
Partitioning 3D Surface Meshes Using
Watershed Segmentation

Alan P. Mangan and Ross T. Whitaker

AbstractÐThis paper describes a method for partitioning 3D surface meshes into useful segments. The proposed method generalizes

morphological watersheds, an image segmentation technique, to 3D surfaces. This surface segmentation uses the total curvature of

the surface as an indication of region boundaries. The surface is segmented into patches, where each patch has a relatively consistent

curvature throughout, and is bounded by areas of higher, or drastically different, curvature. This algorithm has applications for a variety

of important problems in visualization and geometrical modeling including 3D feature extraction, mesh reduction, texture mapping 3D

surfaces, and computer aided design.

Index TermsÐSurfaces, surface segmentation, watershed algorithm, curvature-based methods.

æ

1 INTRODUCTION

CONSIDER a 3D surface mesh. It can be described as a set
of faces that share edges, or a set of vertices that are

connected to neighboring vertices by edges. In many cases,
such meshes have no explicit higher-level structure; they
exist simply as a collection of connected polygonsÐa bucket
of polygons. One way to impose a higher level structure on
such a mesh is to partition it into a set of connected pieces,
which themselves have relationships to other pieces.
Presumably, the pieces should represent something about
the underlying structure of the object itselfÐthe semantic
meaning of the object's parts and subparts. However, when
no structure, other than the local connectedness of the
polygons, is specified, any algorithm seeking to partition
such meshes must infer some structure from the local shape
(e.g., geometry) of the mesh itself. We call the problem of
partitioning a 3D surface mesh into meaningful, connected
pieces the mesh segmentation problem. By meaningful, we
propose that the relative size and organization of the
segmented regions must be relevant to the application at
hand. This problem bears a strong resemblance to the
partitioning of images in image processing and computer
vision. The mesh segmentation problem, like the image
segmentation problem, is not well posed; solutions are often
application specific, depending quite heavily on one's
definition of ªmeaningful.º

The 3D mesh segmentation method we present here is

based on the concept of ªcatchment basinsº or ªwater-

sheds,º which has been used previously in image segmen-

tation [1]. For images, the algorithm operates on a height

function (usually the gradient magnitude of the input

image), which is defined over the image domain, typically

some compact, continuous subset of <2. This work presents

a generaliztion of the watershed method in order to
segment 3D surface meshes. For the case of 3D meshes,
the height function is defined over the mesh itself. One such
height function is the total curvature of the surface (or some
approximation thereof) defined at each vertex of the mesh.

There are several reasons why one would want to
segment a 3D mesh. Generally, datasets are more manage-
able at the higher level of abstraction that such a
partitioning affords. There are also some specific applica-
tions that could benefit from such a capability. One example
is mesh reduction [2], [3]. Effective mesh reduction algo-
rithms can dramatically reduce the amount of data in a 3D
mesh while maintaining, to a certain degree, the fidelity of
the surface. Most mesh reduction algorithms operate on the
data as a whole, with individual vertices or faces treated
solely with respect to their immediate neighbors. However,
we propose mesh segmentation as a preprocessing step that
could indicate to subsequent mesh reduction algorithms
that they should preserve distinct parts of objects. Results in
this paper will show that a mesh segmentation technique
that relies on surface curvature can help preserve edges,
creases, and other fine details during subsequent mesh
reduction.

A related application is the reparameterization of
irregularly connected meshes in order to apply successive
reduction or refinement algorithms. For instance, Lee et al.
[4] describe a technique that generates a hierarchy of
regular meshes from irregularly connected meshes of
arbitrary topology. This process can preserve designated
vertices and edges that are important to the structure of the
object. The generation of such special structures could
require a great deal of user input. Alternatively, those
structures could be generated automatically using a mesh
segmentation algorithm such as the one described in this
paper.

Another application of mesh segmentation is the fitting
of higher-order models to polygonal meshes. Because the
proposed segmentation method breaks the surface into
regions comprised of relatively consistent curvature (and
bounded by high curvature), the geometry of the regions

308 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

. A.P. Mangan is with Creare Inc., PO Box 71, Hanover, NH 03755.
E-mail: spm@creare.com.

. R.T. Whitaker is with the Department of Electrical Engineering,
University of Tennessee, Knoxvill, TN 37996-2100.
E-mail: rtw@utk.edu.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 109330.

1077-2626/99/$10.00 ß 1999 IEEE

tends to be homogeneous. Rather than using mesh reduc-
tion to decrease the complexity of the surface data, large-
scale structures, such as planes, quadrics, superquadrics, or
B-splines, can be used to model these areas. For example,
indoor scenes, or those consisting primarily of artificial
objects, tend to have more planar and angular surfaces than
those occurring in nature. In such cases, a higher-level
modeling scheme consisting of geometric primitives might
be appropriate. Outdoor scenes, on the other hand, are
typically less organized and might be better modeled using
algebraic structures or B-splines. Each region of the surface,
having been segmented and classified according to surface
type, could have a model assigned to it.

A further use of mesh partitioning is the modification of
existing 3D CAD models. As 3D models become more
ubiquitous and available from a large number of difference
sources (e.g., through the internet), interesting models tend
to be in formats that are inappropriate for certain applica-
tions. In such cases, people using these models will be
interested in modifying them to suit their own needs. Using
the proposed surface segmentation scheme, a user could
impose some structure on such models (perhaps after scan
converting or tiling them). The model can then be modified
on a region-by-region basis, making it easier to concentrate
on a specific portion of the design. Sections and subassem-
blies of the model can be isolated for modification. Portions
of structures in this manner could also be imported from
existing parts databases and reused.

Another application of mesh segmentation is feature
detection. In some applications, such as medical imaging,
one would like to locate points or lines on a surface that
could serve as landmarks for comparing or aligning it with
other surfaces. These landmarks should be relatively
insensitive to noise and invariant to certain kinds of
geometric transformations. One way to establish a set of
landmarks is to use the boundaries of segments, particu-
larly when those boundaries have some geometric inter-
pretation, as is the case with the methods proposed in this
paper.

The remainder of the paper proceeds as follows: The next
section describes some aspects of the literature that are
related to the proposed algorithm. Section 3 presents the
watershed algorithm in the context of images and then the
generalization to 3D meshes. After completion of the
watershed segmentation, it is also necessary to perform an
additional step of region merging in order to avoid over-
segmentation, that is, to control the level of detail in the
segmentation. That section also describes the region
merging process and Section 4 explains how surface
curvature is computed, both directly from isosurfaces of
volumes and from vertex-list type geometric models.
Section 5 presents results and analyzes the performance of
the algorithm. It describes the capability of the algorithm to
segment simple surfaces, the effects of added noise, and the
performance of the algorithm when segmenting complex
surfaces.

2 RELATED WORK

There are several somewhat diverse areas of research that
are relevant to this work. One area is the problem in

computational geometry of attempting to divide polyhe-
dra into convex components. Another area is the
detection of geometric features, namely creases, on
continuous surfaces. Another related area is the problem
of surface classification from range data. Last, there is
that part of image processing which applies morphologi-
cal watersheds to image segmentation.

In the field of computational geometry, researchers [5],
[6] have addressed the problem of dividing polyhedra into
collections of convex pieces. Of course, the individual faces
are each convex, but if one considers the optimal partition-
ing (e.g., smallest number of pieces), the problem is NP-
complete [7]. Several researchers have proposed reasonable
algorithms for obtaining good solutions. Unlike the problem
addressed in this paper, the convex-decomposition problem
is purely geometric and is well posed; state-of-the-art
research focuses on developing efficient algorithms. Such
a convex decomposition is useful for algorithms that
explicitly depend on convex objects (such as certain 3D
rendering algorithms or collision detection), but less useful
for applications that are trying to get a part-subpart
decomposition that is related to the underlying structure
of the object. For instance, a convex decomposition must
partition hyperbolic regions into their constituent flat
facesÐa partitioning which has little to do with the overall
shape of an object (e.g., a torus) that happens to contain
such regions. Fig. 1a shows an example of how two objects
joined by a smooth fillet create a hyperbolic region. In this
example, a convex decomposition will produce less than
adequate results (Fig. 1b) and will, without heuristics,
partition the hyperbolic region into its constituent (atomic)
planar faces. In this same example, a curvature-based
segmentation could, in principle, partition the surface along
meaningful, intuitive boundaries (e.g., Fig. 1c) that divide
the faces of objects and break the protrusion from the main
body of the larger object.

Another related problem is the detection of certain kinds
of geometric features on surfaces. The detection of such
features can be important in comparing, registering, and
analyzing shapes. Perhaps the most closely related idea is
ªridge detectionº on surfaces [8], [9]. Because ridges are
usually assumed to be maxima in curvature, the operators
required to detect them rely upon third- and fourth-order
derivatives. Such derivatives are very sensitive to noise,
requiring some robust approximation, such as a polynomial
fit or a low-pass filterÐboth of which tend to distort the
shapes of the features being detected. For this reason, there
are few examples in the literature that make practical use of
such surface ridges for segmenting 3D meshes. Our method
does not attempt to explicitly locate ridges. Rather, the
surface is segmented into patches bounded by regions where
sharp differences in surface normal create a boundary.
Although these boundaries do occur at places of high
curvature, the watershed algorithm makes no attempt to
explicitly locate these edges/ridges and does not require
derivatives beyond second-order (first-order derivatives of
the normal).

Surface segmentation is also related to the problem of
surface classification. Extracting surface patches by identify-
ing individual surface elements as certain types has played

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 309

an important role in high-order systems, such as 3D

recognition. For instance, Fisher et al. [10] address the

problem of extracting surface patches from range data with

the goal of constructing CAD models. Their method uses a

curvature-based surface classification algorithm to perform

segmentation. Faugeras and Hebert [11] also approach the

problem of 3D segmentation from a scene recognition

viewpoint. They perform geometric matching between

primitive surfaces (mainly planar, although the more

general case of quadrics is discussed). Besl [12] proposes

using the mean and Gaussian curvatures in segmenting and

classifying surfaces by type. These approaches are based on

range data, which is always a graphÐa special class of 3D

surfacesÐwhereas the method we propose is suited to the

more general class of 3D surfaces. We make use of the mean

and Gaussian curvatures in calculating the total curvature,

but do not explicitly attempt to classify any particular

surface region. Rather than use only local differential

structure to classify regions into one of several simple

types, we partition regions based on the homogeneity of the

surface normal, combining local information at many points

to form a region. Thus, the proposed algorithm is broadly

applicable to many types of 3D surfaces and does not rely

upon the classification and matching of any type of

underlying geometric primitive.
Similarly, the computer vision literature shows examples

of the application of image segmentation techniques to

surfaces, such as range maps, that are height functions, i.e.,

z � f�x; y�, defined on a rectilinear grid [13], [14]. These are

essentially image segmentation techniques that include

some analysis of the local image surface structure. The goal

of this paper is to describe the generalization of one such

algorithm to a full 3D surface and demonstrate its

effectiveness in addressing several problems in computer

graphics and vision.
The problem of segmentation is central to image

processing and computer vision and has been an area of

active research for more than 30 years. Watersheds for

image segmentation are described in the classic work of

Serra [1] on mathematical morphology. Since that time, they

have found a wide range of applications including medical

imaging [15], [16], shape analysis [17], and range-image

segmentation [14]. KoeÈnderink and Van Doorn [18] argue

for watersheds as a method of detecting ªridgesº as an

alternative to constructing detectors that rely on higher-

order derivatives. Eberly [9] gives a nice overview of that

310 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 1. Convex decomposition. (a) A protusion is joined to a larger object by a smooth fillet, creating a hyperbolic region. (b) A convex decomposition

divides the surface along lines that are not perceptually meaningful while decomposing the hyperbolic region into its constituent planar faces. (c) A

curvature-based method could, in principle, partition the surface along lines that distinguish individual faces and part/subpart boundaries.

debate and also discusses the use of scalar functions defined
on manifolds as a means of detecting ridges.

In this paper, we use the notion of defining a scalar
function on a manifold (in this case, the scalar function is
surface curvature and the manifold is a 3D surface mesh),
but we apply morphological watersheds as a means of
segmenting that surface. The algorithm we use traces points
on the surface ªdownº to local minima, as in [15]. The
difference with the proposed algorithm and previous work
is the generalization of morphological watersheds to a 3D
polygonal mesh and the use of a depth measure to reduce
insignificant regions.

3 WATERSHED ALGORITHM

This section describes the strategy used in the watershed
algorithm and the specifics of the implementation. The
image processing version of the algorithm is first briefly
introduced and an example of image segmentation using
this approach is given. The generalization of the algorithm
from a 2D rectilinear grid to an arbitrary surface with well-
defined neighbor connectivity is then presented.

3.1 Watersheds in Image Processing

The watershed algorithm derives its name from the manner
in which regions are segmented into catchment basins. Let
f�x; y� : U ! < be a continuous height function defined
over the image domain U � <2. A catchment basin is the set
of points whose path of steepest descent terminates in the
same local minimum of f . The choice of height function
depends on the application; the basic algorithm is indepen-
dent of the height function. For instance, one might choose
the original image in order to locate blobs (light and dark
regions), as in [15], or one could choose the gradient
magnitude of the image in order to locate regions that are
relatively homogeneous [14].

After locating these minima in f , there are two strategies
for associating catchment basins with these minima. One
strategy is to incrementally ªfloodº the regions surrounding
these minima, keeping track of the places where flood

regions touch [1], [14]. This method typically requires one to
discretize the range (or gray levels) of f , thus limiting the
contrast resolution of the resulting segmentation. If the
domain of f is discrete (as is usually the case), an alternative
is to take each point in U and flow downward until one
encounters a minimum or a point which has already been
associated with a minimum (see Fig. 2). The connectivity of
the points in U depends on the discretization, but, with
rectilinear grids, four connectivity is usually sufficient. If
labels are updated incrementally, the computation time is
proportional to the number of points in the image times the
connectivity. For 3D mesh segmentation, we have chosen
the latter approach, which we call the top-down approach,
because it is better suited for the irregular topology of the
3D mesh. In both algorithms, there are special cases that
must be considered. For instance, there may be flat regions,
plateaus, where there is no downhill direction across
neighboring vertices. Such details are discussed in the
sections that follow.

An example of the application of the watershed algo-
rithm to images serves as a good starting point for the
extension to 3D meshes. Fig. 13 shows an input image, the
gradient magnitude of that image (which serves as f), and
the segmentation that results from following pixels (using
four-connected neighbors) through a steepest descent to the
local minima.

3.2 Extension to 3D

Our goal is to extend this algorithm to a 3D mesh consisting
of connected vertices, each of which has a value of f and a
set of connections to neighboring vertices, as displayed in
Fig. 3. Let X be the set of all vertices in the mesh. For each
xi � X, there is a connected neighborhood of xi, Ni � X.
Such a neighborhood is shown in Fig. 3. In the image
processing case, we traverse a 2D network of points where
each point's neighbors are defined by a rectilinear grid. In
the case of a surface mesh, we move tokens around a
network of points in 3D, where each point's neighbors vary,
depending upon the mesh geometry and connectivity at
that point. A token moves from one vertex to its neighbor of

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 311

Fig. 2. Watershed strategies. (a) The bottom-up approach to finding catchment basins is to start at a local minimum and incrementally flood the

region until it connect to its neighbors. (b) The top-down approach is to place a token at a point and move the token along a steepest descent until it

reaches a minimum.

lowest value until it reaches a minimum (which it must, by
definition). The 3D positions of the vertices are not relevant
to this process; only the topology of the vertices and the
values of the height function affect the formation of
catchment basins. Thus, the shape of the surface affects
the segmentation via the height function.

Therefore, the steps of the watershed segmentation
algorithm are as follows:

1. Compute the curvature (or some other height
function) at each vertex.

2. Find the local minima and assign each a unique
label.

3. Find each flat area and classify it as a minimum or a
plateau.

4. Loop through plateaus and allow each one to
descend until a labeled region is encountered.

5. Allow all remaining unlabeled vertices to similarly
descend and join to labeled regions.

6. Merge regions whose watershed depth is below a
preset threshold.

The following sections describe in more detail the
specific steps for computing the watershed segmentation.

The input to the watershed method is a surface mesh and
whatever additional information (e.g., surface normals) is
necessary to calculate the curvature at each vertex. The
algorithm then segments this mesh, using the curvature as
the height function f . Thus, the first step of the segmenta-
tion is the calculation of curvature at each vertex on the
surface. The method for calculating curvature should
depend on the application and type of input data available.
The methods for curvature calculation used in this work are
discussed in Section 4. The watershed algorithm, per se, is
independent of the type of curvature used.

3.3 Initial Labeling

Once the curvature (height function) is defined on the
surface mesh, the watershed method labels all of the local
minima, i.e., those vertices with curvature lower than that
of all of their neighbors, as in Fig. 4a. Each minimum then
serves as the initial basis for a surface segment, i.e., a
distinct region on the surface formed during the descent of
vertices along their paths of steepest descent. Next, flat
regions are found. These are one of two types as shown in
Fig. 4b; either flat plateaus or flat minima. Flat plateaus are

defined as those flat regions that have any vertices adjacent
to their borders with a lower curvature than that of the
plateau itself. A variation of the algorithm is to define an
additional type of flat region; the flat maximum, which has
all adjacent points lower than itself. These maxima may also
be used as indicators of borders between regions. We treat
these maxima, if present, in the same manner as flat
plateaus and do not explicitly define any points as border
vertices. Flat minima have all adjacent vertices with higher
curvatures than themselves. These minima are labeled and
treated in the same manner as local single-vertex minima.
Once all flat regions are found and classified, a descent is
made from each of the flat plateaus until a labeled region is
encountered. The curvatures of all adjacent vertices of the
plateau are examined and the descent from the plateau
begins at that vertex with the lowest curvature.

3.4 Descent

The process of associating points together into catchment
basins is what gives this method the name ªwatershed.º
Imagine a drop of water placed at the starting vertex,
flowing downhill on the height function, i.e., toward the
point of lowest curvature. The drop, or token, follows the
path of gradient descent, and each vertex it encounters on
its path ªdownwardº is labeled with the same identifying
label as the first labeled vertex it encounters, as shown in
Fig. 2b. This token moves all of the way to a local (labeled)
minimum or hits a labeled vertex that has already been
associated with a minimum. Initially, descent is made from
flat plateaus, followed by the remaining unlabeled vertices
on the surface. The plateau and its path of descent are then
labeled and joined to the region finally hit during the
descent. If another flat plateau is encountered, then the two
are joined and the resulting plateau will later descend in
turn until a minimum is encountered. The plateaus are
indexed, and joined as necessary, so that a token, upon
reaching a plateau, can move through it in one step and
continue its descent. The next step is to allow all other
unlabeled vertices to similarly descend until they hit a
labeled region, then label them and join them to that region.

3.5 Region Merging

The final step of labeling each vertex according to its
associated minimum produces a segmented mesh. How-
ever, the watershed, as it stands, is sensitive to even the

312 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 3. Neighborhood relationships for a 2D rectilinear grid (left) and a 3D mesh of connected vertices (right).

smallest fluctuations in surface shapeÐevery local mini-

mum of curvature establishes its own region. Leaving the

surface in this state can yield a solution with regions that

are too small and numerous to be useful (as shown in

Fig. 10). It is necessary to merge the regions together in

order to obtain reasonable results. The strategy is to use a

saliency measure and the structure of the catchment basins

to define a merging process.
There are a variety of possibilities for metrics that

indicate insignificant regions, but the watershed algorithm

itself gives a fairly reliable metric for determining the

saliency of a segment. This metric is the greatest depth of

water that a segment can hold before it ªspills overº into

one of its neighbors. Regions that are ªshallowº are

relatively constant in curvature, i.e., their boundaries have

a curvature which is not significantly greater than the

flattest part of that region. The watershed depth can be

calculated as the difference between the point in the region

with the overall lowest curvature (the local minimum) and

the vertex along the region's boundary with the lowest

curvature of all other boundary vertices, as in Fig. 5. This is

the depth of water that the region can hold before it begins

to overflow its boundary.
In calculating the lowest boundary point of a segment, it

may be necessary to take into account those vertices

immediately past the current region's boundary. This is a

side effect of the discrete nature of the grid; because the

watershed algorithm labels all vertices as being in one

region or another, even though segments are separated by a

single ridge of vertices which have downhill neighbors that

flow into two separate catchment basins. These ridge

vertices determine the minimum watershed depth. Notice

that, in Fig. 5, the depth is found using such a vertex, vertex

A. If the depth had merely been calculated using the vertex

with the lowest curvature belonging to the current region,

then vertex B would have been used, resulting in an
incorrect, lower depth.

The region merging algorithm is as follows:

1. For each region, find its lowest point, neighbors, and
lowest boundary point with each neighbor.

2. Find depth of region, the difference between the
lowest point to lowest boundary point.

3. If depth is below a predefined threshold, merge this
region to region adjacent to lowest boundary point
and update new region's information accordingly.

4. Repeat until no regions exist that are below the
minimum depth.

Once the depths of all regions are computed, those
regions below the depth threshold are merged with their
neighbors. In this manner, adjacent regions, at least one of
which has a shallow depth, as in Fig. 6, are combined
together. This drives the solution away from being over-
segmented toward a more useful result. This merging
process can be done very efficiently using the appropriate
data structures and keeping a lookup table of merged
regions. Several pieces of information must be tabulated for
each region. The vertex with the lowest curvature for the
region is found and used to later estimate the depth of the
region. The boundary of the region is found and, from this,
all neighboring regions are determined. For each neighbor
B, the boundary vertex of the current region A adjacent to B
with the lowest curvature is also found. From these
boundary vertices, the lowest (in terms of curvature)
boundary vertex of the region is then calculated. With this
information, available region merging can then proceed.

When a shallow region is identified, the neighboring
region into which the lowest boundary vertex would flow
during descent is selected as that one with which to merge.
This resolves any ambiguity that might arise in the case of
there being more than one neighboring region adjacent to
the lowest boundary vertex. For implementation purposes,

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 313

Fig. 4. Initial labeling. (a) Labeling of local minima and (b) classification of flat regions.

rather than relabeling all of the region's vertices with the

label of the neighboring region it just merged with, a

pointer is set for the region indicating with which region it

is merged. The pointers of all other regions merged with
this one are also updated to reflect the new region with

which they are now merged.
When merging regions, one must also update the

information of the new region regarding lowest vertex,

lowest boundary vertex, and neighbors. Comparing and

changing the lowest curvature vertex is straightforward;

adjusting the neighbor information of this new region is

somewhat more complicated. All of the current region's

neighbors need to be added as neighbors of the new region

unless they themselves have been merged with the new

region previously. The current region, and all other regions

in turn merged with it, are then removed from the new

region's list of neighbors. The boundary vertices associated
with these neighbors also are removed from their respective

lists. The new lowest boundary vertex is next recalculated,

necessary in case the region associated with the previous

lowest boundary vertex. The regions are merged in this

manner according to Fig. 7. Once this information is

updated, the new lowest boundary vertex has to be

calculated and set. This merging procedure is repeated,

cycling through all of the regions consecutively until no

further regions are within the preset depth threshold. At
this point, the watershed algorithm is complete.

This basic strategy can be extended to incorporate other
measures of saliency. Another natural measure is to
compute the volume of the watershed (i.e., average depth
times area), which would favor larger regions over smaller
ones. One could also bring other information into this
metric, such as triangle coloring or texture coordinates. We
have experimented with area-based metrics and found that
they penalize small areas too aggressively, which produces
inferior results for the examples we have considered. The
development, implementation, and verification of other
saliency measures is an area for future work.

4 CURVATURE CALCULATION

The calculation of curvature depends on the type of data
used and the level of noise in that data. In this work, we
consider two different types of input: volumes whose
voxels represent the value of some implicit function and
simple surface meshes consisting of only vertices and
triangles. In the former case, we can use the volume data
itself to directly compute accurate estimates of the
curvature of the embedded surface. Given a polygonal
mesh (without an embedding) as input, there are several
possibilities for discrete approximations to surface curva-
ture. One approximation is the angle between the faces that
are adjacent to a vertex. Another option is the norm of the
covariance of the surface normals or edges that are adjacent
to that vertex.

4.1 Isosurface Curvature

In the case of volumes, we are segmenting meshes
corresponding to isosurfaces. The meshes are generated
using the marching cubes algorithm [19]. Therefore, we
can compute the curvature of the isosurface using the
values of the volume itself as the surface is extracted.
This provides a slightly more accurate estimate of the
surface curvature than that obtained using the faces that

314 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 5. Defining the depth of a region based on its lowest vertex and lowest boundary vertex.

Fig. 6. Merging adjacent regions with shallow depths.

are generated from the marching cubes algorithm. For the
magnitude of the curvature, we use the deviation from
flatness [20], which is defined to be the Euclidean norm of
the shape tensor. The mean, H, and Gaussian
curvature,K, are first found from [21],

H �
�2
x��yy � �zz� � �2

y��xx � �zz�
��2

z��xx � �yy� ÿ 2�x�y�xy ÿ 2�z�x�xz ÿ 2�y�z�yz

� �
��2

x � �2
y � �2

z�3=2
�1�

K �

�2
x��yy�zz ÿ �yz�yz� � �2

y��xx�zz ÿ �xz�xz�
��2

z��xx�yy ÿ �xy�xy� � 2��x�y��xz�yz ÿ �xy�zz�
��y�z��xy�xz ÿ �yz�xx� � �z�x��xy�yz ÿ �xz�yy��

0@ 1A
��2

x � �2
y � �2

z�2
;

�2�
where � represents the value of the implicit function at a
given point in the volume. The total curvature, D, is then
calculated using:

D �
������������������������
4H2 ÿ 2K2
p

: �3�
When computing the curvature values, we sometimes

apply a threshold to the curvature, as shown in Fig. 8. This
step is performed so that relatively flat areas where the
curvature is extremely low throughout will be classified as
exactly flat, easing the computational burden during later
processing. This threshold does not have a significant affect
on the final result because such shallow watersheds would
be merged in the last part of our algorithm, as discussed in
Section 3.5. Once this threshold has been applied, the
watershed algorithm proper can begin.

4.2 Surface Mesh Curvature

There are several possibilities for finding the curvature of
surfaces represented by polygonal meshes. We have

experimented with two different approaches and achieved
varying degrees of success for each. The first method uses
the angles between the faces of the triangles to determine
the curvature. The second uses the norm of the covariance
of the surface normals adjacent to the vertex in question.
The latter method proved to be the most successful because
it is less sensitive to noise and it averages across faces that
are composed simply of pairs of coplanar triangles.

To find the covariance matrix, the variance and covar-
iance in all three cardinal directions must first be found. The
variance and covariance are found from:

�2
aa �

1

N

XN
t�0

�at ÿ �a�2 �4�

�2
ab �

1

N

XN
t�0

�at ÿ �a��bt ÿ �b� �5�

a 2 fx; y; zg b 2 fx; y; zg: �6�
N represents the number of triangles associated with this
vertex and �xt yt zt� are the components of the normal for
triangle t. Also, �ab � �ba. The curvature, D, is then set equal
to the norm of the covariance matrix, C;

D � kCk C �
�xx �xy �xz
�yx �yy �yz
�zx �zy �zz

24 35: �7�

4.3 Edge-Node Meshes

If the input to the algorithm is a triangle (or polygonal)
mesh rather than a volume, one must also consider the
segmentation relative to the underlying structure of the
mesh. So far we have assumed that we are dealing with a
mesh created from a volume and that the mesh is ªdense,º
i.e., there are many vertices for each surface region. The
watershed algorithm operates on connected nodes in this
mesh. However, for tessellated surfaces, the model is
frequently sparse, with just enough vertices to define each
surface (particularly a problem in planar areas), and some
large regions might not contain enough vertices to define a
catchment basin with an associated boundary.

This problem can be solved by creating a new mesh, the
dual of the original, which has a node for each edge in the
original mesh and a connection to each adjacent edge (now
nodes) across the faces of the two neighboring triangles (or
polygons). This shifts the emphasis of the algorithm from
the vertices to the polygons of the mesh. For each edge, i.e.,
between every pair of vertices, in the original mesh, there is
a corresponding node in the new mesh. The curvature of
this node is then set as the average of its neighboring
vertices' curvatures. After region merging is performed,

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 315

Fig. 7. Region merging. As each new region is added to the current

region, indicated by the shaded area, its list of neighbors and associated

boundary vertices needs to be updated accordingly.

Fig. 8. Thresholding the total curvature.

triangle regions are established, with each triangle being

evaluated for region membership based on whether all

three of its edges belong to the region in question.
Because the watershed algorithm is independent of how

one structures the mesh or computes the height function (or

curvature) at each node, a variety of different approxima-

tions and preprocessing algorithms can be applied to both

the mesh itself and the height function. For instance, an

iterative smoothing process could be applied to the height

function in order to reduce the effects of noise and

approximation errors. Such preprocessing is an area of

ongoing investigation and is beyond the scope of this paper.

5 RESULTS

In this section, we present the results of using the watershed

algorithm to perform segmentation of surface meshes. We

show initial results obtained prior to region merging;

examination of these oversegmented solutions demon-

strates the need for region merging. The algorithm's

capability to successfully segment simple geometric shapes

is demonstrated. The performance of the algorithm in the

presence of noise is analyzed. The sensitivity of the

segmentation to the user-defined threshold is shown.

Segmentation results for the edge-node meshes, described

in Section 4.3, are then given. Finally, some examples of

applications that benefit from the use of this segmentation

technique are given, such as mesh reduction and region

extraction for CAD models.

316 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 9. Creation of edge-based topology based on original mesh.

Fig. 10. Oversegmentation resulting from not applying the final region merging step of the algorithm.

5.1 Oversegmentation

This section demonstrates the need for region merging by

displaying some results obtained without performing the

final merging step. As is seen in Fig. 10, the output of the

watershed algorithm suffers quite badly from oversegmen-

tation. Any small defects or noise present in the initial

model allow the formation of bumps on the surface. If these

bumps are concave, they in turn lead to the creation of local

minima, which become isolated regions as neighboring

vertices flow into them.

5.2 Segmentation of Simple Surfaces

Fig. 11 shows the segmentation results for several analyti-

cally defined surfaces with known curvature characteristics.

Fig. 11a shows the segmentation of a cube (extracted from a

volume), the six faces of which are planar, each separated

by a ªwallº of high curvature. The high curvature at the

edges of the cube allows the algorithm to decompose the

surface into the six regions as shown. A similar boundary of

high curvature separates the two planar areas at the ends of

the cylinder in Fig. 11b. The sphere also has a consistent

degree of curvature throughout its surface and is segmen-

ted into a single region in Fig. 11c. The torus in Fig. 11d has

varying curvature and surface type (it is hyperbolic on the

inner hull and elliptic on its outer hull). The curvature also

has a pair of maximal loci around the inner and outer hulls

that have created the boundary between the two regions as

displayed.

5.3 Noise Analysis

This section examines the performance of the algorithm in
the presence of additive, uniform noise. For the following
analyses, uniform noise is added to the curvature of the
vertices as a percentage of the range of curvature for the
object , Dvertex � Dvertex�X% of �Dmax ÿDmin��. Fig. 12
shows how noise affects the segmentations of a torus and
a cube. The torus has a relatively constant level of curvature
on its surface, whereas the cube has, in effect, zero
curvature except at the boundaries between faces. Fig. 12a,
Fig. 12b, and Fig. 12c show the torus with varying levels of
additive noise applied to the curvature of each vertex. For
small levels of noise, 2.5 percent to 5 percent, the boundary
between regions moves, but the torus is still segmented into
two regions, as appropriate. However, as the noise reaches
10 percent, the partitioning fails dramatically and the torus
is oversegmented into 36 regions. At this noise level, the
segmentation no longer corresponds to the underlying
geometry of the torus. The cube, Fig. 12d, Fig. 12e, and Fig.
12f, displays less sensitivity to small levels of noise. Adding
small levels of noise to the boundaries separating the planar
faces has negligible effect. As with the torus, once the noise
reaches a sufficiently high level, 10 percent, the boundary
curvature is no longer significantly higher than the faces
and the segmentation breaks down.

5.4 Threshold Sensitivity

The algorithm displays sensitivity to the user-specified
threshold encountered in the region merging step. Varying
the threshold allows for different levels of segmentation, the

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 317

Fig. 11. Segmentation of various test surface types. (a) Cube (six regions), (b) cylinder (three regions), (c) sphere (one region), and (d) torus (two

regions).

exact level depending upon the final application. Fig. 14

shows segmentation results for a 3D model of a room that

was built by fusing laser range images from different points

of view [22]. Because this data is from a sensor, it shows
some level of noise. A comparison of results of segmenta-
tions using different threshold levels shows that increasing
the threshold leads to fewer final regions, as those with
successively lower depths are merged with neighboring
regions. The boundaries between regions in Fig. 14a
represent edges and breaks that are not as highly curved
as those in Fig. 14d. There are several areas of interest in the
scene that are initially segmented into several pieces, but, as
the threshold increases, they are gradually segmented into
fewer, more coherent regions. Note how the floor is at first
partitioned into multiple areas. The wall partitions, barrels,
chairs, and printers (on the lefthand side of the scene) are
also partitioned into successively fewer regions.

Fig. 15 shows the segmentation of a dart object, again
with several threshold levels. The surface in this case is
much simpler than that shown in Fig. 14, yet also displays
the same characteristics as the threshold varies.

5.5 Segmentation Based on Mesh Input

All of the segmentation examples thus far have been created
using curvature calculated from volumetric inputs as
discussed in Section 4.1. Here, we present a segmentation
based on surface-based curvature, as described in Section
4.2. The input to the system in this case is a surface mesh
rather than a volume. Fig. 16 shows two segmentations of
the mug model using different thresholds. This method is
capable of generating useful results, but appears to be more
prone to high frequency artifacts than segmentations
produced from volumetric input. It is possible that these
effects could be overcome by applying some type of low-
pass filter to the curvature data; we have chosen here to
concentrate on the segmentation aspects of the problem and
leave this extension of the work for future completion.

5.6 Applications

As mentioned previously, there are several areas that can
benefit from this segmentation technique. The advantages
of using surface segmentation in two of these areas, mesh
reduction and CAD, are highlighted here.

One of the possible applications of the proposed surface
segmentation method is improving the results of mesh
reduction algorithms. In Fig. 18, we show the results of
applying mesh reduction to the dart for various reduction
rates. We use an iterative edge-collapse decimation strategy
[2], which incorporates a greedy algorithm operating on a

318 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 12. Torus and cube segmentations with different levels of additive
noise applied. (a) Torus, 2.5 percent noise (two regions), (b) torus, 5
percent noise (two regions), (c) torus, 10 percent noise (36 regions), (d)
cube, 2.5 percent noise (six regions), (e) cube, 5 percent noise (six
regions), (f) cube, 10 percent noise (43 regions).

Fig. 13. Example of image segmentation using the watershed algorithm. (a) Input image, (b) gradient magnitude of the input image, smoothed with a

Gaussian filter, (c) segmentation of (b) using the watershed algorithm.

curvature metric [23], [24]. Fig. 18a and Fig. 18b show the

results of reduction by factors of 50 and 100 respectively.

Fig. 18c and Fig. 18d display the improvement possible by

specifying the same reduction rates on this surface after it

has been segmented. In the latter case, reduction was not

allowed across region boundaries, preventing edges be-

tween vertices in different regions from collapsing into a

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 319

Fig. 14. Segmentation of a scene using varying thresholds, indicated by T . (a) T � 0:275 (957 regions), (b) T � 0:4 (498 regions), (c) T � 0:425 (441

regions), (d) T � 0:455 (381 regions).

Fig. 15. Dart segmentations. (a) T � 0:15 (103 regions), (b) T � 0:2 (64 regions), (c) T � 0:4 (36 regions).

Fig. 16. Segmentation of the mug model using surface-based curvature calculations. (a) T � 0:05 (42 regions), (b) T � 0:0025 (126 regions).

single vertex. In this manner, the region boundaries (edges)

are preserved.
Another area that can benefit from the use of the

segmentation method proposed here is that of computer-

aided design. It is possible to read in a general mesh model

without any knowledge of its structure save its basic

connectivity and segment it and extract any desired regions

using the user-specified threshold. Subparts can then be

analyzed in detail and the model modified by modifying or

deleting assemblies as required. These parts and assemblies

can then be added to a database of such parts and

recombined and reused in different configurations as

needed. A surface mesh can be created using an interactive

3D model generation tool and measurements and specifica-

tions for various subassemblies then generated from the

segmented model. Fig. 17 shows several parts of the dart
extracted from the model as a whole.

6 CONCLUSIONS

We have presented here a method of surface segmentation
which uses a generalization of watershed regions to 3D
meshes. The method can segment either isosurfaces of a 3D
volume or surface meshes directly into regions that are
bounded by higher curvature. The algorithm displays some
sensitivity to the user-specified threshold. Varying the
threshold allows for different levels of segmentation, the
exact level depending upon the final application.

One aspect of the system that would benefit from future
work is the method of calculating curvature for surface
meshes. Currently, the results obtained from segmentation
of these meshes are prone to high frequency aliasing and

320 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 5, NO. 4, OCTOBER-DECEMBER 1999

Fig. 17. Several subassemblies of the dart model isolated via region extraction.

Fig. 18. Mesh reduction on unsegmented and segmented surface. (a) Reduction by a factor of 100 on the unsegmented dart, (b) the vertex

connectivity of the unsegmented reduction, (c) reduction by a factor of 100 on the segmented dart, (d) the vertex connectivity of the segmented

reduction.

the success of the segmentation depends heavily upon the

coarseness of the grid sampling. Smoothing the curvature

calculated from these surfaces will, in all probability,

improve the segmentation results significantly.

ACKNOWLEDGMENTS

Thanks go to David Breen and the Computer Graphics

Group at the California Institute of Technology for provid-

ing the dart volume data and to Chris Gourley for

providing the mesh reduction code. The image segmenta-

tion example was provided by Samuel Burgiss Jr. The range

data in Fig. 13a was provided by the Oak Ridge National

Laboratory. This work is supported by the U.S. Office of

Naval Research Visualization program under grant N00014-

97-0227.

REFERENCES

[1] J.P. Serra, Image Analysis and Mathematical Morphology. London:
Academic Press, 1982.

[2] H. Hoppe, ªProgressive Meshes,º Computer Graphics (Proc.
SIGGRAPH 96), pp. 99-108, July 1996.

[3] A. Varshney, P. Agarwal, and F.P.B. Jr, ªAutomatic Generation of
Multiresolution Hierarchies for Polygonal Models,º Proc. First
Workshop Simulation and Interaction in Virtual Environments, pp. 25-
28, 1995.

[4] A.W.F. Lee, W. Sweldens, P. SchroÈder, L. Cowsar, and D. Dobkin,
ªMAPS: Multiresolution Adaptive Parameterization of Surfaces,º
Computer Graphics (Proc. SIGGRAPH 98), pp. 95-104, July 1998.

[5] C.L. Bajaj and T.K. Dey, ªConvex Decompositions of Polyhedra
and Robustness,º SIAM J. Computing, vol. 21, pp. 339-364, 1992.

[6] B. Chazelle and L. Palios, ªTriangulating a Nonconvex Polytope,º
Discrete and Computational Geometry, vol. 5, pp. 505-526, 1990.

[7] B. Chazelle, D.P. Dobkin, N. Shouraboura, and A. Tal, ªStrategies
for Polyhedral Surface Decomposition: An Experimental Study,º
Proc. 11th Ann. ACM Symp. Computational Geometry, pp. 297-305,
June 1995.

[8] J. KoeÈnderink and A. van Doorn, ªThe Structure of Two-
Dimensional Scalar Fields with Applications to Vision,º Biological
Cybernetics, vol. 33, pp. 151-158, 1979.

[9] D. Eberly, Ridges in Image and Data Analysis. Dordrecht: Kluwer
Academic, 1996.

[10] R.B. Fisher, A.W. Fitzgibbon, and D. Eggert, ªExtracting Surface
Patches from Complete Range Descriptions,º Proc. Int'l Conf.
Recent Advances in 3-D Digital Imaging and Modeling, pp. 148-154,
Ottawa, Canada, May 1997.

[11] D. Faugeras and M. Hebert, ªA 3-D Recognition and Positioning
Algorithm Using Geometric Matching between Primitive Sur-
faces,º Proc. Eighth Int'l Joint Conf. Artificial Intelligence, pp. 996-
1,002, 1983.

[12] P. Besl, Surfaces in Range Image Understanding. Springer-Verlag,
1988.

[13] E. Trucco and R.B. Fisher, ªExperiments in Curvature-Based
Segmentation of Range Data,º IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 17, no. 2, pp. 177-182, Feb. 1995.

[14] M. Baccar, ªSurface Characterization Using a Gaussian Weighted
Least Squares Technique towards Segmentation of Range
Images,º master's thesis, Univ. Tennessee, Knoxville, May 1994.

[15] A.C.F. Colchester, ªNetwork Representation of 2D and 3D
Images,º 3D Imaging in Medicine, K.H. HoÈhne, H. Fuchs, and
S. Pizer, eds., pp. 45-62, Springer-Verlag, 1990.

[16] L.D. Griffin, A.C.F. Colchester, and G.P. Robinson, ªScale and
Segmentation of Gray-Level Images Using Maximum Gradient
Paths,º Image and Vision Computing, vol. 10, pp. 389-402, 1992.

[17] L.R. Nackerman, ªTwo-Dimensional Critical Point Configuration
Graphs,º IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 6, no. 4, pp. 442-450, 1984.

[18] J. KoeÈnderink and A. van Doorn, ªLocal Features of Smooth
Shapes: Ridges and Courses,º SPIE Proc. Geometric Methods in
Computer Vision II, vol. 2031, pp. 2-13, 1993.

[19] W.E. Lorensen and H.E. Cline, ªMarching Cubes: A High
Resolution 3D Surface Construction Algorithm,º Computer Gra-
phics (Proc. SIGGRAPH 87), vol. 21, pp. 163-169, July 1987.

[20] J. KoeÈnderink, Solid Shape. Cambridge, Mass.: MIT Press, 1991.
[21] J. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid

Mechanics, Computer Vision and Materials Science. New York:
Cambridge Univ. Press, 1996.

[22] R.T. Whitaker, ªA Level-Set Approach to 3D Reconstruction From
Range Data,º Int'l J. Computer Vision, vol. 29, pp. 203-231, Oct.
1998.

[23] C. Gourley, ªPattern Vector Based Reduction of Large Multimodal
Data Sets for Fixed Rate Interactivity during Visualization of
Mutliresolution Models,º PhD thesis, Univ. of Tennessee, Knox-
ville, 1998.

[24] C. Gourley, C. Dumont, and M.A. Abidi, ªFixed-Rate Interactivity
for Visualization of Photo-Realistic Multiresolution Models,º Am.
Nuclear Soc.: Eighth Topical Meeting on Robotics and Remote Systems,
Apr. 1999.

Alan P. Mangan spent four years in the U.S.
Army prior to attending the University of Ten-
nessee, Knoxville. He received his BS degree in
electrical engineering in 1996, and MS degree in
electrical engineering in 1998. He is currently
working as an engineer with Creare, Inc., in
Hanover, New Hampshire. He is a member of
the IEEE.

Ross T. Whitaker received his BS degree in
electrical engineering and computer science
from Princeton University in 1986. He received
his PhD in computer science from the University
of North Carolina, Chapel Hill, in 1993. In 1994,
he joined the European Computer-Industry
Research Centre in Munich, Germany, as a
research scientist in the User Interaction and
Visualization Group. In 1996, he joined the
Department of Electrical Engineering at the

University of Tennessee as an assistant professor. He teaches image
processing, computer vision, and pattern recognition. His research
interests include computer vision, image processing, medical imaging,
and computer graphics/visualization. He is a member of the IEEE.

MANGAN AND WHITAKER: PARTITIONING 3D SURFACE MESHES USING WATERSHED SEGMENTATION 321

