree construction with exact zero skew according to the 
Elmore delay model. The previous Linear-Planar-DME method [11] guarantees a planar solution 
under the linear delay model. In this paper, we use a Linear-Planar-DME variant connection 
topology to construct a low-cost zero skew tree (ZST) according to the Elmore delay model.  
While a linear-delay ZST is trivially converted to an Elmore-delay ZST by “detouring" wires, the 
key idea is to defer this detouring as much as possible to reduce tree cost. Costs of our planar 
ZST solutions are comparable to those of the best previous non-planar ZST solutions, and 
substantially improve over previous planar clock routing methods. 
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Abstract 
 
In this paper we investigate the problem of computing a lower bound on the number of buffers 
required when given a maximum clock frequency and a predefined clock tree. Using generalized 
properties of published CMOS timing models, we formulate a novel non-linear and a simplified 
linear buffer insertion problem. We solve the later optimally with an O(n) algorithm. The basic 
formulation and algorithm are extended to include a skew upper bound constraint.  Using these 
algorithms we propose further algorithmic extensions that allow area and phase delay tradeoffs.  
Our results are verified using SPICE3e2 simulations with MCNC MOSIS 2.0µ models and 
parameters. Experiments show our buffer insertion algorithms can be used effectively for high-
speed clock designs. 
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Abstract 
 
Retiming is a technique for optimizing sequential circuits. It repositions the registers in a circuit 
leaving the combinational cells untouched. The objective of retiming is to find a circuit with the 
minimum number of registers for a specified clock period.  More than ten years have elapsed 
since Leiserson and Saxe first presented a theoretical formulation to solve this problem for 
single-clock edge-triggered sequential circuits. Their proposed algorithms have polynomial 
complexity; however naive implementations of these algorithms exhibit O(n3) time complexity 
and O(n2) space complexity when applied to digital circuits with n combinational cells. This 
renders retiming ineffective for circuits with more than 500 combinational cells. This paper 
addresses the implementation issues required to exploit the sparsity of circuit graphs to allow 
min-period retiming and constrained min-area retiming to be applied to circuits with as many as 
10,000 combinational cells. We believe this is the first paper to address these issues and the first 
to report retiming results for large circuits. 
 
References 
[1] A. Goldberg, E. Tardos, and R. E. Tarjan. Network flow Algorithms. Technical report, Department of Computer 
Science, 1989. 
[2] A. Ishii, C. E. Leiserson, and M. C. Papaefthymiou.  Optimizing Two-Phase Level-Clocked Circuitry. In 
Advanced Research in VLSI, 1992. 
[3] E. L. Lawler. Combinatorial Optimization: networks and Matroids. Holt, Rinehart and Winston, 1976. 
[4] C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems. In Journal of VLSI and Computer Systems, 
pages 41-67, 1983. 
[5] C. E. Leiserson and J. B. Saxe. Retiming Synchronous Circuitry. In Algorithmica, 1991. 6(1). 
[6] B. Lockyear and C. Ebeling. Optimal Retiming of Multi-Phase Level-Clocked Circuits. In Advanced Research in 
VLSI, 1992. 
[7] A. Munzner and G. Hemme. Converting Combinational Circuits into Pipelined Data Path. In Proceedings of the 
International Conference on Computer-Aided Design, 1991. 
[8] M. C. Papaefthymiou and K. H. Randall. TIM: Timing Package for Two-phase Level-clocked Circuitry. In 
Proceedings of the Design Automation Conference. IEEE/ACM, 1993. 
[9] J. B. Saxe. Decomposable Searching Problems and Circuit Optimizations by retiming: Two Studies in General 
Transfromations of Computational Structures. PhD thesis, Carnegie-Mellon University, 1985. 
[10] T. G. Szymanski. Computing Optimal Clock Schedules. In Proceedings of the Design Automation Conference, 
1992. 
 
 



ICCAD94, Pages 234-241 
Retiming With Non-Zero Clock Skew, Variable Register, and Interconnect Delay 

 
Tolga Soyata and Eby G. Friedman 

Department of Electrical Engineering, University of Rochester, Rochester, NY 14627 
 
Abstract 
 
A retiming algorithm is presented which includes the effects of variable register, clock 
distribution, and interconnect delay. These delay components are incorporated into retiming by 
assigning Register Electrical Characteristics (RECs) to each edge in the graph representation of 
the synchronous circuit. A matrix (called the Sequential Adjacency Matrix or SAM) is presented 
that contains all path delays. Timing constraints for each data path are derived from this matrix. 
Vertex lags are assigned ranges rather than single values as in standard retiming algorithms. The 
approach used in the proposed algorithm is to initialize these ranges with unbounded values and 
continuously tighten these ranges using localized timing constraints until an optimal solution is 
obtained. The algorithm is demonstrated on modified MCNC benchmark circuits and both 
increased clock frequencies and elimination of all race conditions are observed 
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Abstract  
 
We propose a technology mapping algorithm that takes existing structural technology-mapping 
algorithms based on dynamic programming [1,3,4] and extends them to retime pipelined circuits. 
If the circuit to be mapped has a tree structure, our algorithm generates an optimal solution 
compatible with that structure. The algorithm takes into account gate delays and capacitive loads 
as latches are moved across the logic. It also supports latches with embedded logic: i.e., cells that 
combine a D latch with a combinational gate at little extra cost in latch delay. 
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Abstract 
 
Current extended value set dynamic timing analyzers are not sophisticated enough to detect the 
subtle timing relationships upon which timing-critical systems depend, and exhaustive 
simulation achieves very accurate results but at tremendous computational cost. MTV is a 
simulator that strikes a balance between accuracy and efficiency. 
 
MTV is more accurate than other extended value set simulators because it respects the ordering 
of events. It is more efficient than exhaustive simulators because it efficiently simulates 
overlapping events and requires only a single waveform to represent a signal. Features of MTV 
include: elimination of common ambiguity, symbolic delays, correlated delays, and sophisticated 
algorithms to detect ordered events. This paper concludes with simulation results from the 
ISCAS85 benchmark suite. 
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Abstract  
 
Today's digital design systems are running out of steam, when it comes to meeting the challenges 
presented by simultaneous switching, power consumption and reliability constraints emerging in 
VLSI circuits. In this paper a new technique to accurately estimate the transient behavior of large 
CMOS cell-based circuits in a reasonable amount of time is presented. Gate-level simulation and 
a consistent modeling methodology are employed to compute the time-domain waveforms for 
signal voltages, supply currents, power consumption and ∆I noise on power lines. This can be 
done for circuit blocks and complete designs by our new tool POWTIM, which adds SPICE-like 
capabilities to digital design systems. 
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Abstract 
 
The Inversion Algorithm is an event-driven algorithm, whose performance rivals or exceeds that 
of Levelized Compiled code simulation, even at activity rates of 50% or more. The Inversion 
Algorithm has several unique features, the most remarkable of which is the size of the run-time 
code. The basic Algorithm can be implemented using no more than a page of run-time code, 
although in practice it is more efficient to provide several different variations of the basic 
algorithm. The run-time code is independent of the circuit under test, so the algorithm can be 
implemented either as a compiled code or an interpreted simulator with little variation in 
performance.  Because of the small size of the run-time code, the runtime portions of the 
Inversion Algorithm can be implemented in assembly language for peak efficiency, and still be 
retargeted for new platforms with little effort. 
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Abstract 
 
In this paper, we describe the complete MOSFET model developed for circuit simulation. The 
model describes all transistor characteristics as functions of surface potentials, which are 
calculated iteratively at each applied voltage under the charge-sheet approximation. The key idea 
of this development is to put as much physics as possible into the equations describing the 
surface potentials. Since the model includes both the drift and the diffusion contributions, a 
single equation is valid from the subthreshold to the saturation regions. The unified treatment of 
our model allows all transistor characteristics to be calculated without any nonphysical fitting 
parameters. Additionally the calculation time is drastically reduced in comparison with a 
conventional piece-wise model. 
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Abstract 
 
In this paper we present a new approach to three-dimensional capacitance extraction based on a 
precorrected FFT scheme. The approach is compared to the now commonly used multipole-
accelerated algorithms for a variety of structures, and the new method is shown to have 
substantial performance and memory advantages. 
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Abstract 
 
This paper presents a new methodology for measuring MOS transistor currentmismatch and a 
new transistor currentmismatch model. The new methodology is based on extracting the 
mismatch information from a fully functional circuit rather than on probing individual devices; 
this extraction leads to more efficient and more accurate mismatch measurement. The new model 
characterizes the total mismatch as a sum of two components, one systematic and the other 
random. For our process, we attribute nearly half of the mismatch to the systematic component, 
which we model as a linear gradient across the die. Furthermore, we present a new model for the 
random component of the mismatch which is 60% more accurate, on average, than existing 
models. 
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Abstract 
 
Given a topology of clock tree and a library of buffers, we propose an efficient skew sensitivity 
minimization algorithm using dynamic programming approach. Our algorithm finds the optimum 
buffer sizes, its insertion levels in the clock tree, and optimum wire widths to minimize the skew 
sensitivity under manufacturing variations. Careful fine tuning by shifting buffer locations at the 
last stage preserves the minimum skew sensitivity property and reduce the interconnect length. 
For a given clock tree of n points and a library of s different buffer sizes, the run time of the 
presented algorithm is O(log3n· s2). 
 
Experimental results show a significant reduction of clock skews ranging from 87 times to 144 
times compared to the clock skews before applying the proposed algorithm.  We also observe a 
further reduction of the propagation delay of clock signals as a result of applying the proposed 
skew sensitivity algorithm. 
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Abstract 
 
In this paper,we propose a novel hierarchical multiple-merge zero skew clock routing algorithm. 
The routing results produced by our approach will have zero skew in the nominal case and 
minimal skew increase in the presence of worst process variations. In order to construct such a 
clock routing, we formulate the linear placement withmaximumspread problem and provide an 
O(n min{n, P}logn log P) algorithm for optimally solving this problem, where n is the number 
of cells to be placed and P is the maximum spread.  Experimental results show that our algorithm 
can indeed reduce the skew in various manufacturing variations effectively. 
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Abstract  
 
Clock routing to minimize the clock skew is very necessary to make high performance  LSIs. Our 
clock routing method: (1) realizes the specified delay to each input terminal and provides a zero 
skew; (2) uses multiple routing layers for pin-to-pin routing; and (3) considers  the delay arising from 
the resistance of a through-hole. Experimental results show that the delay is within 1% error 
compared to the specified delay and the skew can be controlled within pico second order. 
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Abstract 
 
This work presents techniques for computing the switching activities of all circuit nodes under 
pseudorandom or biased input sequences and assuming a zero delay mode of operation. Complex 
spatiotemporal correlations among the circuit inputs and internal nodes are considered by using a 
lag-one Markov Chain model. Evaluations of the model and a comparative analysis presented for 
benchmark circuits demonstrates the accuracy and the practicality of the method. The results 
presented in this paper are useful in power estimation and low power design. 
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Abstract 
 
This paper presents accurate estimation of signal activity at the internal nodes of CMOS 
combinational logic circuits. The methodology is based on stochastic model of logic signals and 
takes correlations and simultaneous switching of signals at logic gate inputs into consideration. 
In combinational logic synthesis, in order to minimize spurious transitions due to finite propaga-
tion delays, it is crucial to balance all signal paths and to reduce the logic depth [4]. As a result of 
balancing delays through different paths, the inputs to logic gates may switch at approximately 
the same time. We have developed and implemented an technique to calculate signal probability 
and switching activity of the CMOS combinational logic circuits. Experimental results show that 
if simultaneous switching is not considered the switching activities of the internal nodes can be 
off by more than 100% compared to simulation based techniques. In contrast, our technique is on 
the average within 2% of logic simulation results. 
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Abstract 
 
In this paper we present a power dissipation model considering the charging/discharging of 
capacitance at the gate output node as well as internal nodes, and capacitance feedthrough effect. 
Based on the model, a Cell-Based Power Estimation (CBPE) method is developed to estimate the 
power dissipation in CMOS combinational circuits. In our technique, we first construct a 
modified state transition graph called STGPE to model the power consumption behavior of a 
logic gate. Then, according to the input signal probabilities and transition densities of the logic 
gate, we perform an efficient method to estimate the expected activity number of each edge in 
the STGPE. Finally, the energy consumption of a logic gate is calculated by summing the energy 
consumptions of each edge in STGPE. For a set of benchmark circuits, experimental results 
show that the power dissipation estimated by CBPE is on average within 10-percent errors as 
compared to the exact SPICE simulation while the CPU time is more than two order-of- 
magnitudes faster. 
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Abstract 
 
Exploration plays an important role in the design of high-performance pipelines. We propose an 
exploration strategy for varying three design parameters by using a performance-constrained 
component selection and pipelining algorithm on different “architectures". The architecture is 
specified manually by using a mix of behavioral and structural constructs, while the component 
selection and pipelining is performed automatically using our algorithms.  Results on two 
industrial-strength DSP systems, indicate the effectiveness of our strategy in exploring a large 
design space within a matter of seconds. 
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Abstract 
 
As device feature size decreases, interconnection delay becomes the dominating factor of system 
performance. Thus it is important that accurate physical information is used during high level 
synthesis. In this paper, we consider the problem of simultaneously performing functional-unit 
binding and oorplanning.  Experimental results indicate that our approach to combine binding 
and oorplanning is superior to the traditional approach of separating the two tasks. 
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Abstract 
 
In high level synthesis each node of a synchronous data-flow graph (DFG) is scheduled to a 
specific time and allocated to a processor. In this paper we present new integer linear 
programming (ILP) models which generate a blocked schedule for a DFG with implicit retiming, 
pipelining, and unfolding while performing module selection and data format conversion. A 
blocked schedule is a schedule which overlaps multiple iterations of the DFG to guarantee a 
minimum number of processors. Component modules are selected from a library of processors to 
minimize cost.  Furthermore, we include data format converters between processors of different 
data formats. In addition, we minimize the unfolding factor of the blocked schedule. 
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Abstract 
 
We consider the problem of testing for delay faults in macrobased circuits. Macro-based circuits 
are obtained as a result of technology mapping. Gate-level fault models cannot be used for such 
circuits, since the implementation of a macro may not have an accurate gate-level counterpart, or 
the macro implementation may not be known. Two delay fault models are proposed for macro-
based circuits. The first model is analogous to the gatelevel gross delay fault model. The second 
model is analogous to the gate-level path delay fault model. We provide fault simulation 
procedures, and present experimental results. 
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ABSTRACT 
 
The problem of delay fault-testing and detection of chips with marginal performance has become 
even more critical than before due to advancing clock speeds. In this paper, a methodology for 
detection of marginal digital circuits and diagnosis of gate delay failures is developed. A new test 
application methodology is proposed in which test vectors may be applied to digital 
combinational circuits at intervals smaller than the critical path delay of the circuit and signal 
waveform analysis is used to interpret the test results. The resulting tests are called RApid Fire 
Tests (for RAFT) and allow classification of circuits from "good" to "bad" along a continuous 
scale. 
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Abstract 
 
In this paper, a comprehensive macromodel for transistor level faults in an operational amplifier 
is developed. With the observation that faulty behavior at output may result from interfacing 
error in addition to the faulty component, parameters associated with input and output 
characteristics are incorporated. Test generation and fault classification are addressed for stand-
alone opamps. A high fault coverage is achieved by a proposed testing strategy. Transistor level 
short/bridging faults are analyzed and classified into catastrophic faults and parametric faults. 
Based on the macromodels for parametric faults, fault simulation is performed for an active 
filter. We found many parametric faults in the active filter cannot be detected by traditional 
functional testing. A DFT scheme along with a current testing strategy to improve fault coverage 
is proposed. 
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Abstract 
 
A global router with its consistent placer is proposed which aims to control wire-densities of 
channels. The routing order of nets and their routes are decided according to the channel which is 
predicted to have the maximum wire-density. The placer distributes the nets evenly with respect 
to the virtual length (half perimeter of the bounding box). Interesting features included are the 
interactive dynamic test to decide the form of predicting functions and the admissible region to 
consider the routing resources in placement stage. Experiments reveal some interesting 
phenomena that smaller maximum wire-density is attained in spite of comparable total wire-
density and that smaller maximum wire-length in spite o f larger total wire-length. 
 
References 
[1] A.Hashimoto and J. Stevens, "Wire routing by optimizing channel assignment within large apertures," Proc. 8th 
Design Automation Conference, Jun 1971, pp.155-163. 
[2] Kirkpatrick, C. Gelett, and M. Vecchi, "Optimization by Simulated Annealing, Science," vol. 220, no. 4598, 
pp671-680, May 1983. 
[3] J.T.Mowchenko and C.S.R.Ma,"A New Global Routing Algorithm for Standard Cell ICs", Proc. of 
International Symposium on Circuits and Systems, pp.27-30,1987. 
[4] J. Cong and B. Preas, " A New Algorithm for Standard Cell Global Routing," Proc. IEEE International 
Conference on Computer Aided Design, pp. 176-179, Nov. 1988. 
[5] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-Programmable Gate Arrays, Kluwer Acadmic 
Publishers, 1992. 
[6] S. D. Brown, J. Rose, and Z. G. Vranesic, "A Stochastic Model to Predict the Routability of Field-
Programmable Gate Arrays", Proc. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 
Vol. 12, No. 12, pp 1827-1838,1993. 
 



ICCAD94, Pages 356-361 
A New Global Routing Algorithm for FPGAs 

 
Yao-Wen Chang*, Shashidhar Thakur*, Kai Zhu**, and D.F. Wong* 

*Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712-1188 
**AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974 

 
Abstract 
 
As in traditional ASIC technologies, FPGA routing usually consists of two steps: global routing 
and detailed routing. Unlike existing FPGA detailed routers, which can take full advantage of the 
special structures of the programmable routing resources, FPGA global routing algorithms still 
greatly resemble their counterparts in the traditional ASIC technologies. In particular, the routing 
congestion information of a switch block essentially is still measured by the numbers of available 
rows and columns in the switch block. Since the internal architecture of a switch block decides 
what can route through the block, the traditional measure of routing capacity is no longer 
accurate. In this paper, we present an accurate measure of switch block routing capacity. Our 
new measure considers the exact positions of the switches inside a switch block. Experiments 
with a global router based on these ideas show an average improvement of 38% in the channel 
width required to route some benchmark circuits using a popular switch block, compared with an 
algorithm based on the traditional methods for congestion control. 
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Abstract 
 
Several industrial FPGA routing architectures have been shown to have no efficient routing 
algorithms (unless P=NP) [3,4]. Here, we further investigate if the intractability of the routing 
problem on a regular 2-D FPGA routing architecture can be alleviated by adding routing 
switches. We show that on this routing architecture, even with a substantial increase in switching 
flexibility, a polynomial time, predictable routing algorithm is still not likely to exist, and there is 
no constant ratio bound of the detailed over global routing channel densities. We also show that a 
perfect routing is unachievable on this architecture even with near complete (maximum) 
switching flexibility.   
 
We also discuss a new, greedy routing architecture, that possesses predictable and other desired 
routing properties, yet requires fewer routing resources than regular architectures. This 
theoretical result may suggest an alternative approach in routing architecture designs. 
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Abstract 
 
Power dissipation in technology mapped circuits can be reduced by performing gate re-sizing. 
Recently we have proposed a symbolic procedure which exploits the compactness of the ADD 
data structure to accurately calculate the arrival times at each node of a circuit for any primary 
input vector. In this paper we extend our timing analysis tool to the symbolic calculation of 
required times and slacks, and we use this information to identify gates of the circuit that can be 
re-sized. The nice feature of our approach is that it takes into account the presence of false paths 
naturally. As shown by the experimental results, circuits re-synthesized with the technique we 
present in this paper are guaranteed to be at least as fast as the original implementations, but 
smaller and substantially less power-consuming. 
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Abstract 
 
This paper describes a procedure for minimizing the power consumption in a boolean network 
under the zero delay model.  Power is minimized by modifying the function of each intermediate 
node in the network such that the power consumption of the node is decreased without increasing 
the power consumption of the other nodes in the network. A formal analysis of how changes in 
the switching activity of an intermediate node affect the switching activity of other nodes in the 
network is given first. Using this analysis, a procedure for calculating the set of compatible 
power don’t cares for each node in the network is presented. Finally it is shown how these don’t 
cares are used to optimize the network for low power. These techniques have been implemented 
and results show an average of 10% improvement in total power consumption of the network 
compared to the results generated by the conventional network optimization techniques. 
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Abstract 
 
This paper resents a new LP based optimal cell selection method. Optimal cell selection is useful 
tool for final tuning of LSI designs. It replaces drivabilities of cells, adjusting timing, area, and 
power constraints. Using the latest and earliest arrival times, it can handle both setup and hold 
time constraints. We also make an efficient initial basis, which speeds up a simplex LP solver by 
5 times without any relaxations nor approximations. From experimental results it reduces the 
clock cycle of a manual designed 13k-transistor chip by 17% without any increase of area. 
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Abstract 
 
Embedded computer systems are characterized by the presence of a dedicated processor and the 
software that runs on it. Power constraints are increasingly becoming the critical component of 
the design specification of these systems. At present, however, power analysis tools can only be 
applied at the lower levels of the design - the circuit or gate level. It is either impractical or 
impossible to use the lower level tools to estimate the power cost of the software component of 
the system. This paper describes the first systematic attempt to model this power cost. A power 
analysis technique is developed that has been applied to two commercial microprocessors - Intel 
486DX2 and Fujitsu SPARClite 934. This technique can be employed to evaluate the power cost 
of embedded software and also be used to search the design space in software power 
optimization. 
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Abstract 
 
The design of application-specific instruction set processor (ASIP) system includes at least three 
interdependent tasks: microarchitecture design, instruction set design, and instruction set 
mapping for the application. We present a method that unifies these three design problems with a 
single formulation: a modified scheduling/allocation problem with an integrated instruction 
formation process. Micro-operations (MOPs) representing the application are scheduled into 
time steps. Instructions are formed and hardware resources are allocated during the scheduling 
process. The assembly code for the given application is obtained automatically at the end of the 
scheduling process. This approach considers MOP parallelism, instruction field encoding, delay 
load/store/branch, conditional execution of MOPs and the retargetability to various architecture 
templates. Experiments are presented to show the power and limitation of our approach. 
Performance improvement over our previous work [4] is significant. 
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Abstract 
 
Application Specific Instruction-Set Processors (ASIPs) offer designers the ability for high-speed 
data and control processing with the added flexibility needed for late design specifications, 
accomodation of design errors, and product evolution. However, code generation for ASIPs is a 
complex problem and new techniques are needed for its success. The register assignment task 
can be a critical phase, since often in ASIPs, the number and functionality of available registers 
is limited, as the designer has opted for simplicity, speed, and low area. Intelligent use of register 
files is critical to the program execution time, program memory usage and data memory usage. 
This paper describes a methodology utilizing register classes as a basis for assignment for a 
particular style of ASIP architectures. The approach gives preference to special purpose registers 
which are the scarce resources. This naturally leads to the objectives of high speed and low 
program memory usage. The approach has been implemented in a system called CodeSyn [1] 
and used on custom ASIP architectures. 
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Abstract 
 
We describe the application of the PVL algorithm to the small-signal analysis of circuits, 
including sensitivity computations. The PVL algorithm is based on the efficient computation of 
the Padé approximation of the network transfer function via the Lanczos process. The numerical 
stability of the algorithm permits the accurate computation of the Padé approximation over any 
given frequency range. We extend the algorithm to compute sensitivities of network transfer 
functions, their poles, and zeros, with respect to arbitrary circuit parameters, with minimal 
additional computational cost, and we present numerical examples. 
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Abstract 
 
The delay associated with transmission line networks consists of the exponentially charging time 
and a pure propagation delay. This propagation delay, so called time-of-flight delay, is 
particularly evident in long lines. When the time-of-flight is comparable to the input rise-time, it 
is difficult to capture the time-of-flight with a finite sum of exponentials. Therefore the time-of-
flight must be captured explicitly from the transfer function of the circuit. In this paper, we give 
a precise definition of the time-of-flight together with some basic properties, and present an effi-
cient method to capture the time-of-flight for general interconnect networks. Based on our 
scattering parameter macromodel, we can easily capture the time-of-flight during the network 
reduction while using lower order model to evaluate the charging delay. By capturing the time-
of-flight delay, the accuracy of system responses can be greatly improved without significantly 
increasing computing time. 
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Abstract 
 
Presently, delays due to the physical interconnect between logic gates account for large portions 
of the overall path delays. For this reason, synthesis of the logic gate fanout structure is of 
paramount importance during performance optimization. This paper presents a methodology for 
on-chip RC interconnect synthesis.  Moment sensitivities are used to vary the wire widths of the 
branches in an RC interconnect tree to achieve performance targets. In this paper, signal slopes 
and delays at critical fanout nodes are the targets, and the impact on total metal area is 
considered. An procedure for computing the exact moment sensitivities in an RC tree is 
described. 
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Abstract 
 
We present a new min-cut based placement algorithm for large scale sea-of-gates arrays. In the 
past all such algorithms used a fixed cut line sequence that is determined before min-cut 
partitioning is performed. In our approach, we adaptively select a next partitioning pattern based 
on the current parameter value; we then perform the corresponding min-cut partitionings and 
measure a new parameter value. We repeat this process until all cut lines are processed. As a 
parameter, we introduce a new global objective function based on wire congestions on cut lines. 
We establish a close relation between this function and cut line sequences. This relation is used 
to develop an innovative method of adaptively determining a cut line sequence so as to minimize 
this global function. With this adaptive selection of cut lines along with a new cluster-based min-
cut partitioning technique, our algorithm can produce, in a short time and at a low cost, final 
placement results that achieve the 100% completion of wiring on chips of fixed sizes.  This has 
led to its successful production use, having generated more than 400 CMOS sea-of-gates array 
chips. 
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Abstract 
 
We consider two versions of the problem of folding a stack of equal width components. In both 
versions, when a stack is folded, a routing penalty is incurred at the fold. In one version, the 
height of the folded layout is given and we are to minimize width. In the other, the width of the 
folded layout is given and its height is to be minimized. 
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Abstract 
Two results are presented in this paper. First we settle the open problem on the complexity of the 
area minimization problem for hierarchical oorplans by showing it to be NP-complete. We then 
present a pseudo-polynomial area minimization algorithm for hierarchical floorplans of  order-5. 
The algorithm is based on a new algorithm for determining the set of nonredundant realizations 
of a wheel.  The new algorithm for wheels has time cost O(k2 log k) and space cost O(k2) if each 
of the (five) blocks in a wheel has at most k realizations -- a reduction by a factor of k in both 
costs in comparison with previous algorithms. The area minimization algorithm was 
implemented. Our experimental results show that the algorithm is indeed very fast. 
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Abstract 
 
We describe the condition that a sequential digital design is a safe replacement for an existing 
design without making any assumptions about a known initial state of the design or about its 
environment. We formulate a safe replacement condition which guarantees that if an original 
design is replaced by a new design, the interacting environment cannot detect the change by 
observing the input-output behavior of the new design; conversely, if a replacement design does 
not satisfy our condition an environment can potentially detect the replacement (in this sense the 
replacement is potentially unsafe). Our condition allows simplification of the state transition 
diagram of an original design. We use the safe replacement condition to derive a sequential 
resynthesis method for area reduction of gate-level designs. We have implemented our 
resynthesis algorithm and we report experimental results. 
 
References 
[1] B. Lin,H. J. Touati, andA. R. Newton, “Don’t CareMinimization ofMulti-level Sequential Logic Networks,” in 
Proc. Intl. Conf. on Computer-Aided Design, pp. 414–417,Nov. 1990. 
[2] C. Berthet, O. Coudert, and J. C. Madre, “New Ideas on Symbolic Manipulation of Finite State Machines,” in 
Proc. Intl. Conf. on Computer Design, Oct. 1990. 
[3] H. Cho, G. D. Hachtel, and F. Somenzi, “Redundancy Identification and Removal Based on Implicit State 
Enumeration,” in Proc. Intl. Conf. on Computer Design, pp. 77–80,Oct. 1991. 
[4] G. Berry and H. J. Touati, “Optimized Controller Synthesis Using Esterel,” in Workshop Notes of Intl. Workshop 
on Logic Synthesis, (TahoeCity, CA), May 1993. 
[5] C. Pixley, “A Theoryand Implementationof SequentialHardwareEquivalence,” IEEE Trans. Computer-Aided 
Design, vol. 11, pp. 1469–1494,Dec. 1992. 
[6] K.-T. Cheng, “Redundancy Removal for Sequential Circuits Without Reset States,” IEEE Trans. Computer-
Aided Design, vol. 12, pp. 13–24, Jan. 1993. 
[7] S. Malik, E. M. Sentovich, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Retiming and Resynthesis: 
Optimization of SequentialNetworkswith Combinational Techniques,” IEEE Trans. Computer-AidedDesign, vol. 10, 
pp. 74–84, Jan. 1991. 
[8] M. Damiani and G. De Micheli, “Synthesis and Optimization of Synchronous Logic Circuits from 
RecurrenceEquations,” in Proc. EuropeanConf. on Design Automation, pp. 226–231,Mar. 1992. 
[9] L. Entrena and K.-T. Cheng, “Sequential Logic Optimization by Redundancy Addition and Removal,” in Proc. 
Intl. Conf. on Computer-Aided Design, pp. 310–315,Nov. 1993. 
[10] J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of SequentialMachines. Intl. Series in Applied 
Mathematics, Englewood Cliffs, N.J.: Prentice-Hall, 1966. 
[11] R. Rudell, Synopsys, Inc.. Personal communication,Mar. 1994. 
[12] C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton, “Multi-level Synthesis for Safe Replaceability,” Tech.Rep. 
UCB/ERL M94/31,ElectronicsResearch Lab, Univ. of California, Berkeley, CA 94720, Apr. 1994. 
[13] V. Singhal and C. Pixley, “The Verification Problemfor Safe Replaceability,” in Proc. of the Conf. on 
Computer-Aided Verification (D. L. Dill, ed.), vol. 818 of Lecture Notes in Computer Science, pp. 311–
323,Springer-Verlag, June 1994. 
[14] H. Savoj and R. K. Brayton, “Observability Relations and Observability Don’t Cares,” in Proc. Intl.Conf.on 
Computer-AidedDesign, pp. 518–521,Nov. 1991. 



[15] E. M. Sentovich,V. Singhal, and R. K. Brayton, “Multiple Boolean Relations,” in Workshop Notes of the Intl. 
Workshop on Logic Synthesis, (Tahoe City, CA), May 1993. 
[16] S.-W. Jeong, Binary Decision Diagrams and their Applications to Implicit Enumeration Techniques in Logic 
Synthesis. PhD thesis, Department of Electrical and Computer Engineering,University of Colorado,Boulder, CO 
80309, 1992. 
[17] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, “Multilevel Logic Synthesis,” Proceedings of 
the IEEE, vol. 78, pp. 264–300, Feb. 1990. 
[18] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-Vincentelli, Logic Minimization 
Algorithms for VLSI Synthesis. Kluwer Academic Publishers, 1984. 
[19] H. Savoj, R. K. Brayton, and H. Touati, “ExtractingLocal Don’t Cares for Network Optimization,” in Proc. Intl. 
Conf. on Computer-Aided Design, pp. 514–517, Nov. 1991. 
[20] E. Cerny and M. A. Marin, “An Approach to Unified Methodology of Combinational Switching Circuits,” 
IEEE Trans. Computers, vol. 27, no. 8, 1977. 
[21] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, 
“Sequential Circuit Design Using Synthesis and Optimization,” in Proc. Intl. Conf. on Computer Design, pp. 328–
333,Oct. 1992. 
 
 



ICCAD94, Pages 450-457 
Iterative Algorithms for Formal Verification of Embedded Real-Time Systems 

 
Felice Balarin,  Alberto L. Sangiovanni-Vincentelli 

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 
 
Abstract 
 
Most embedded real-time systems consists of many concurrent components operating at 
significantly different speeds. Thus, an algorithm for formal verification of such systems must 
efficiently deal with a large number of states and large ratios of timing constants. We present 
such an algorithm based on timed automata, a model where a finite state system is augmented 
with time measuring devices called timers. We also present a semi-decision procedure for an 
extended model where timers can be decremented. This extension allows describing behaviors 
that are not expressible by timed automata, for example interrupts in a real-time operating 
system. 
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Abstract 
 
Language containment is a method for design verification that involves checking if the behavior 
of the system to be verified is a subset of the behavior of the specifications (properties or 
requirements), which it has to meet. If this check fails, language containment returns a subset of 
‘fair’ states involved in behavior that the system exhibits but the specification does not. Current 
techniques for language containment do not take advantage of the fact that the process of design 
is incremental; namely that the designer repeatedly modifies and re-verifies his/her design. This 
results in unnecessary and cumbersome computation. We present a method, which 
successivelymodifies the latest result of verification each time the design is modified. Our 
incremental algorithm translates changes made by the designer to an addition or subtraction of 
edges, states or constraints (on acceptable behavior) from the transition behavior or specification 
of the problem. Next, these changes are used to update the set of ‘fair’ states previously 
computed. This incremental algorithm is superior to the current techniques for language 
containment; a conclusion supported by the experimental results presented in this paper. 
 
References 
[1] H. Touati, R. K. Brayton, and R. P. Kurshan, “Checking Language Containment using BDDs,” in Proc. of Intl. 
Workshop on FormalMethods in VLSI Design, (Miami, FL), Jan. 1990. 
[2] R. Hojati, T. R. Shiple, R. K. Brayton, and R. P. Kurshan, “A Unified Environment for LanguageContainment 
and Fair CTL Model Checking,” in Proc. of the Design Automation Conf., (Dallas, Texas), pp. 475–481, June 1993. 
[3] G. M. Swamy and R. K. Brayton, “Incremental Formal Design Verification,” Tech. Rep. UCB/ERL M94/, 
Electronics Research Lab, Univ. of California, Berkeley, CA 94720, 1994. 
[4] R. Bryant, “Graph-based Algorithms for Boolean Function Manipulation,” IEEE Trans. Computers, vol. C-35, 
pp. 677–691, Aug. 1986. 
[5] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Implicit State Enumeration of 
Finite State Machines using BDD’s,” in Proc. Intl. Conf. on Computer-Aided Design, pp. 130–133,Nov. 1990. 
[6] R. S. Streett, “Propositional Dynamic Logic of Looping and Converse is Elementary Decidable,” Information 
and Control, vol. 54, pp. 121–141, 1982. 
[7] M. O. Rabin, Automata on Infinite Objects and Church’s Problem, vol. 13 of Regional Conf. Series in 
Mathematics. Providence, Rhode Island: American Mathematical Society, 1972. 
[8] E.A.Emerson, “Temporal andModalLogic,” inFormalModels and Semantics (J. van Leeuwen, ed.), vol. B of 
Handbook of Theoretical Computer Science, pp. 996–1072, Elsevier Science, 1990. 
[9] M. Y. Vardi and P. L. Wolper, “An Automata-Theoretic Approach to Program Verification,” in Proc. IEEE 
Symposium on Logic in Computer Science, pp. 332–334, 1986. 
[10] G. Ramalingam and T. Reps, “On the Computational Complexity of Incremental Algorithms,” Tech. Rep. TR 
1033, University of Wisconsion, Madison, University of Wisconsion, Madison, 1991. 
[11] R.Hojati, V. Singhal, andR.K. Brayton, “Edge-Streett/Edge-Rabin Automata Environment for Formal 
Verification Using Language Containment,” Tech. Rep. UCB/ERL M94/12, Electronics Research Lab, Univ. of 
California, Berkeley, CA 94720, 1994. 
[12] R. Milner, Communication and Concurrency. New York: Prentice Hall, 1989. 
[13] R. B. et al., “HSIS: A BDD-Based Environment for Formal Verification,” in Proc. of the Design Automation 
Conf., pp. 454–459, June 1994. 
 
 



ICCAD94, Pages 468-473 
Optimization of Critical Paths in Circuits with Level-Sensitive Latches 

 
Timothy M. Burks1 and Karem A. Sakallah2 

1Systems Technology and Architecture Division, IBM Corporation, Austin, TX 
2Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, MI 

 
Abstract 
 
A simple extension of the critical path method is presented which allows more accurate 
optimization of circuits with level-sensitive latches. The extended formulation provides a 
sufficient set of constraints to ensure that, when all slacks are non-negative, the corresponding 
circuit will be free of late signal timing problems. Cycle stealing is directly permitted by the 
formulation. However, moderate restrictions may be necessary to ensure that the timing 
constraint graph is acyclic. Forcing the constraint graph to be acyclic allows a broad range of 
existing optimization algorithms to be easily extended to better optimize circuits with level-
sensitive latches. We describe the extension of two such algorithms, both of which attempt to 
solve the problem of selecting parts from a library to minimize area subject to a cycle time 
constraint. 
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Abstract 
 
The gate sizing problem is the problem of finding load drive capabilities for all gates in a given 
Boolean network such, that a given delay limit is kept, and the necessary cost in terms of active 
area usage and / or power consumption is minimal. This paper describes a way to obtain the 
entire cost versus delay trade–off curve of a combinational logic circuit in an efficient way. 
Every point on the resulting curve is the global optimum of the corresponding gate sizing 
problem. The problem is solved by mapping it onto piecewise linear models in such a way, that a 
piecewise linear (circuit) simulator can do the job. It is shown that this setup is very efficient, 
and can produce trade–off curves for large circuits (thousands of gates) in a few minutes. 
Benchmark results for the entire set of MCNC ’91 two–level examples are given. 
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Abstract 
 
Since only sensitizable paths contribute to the delay of a circuit, false paths must be excluded in 
optimizing the delay of the circuit. Just identifying false paths in the first place is not sufficient 
since during iterative optimization process, false paths may become sensitizable, and sensitizable 
paths false. In this paper, we examine cases for false path becoming sensitizable and sensitizable 
becoming false. Based on these conditions, we adopt a so-called loose sensitization criterion 
[ChD91] which is used to develop an algorithm for dynamically identification of sensitizable 
paths. By combining gate sizing and dynamically identification of sensitizable paths, an efficient 
performance optimization tool is developed. Results on a set of circuits from ISCAS benchmark 
set demonstrate that our tool is indeed very effective in reducing circuit delay with less number 
of gate sized as compared with other methods. 
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Abstract 
 
An approach to the test and diagnosis of fully differential analogue circuits is described in this 
paper.  The test approach is based on off-line monitoring via an analogue BIST observer the 
inputs of the operational amplifiers in the circuit. The analogue BIST can detect both hard and 
soft faults. Diagnosis resolution is improved by also monitoring the outputs of the operational 
amplifiers. Faulty components can then be located and the actual defective value of a faulty 
passive component determined. 
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Abstract 
 
This paper proposes a test approach and circuitry suitable for built-in self-test (BIST) of digital-
to-analog (D/A) and analog-to-digital (A/D) converters. Offset, gain, linearity and differential 
linearity errors are tested without using test equipment. The proposed BIST structure decreases 
the test cost and test time. The BIST circuitry has been designed to D/A and A/D converters 
using CMOS 1.2 µm technology. By only a minor modification the test structure would be able 
to localize the fail situation. The small value of area overhead (AOH), the simplicity and 
efficiency of the proposed BIST architecture seem to be promising for manufacturing. 
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Abstract 
 
A new method for the testing and fault detection of analog integrated circuits is presented. Time-
domain testing followed by spectral analysis of the power-supply current is used to detect both 
DC and AC faults. Spectral analysis is applied since the tolerances on the circuit parameters 
make a direct comparison of waveforms impossible. For the fault detection a probabilistic 
decision rule is proposed based on a multivariate statistical analysis. Since no extra testing pin is 
needed and the on-line calculation effort is small, the method can be used for wafer-probe testing 
as well as final production testing. In addition, a methodology for the selection of the input 
stimulus is presented that improves the testability.  Examples demonstrate the efficiency and the 
effectiveness of the algorithms. 
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Abstract 
 
In this paper we present an enhanced design flow model that increases the capabilities of a CAD 
framework to support design activities on hierarchical multi-view design descriptions. This flow 
model offers new constructs for the configuration of complex design constraints in terms of 
conditions on the hierarchical multi-view structure of a design. The design flow management 
system enforces these constraints and uses them to inform the designer more effectively about 
the validity of verification results and the executability of tools. This helps to make the design 
process less error prone and to improve productivity.  Our solution is original in that we 
introduce the notions of design hierarchy and equivalence in a design flow model. We thereby 
bridge a gap between the areas of data management and design flow management. Strong points 
of our solution are its simplicity and the seamless integration with existing flow management 
concepts. 
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Abstract 
 
We present an improved data model that reflects the whole VLSI design process including 
bottom-up and topdown design phases. The kernel of the model is a static version concept that 
describes the convergence of a design. The design history which makes the semantics of most 
other version concepts, is modeled explicitly by additional object classes (entities types) but not 
by the version graph itself. Top-down steps are modeled by splitting a design object into 
requirements and realizations. The composition hierarchy is expressed by a simple but powerful 
configuration method. Design data of iterative refinement processes are managed efficiently by 
storing incremental data only. 
 
References 
[1] M. Brielmann, E. Kupitz, “Representing the Hardware Design Process by a Common Data Schema”, Proc. Int. 
European Design Automation Conference, 1992 
[2] “Design Representation Electrical Connectivity Information Model and Programming Interface”, CFI Pilot 
Release Document, CFI-92-P-6, 1992 
[3] R.H. Katz, “Information Management for Engineering Design”, Springer Verlag, 1985 
[4] R.H. Katz, “Towards a Unified Framework for Version Modeling in Engineering Databases”, ACM Computing 
Surveys, Vol. 22, No. 4, 1990 
[5] M. Pedram, B. Preas, “A Hierarchical Floorplanning Approach”, Proc. Int. Conference on Computer Design, 
Cambridge, 1990 
[6] B. Preas, K. Roberts, “YAL Language Description”, part of the MCNC benchmark distribution, MCNC 
Research Triangle Park, NC, 1987 
[7] W. Sun, C. Sechen, “Efficient and Effective Placement for Very Large Circuits”, Proc. Int. Conference of 
Computer Aided Design, 1993 
[8] B. Schuermann, J. Altmeyer, G. Zimmermann, “Three-Phase Chip Planning - An Improved Top-Down Chip 
Planning Strategy”, Proc. Int. Conference of Computer Aided Design, 1992 
[9] E. Siepmann, G. Zimmermann, “An Object-Oriented Datamodel for the VLSI Design System PLAYOUT”, 
Proc. 26th Design Automation Conference, 1989 
[10] G. Scholz, W. Wilkes, “Information Modelling of Folded and Unfolded Design”, Proc. Int. European Design 
Automation Conference, 1992 
[11] P. van der Wolf, N. van der Meijs, T.G.R. van Leuken, et.al., “Data Management for VLSI Design: Conceptual 
Modeling, Tool Integration and User Interface”, Proc. IFIP Workshop on Tool Integration and Design 
Environments, 1988 
[12] G. Zimmermann, “PLAYOUT - A Hierarchical Design System”, Information Processing 89, G.X. Ritter (ed.), 
Elsevier Science Publishers B.V. (North Holland), IFIP, 1989 
[13] G. Zimmermann, “The MIMOLA Design System – A Computer Aided Digital Processor Design Method”, 25 
Years of Electronic Design Automation, A compendium of papers from the Design Automation Conference, 1988 
[14] “IEEE Standard VHDL Language Reference Manual”, The Institute of Electrical and Electronics Engineers, 
Inc., New York, 1988 
 



ICCAD94, Pages 516-521 
A Formal Basis for Design Process Planning and Management 

 
Margarida F Jacome 

Electrical and Computer Engineering Dept., University of Texas at Austin, Austin, TX 78712 
 

Stephen W. Director 
Electrical and Computer Engineering Dept., Carnegie Mellon University, Pittsburgh, 15213 

 
ABSTRACT 
 
In this paper we present a design formalism that allows for a complete and general 
characterization of design disciplines and for a unified representation of arbitrarily complex 
design processes. This formalism has been used as the basis for the development of several 
prototype CAD meta-tools that offer effective design process planning and management services. 
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Abstract 
 
Mobile and personal communication systems form key market areas for the electronics industry 
of the nineties. Stringent requirements in terms of flexibility, performance and power dissipation, 
are driving the development of integrated circuits into the direction of heterogeneous single-chip 
solutions. New IC architectures are emerging which contain the core of a powerful 
programmable processor, complemented with dedicated hardware, memory and interface 
structures. In this tutorial we will discuss the real-life design of a heterogeneous IC for an 
industrial telecom application : a reconfigurable mobile terminal for satellite communication. 
Based on this practical design experience, we will subsequently discuss a methodology for the 
design of heterogeneous ICs. Design steps that will be addressed include : system specification 
and refinement, data path and communication synthesis, and code. 
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Abstract 
 
This tutorial covers the circuit fundamentals of CMOS circuits which contribute to the 
consumption of energy in portable products, as well as guidelines for the design of systems in 
order to reduce energy consumption and prolong battery life. Circuit fundamentals will include a 
definition of terms, basic circuit elements, laws of operation, and basic circuit theory applying 
energy consumption. We will then present three major principles of energy reduction: reducing 
number of transitions, reducing the amount of switched capacitance, and reducing the operating 
voltage.  Several guidelines that can be applied during the system design process which utilize 
the three major principles. 
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Abstract  
 
We describe a new method for directly synthesizing a hazard-free multilevel logic 
implementation from a given logic specification. The method is based on free/ordered Binary 
Decision Diagrams (BDD's), and is naturally applicable to multiple-output logic functions. Given 
an incompletely-specified (multiple-output) Boolean function, the method produces a multilevel 
logic network that is hazard-free for a specified set of multiple-input changes. We assume an 
arbitrary (unbounded) gate and wire delay model under a pure delay (PD) assumption, we permit 
multiple-input changes, and we consider both static and dynamic hazards. This problem is 
generally regarded as a difficult problem and it has important applications in the field of 
asynchronous design. The method has been automated and applied to a number of examples. The 
results we have obtained are very promising. 
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Abstract 
 
We examine the implications of a new hazard-free combinational logic synthesis method [8], 
which generates multiplexor trees from binary decision diagrams (BDDs)—representations of 
logic functions factored recursively with respect to input variables — on extended burst-mode 
asynchronous synthesis. First, the use of the BDD-based synthesis reduces the constraints on 
state minimization and assignment, which reduces the number of additional state variables 
required in many cases. Second, in cases where conditional signals are sampled, it eliminates the 
need for state variable changes preceding output changes, which reduces overall input to output 
latency.  Third, selection variables can easily be ordered to minimize the latency on a user-
specified path, which is important for optimizing the performance of systems that use 
asynchronous components.  We present extensive evaluations showing that, with only minimal 
optimization, the BDD-based synthesis gives comparable results in area with our previous exact 
two-level synthesis method. We also give a detailed example of the specified path optimization. 
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Abstract 
 
We describe methods for decomposing gates within a speed-independent asynchronous design. 
The decomposition step is an essential part of the library binding process, and is used both to 
increase the granularity of the design for higher quality mapping and to ensure that the design 
can be implemented. We present algorithms for simple hazard-free gate decomposition, and 
show results which indicate that we can decompose most of the gates in our benchmark set by 
this simple method. We then extend these algorithms to work for those cases in which no simple 
decomposition exists. 
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Abstract 
 
We consider the problem of correcting errors in a macro-based circuit. Our formulation of the 
problem allows the correction of errors that arise both in the context of design error correction, 
before the circuit is realized, and in the context where a physical circuit needs to be corrected. 
Two error classes are defined, namely, component errors and line errors. Both single and 
multiple errors are considered. Accurate correction procedures are given for single errors. 
Heuristics are given for correcting multiple errors. Experimental results are given to demonstrate 
the correction procedures presented. 
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Abstract 
 
Fault dictionary compaction has been accomplished in the past by removing responses on 
individual output pins for specific test vectors. In contrast to the previous work, we present 
techniques for eliminating entire sequences of outputs and for efficiently storing the remaining 
output sequences. Experimental results on the ISCAS 85 and ISCAS 89 benchmark circuits show 
that the sizes of dictionaries proposed are substantially smaller than the full fault dictionary, 
while the dictionaries retain most or all of the diagnostic capability of the full fault dictionary. 
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Abstract 
 
Simulation-based verification has both advantages and disadvantages compared with formal 
verification. Our demand is to find a practical way to verify actual microprocessors. This paper 
presents an efficient test program generation method for simulation-based verification using 
techniques developed for formal verification. Our test program generator enumerates all 
reachable states of a processor pipeline and generates instruction sequences for every reachable 
test case. The program covers complicated test cases that are difficult to cover with random 
instructions and impossible to cover with conventional test program generation methods. Our test 
program generator also works for larger microprocessor designs than formal verifiers have done. 
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Abstract 
 
We describe a synthesis system that takes operating range constraints and inter- and intra- circuit 
parametric manufacturing variations into account while designing a sized and biased analog 
circuit. Previous approaches to CAD for analog circuit synthesis have concentrated on nominal 
analog circuit design, and subsequent optimization of these circuits for statistical fluctuations and 
operating point ranges. Our approach simultaneously synthesizes and optimizes for operating and 
manufacturing variations by mapping the circuit design problem into an Infinite Programming 
problem and solving it using an annealing within annealing formulation. We present circuits 
designed by this integrated synthesis system, and show that they indeed meet their operating 
range and parametric manufacturing constraints. 
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Abstract 
 
This paper presents a CAD tool for automated sizing of analog cells using statistical optimization 
in a simulation based approach. A nonlinear penalty-like approach is proposed to define a cost 
function from the performance specifications. Also, a group of heuristics is proposed to increase 
the probability of reaching the global minimum as well as to reduce CPU time during the 
optimization process. The proposed tool sizes complex analog cells starting from scratch, within 
reasonable CPU times (approximately 1hour for a fully differential opamp with 51 transistors), 
requiring no designer interaction, and using accurate transistor models to support the design 
choices. Tool operation and feasibility is demonstrated via experimental measurements from a 
working CMOS prototype of a folded-cascode amplifier. 
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Abstract 
 
A new, time-domain, non-Monte Carlo method for computer simulation of electrical noise in 
nonlinear dynamic circuits with arbitrary excitations is presented. This time-domain noise 
simulation method is based on the results from the theory of stochastic differential equations. 
The noise simulation method is general in the sense that any nonlinear dynamic circuit with any 
kind of excitation, which can be simulated by the transient analysis routine in a circuit simulator, 
can be simulated by our noise simulator in time-domain to produce the noise variances and 
covariances of circuit variables as a function of time, provided that noise models for the devices 
in the circuit are available. Noise correlations between circuit variables at different time points 
can also be calculated.  Previous work on computer simulation of noise in integrated circuits is 
reviewed with comparisons to our method. Shot, thermal and flicker noise models for integrated-
circuit devices, in the context of our timedomain noise simulation method, are described. The 
implementation of this noise simulation method in a circuit simulator (SPICE) is described.  Two 
examples of noise simulation (a CMOS ring-oscillator and a BJT active mixer) are given. 
 
References 
[1] P.R. Gray and R.G. Meyer. Analysis and Design of Analog Integrated Circuits.Chapter 11. Second Edition. John 
Wiley & Sons. 1984. 
[2] C.D. Hull. Analysis and Optimization of Monolithic RF Down Conversion Receivers.  Ph.D. Thesis. U.C. 
Berkeley. 1992. 
[3] C.D. Hull and R.G. Meyer, “A Systematic Approach to the Analysis of Noise in Mixers”, IEEE Transactions on 
Circuits and Systems-1: Fundamental Theory and Applications, vol. 40, No. 12, p. 909, December 1993. 
[4] R. Rohrer, L. Nagel, R.G. Meyer and L. Weber, “Computationally Efficient Electronic-Circuit Noise 
Calculations”, IEEE Journal of Solid-State Circuits, vol. SC-6, No. 4, p. 204, August 1971. 
[5] R.G. Meyer, L. Nagel and S.K. Liu, “Computer Simulation of Noise Performance of Electronic Circuits”,IEEE 
Journal of Solid-State Circuits,p. 237, June 1973. 
[6] M. Okumura, H. Tanimoto, T. Itakura and T. Sugawara, “Numerical Noise Analysis for Nonlinear Circuits with 
a Periodic Large Signal Excitation Including Cyclostationary Noise Sources”,IEEE Transactions on Circuits and 
Systems-1: Fundamental Theory and Applications, vol. 40, No. 9, p. 581, September 1993. 
[7] P. Bolcato and R. Poujois, “A New Approach for Noise Simulation in Transient Analysis”, Proc. IEEE 
International Symposium on Circuits and Systems,p. 887, 1992. 
[8] A. Jordan and N. Jordan, “Theory of Noise in Metal Oxide Semiconductor Devices”, IEEE Transactions on 
Electron Devices,p. 148-156, March 1965. 
[9] B. Pellegrini, R. Saletti, B. Neri and P. Terreni, “ Noise Generators”, in Noise in Physical Systems and Noise, p. 
425, 1985. 
[10] A.L. Sangiovanni-Vincentelli, “Circuit Simulation”, in Computer Design Aids for VLSI Circuits, The 
Netherlands, Sijthoff & Noordhoff, 1980. 
[11] L. Arnold. Stochastic Differential Equations: Theory and Applications. John Wiley & Sons. 1974. 
[12] P.E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential Equations.  Berlin; New York: 
Springer-Verlag, 1992. 
[13] V.S. Pugachev and I.N. Sinitsyn.Stochastic Differential Systems: Analysis and Filtering.  Chichester, Susses; 
New York: Wiley, 1987. 
[14] T.L. Quarles. Analysis of Performance and Convergence Issues for Circuit Simulation.  Ph.D. Thesis. U.C. 
Berkeley, April 1989. 



[15] A. Demir, E. Liu, A.L. Sangiovanni-Vincentelli and Iasson Vassiliou, “Behavioral Simulation Techniques for 
Phase/Delay-Locked Systems”, Proc. IEEE Custom Integrated Circuits Conference, p. 453, May 1994. 
[16] A. Demir. Time-Domain non-Monte Carlo Noise Simulation for Nonlinear Dynamic Circuits with Arbitrary 
Excitations. M.S. Project. Technical Report UCB/ERL M94/39, U.C. Berkeley, May 1994. 
[17] E. Tomacruz, J. Sanghavi and A. Sangiovanni-Vincentelli, “A Parallel Iterative Linear Solver for Solving 
Irregular Grid Semiconductor Device Matrices”, Supercomputing ‘94, 1994. 
 
 



ICCAD94, Pages 606-609 
Improving Over-The-Cell Channel Routing In Standard Cell Design 

 
Xiaolin Liu and Ioannis G. Tollis 

Dept. of Computer Science, The Univ. of Texas at Dallas, Richardson, TX 75083–0688 
xliu@utdallas.edu, tollis@utdallas.edu 

 
Abstract 
 
The first stage of over-the-cell routing in the horizontally connected vertically connected 
(HCVC) model is formulated as follows: Given two rows of terminals, find a planar routing to 
connect a subset of nets (with weights) on each row of terminals using a fixed number of tracks 
to maximize the total weight. This problem is called the two row fixed height planar routing 
(TFPR) problem [CPL93]. The complexity of the TFPR problem was unknown up to now. An 
approximation algorithm for the TFPR problem was presented in [CPL93]. In this paper we 
present a O(n2* h2) time algorithm to solve the TFPR problem optimally, where n is the number 
of terminals and h is the height of the standard cells. Our algorithm can be used to improve the 
performance of several over-the-cell channel routers including the ones in [CPL93] and 
[HSS93]. 
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Abstract 
 
As technology advances, interconnection wires are placed in closer proximity. Consequently, 
reduction of crosstalks between interconnection wires becomes an important consideration in 
VLSI design. In this paper, we study the gridded switchbox routing problems with the objectives 
of satisfying crosstalk constraints and minimizing the total crosstalk in the nets. We propose a 
new approach to the problems which utilizes existing switchbox routing algorithms and improves 
upon the routing results by re-assigning the horizontal and vertical wire segments to rows and 
columns, respectively, in an iterative fashion. This approach can also be applied to the channel 
routing problem with crosstalk constraints. A novel mixed ILP formulation and effective 
procedures for reducing the number of variables and constraints in the mixed ILP formulation are 
then presented. The experimental results are encouraging. 
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Abstract 
 
Interconnect performance does not scale well into deep submicron dimensions, and the rising 
number of analog effects erodes the digital abstraction necessary for high levels of integration.  
In particular, crosstalk is an analog phenomenon of increasing relevance. To cope with the 
increasingly analog nature of highperformance digital systemdesign, we propose using a 
constraintdrivenmethodology.  In this paper we describe new constraint generation ideas 
incorporating digital sensitivity. In constraint-driven synthesis, we show that a fundamental 
subproblem of crosstalk channel routing, coupling-constrainedgraph levelization (CCL), is NP-
complete, and develop a novel heuristic algorithm. To demonstrate the viability of our 
methodology, we introduce a gridless crosstalk-avoiding channel router as an example of a 
robust and truly constraint-driven synthesis tool. 
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Abstract 
 
We propose new techniques for efficient breadth-first iterative manipulation of ROBDDs. 
Breadth-first iterative ROBDD manipulation can potentially reduce the total elapsed time by 
multiple orders of magnitude compared to the conventional depth-first recursive algorithms 
when the memory requirement exceeds the available physical memory. However, the breadth-
first manipulation algorithms proposed so far [5] have had a large enough overhead associated 
with them to make them impractical. Our techniques are geared towards minimizing the 
overhead without sacrificing the speed up potential. Experimental results indicate considerable 
success in that regard. 
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Abstract 
 
Knowing that some variables are symmetric in a function has numerous applications; in 
particular, it can help produce better variable orders for Binary Decision Diagrams (BDDs) and 
related data structures (e.g., Algebraic Decision Diagrams). It has been conjectured that there 
always exists an optimum order for a BDD wherein symmetric variables are contiguous. We 
propose a new algorithm for the detection of symmetries, based on dynamic reordering, and we 
study its interaction with the reordering algorithm itself. We show that combining sifting with an 
efficient symmetry check for contiguous variables results in the fastest symmetry detection 
algorithm reported to date and produces better variable orders for many BDDs. The overhead on 
the sifting algorithm is negligible. 
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Abstract 
 
In this paper,we consider a redesign technique applicable to combinational circuits implemented 
with gate-array or standard-cell technology, where we rectify an existing circuit only by 
reconnecting gates on the circuit with all the gate types unchanged. This constraint allows us to 
reuse the original placement as is, thereby speeding up the total time needed for a redesign. We 
formulate this problem as a Boolean-constraint problem and give a BDD-based algorithm to 
check the feasibility of redesign. 
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Abstract 
 
This paper presents a non-scan design-for-testability technique applicable to register-transfer 
(RT) level data path circuits, which are usually very hard-to-test due to the presence of complex 
loop structures. We develop a new testability measure, and utilize the RT-level structure of the 
data path, for cost-effective re-design of the circuit tomake it easily testable, without having to 
either scan any flip-flop or break loops directly. The non-scanDFT technique was applied to 
several data path circuits. Experimental results demonstrate the feasibility of producing non-scan 
testable data paths, which can be tested at-speed. The hardware overhead and the test application 
time required for the non-scan designs is significantly lower than the corresponding partial scan 
designs. 
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Abstract 
 
This paper presents a new method of selecting scan flip-flops (FFs) in partial scan designs of 
sequential circuits. Scan FFs are chosen so that the whole circuit can be partitioned into many 
small subcircuits which can be dealt with separately by a test pattern generator. This permits easy 
automatic test pattern generation for arbitrarily large sequential circuits. Algorithms of selecting 
scan FFs to allow such partitioning and of scheduling tests for subcircuits are given. 
Experimental results show that the proposed method makes it possible to generate test patterns 
for extra large sequential circuits which previous approaches cannot deal with. 
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Abstract 
 
This paper presents new logic synthesis techniques for generating multilevel circuits with 
concurrent error detection based on a parity-check code scheme that can detect all errors caused 
by single stuck-at faults. These synthesis techniques fully automate the design process and allow 
for a better quality result than previous methods thereby reducing the cost of concurrent error 
detection. An algorithm is described for selecting a good parity-check code for encoding the 
outputs of a circuit. Once the code has been chosen, a new procedure called structureconstrained 
logic optimization is used to minimize the area of the circuit as much as possible while still using 
a circuit structure that ensures that single stuck-at faults cannot produce undetected errors. The 
implementation that is generated is path fault secure and when augmented by a checker forms a 
self-checking circuit. Results indicate that self-checking multilevel circuits can be generated 
which require significantly less area than using duplication. 
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Abstract 
 
Hierarchy plays a significant role in the design of digital and analog circuits. At each level of the 
hierarchy it becomes essential to evaluate if a sub-block design is feasible and if so which design 
style is the best candidate for the particular problem. This paper proposes a general methodology 
for evaluating the feasibility and the performance of sub-blocks at all levels of the hierarchy. A 
modified simplicial approximation technique is used to generate the feasibility macromodel and 
a layered volume-slicing methodology with radial basis functions is used to generate the 
performance macromodel. However, due to lack of space, only details of the performance 
macromodeling techniques are included. Macromodels are developed and verified for analog 
blocks at three different levels of hierarchy (current mirror, opamp, and A/D converter). 
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Abstract 
 
This paper describes a unified approach to the approximate symbolic analysis of large linearized 
analog circuits. It combines two new approximation-during-computation strategies with a 
variation of the classical two-graph tree enumeration method.  The first strategy is to generate 
common trees of the two-graphs, and therefore the product terms in the symbolic network 
function, in the decreasing order of magnitude. The second approximation strategy is the 
sensitivity-based simplification of two-graphs, which excludes from the two-graphs many circuit 
elements that have little effect on the network function being derived. Our approach is therefore 
able to symbolically analyze much larger analog integrated circuits than previous reported, using 
complete small signal models for the semiconductor devices. We show accurate yet reasonably 
sized symbolic network functions for integrated circuits with up to 39 transistors whereas 
previous approaches were limited to less than 15. 
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Abstract 
 
This paper describesa new CAD algorithm which performs automatic test pattern generation 
(ATPG) for a general class of analog systems, namely those circuits which can be efficiently 
modeled as an additive combination of user-defined basis functions. The algorithm is based on 
the statistical technique of I-optimal experimental design, in which test vectors are chosen to be 
maximally independent so that circuit performance will be characterized as accurately as 
possible in the presence of measurement noise and model inaccuracies. This technique allows 
analog systems to be characterizedmore accurately and more efficiently, thereby significantly 
reducing system test time and hence total manufacturing cost. 
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Abstract 
 
In this paper, we present a layer assignment method for high-performance multi-chip module 
environments. In contrast with treating global routing and layer assignment separately, our 
method assigns nets to layers while considering preferable global routing topologies 
simultaneously. We take transmission line effects into account to avoid noise in high-speed 
circuit packages.  The problem is formulated as a quadratic Boolean programming problem and 
an algorithm is presented to solve the problem after linearization. Our method is applied to a set 
of benchmark circuits to demonstrate the effectiveness. 
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Abstract 
 
We study a new placement problem: the reproducing placement problem (RPP). In each phase a 
module (or gate) is decomposed into two (or more) simpler modules. The goal is find a “good" 
placement in each phase. The problem, being iterative in nature, requires an iterative algorithm. 
The problem finds applications in several gate-level placement problems, e.g., in layout-driven 
logic synthesis.   
 
We introduce the notion of minimum floating Steiner trees (MFST). We employ an MFST 
algorithm as a central step in solving the RPP. A Hanan-like theorem is established for the 
MFST problem and two approximation algorithms are proposed. Experiments on commonly 
employed benchmarks verify the effectiveness of the proposed technique. 
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Abstract 
 
The prevalence of net list synthesis tools raises great concern on routability of cell placement 
created with state-of-the-art placement techniques. In this paper, an accurate and efficient 
placement routability modeling technique is proposed and incorporated into the prevailing 
simulated annealing approach. This accurate and efficient modeling is based on the supply versus 
demand analysis of routing resource over an array of regions on a chip. Vertical and horizontal 
routability is analyzed separately due to the bias of routing resource in multiple-metal-layer 
ASIC designs. A special technique on net bounding box partitioning is also proposed and critical 
to the accuracy of this modeling at the presence of mega cells, which tend to cause local routing 
congestion.  By incorporating this efficient modeling into the cost function of simulated 
annealing, experiments conducted on small to large industrial designs indicate that placement 
routability evaluated with a global router is greatly improved as a result of the proposed accurate 
modeling. 
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Abstract 
 
Exact Factors as defined in [2], if present in an FSM can result in most effective way of 
factorization. However, it has been found that most of the FSM's are not exact factorizable. In 
this paper, we have suggested a method of making FSM's exact factorizable by minor 
changes in the next state space while maintaining the functionality of the FSM. We have also 
developed a new combined state assignment algorithm for state encoding of Factored and 
Factoring FSM's. Experimental results on MCNC benchmark examples, after running MISII on 
the Original FSM, Factored FSM and Factoring FSM have shown a reduction of 40% in the 
worst case signal delay through the circuit in a multilevel implementation. The total number of 
literals, on an average is the same after factorization as that obtained by running MISII on the 
original FSM. For two-level implementation, our method has been able to factorize Benchmark 
FSM s with a 14% average increase in overall areas, while the areas of combinational components 
of Factored and Factoring FSM's have been found to be significantly leas than the area of the 
combinational component of the original FSM. 
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Abstracts 
 
This paper provides a new, generalised approach to the problem of encoding information as 
vectors of binary digits. We furnish a formal definition for the Boolean constrained 
encoding problem, and show that this definition encompasses many particular encoding 
problems found in VLSI design, at various description abstraction levels. Our approach can 
capture equivalence and/or compatibility classes in the original symbol set to encode, by 
allowing symbols codes to be cubes of a Boolean space, instead of the usual minterms. 
Besides, we introduce a unified framework to represent encoding constraints which is more 
general than previous efforts. The framework is based upon a new definition of the pseudo-
dichotomy concept, and is adequate to guide the solution of encoding problems through the 
satisfaction of constraints extracted from the original problem statement. An encoding 
problem case study is presented, the state assignment of synchronous finite state machines 
with the simultaneous consideration of state minimisation.  The practical comparison with 
well-established approaches to solve this problem in two separate steps, shows that our 
solution is competitive with other published results. However, the case study is primarily 
intended to show the feasibility of the Boolean constrained encoding problem formulation. 
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Abstract 
 
This paper explores the influence of optimization along the boundary between hierarchically 
described components. A novel technique called repartitioning combines partitioning and 
sequential resynthesis of the design under various quality measures. It is applied to various 
digital circuits which consist of a controller and a datapath. The outcome of this effort is a 
versatile, parametrizable resynthesis tool which preserves this hierarchy. Due to the cost 
measures, an average improvement ranging between 5% and 15% was obtained. 
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Abstract 
 
In sequential circuit fault simulation, the hypertrophic faults, which result from lengthened 
initialization sequence in the faulty circuits, usually produce a large number of fault events 
during simulation and require excessive gate evaluations. These faults degrade the performance 
of fault simulators attempting to simulate them exactly. In this paper, an exact simulation 
algorithm is developed to identify the hypertropic faults and to minimize their effects during the 
fault simulation. The simulator HyHOPE based on this algorithm shows that the average speedup 
ratio over HOPE 1.1 is 1.57 for ISCAS89 benchmark circuits. Furthermore, the result indicates 
the performance of HyHOPE is close to the approximate simulator in which faults are simply 
dropped when they become potentially detected. 
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Abstract 
 
Transient fault simulation is an important verification activity for circuits used in critical 
applications since such faults account for over 80% of all system failures. This paper presents a 
timing level transient fault simulator that bridges the gap between electrical and gate-level 
transient fault simulators. A generic MOS circuit primitive and analytical solutions of node 
differential equations are used to perform transistor level simulation with accurate MOSFET 
models. The transient fault is modeled by a piece-wise quadratic injected current waveform; this 
retains the electrical nature of the transient fault and provides SPICE-like accuracy. Detailed 
comparisons with SPICE3 show the accuracy of this technique and speedups of two orders of 
magnitude are observed for circuits containing up to 2000 transistors. Latched error distributions 
of the benchmark circuits are also provided. 
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Abstract 
 
In this paper, a fast and memory-efficient diagnostic fault simulator for sequential circuits is 
proposed. In it, a two-level optimization technique is developed and used to prompt the 
processing speed. In the first high level, an efficient list, which stores the indistinguishable 
faults so far for each fault during simulation, and the list maintaining algorithm are applied, 
thus the number of diagnostic comparisons is minimized. In the second low level, a bit-
parallel comparison is developed to speed up the comparing process. Therefore, the different 
diagnostic measure reports for a given test set can be generated very quickly. In addition, the 
simulator is extended to diagnose the single stuck-at device fault. Experimental results show 
that this diagnostic simulator achieves a significant speedup compared to previous methods. 
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Abstract 
 
Time-of-flight synchronization is a new digital design methodology that eliminates all latching 
devices, allowing higher clock rates than alternative timing schemes. Synchronization is 
accomplished by precisely balancing connection delays. Many effective pipeline stages are 
created by pipelining combinational logic, similar in concept to wave pipelining but differing in 
several respects. Due to the unique flow-through nature of circuits and to the need for pulse-
mode operation, time-of-flight design exposes interesting new areas for CAD timing analysis. 
This paper discusses how static propagation delay uncertainty limits the clock period for time-of-
flight circuits built with opto-electronic devices. We present algorithms for placing a minimum 
set of clock gates to restore timing in feedback loops that implement memory and for 
propagating delay uncertainty through a circuit graph. A mixed integer program determining the 
minimum feasible clock period subject to pulse width and arrival time constraints is discussed. 
Algorithms are implemented in XHatch, a time-of-flight CAD package. 
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Abstract  
 
This paper addresses the problem of true delay estimation during high level design. The existing 
delay estimation techniques either estimate the topological delay of the circuit which may be 
pessimistic, or use gate-level timing analysis for calculating the true delay, which may be 
prohibitively expensive.  We show that the paths in the implementation of a behavioral 
specification can be partitioned into two sets, SP and UP. While the paths in SP can affect the 
delay of the circuit, the paths in UP cannot. Consequently, the true delay of the resulting circuit 
can be computed by just measuring the topological delay of the paths in SP, eliminating the need 
for the computationally intensive process of path sensitization. Experimental results show that 
high-level true delay estimation can be done very fast, even when gate-level true delay 
estimation becomes computationally infeasible. The high-level delay estimates are verified by 
comparing with delay estimates obtained by gate-level timing analysis on the actual 
implementation. 
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Abstract 
 
For a logic design with level-sensitive latches, we need to validate timing signal paths which 
may flush through several latches. We developed efficient algorithms based on the modified 
shortest and longest path method. The computational complexity of our algorithm is generally 
better than that of known algorithms in the literature. The implementation (CYCLOPSS) has 
been applied to an industrial chip to verify the clock schedules. 
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Abstract 
 
New techniques are proposed to obtain better estimates and optimizations at higher levels of 
design abstractions, which are then used for library cell selection. A single object-oriented 
database repository is used during all phases of VLSI design to enhance the early design 
estimates. As compared to a relational database using sorted tables of attribute values, the 
proposed object-oriented cell library manager reduces search time for an appropriate cell, with m 
constraints among n cells, from O(nm) to O(m log n). The proposed method also reduces design 
cycle time by reducing the number of iterations due to mismatched performance estimates done 
in the earlier phases of a design. 
 
References 
[1] Object Store 2.0.1 reference manual, 1992. ODI Inc. 
[2] Turbo C++ Users Guide, pp. 127-128, Borland Corp., 1992. 
[3] N. K. Sehgal, C. Y. Chen, and J. M. Acken, “Datapath Cell Design Strategy for Channelless Routing,” ASIC’94. 
[4] N. K. Sehgal, C. Y. Chen, and J. M. Acken, “A Cell Library Paradigm for the Channelless Datapath Layout 
Design,” IEEE International Conference on Microelectronics’94. 
 
 



ICCAD94, Pages 754-761 
Reuse of Design Objects in CAD Frameworks 

 
Joachim Altmeyer, Stefan Ohnsorge, Bernd Schürmann 
University of Kaiserslautern, D-67653 Kaiserslautern, Germany 

 
Abstract 
 
The reuse of well-tested and optimized design objects is an important aspect for decreasing 
design times, increasing design quality, and improving the predictability of designs. Reuse spans 
from the selecting cells from a library up to adapting already designed objects. In this paper, we 
present a new model for reusing design objects in CAD frameworks. Based on experiences in 
other disciplines, mainly in software engineering and case-based reasoning, we developed a 
feature-based model to describe design objects and their similarities. Our model considers 
generic modules as well as multifunctional units. We discuss the relationships of the model to the 
design process and to the configuration hierarchy of complex design objects. We examined our 
model with the prototype system RODEO. 
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Abstract 
 
We report on a new framework service for design tool encapsulation, based on an information 
model for design management. The new service uses generated language processors that perform 
import and export of design files to and from a design management database with the support of 
nested syntax specifications and extension language scripts. Our prototype design environment is 
based on the Nelsis CAD Framework and several tools from the Synopsys high-level synthesis 
and simulation tool suite. 
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