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1 Overview

The MCLUST software [10, 12] currently includes the following features:

- Model-based clustering (model and number of clusters selected via BIC).

- Normal mixture modeling via EM for ten covariance structures.

- Simulation from parameterized Gaussian mixtures.

- Discriminant analysis via MclustDA.

- Model-based hierarchical clustering for four covariance structures.

- Displays, including uncertainty plots and random projections.

This manuscript describes Version 3 of MCLUST for R, which allows regularization in normal
mixture models via a Bayesian prior [15]. A number of other aspects of the software have
been changed as well, to reflect evolution in its use. A comprehensive treatment of the
methods used in MCLUST can be found in [11, 15].

MCLUST is available as a contributed package (mclust) in the R language. It can be obtained
from CRAN at http://cran.r-project.org/web/packages/mclust/index.html. Follow
the instructions for installing R packages on your machine, and then do

> library(mclust)

inside R in order to use the software. Throughout this manual it will be assumed that these
steps have been taken before running the examples.

MCLUST is licensed by the University of Washington, and users are expected to comply
with the license agreement accompanying the software. Users of packages that invoke MCLUST
are also expected to comply with the terms MCLUST license.

Several contributed R packages have functions that require MCLUST, including clustvarcel,
fpc, prabclus, and the Bioconductor package spotSegmentation [13]. A couple of tutorials
on mclust have also been published [14, 16].

2 Model-Based Cluster Analysis

MCLUST provides functionality for cluster analysis combining model-based hierarchical clus-
tering (section 5), EM for Gaussian mixture models (section 3), and BIC (section 4).

2.1 Basic Cluster Analysis Example using Mclust

As an illustration, consider the bivariate faithful dataset (included in the R language
distribution) shown in Figure 1. The following command performs a cluster analysis of the
faithful dataset, and prints a summary of the result:
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Figure 1: The bivariate faithful dataset.

5



Table 1: Parameterizations of the covariance matrix Σk currently available in MCLUST for hierar-
chical clustering (HC) and/or EM for multidimensional data. (‘•’ indicates availability).

identifier Model HC EM Distribution Volume Shape Orientation
E • • (univariate) equal
V • • (univariate) variable
EII λI • • Spherical equal equal NA
VII λkI • • Spherical variable equal NA
EEI λA • Diagonal equal equal coordinate axes
VEI λkA • Diagonal variable equal coordinate axes
EVI λAk • Diagonal equal variable coordinate axes
VVI λkAk • Diagonal variable variable coordinate axes
EEE λDADT • • Ellipsoidal equal equal equal
EEV λDkAD

T
k • Ellipsoidal equal equal variable

VEV λkDkAD
T
k • Ellipsoidal variable equal variable

VVV λkDkAkD
T
k • • Ellipsoidal variable variable variable

> faithfulMclust <- Mclust(faithful)

> faithfulMclust

best model: EEE with 3 components

In this case, the best model according to BIC is an equal-covariance model with 3 components
or clusters. The clustering results can be displayed as follows:

> plot(faithfulMclust, data = faithful)

The corresponding plots are shown in Figure 2. The covariance structures defining the
models available in MCLUST are summarized in Table 1; these models are explained in more
detail in appendix A.

The input to function Mclust includes the number of mixture components and the co-
variance structures to consider. By default, Mclust compares BIC values for parameters
optimized for up to nine components and all ten covariance structures currently available
in the MCLUST software. The output includes the parameters of the maximum-BIC model
(where the maximum is taken over all of the models and numbers of components considered),
and the corresponding classification and uncertainty.

The object produced by Mclust is a list with a number of elements describing the selected
model. The names of these elements can be displayed as follows:

> names(faithfulMclust)

[1] "modelName" "n" "d" "G"

[5] "BIC" "bic" "loglik" "parameters"

[9] "z" "classification" "uncertainty"

A detailed description is provided in the Mclust help file.
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Figure 2: Plots associated with the function Mclust for the faithful dataset with the default
arguments. Clockwise from upper left: BIC, classification, uncertainty, density. The ellipses super-
imposed on the classification and uncertainty plots correspond to the covariances of the components.
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2.2 mclustBIC and its summary function

To do further analysis on the same dataset, for example to see the results for a different
set of models and/or different numbers of components, Mclust could be rerun. However
this approach could involve unnecessary repetition of computations and could also take
considerable time when the dataset is large or the process is to be repeated many times. An
alternative approach is to split the analysis into several parts using function mclustBIC.

For the faithful dataset, the following sequence of commands produces the same clus-
tering result as the call to Mclust.

> faithfulBIC <- mclustBIC(faithful)

> faithfulSummary <- summary(faithfulBIC, data = faithful)

> faithfulSummary

classification table:

1 2 3

130 97 45

best BIC values:

EEE,3 EEE,4 VVV,2

-2314.386 -2320.207 -2322.192

Although the method used for printing is different, faithfulSummary has the same com-
ponent names as faithfulMclust, except that it does not include "BIC", the table of BIC
values, which comprise the object faithfulBIC computed by mclustBIC:

> faithfulBIC

BIC:

EII VII EEI VEI EVI VVI EEE

1 -4024.721 -4024.721 -3055.835 -3055.835 -3055.835 -3055.835 -2607.623

2 -3452.998 -3458.300 -2354.601 -2350.607 -2352.618 -2346.065 -2325.220

3 -3377.712 -3336.542 -2323.008 -2332.698 -2332.204 -2342.371 -2314.386

4 -3230.246 -3245.732 -2323.676 -2331.829 -2334.756 -2343.068 -2320.207

5 -3149.389 -3128.214 -2337.730 -2348.284 -2355.885 -2374.251 -2336.967

6 -3081.401 -3067.580 -2338.116 -2363.073 -2357.745 -2372.728 -2347.296

7 -2990.334 -2998.496 -2356.458 -2370.071 -2375.850 -2393.086 -2361.216

8 -2978.088 -2991.847 -2371.814 NA -2395.992 NA -2376.920

9 -2899.778 -2920.951 -2388.617 NA -2399.085 NA -2393.733

EEV VEV VVV

1 -2607.623 -2607.623 -2607.623

2 -2329.116 -2325.416 -2322.192

3 -2338.986 -2329.352 -2333.894

4 -2336.750 -2342.472 -2359.216

5 -2366.985 -2367.785 -2390.985

6 -2371.741 -2387.155 -2398.905

7 -2392.961 -2391.166 -2426.431
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8 -2404.598 -2404.932 -2437.612

9 -2427.039 -2428.375 -2449.787

The missing values are models and numbers of clusters for which parameter values could
not be fit (using the default initialization). For multivariate data, the default initialization
for all models uses the classification from hierarchical clustering based on an unconstrained
model. For univariate data, the default is to divide the data into quantiles for initialization.

The summary method for mclustBIC allows specification of the models and numbers of
clusters over which the best model is to be chosen, allowing models other than the maximum
BIC model to be extracted and analyzed.

The plot method for mclustBIC allows specification of the models and numbers of clus-
ters, arguments to the legend function, as well as setting limits on the vertical axis. For
example, the following shows the maximum BIC values in more detail than the default:

> plot(faithfulBIC, G = 1:7, ylim = c(-2500,-2300)

legendArgs = list(x = "bottomright", ncol = 5))

The resulting plot is shown in Figure 3.

2.3 Extended Cluster Analysis Example

As an example of an extended analysis, consider the wreath data shown in Figure 4. There
are 1000 bivariate observations simulated from a 14-component model in which the com-
ponent covariance matrices are of equal size and shape, but differ in orientation. The BIC
values can be obtained with a call to mclustBIC and then plotted:

> data(wreath)

> wreathBIC <- mclustBIC(wreath)

> plot(wreathBIC, legendArgs = list(x = "topleft"))

Refering to the BIC plot (shown on the left in Figure 5), the maximum BIC appears to be
outside the range of the default values for the number of components in mclustBIC (and
Mclust). More components (for example, up to 20) can be considered in the analysis without
recomputing previous results:

> wreathBIC <- mclustBIC(wreath, G = 1:20, x = wreathBIC)

> plot(wreathBIC, G = 10:20, legendArgs = list(x = "bottomleft"))

> summary(wreathBIC, wreath)

The BIC plot is shown on the right in Figure 5. Using summary to obtain the best model
according to BIC, a 14-component EEV model is chosen, which is in agreement with how the
data was simulated.

> wreathModel <- summary(wreathBIC, data = wreath)

> wreathModel

classification table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
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Figure 3: BIC plot for the faithful dataset, with vertical axes adjusted to display the maximum
values.
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Figure 4: The bivariate wreath dataset, which consists of 1000 observations simulated from a
14-component normal mixture in which the component covariance matrices are of equal size and
shape, but differ in orientation.
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Figure 5: BIC for wreath dataset. LEFT: BIC for all models and up to 9 components (the default
in mclustBIC and Mclust). RIGHT: BIC for 10:20 components, all models. There is a clear peak
for all models at 14 components.

74 69 63 74 68 70 71 66 83 77 66 77 61 81

best BIC values:

EEV,14 EEV,15 EEV,16

-10902.77 -10919.96 -10944.09

The model for the wreath dataset is shown in Figure 6. The summary function can also be
used to restrict the set of models and/or numbers of clusters over which the best model is
chosen according to BIC. For example, the following commands produce the best spherical
model for the wreath data:

> wreathSphericalModel <- summary(wreathBIC, data = wreath,

modelNames = c("EII", "VII"))

> wreathSphericalModel

classification table:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

75 69 63 74 68 70 71 65 83 77 66 77 61 81

best BIC values:

EII,14 EII,15 EII,16

-11175.90 -11186.51 -11200.04
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Figure 6: The 14-component EEV (equal size and shape) model obtained for the wreath dataset.
The ellipses superimposed on the plot correspond to the covariances of the components.
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2.4 Regularizing with a Prior

It is now possible in MCLUST to specify a prior distribution to regularize the fit to the data
[15]. We illustrate the use of a prior on the trees dataset (included in the R language
distribution), for which a pairs plot is shown in Figure 7.

The following commands compute and plot the BIC curves for the trees dataset pro-
vided in R with and without a prior. Without the prior, the BIC plot shows a number of
jagged peaks, and many BIC values are missing for some models due to failure in the EM
computations caused by singularity and/or shrinking components. With the prior, the BICs
are smoother and there are fewer failures in estimation. See Figure 8.

> treesBIC <- mclustBIC(trees) # default (no prior)

> plot(treesBIC, legendArgs = list(x = "bottom", ncol = 2, cex = .75))

> treesBICprior <- mclustBIC(trees, prior = priorControl())

> plot(treesBICprior, legendArgs = list(x = "bottom", ncol = 2, cex = .75))

A function priorControl is provided in MCLUST for specifying the prior and its parame-
ters. When called with its defaults, it invokes another function called defaultPrior which
can serve as a template for specifying alternative priors. An example of the result of a call
to defaultPrior is shown below.

> defaultPrior(trees, G=2, modelName = "VVV")

$shrinkage

[1] 0.01

$mean

Girth Height Volume

13.24839 76.00000 30.17097

$dof

[1] 5

$scale

Girth Height Volume

Girth 6.203797 6.54109 31.42755

Height 6.541090 25.57640 39.47333

Volume 31.427545 39.47333 170.21710

For more detail on the prior and its specification, see Section A.3.
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Figure 8: BIC without (left) and with the prior for the trees dataset.
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2.5 Clustering with Noise and Outliers

MCLUST allows model-based clustering with noise, namely outlying observations that do not
belong to any cluster. To include noise in the modeling, an initial guess of the noise ob-
servations must be supplied via the noise component of the initialization argument in
Mclust or mclustBIC. The model for noise used in MCLUST is discussed in more detail in
Section A.1 of the appendix, along with some some strategies for obtaining an initial noise
estimate.

In the following example, Poisson noise is added to the faithful dataset. A random
initial estimate was used for noise for the purposes of illustration. This happens to work
well in this instance, although we don’t recommend this as a general strategy.

> b <- apply( faithful, 2, range)

> nNoise <- 500

> set.seed(0)

> poissonNoise <- apply(b, 2, function(x, n)

runif(n, min = min(x)-.1, max = max(x)+.1), n = nNoise)

> faithfulNdata <- rbind(faithful, poissonNoise)

> set.seed(0)

> faithfulNoiseInit <- sample(c(TRUE,FALSE),size=nrow(faithful)+nNoise,

replace=TRUE,prob=c(3,1))

> faithfulNbic <- mclustBIC(faithfulNdata,

initialization = list(noise = faithfulNoiseInit))

> faithfulNsummary <- summary(faithfulNbic, faithfulNdata)

> faithfulNsummary

classification table:

0 1 2

521 143 108

best BIC values:

EVI,2 VVI,2 EEI,2

-7996.437 -7998.035 -8000.251

The results are shown in Figure 9. The classification and BIC plots were obtained with the
following commands.

mclust2Dplot(faithfulNdata, classification=faithfulNsummary$classification,

parameters=faithfulNsummary$parameters)

plot(faithfulNbic, legendArgs = list(x = "bottomleft", horiz = FALSE,

ncol = 5, cex = 0.75))
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Figure 9: Cluster analysis of the faithful dataset with added Poisson noise. Upper Left: The 272
obervations of the faithful dataset (circles) with 500 Poisson noise points (small dots). Upper
Right: MCLUST classification starting with random noise estimate. Lower: BIC.
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2.6 Further Considerations in Cluster Analysis

Clustering can be affected by parameter settings such as convergence tolerances within the
clustering functions, although the defaults are often adequate. It is also possible do model-
based clustering starting with parameter estimates, conditional probabilities, or classifica-
tions other than those produced by model-based hierarchical clustering. The functions pro-
vided for mixture estimation (Section 3) and BIC (Section 4) can be used for this purpose.

Finally, it is important to take into account numerical issues in cluster analysis. The
computations for estimating the model parameters break down when the covariance corre-
sponding to one or more components becomes ill-conditioned (singular or nearly singular).
Including a prior (Section A.3) is often helpful in such situations. In general the modeling
computations cannot proceed if clusters contain only a few observations or if the observations
they contain are very nearly colinear. Computations may also fail when one or more mixing
proportions shrink to negligible values. The EM functions in MCLUST compute and monitor
the conditioning of the covariances, and an error condition is issued (unless such warnings
are turned off) when the associated covariance appears to be nearly singular, as determined
by a threshold with the default value emControl()$eps.

3 EM for Mixture Models

MCLUST provides iterative EM (Expectation-Maximization) methods for maximum-likelihood
estimation in parameterized Gaussian mixture models. In the models considered here, an
iteration of EM consists of an ‘E’-step, which computes a matrix z such that zik is an
estimate of the conditional probability that observation i belongs to group k given the
current parameter estimates, and an ‘M-step’, which computes parameter estimates given z.

MCLUST functions em and me implement the EM algorithm for parameterized Gaussian
mixtures. Function em starts with the E-step; besides the data and model specification,
the model parameters (means, covariances, and mixing proportions) proportions must be
provided. Function me starts with the M-step; besides the data and model specification,
the conditional probabilities z must be provided. The output for both are the maximum-
likelihood estimates of the model parameters and z.

3.1 Individual E and M Steps

Functions estep and mstep implement the individual steps of the EM iteration. Conditional
probabilities z and the log likelihood can be recovered from parameters via estep, while
parameters can be recovered from conditional probabilities z using mstep. Below we apply
mstep and estep to the iris dataset (included in the R language distribution).

> ms <- mstep( modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))

> names(ms)

[1] "modelName" "prior" "n" "d" "G"

[6] "z" "parameters"

> es <- estep( modelName = "VVV", data = iris[,-5],
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parameters = ms$parameters)

> names(es)

[1] "modelName" "n" "d" "G" "z"

[6] "parameters" "loglik"

In this example, the initial estimate of z for the M-step is a matrix of indicator variables
corresponding to a discrete classification (iris[,5]). The function unmap converts a discrete
classification into the corresponding indicator variables. MCLUST allows specification of a
prior, for which the EM algorithm will compute a posterior mode. See Sections 2.4 and
A.3 for more details. In Section 9.1, we show how to use mstep and estep for discriminant
analysis.

3.2 Uncertainty

The uncertainty in the classification associated with conditional probabilities z can be ob-
tained by subtracting the probability of the most likely group for each observation from
1:

> meVVViris <- me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))

> uncer <- 1 - apply( meVVViris$z, 1, max)

The R function quantile applied to the uncertainty gives a measure of the quality of the
classification.

> quantile(uncer)

0% 25% 50% 75% 100%

0.000000e+00 0.000000e+00 1.907041e-08 1.392060e-03 3.361880e-01

In this case the indication is that the majority of observations are well classified. Note,
however, that when groups intersect, uncertain classifications would be expected in the
overlapping regions.

When a true classification is known, the relative uncertainty of misclassified observations
can be displayed by function uncerPlot, as is done below for the iris example (see Figure
10):

> uncerPlot(z = meVVViris$z, truth = iris[,5])

It is also possible to plot an uncertainty curve for one-dimensional data (see Section 10) or
an uncertainty surface for bivariate data (see Section 6.1).

20



0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

observations in order of increasing uncertainty

un
ce

rt
ai

nt
y

Figure 10: Uncertainty plot for the the 3-cluster mixture model fit of the iris dataset via EM
based on unconstrained Gaussian mixtures. The vertical lines indicate misclassified observations.
The plot was created with function uncerPlot, and shows the relative uncertainty of misclassified
observations.
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3.3 Control Parameters

Besides the initial values and the prior, other parameters can influence the outcome of em or
me. These include:

tol Iteration convergence tolerance. The default is emControl()$tol=c(1.e-5,
√
εM),

where εM is the relative machine precision, which has the value 2.220446e-16 on
IEEE compliant machines. The first value is the tolerance for relative convergence of
the loglikelihood in the EM algorithm, and the second value is the relative parameter
convergence tolerance for the M-step for those models that have an iterative M-step
("VEI", "VEV").

eps A tolerance for terminating iterations due to ill-conditioning, such as near singularity
in covariance matrices. The default is emControl()$eps which is set to the relative
machine precision εM .

A function emControl is provided in MCLUST for setting these parameters and supplying
default values. Although these control settings are in a sense hidden by the defaults, they may
have a significant effect on results in some instances and should be taken into consideration
in analysis.

4 Bayesian Information Criterion

MCLUST provides a function bic to compute the Bayesian Information Criterion (BIC) [26]
given the maximized loglikelihood for model, the data dimensions, and the number of com-
ponents in the model. The BIC is the value of the maximized loglikelihood with a penalty
for the number of parameters in the model, and allows comparison of models with differing
parameterizations and/or differing numbers of clusters. In general the larger the value of
the BIC, the stronger the evidence for the model and number of clusters (see, e.g. [11]).
The following shows the BIC calculation in MCLUST for the 3-cluster classification the iris

dataset with the unconstrained variance model:

> meVVViris <- me(modelName = "VVV", data = iris[,-5], z = unmap(iris[,5]))

> bic( modelName = "VVV", loglik = meVVViris$loglik,

n = nrow(iris), d = ncol(iris[,-5]), G = 3)

[1] -580.8397

5 Model-Based Hierarchical Clustering

MCLUST provides functions hc for model-based hierarchical agglomeration, and hclass for
determining the resulting classifications. Function hc implements fast methods based on the
multivariate normal classification likelihood [8]. We use the iris dataset distributed with R

in our example. Figure 11 is a pairs plot of the iris dataset in which the three species are
differentiated by symbol, obtained by the following command:
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> clPairs(data = iris[,-5], classification = iris[,5])

Below we apply the hierarchical clustering algorithm for unconstrained covariances (VVV) to
the iris dataset:

> hcVVViris <- hc(modelName = "VVV", data = iris[,-5])

The classification produced by hc for various numbers of clusters can be obtained with
hclass. For example, for the classifications corresponding to 2 and 3 clusters:

> cl <- hclass(hcVVViris, 2:3)

The classifications can be displayed with the data using clPairs:

> clPairs(data = iris[,-5], classification = cl[,"2"])

> clPairs(data = iris[,-5], classification = cl[,"3"])

More options for displaying clustering and classification results are discussed in Section
6. The 3-group classification can be compared with the known 3-group classification into
species, which is given in the 5th column of the iris data, using function classError:

> classError(cl[,"3"], truth = iris[,5])

$misclassifiedPoints

[1] 102 107 114 115 120 122 124 127 128 134 139 143 147 150

$errorRate

[1] 0.09333333

Function hc starts by default with every observation of the data in a cluster by itself, and
continues until all observations are merged into a single cluster. Arguments partition and
minclus can be used to initialize the process at a chosen nontrivial partition, and to stop it
before it reaches the final stage of merging.

Function hc for model-based hierarchical clustering based on the unconstrained (VVV)
model is used to obtain the default initial values for the model-based clustering functions
Mclust and mclustBIC.
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Figure 11: Pairs plot of the iris dataset showing classifcation into species.
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Figure 12: Classification (left) and uncertainty (right) plots created with mclust2Dplot for the
Mclust model of the faithful dataset. The ellipses shown are the multivariate analogs of the
standard deviations for each mixture component. In the classification plot, points in different
classes are indicated by different symbols. In the uncertainty plot, the symbols have the following
meaning: large filled symbols, 95% quantile of uncertainty; smaller open symbols, 75–95% quantile;
small dots, first three quartiles of uncertainty.

6 Displays for Multidimensional Data

Once parameter values of a mixture model fit are available, projections of the data showing
the means and standard deviations of the corresponding components or clusters may be
plotted. For bivariate data, density and uncertainty surfaces may also be plotted.

6.1 Displays for Bivariate Data

The function mclust2Dplot may be used for displaying the classification, uncertainty or clas-
sification errors for MCLUST models of bivariate data. In the following example, classification
and uncertainty plots are produced for the faithful dataset in Figure 1.

> faithfulMclust <- Mclust(faithful)

> mclust2Dplot(data = faithful, what = "classification", identify = TRUE,

parameters = faithfulMclust$parameters, z = faithfulMclust$z)

> mclust2Dplot(data = faithful, what = "uncertainty", identify = TRUE,

parameters = faithfulMclust$parameters, z = faithfulMclust$z)

The resulting plots are displayed in Figure 12.
The function surfacePlot may be used for displaying the density or uncertainty for

MCLUST models of bivariate data. It also returns the grid coordinates and corresponding
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Figure 13: Density (left column) and uncertainty (right column) surfaces for the faithful dataset.
A square root transformation was used for the density plot, which is plotted as a contour surface. A
logarithmic transformation was used for the uncertainty plot, which is plotted as an image surface.

surface values. The following example shows how to display density and uncertainty surfaces
for the Mclust model fit to the faithful dataset.

> surfacePlot(data = faithful, what = "density", type = "contour",

parameters = faithfulMclust$parameters, transformation = "sqrt")

> surfacePlot(data = faithful, what = "uncertainty", type = "image",

parameters = faithfulMclust$parameters, transformation = "log")

The resulting plots are displayed in Figure 13.
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6.2 Displays for Higher Dimensional Data

6.2.1 Coordinate Projections

To plot coordinate projections in MCLUST, use the function coordProj. The example we
consider is a 3-group model for the iris dataset:

> irisBIC <- mclustBIC(iris[,-5])

> irisSummary3 <- summary(irisBIC, data = iris[,-5], G = 3)

> coordProj( data = iris[,-5], dimens = c(2,4), what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> coordProj( data = iris[,-5], dimens = c(2,4), what = "uncertainty",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> coordProj( data = iris[,-5], dimens = c(2,4), what = "errors",

parameters = irisSummary3$parameters, z = irisSummary3$z, truth = iris[,5])

These plots are displayed in Figure 14.
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Figure 14: A coordinate projection of the iris dataset created with coordProj. Plots show the 3-
group model-based classification (top) with associated uncertainty (bottom, left) and classification
errors (bottom,right).
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6.2.2 Random Projections

To plot random projections in MCLUST, use the function randProj. Again we consider is a
3-group model for the iris dataset:

> randProj( data = iris[,-5], seed = 43, what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> randProj( data = iris[,-5], seed = 79, what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

> randProj( data = iris[,-5], seed = 201, what = "classification",

parameters = irisSummary3$parameters, z = irisSummary3$z)

These plots are displayed in Figure 15.
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Figure 15: Some random projections of the iris dataset created with randProj. Plots show the
3-group classification from model-based clustering with three different seeds.
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7 Density Estimation

The clustering capabilities of MCLUST can also be viewed as a general strategy for multivariate
density estimation. After applying the clustering functions to fit a model to the data, function
dens can be used to get the density of a given point relative to that model. As an example,
we use the bivariate faithful dataset (see Figure 1).

First, we use Mclust or (mclustBIC and summary) to get a model for the data, as was
done in Section 2:

> faithfulMclust <- Mclust(faithful)

The faithful dataset is bivariate, so for plotting the density can be computed over a grid.
Function grid1 forms a one dimensional grid of a given size over a given range of values,
while grid2 forms a two-dimensional grid given two sequences of values.

> apply(faithful, 2, range)

eruptions waiting

[1,] 1.6 43

[2,] 5.1 96

> x <- grid1( 100, range = range(faithful$eruptions))

> y <- grid1( 100, range = range(faithful$waiting))

> xy <- grid2(x,y)

> xyDens <- dens(modelName = faithfulMclust$modelName, data = xy,

parameters = faithfulMclust$parameters)

> xyDens <- matrix(xyDens, nrow = length(x), ncol = length(y))

The result can be plotted using R functions contour, persp, or image since the dataset is
bivariate.

> par(pty = "s")

> Z <- log(xyDens)

> persp(x = x, y = y, z = Z, box = FALSE)

> contour(x = x, y = y, z = Z, nlevels = 10)

> image(x = x, y = y, z = Z)

These plots are shown in Figure 16.
Probably the most common application for density estimation is discriminant analysis,

for which a detailed discussion is given in Section 9.
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Figure 16: Perspective, contour and image plots of an MCLUST density estimate for the bivariate
faithful dataset.
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8 Simulation from Mixture Densities

Given the parameters for a mixture model, data can be simulated from that model for eval-
uation and verification. The function sim allows simulation from mixture models generated
by MCLUST functions. Besides the model, sim allows a seed as input for reproducibility. As an
example, below we simulate two different datasets of the same size as the faithful dataset
from the model produced by Mclust for the faithful dataset:

> faithfulMclust <- Mclust(faithful)

> sim0 <- sim( modelName = faithfulMclust$modelName,

parameters = faithfulMclust$parameters,

n = nrow(faithful), seed = 0)

> sim1 <- sim( modelName = faithfulMclust$modelName,

parameters = faithfulMclust$parameters,

n = nrow(faithful), seed = 1)

The results can be plotted as follows:

> xlim <- range(c(faithful[,1],sim0[,2],sim1[,2]))

> ylim <- range(c(faithful[,2],sim0[,3],sim1[,3]))

> mclust2Dplot(data=faithful, parameters = faithfulMclust$parameters,

classification = faithfulMclust$classification, xlim = xlim, ylim = ylim)

> mclust2Dplot(data=sim0[,-1], parameters = faithfulMclust$parameters,

classification = sim0[,1], xlim = xlim, ylim = ylim)

> mclust2Dplot(data=sim1[,-1], parameters = faithfulMclust$parameters,

classification = sim1[,1], xlim = xlim, ylim = ylim)

The plots are shown in Figure 17. Note that sim produces a dataset in which the first column
is the classification.
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Figure 17: Data simulated from a model of the faithful dataset. The top hand figure is the
faithful dataset, and the bottom figures are datasets of the same size simulated from the Mclust
model for the faithful dataset. The ellipse defined by the covariance matrices of the model is
shown on all of the plots.
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9 Discriminant Analysis

In discriminant analysis, observations of known classification are used to classify others.
MCLUST provides several approaches to discriminant analysis. We demonstrate some possible
methods applied to the faithful dataset using the three-group model-based classification
shown in Figure 2 as the ground truth:

> faithfulMclust <- Mclust(faithful)

> faithfulClass <- faithfulMclust$classification

9.1 Discriminant Analysis using mstep and estep

MCLUST functions mstep and estep implementing the individual steps of the EM algorithm
for Gaussian mixtures can be used for discriminant analysis. The idea is to produce a density
estimate for the training data which is a mixture model, in which each known class is modeled
by a single Gaussian term.

First, the parameterization giving the best model fit to the training data must be chosen.
Most commonly, this would be done by cross validation. Function cv1EMtrain implements
leave-one-out crossvalidation. Leaving out one training observation at a time, cv1EMtrain
fits each model using mstep, then classifies the observation that was left out using estep.
The output of cv1EMtrain is the error rate for each model; that is, the fraction of left-out
observations correctly classified by the model fit to the remaining observations.

Using the odd numbered observations in the faithful dataset as a training set, the
result is:

> odd <- seq(from=1, to=nrow(faithful), by=2)

> round(cv1EMtrain(data = faithful[odd,], labels = faithfulClass[odd]),3)

EII VII EEI VEI EVI VVI EEE EEV VEV VVV

0.162 0.162 0.037 0.037 0.044 0.044 0.015 0.015 0.015 0.022

The crossvalidation error achieves a minimum for the elliptical, equal shape models EEE,
EEV, and VEV. Of these we choose the most parsimonious model EEE. When there are two
training classes, the EEE model corresponds to linear discriminant analysis, while the VVV

model corresponds to quadratic discriminant analysis (e.g. [22]).
To classify the even data points, we first compute the parameters corresponding to the EEE

model for the odd data points using mstep, then use estep to get conditional probabilities
z and a classification:

> modelEEE <- mstep(modelName = "EEE", data=faithful[odd,],

z=unmap(faithfulClass[odd]))

> classEEE <- map(estep(modelName = "EEE", data=faithful,

parameters = modelEEE$parameters)$z)

> classError(classEEE[odd], faithfulClass[odd])$errorRate

[1] 0.007352941

> even <- seq(from=2, to=nrow(faithful), by=2)
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> classError(classEEE[even], faithfulClass[even])$errorRate

[1] 0.007352941

> classError(classEEE[even], faithfulClass[even])$misclassified

[1] 17

The error rates for the training [odd-numbered] data and the test [even-numbered] data are
identical (.735%); two data points are misclassified:

> classError(classEEE, faithfulClass)$misclassified

[1] 34 71

The classification and the misclassified observations are shown in Figure 18. Not surprisingly,
the misclassified observations fall in the region where the clusters overlap.
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Figure 18: Classification errors from discriminant analysis for the faithful dataset using mstep
and estep. Filled symbols are the misclassified data points.

Another option for model selection that is faster to compute than crossvalidation is to
select the best fitting model via BIC after using mstep to fit each model to the training
data. A function bicEMtrain is provided within MCLUST for this purpose. For the faithful

dataset, BIC for the models fitted to the odd-numbered observations is:

> round(bicEMtrain(faithful[odd,], labels = faithfulClass[odd]),0)
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EII VII EEI VEI EVI VVI EEE EEV VEV VVV

-1761 -1771 -1187 -1196 -1194 -1204 -1183 -1193 -1202 -1210

BIC chooses EEE as the best model, so in this case the training and test errors are the same
as for crossvalidation, and the classification results are as shown in Figure 18.

Although in this case crossvalidation and BIC happen to choose the same model, for
other datasets the models selected, and hence the discriminant results, could be different.
Cross-validation is much more computationally intensive procedure for model-selection than
BIC, although timing comparisons between cv1EMtrain and bicEMtrain should not be
considered a valid algorithmic comparison because there are more efficient ways to compute
crossvalidation using updating schemes and compiled code.

9.2 Mixture Discriminant Analysis via MclustDA

In Section 9.1, discriminant analysis was accomplished by modeling the training data with
a mixture density having a single Gaussian component for each class. That section also
showed how to choose the appropriate cross-cluster constraints to give the lowest training
error rate using either leave-one-out crossvalidation or BIC. A more flexible alternative is to
use model-based clustering to fit a Gaussian mixture model as a density estimate for each
class in the training set. We illustrate the methods in this section with the 2-group model
from model-based clustering for the faithful dataset as ground truth:

> faithfulBIC2 <- mclustBIC(faithful, G=2)

> faithfulClass2 <- summary(faithfulBIC2, faithful)$classification

9.2.1 mclustDA

If both training and test sets are given in advance, function mclustDA can be used for
discriminant analysis. Its input is the training data and associated class labels, and the test
data (optionally with labels). The output of mclustDA includes the mixture models for the
training data, the classification of both the test data and training data under the model,
posterior probabilities for the test data, and the training error rate.

> faithfulMclustDA <- mclustDA(train = list(data = faithful[odd,],

labels = faithfulClass2[odd]),

test = list(data = faithful[even,],

labels = faithfulClass2[even]))

XXX EEI

1 2

> faithfulMclustDA

Modeling Summary:

trainClass mclustModel numGroups

1 1 XXX 1

2 2 EEI 2

Test Classification Summary:
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1 2

101 35

Training Classification Summary:

1 2

75 61

Training Error: 0

Test Error: 0.007352941

The error rates for mclustDA classification are 0% and .735% for the training [odd-numbered]
and test [even-numbered] data, respectively.

These discriminant analysis results can be plotted as follows:

> plot(faithfulMclustDA, trainData = faithful[odd,], testData = faithful[even,])

Figure 19 shows some plots of the results: The training models are shown in Figure 20.

9.2.2 mclustDAtrain and mclustDAtest

Often more flexibility is required in discriminant analysis. For example, a suitable training
set may need to be chosen and/or it may be desirable to test additional data after a training
density has already been established. Since training typically takes much more time than
testing, it can be advantageous to separate training and testing computations. Function
mclustDAtrain allows users to choose training model parameterizations, and selects from
among all available models as a default. The output of mclustDAtrain is a list, each element
being the model for each class.

In the simplest case, a single Gaussian could be fit to each training class. This is similar to
the discriminant analysis procedure of Section 9.1, except that in mclustDA a model for each
class of the training data is chosen separately, instead of choosing a parameterized mixture
model (which may have cross-cluster constraints) for all of the training data. mclustDA

uses BIC (see section 4) to select the model. BIC adds a penalty term to the maximized
loglikelihood that increases with the number of parameters.

By default, mclustDAtrain will fit up to three components for each possible model.
Results for the odd-numbered observations in the faithful dataset are as follows:

> faithfulTrain <- mclustDAtrain(data = faithful[odd,],

labels = faithfulClass2[odd])

XXX EEI

1 2

The training models are shown in Figure 20.
The density of observations under the training models can be obtained using mclustDAtest,

while the classification and posterior probabilities of the test or other data can be recovered
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Figure 19: Plots associated with mclustDA on the faithful dataset. Upper Left: the training
[odd-numbered/circles] and test [even-numbered/crosses] faithful data. Upper Right: the training
data with known classification. Lower Left: the mclustDA classification of the test data. Lower
Right: the errors (filled symbols) in using the mclustDA model to classify the test data.
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Figure 20: mclustDA training models for the odd numbered observations of the faithful dataset,
using the two-group classification from model-based clustering as ground truth. One of the classes
is modeled by a two-group equal variance diagonal model, and the other by a single unconstrained
normal.
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from the summary function for mclustDAtest. The test (even-numbered) classfication and
error can be obtained as follows:

> faithfulEvenTest <- mclustDAtest(models=faithfulTrain, data=faithful[even,])

> names(summary(faithfulEvenTest))

[1] "classification" "z"

> classError(summary(faithfulEvenTest)$classification,

faithfulClass2[even])$errorRate

[1] 0.007352941

The training (odd-numbered) classfication and error can be obtained as follows:

> faithfulOddTest <- mclustDAtest(models=faithfulTrain, data=faithful[odd,])

> classError(summary(faithfulOddTest)$classification,

faithfulClass2[odd])$errorRate

[1] 0
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10 Univariate Data

The MCLUST functions for clustering, density estimation and discriminant analysis can be
applied to univariate as well as multidimensional data. Analysis is somewhat simplified
since there are only two possible models — equal variance (denoted E) or varying variance
(denoted V).

10.1 Clustering

Cluster analysis for univariate data can be carried out as for two and higher dimensions. As
an example, we use the precip dataset (included in the R language distribution):

> precipMclust <- Mclust(precip)

> plot(precipMclust, precip, legendArgs = list(x = "bottomleft"))

Figure 21 shows the BIC, classification, uncertainty, and density for this example.
The analysis can also be divided into two parts: BIC computation via mclustBIC and

model computation via summary, as shown below for the rivers dataset (included in the R

language distribution):

> riversBIC <- mclustBIC(rivers)

> plot(riversBIC)

> riversModel <- summary(riversBIC, rivers)

> riversModel

classification table:

1 2 3

76 52 13

best BIC values:

V,3 V,4 V,5

-2015.579 -2022.513 -2035.102

There is a special plotting function mclust1Dplot for univariate model-based clustering. As
an example, we compare graphical results the 2-component maxmimum BIC model with the
3-component model:

> riversModel2 <- summary(riversBIC, rivers, G = 2)

> mclust1Dplot(data = rivers, what = "classification",

parameters=riversModel$parameters, z=riversModel$z)

> mclust1Dplot(data = rivers, what = "density",

parameters=riversModel$parameters, z=riversModel$z)

> abline(v = riversModel$parameters$mean, lty = 3)

42



2 4 6 8

−
64

0
−

63
0

−
62

0
−

61
0

−
60

0
−

59
0

−
58

0
−

57
0

number of components

B
IC

E
V

10 20 30 40 50 60

Classification

| | ||| ||| || | ||

| | ||| ||| || | ||

|||| ||| | ||| || ||| | || |||||| |||| | || | | |||| || | || | || ||| || ||| || |

|||| ||| | ||| || ||| | || |||||| |||| | || | | |||| || | || | || ||| || ||| || |

10 20 30 40 50 60

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

de
ns

ity

Density

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

un
ce

rt
ai

nt
y

Uncertainty

Figure 21: Model-based clustering of the univariate R dataset precip. Clockwise from upper
left: BIC, classification, uncertainty, and density from Mclust applied to the simulated univariate
example. In the classification plot, all of the data is displayed at the bottom, with the separated
classes shown on different levels above.

> mclust1Dplot(data = rivers, what = "classification",

parameters=riversModel2$parameters, z=riversModel2$z)

> mclust1Dplot(data = rivers, what = "density",

parameters=riversModel2$parameters, z=riversModel2$z)

> abline(v = riversModel2$parameters$mean, lty = 3)

Vertical lines are added at the means of each component. Figure 22 shows the classification
and density corresponding to the two- and three-component cases for this example. Density
estimates can also be computed and plotted directly:

> points <- seq(from = min(rivers), to = max(rivers), length = 1000)

> riversDens3 <- dens(modelName = riversModel$modelName, data = points,

parameters = riversModel$parameters)

> plot(points, riversDens3, type = "l")

> abline(v = riversModel$parameters$mean, lty = 3)
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Figure 22: Two- and three-component classifications and densities for the univariate R dataset
rivers. Vertical lines have been added to the density plots to show the location of the component
means.

> riversDens2 <- dens(modelName = riversModel2$modelName, data = points,

parameters = riversModel2$parameters)

> plot(points, riversDens2, type = "l")

> abline(v = riversModel2$parameters$mean, lty = 3)

There is also a separate density function, densityMclust, that behaves similarly to the
R function density.

> riversDens <- densityMclust(rivers)

> plot( riversDens, xlim = c(0,max(rivers)))

> plot( riversDens, data = rivers, xlim = c(0,max(rivers)))

The corresponding plots are shown in Figure 23. Data points are shown on a vertical line at
the bottom of the plot when data is supplied to the plot function for densityMclust.
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Figure 23: Plots of the density for the univariate R dataset rivers using function densityMclust.
The right hand plot shows the augmented display when data points are supplied.

10.2 Discriminant Analysis

To illustrate discriminant analysis on univariate data, we use simulated data from a normal
mixture consisting of two components with variance 1 centered at -9 and 9, respectively, and
one component with variance 4 centered at 0:

> set.seed(0)

> x <- c(rnorm(300, -9), rnorm(400, 0, sd = 2), rnorm(300, 9))

We use the following simulated data as a test set:

> set.seed(1)

> y <- c(rnorm(100, -9), rnorm(100, 0, sd = 2), rnorm(100, 9))

The density of the distribution from which the training data is drawn is shown in Figure 24.

Discriminant Analysis via EM. In discriminant analysis via EM (Section 9.1), if we
assume that each component constitutes a separate group,

> xClass <- c(rep(1,300),rep(2,400),rep(3,300))

> yClass <- c(rep(1,100),rep(2,100),rep(3,100))

then both leave-one-out crossvalidation and BIC choose the varying variance model V in the
training stage:
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Figure 24: LEFT: Density for the univariate simulation data. There are two components with
variance 1 centered at -9 and 9, respectively, and one component with variance 4 centered at 0.
CENTER: Training step classification. RIGHT: Misclassified training observations.

> round(cv1EMtrain(x,labels=xClass),3)

E V

0.006 0.002

> round(bicEMtrain(x,labels=xClass),3)

E V

-5786.672 -5607.173

The training and test errors for the data with this model are as follows:

> modelV <- mstep(modelName = "V", data = x, z = unmap(xClass))

> classV <- map(estep(modelName = "V", data = c(x,y),

parameters = modelV$parameters)$z)

> classError(classV[1:length(x)],xClass)$errorRate ## training error

[1] 0.002

> classError(classV[1:length(x)],xClass)$misclassified

[1] 391 990

> classError(classV[-(1:length(x))],yClass)$errorRate ## test error

[1] 0

The classification and classification errors for the training data are shown in Figure 24.

Discriminant Analysis via MclustDA. To illustrate the discriminant analysis via the
MclustDA methodology (Section 9.2): we used the same simultated univariate data but
assume that observations are grouped by component variance:

> xClass <- c(rep(1,300),rep(2,400),rep(1,300))

> yClass <- c(rep(1,100),rep(2,100),rep(1,100))
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The training stage fits a two component equal-variance model to one group, and a one-
component model to the other:

> xTrain <- mclustDAtrain(x, labels = xClass)

E X

2 1

The classification error rates are the same as we obtained for discriminant analysis via EM
with the 3-class grouping:

> xTest <- summary(mclustDAtest(x,xtrain))

> classError(xTest$classification,xClass)$errorRate ## training error

[1] 0.002

> classError(xTest$classification,xClass)$misclassified

[1] 391 990

> yTest <- summary(mclustDAtest(y,xTrain))

> classError(yTest$classification,yClass)$errorRate ## testing error

[1] 0

The classification and classification errors for the training data are as shown in Figure 24.
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11 Extensions

11.1 Large Datasets

Mclust and mclustBIC include a provision for using a subsample of the data in the hierarchi-
cal clustering phase before applying EM to the full data set, in order to extend the method
to larger datasets. Some other methods for handling such cases are discussed in [30, 17].
The following example uses a random sample of size 100 in the initial hierarchical clustering
phase of EMclust applied to the iris data:

> nrow(iris)

[1] 150

> S <- sample(1:nrow(iris), size = 100)

> Mclust(iris[,-5], initialization = list(subset = S))

For very large data sets, the discrimination capabilities of MCLUST can be used for classifi-
cation. First, cluster analysis with the methodolgy of Mclust/mclustBIC can be performed
on a subset of the data. Then the remaining data points can then be classified (in reasonable
sized blocks) using one of the discriminant analysis techniques described in section 9.

11.2 High-Dimensional Data

Models in which the orientation is allowed to vary between clusters (EEV, VEV, EVV, VVV),
have O(d2) parameters per cluster, where d is the dimension of the data. For this reason,
MCLUST may not work well or may otherwise be inefficient for these models when applied
to high-dimensional data. It may still be possible to analyze such data with MCLUST by
restriction to models with fewer parameters (e.g. spherical or diagonal models), or else by
applying a dimension-reduction technique such as principal components.

Some of the more parsimonious models (e.g. spherical, diagonal, or fixed covariance)
can be applied to datasets in which the number of observations is smaller than the data
dimension.

11.3 Missing Data

At present, MCLUST has no direct provision for handling missing values in data. However,
a function imputeData has been added to the MCLUST package for creating datasets with
missing data imputations using the mix package. Here we illustrate the use of the imputeData
to fill in missing values in the continuous portion of the stlouis dataset provided with the
mix package (we remove the first 3 (categorical) variables, since MCLUST is intended for
continuous variables).

> library(mix)
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> stlouis

G D1 D2 R1 V1 R2 V2

4001 1 NA 1 110 NA NA 150

4004 1 1 2 118 165 NA 130

4005 1 2 NA 116 145 114 125

.

.

.

3103 3 NA 2 NA NA 100 140

3109 3 1 1 105 138 74 75

3111 3 NA NA 88 118 84 103

stlimp <- imputeData( stlouis[,-(1:3)])

Note that the values obtained for the missing entries will vary depending on the random
number seed set in function imputeData, chosen randomly by default. It is usually desirable
to combine multiple imputations in analyses involving missing data. See Little and Rubin
(2002) for details and references on multiple imputation.

Another function imputePairs has been added to the MCLUST package for visualizing
missing data imputations.

imputePairs( stlouis[,-(1:3)], stlimp[,-1])

A pairs plot showing the imputed values is displayed in Figure 25.

49



R1

50 100 150 200

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

60 100 140 180

60
80

10
0

14
0

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

50
10

0
15

0
20

0

●

●

●

●

●

●
●

●
●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● V1 ●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

R2

80
10

0
12

0
14

0

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
● ●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

60 80 100 140

60
10

0
14

0
18

0

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

80 100 120 140

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

V2

Figure 25: Example of missing data imputations obtained via the mix package for the continuous
variables in the stlouis dataset. The closed black circles correspond to nonmissing data, while
the open red circles correspond to imputed missing values.
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12 Function Summary

12.1 Hierarchical Clustering

hc Merge sequences for model-based hierarchical clustering.
hclass Classifications corresponding to hc results.

12.2 Parameterized Gaussian Mixture Models

em EM algorithm (starting with E-step).
me EM algorithm (starting with M-step).

estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.

mvn One-component fit.

12.3 Density Computation for Parameterized Gaussian Mixtures

cdens Component density (without mixing proportions).
dens Mixture density.

12.4 Model-based Clustering / Density Estimation

mclustBIC BIC computation; clusters and models through summary.
Mclust Combines mclustBIC and its summary (fewer options).

densityMclust Density estimation via Mclust (univariate).

12.5 Discriminant Analysis

Class Densities as Mixture Components

cv1EMtrain Training via leave-one-out crossvalidation.
bicEMtrain Training via BIC.

estep E-step of the EM algorithm.
mstep M-step of the EM algorithm.

Parameterized Gaussian Mixture for Class Densities (MclustDA)

mclustDAtrain MclustDA training.
mclustDAtest MclustDA density; classification via summary.

mclustDA Combines mclustDAtrain and mclustDAtest (fewer options).

12.6 Bayesian Regularization

priorControl specify a prior distribution.
defaultPrior default prior distribution.
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12.7 Support for Modeling and Classification

.Mclust vector of default values.
mclustOptions set MCLUST options.

mclustModel specify an mclust model.
mclustModelNames extract model names from an mclust model.

mclustVariance extract (co)variance for an mclust model.
emControl specify parameters affecting EM.

map Convert conditional probabilities to a classification.
unmap Convert a classification to indicator variables.

bic BIC for parameterized Gaussian mixture models.
sim Simulate data from a parameterized Gaussian mixture model.

mapClass Mapping between two classifications.
classError Classification error.

adjustedRandIndex Adjusted Rand Index.
sigma2decomp Convert mixture covariances to decomposition form.
decomp2sigma Convert decomposition form to mixture covariances.

nVarParams Number of variance parameters.
imputeData Missing data imputation using the mix package.

12.8 Plotting Functions

12.8.1 Univariate Data

mclust1Dplot Classification, uncertainty, density and/or classification errors.

plot.densityMclust plot method associated with the densityMclust function.

12.8.2 Bivariate Data

mclust2Dplot Classification, uncertainty, and/or classification errors.

surfacePlot Contour, image, or perspective plot of either density or uncertainty.

12.8.3 More than Two Dimensions

Classification, uncertainty, and/or classification errors.

coordProj coordinate projections
randProj random projections

12.8.4 Other Plotting Functions

clPairs pairs plot showing classification

imputePairs pairs plot to show missing data imputations

uncerPlot relative uncertainty of misclassified observations
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plot.Mclust plots associated with Mclust results

plot.mclustBIC BIC plot associated with mclustBIC results

plot.mclustDA plots associated with mclustDA results

plot.mclustDAtrain plots associated with mclustDAtrain results

A Appendix: Clustering Models

MCLUST usually assumes a normal or Gaussian mixture model

n∏
i=1

G∑
k=1

τk φk(xi | µk,Σk),

where where x represents the data, G is the number of components, τk is the probabilty that
an observation belongs to the kth component (τk ≥ 0;

∑G
k=1 τk = 1) , and

φk(x | µk,Σk) = (2π)−
p
2 |Σk|−

1
2 exp

{
−1

2
(xi − µk)T Σ−1

k (xi − µk)
}
. (1)

The exception is for model-based hierarchical clustering, for which the model used is the
classification likelihood with a parameterized normal distribution assumed for each class:

n∏
i=1

φ`i(xi | µ`i ,Σ`i),

where the `i are labels indicating a unique classification of each observation: `i = k if xi

belongs to the kth component.
The components or clusters in both these models are ellipsoidal, centered at the means

µk. The covariances Σk determine their other geometric features. Each covariance matrix is
parameterized by eigenvalue decomposition in the form

Σk = λkDkAkD
T
k ,

where Dk is the orthogonal matrix of eigenvectors, Ak is a diagonal matrix whose elements
are proportional to the eigenvalues of Σk, and λk is a scalar (Banfield and Raftery 1993).
The orientation of the principal components of Σk is determined by Dk, while Ak determines
the shape of the density contours; λk specifies the volume of the corresponding ellipsoid,
which is proportional to λd

k |Ak|, where d is the data dimension. Characteristics (orientation,
volume and shape) of distributions are usually estimated from the data, and can be allowed
to vary between clusters, or constrained to be the same for all clusters [24, 2, 6]. This param-
eterization includes but is not restricted to well-known variance models that are associated
with various criterion for hierarchical clustering, such as equal-volume spherical variance
(Σk = λI) for the sum of squares criterion [29], constant variance [18], and unconstrained
variance [27].

In one dimension, there are just two models: E for equal variance and V for varying
variance. In more than one dimension, the model identifiers code geometric characteristics
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of the model. For example, EVI denotes a model in which the volumes of all clusters are
equal (E), the shapes of the clusters may vary (V), and the orientation is the identity (I).
Clusters in this model have diagonal covariances with orientation parallel to the coordinate
axes. Parameters associated with characteristics designated by E or V are determined from
the data. Table 1 shows the various multivariate model options currently available in MCLUST

for hierarchical clustering (denoted HC) and EM. These are a subset of the parameterizations
discussed in [6], which gives details of the EM algorithm for maximum likelihood estimation
for these models.

A.1 Modeling Noise and Outliers

MCLUST uses a mixture model which has a single term representing noise as a first order
Poisson process to handle noisy data:

n∏
i=1

[
τ0
V

+
G∑

k=1

τkφk(xi | θk)

]
, (2)

in which V is the hypervolume of the data region, and τk ≥ 0;
∑G

k=0 τk = 1. This model
has been used successfully in a number of applications [2, 7, 4, 5].

The basic model-based clustering method needs to be modified when the data contains
noise. First, a good initial noise estimate must be obtained. Some possible methods for
denoising include a Voronöı method [1], a nearest-neighbor method [3], and robust covari-
ance estimation [28]. The function NNclean in the contributed R package prabclus is an
implementation of the nearest-neighbor method. The function cov.nnve in the contributed
R package covRobust is an implementation of robust covariance estimation. Next, hierar-
chical clustering is applied to the denoised data. Finally, EM based on the Gaussian model
with the added noise term (2) is applied to the entire data set, with the data removed in the
denoising process as the initial noise estimate.

A.2 Model Selection via BIC

Several measures have been proposed for choosing the clustering model (parameterization
and number of clusters); see, e.g., Chapter 6 of [23]. We use the Bayesian Information Crite-
rion (BIC) approximation to the Bayes factor [26], which adds a penalty to the loglikelihood
based on the number of parameters, and has performed well in a number of applications (e.g.
[9, 11]). The BIC has the form

BIC ≡ 2 loglikM(x, θ∗k)− (# params)M log(n), (3)

where loglikM(x, θ∗k) is the maximized loglikelihood for the model and data, (# params)M
is the number of independent parameters to be estimated in the model M, and n is the
number of observations in the data.

A.3 Adding a Prior to the Model

By default, MCLUST does not use a prior for modeling. However, users can optionally specify
a conjugate prior of the type described in this section. For univariate data, we use a normal
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prior on the mean (conditional on the variance):

µ | σ2 ∼ N (µP , σ
2/κP)

∝
(
σ2
)− 1

2 exp
{
− κP

2σ2
(µ− µP)2

} (4)

and an inverse gamma prior on the variance:

σ2 ∼ inverseGamma(νP/2, ς
2
P/2)

∝
(
σ2
)− νP+2

2 exp

{
− ς2P

2σ2

}
.

(5)

For multivariate data, we use a normal prior on the mean (conditional on the covariance
matrix):

µ | Σ ∼ N (µP ,Σ/κP)

∝ |Σ|−
1
2 exp

{
−κP

2
trace

[
(µ− µP)T Σ−1 (µ− µP)

]}
,

(6)

and an inverse Wishart prior on the covariance matrix:

Σ ∼ inverseWishart(νP ,ΛP)

∝ |Σ|−
νP+d+1

2 exp
{
−1

2
trace

[
Σ−1Λ−1

P

]}
.

(7)

The hyperparameters µP , κP , and νP are called the mean, shrinkage and degrees of freedom,
respectively. Parameters ς2P (a scalar) and ΛP (a matrix) are the scale of the prior distribution
in the univariate and multivariate cases, respectively. These priors are called conjugate
priors for the normal distribution because the posterior can be expressed as the product
of a normal distribution and an inverse gamma or Wishart distribution. With the prior, a
modified version of the BIC, in which the MLE is replaced by the MAP, is used to choose
the number of clusters. Details on model-based clustering with a prior can be found in [15].

Functions priorControl and defaultPrior are provided in MCLUST for specifying a prior.
When called with defaults, the following choices are made for the prior hyperparameters:

µP : the mean of the data.

κP : .01

The posterior mean
nkȳk + κPµP
κP + nk

can be viewed as adding κP observations with value

µP to each group in the data. The value we used was determined by experimentation;
values close to and bigger than 1 caused large perturbations in the modeling in cases
where there were no missing BIC values without the prior. The value .01 resulted in
BIC curves that appeared to be smooth extensions of their counterparts without the
prior.

νP : d+ 2
Analogously to the univariate case, the marginal prior distribution of µ is a t distribu-
tion centered at µP with νP − d+ 1 degrees of freedom. The mean of this distribution
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is µP provided that νP > d, and it has a finite covariance matrix provided νP > d + 1
(see, e. g. Schafer 1997). We chose the smallest integer value for the degrees of freedom
that gives a finite covariance matrix.

ς2P :
sum(diag(var(data)))/d

G2/d (For univariate models, and multivariate spherical or diag-
onal models.) The average of the diagonal elements of the empirical covariance matrix
of the data divided by the square of the number of components to the 1/d power. This
is roughly equivalent to partitioning the range of the data into G intervals of fairly
equal size.

ΛP :
var(data)

G2/d (For multivariate ellipsoidal models.) The empirical covariance matrix
of the data divided by the square of the number of components to the 1/d power.
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