
Developing Intelligent Agent
Systems

A practical guide

Lin Padgham & Michael Winikoff
RMIT University, Melbourne, Australia

Innodata
0470861215.jpg

Developing Intelligent Agent
Systems

Wiley Series in Agent Technology

Series Editor: Michael Wooldridge, Liverpool University, UK

The ‘Wiley Series in Agent Technology’ is a series of comprehensive practical guides
and cutting-edge research titles on new developments in agent technologies. The series
focuses on all aspects of developing agent-based applications, drawing from the Internet,
telecommunications, and Artificial Intelligence communities with a strong applications/
technologies focus.

The books will provide timely, accurate and reliable information about the state of the
art to researchers and developers in the Telecommunications and Computing sectors.

Titles in the series:

Padgham/Winikoff: Developing Intelligent Agent Systems 0470861207 (June 2004)
Pitt (ed.): Open Agent Societies 047148668X (August 2004)

Developing Intelligent Agent
Systems

A practical guide

Lin Padgham & Michael Winikoff
RMIT University, Melbourne, Australia

Copyright 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-86120-7 (HB)

Produced from LaTeX files supplied by the author, typeset by Laserwords Private Limited, Chennai, India
Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire
This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

http://www.wileyeurope.com
http://www.wiley.com

Contents

Foreword from the Series Editor ix

Preface xi

Acknowledgement xiii

1 Agents and Multi-Agent Systems 1
1.1 What is an Intelligent Agent? . 1
1.2 Why are Agents Useful? . 4

2 Concepts for Building Agents 7
2.1 Situated Agents: Actions and Percepts 7
2.2 Proactive and Reactive Agents: Goals and Events 8
2.3 Challenging Agent Environments: Plans and Beliefs 10
2.4 Social Agents . 12
2.5 Agent Execution Cycle . 13

2.5.1 Choice of Plan to Execute . 14
2.5.2 Many Ways to Achieve a Goal 16

2.6 Summary . 19

3 Overview of the Prometheus Methodology 21
3.1 Why a New Methodology? . 22
3.2 Prometheus: A Brief Overview . 23

3.2.1 System Specification . 24
3.2.2 Architectural Design . 25
3.2.3 Detailed Design . 26

3.3 Guidelines for Using Prometheus . 27
3.4 Agent-Oriented Methodologies . 29

4 System Specification 33
4.1 Goal Specification . 34

4.1.1 Identify Initial Goals . 35
4.1.2 Goal Refinement . 36

4.2 Functionalities . 41
4.3 Scenario Development . 43

4.3.1 Goal Step Details . 45
4.3.2 Capturing Alternative Scenarios 46

vi CONTENTS

4.4 Interface Description . 47
4.4.1 Percepts and Actions . 48
4.4.2 Data . 50

4.5 Checking for Completeness and Consistency 51

5 Architectural Design: Specifying the Agent Types 53
5.1 Deciding on the Agent Types . 56
5.2 Grouping Functionalities . 56
5.3 Review Agent Coupling – Acquaintance Diagrams 63
5.4 Develop Agent Descriptors . 65

6 Architectural Design: Specifying the Interactions 67
6.1 Interaction Diagrams from Scenarios 68
6.2 Interaction Protocols from Interaction Diagrams 74
6.3 Develop Protocol and Message Descriptors 77

7 Finalizing the Architectural Design 81
7.1 Overall System Structure . 82
7.2 Identifying Boundaries of the Agent System 82
7.3 Describing Percepts and Actions . 84
7.4 Defining Shared Data Objects . 88
7.5 System Overview Diagram . 91
7.6 Checking for Completeness and Consistency 94

7.6.1 Consistency between Agents and Functionalities 95
7.6.2 Consistency between Interaction Diagrams, Scenarios

and Protocols . 95
7.6.3 Consistency of Communication Specifications 96
7.6.4 Consistency between Descriptors and the System

Overview Diagram . 97

8 Detailed Design: Agents, Capabilities and Processes 99
8.1 Capabilities . 100
8.2 Agent Overview Diagrams . 102
8.3 Process Specifications . 103
8.4 Develop Capability and Process Descriptors 106

9 Detailed Design: Capabilities, Plans and Events 109
9.1 Capability Overview Diagrams . 110
9.2 Sub-tasks and Alternative Plans . 112

9.2.1 Identifying Context Conditions 113
9.2.2 Coverage and Overlap . 115

9.3 Events and Messages . 116
9.4 Action and Percept Detailed Design . 117
9.5 Data . 118
9.6 Develop and Refine Descriptors . 118
9.7 Checking for Completeness and Consistency 119

9.7.1 Agent Completeness . 120

CONTENTS vii

9.7.2 Missing or Redundant Items . 120
9.7.3 Consistency between Artifacts 121
9.7.4 Important Scenarios . 123

10 Implementing Agent Systems 125
10.1 Agent Platforms . 125
10.2 JACK . 127
10.3 Example . 127

10.3.1 Agents . 128
10.3.2 Capabilities . 130
10.3.3 Data . 133
10.3.4 Messages/Events . 134
10.3.5 Plans . 136

10.4 Automatic Generation of Skeleton Code 138

A Electronic Bookstore 139

B Descriptor Forms 199

C The AUML Notation 205

Bibliography 215

Index 221

Foreword from the Series Editor

As the concepts and technologies associated with intelligent software agents make their
transition from the research lab to the desk of the IT practitioner, issues such as reliable
analysis and design methodologies come increasingly to the fore. If agent technology is
to mature into a successful and widely used approach to software development, then it is
of critical importance that methodologies are developed, which are accessible to students
and IT professionals alike, enabling them to deploy this new and promising technology
to full effect. Although several such methodologies have been tentatively proposed, the
PROMETHEUS methodology set out in this book is arguably the most mature.

PROMETHEUS is a general purpose methodology for the development of software
agent systems, in that it is not tied to any specific model of agency or software platform.
The authors do an excellent job of describing the models and methods associated with
PROMETHEUS and they show how these can be used to analyse and design multiagent
systems by means of a detailed running example. Associated with the methodology, the
authors have developed a freely available software design tool (PDT), which represents
the state-of-the-art in multiagent systems development tools. All in all, this book repre-
sents a valuable contribution, not just for those with an interest in the ongoing debate
about development methods for multiagent systems but also for those who simply want
an answer to the question: How do I actually do it?

Mike Wooldridge, Liverpool, June 2004

Preface

Intelligent software agents1 are a powerful technology that is attracting considerable (and
growing!) interest.

While there are books that cover research areas on agents or survey the field (including
the excellent book by Michael Wooldridge (Wooldridge 2002)), there is no book that is
aimed at an industrial software developer that answers not only the questions ‘what are
agents?’ and ‘why are they useful?’ but also the crucial question ‘how do I design and
build intelligent software agents?’.

Our book aims to provide a practical introduction to building intelligent agent sys-
tems. It covers everything a practitioner needs to know to build multi-agent systems of
intelligent agents. It includes an introduction to the notion of agents, a description of
the concepts involved, and a software engineering methodology covering specification,
analysis, design and implementation of agent systems.

The core of the book is the Prometheus methodology for designing multi-agent sys-
tems. The methodology was developed over the past six or seven years in collaboration
with Agent Oriented Software2, a company that markets the agent development platform,
JACKTM as well as agent solutions. The methodology has been used internally at Agent
Oriented Software and has also been taught at industry workshops and within university
courses. It has proven effective in assisting students and practitioners to develop and
document their design and is now at a sufficient level of maturity that support tools have
been developed.

Our goal in developing Prometheus was to have a process with associated deliverables
that could be taught to industry practitioners and undergraduate students who do not
have a background in agents and which they could then use to develop intelligent agent
systems. Our evidence that we have achieved this is, at this stage, still anecdotal; however,
the indications are that Prometheus is usable by nonexperts and that they find it useful.

We do not believe that Prometheus is complete and perfect, nor that it is a perfect fit
as-is for all applications and all users. However, we do believe that it is usable and in our
experience it is much better than not having a methodology. Like most methodologies,
Prometheus is intended to be interpreted as a set of guidelines and you should use your
common sense and take what is useful, adapting the methodology as needed to suit your
needs.

Although we do not believe that Prometheus is perfect, it is general purpose in the
sense of not being specific to BDI (Belief-Desire-Intention) agents. Only the later part of

1This is shortened to ‘agents’ in the remainder of this book.
2http://www.agent-software.com

xii PREFACE

the detailed design phase (Chapter 9) makes assumptions about particular types of agent
platforms. The assumptions made are fairly general and correspond to a class of agent
platforms that have hierarchical plans with triggers, and a description for each plan that
indicates the context in which it is applicable.

Electronic Bookstore: Case study

We will be using an example of an electronic bookstore to illustrate the design process
throughout the book. To enable easy following of the example, we will enclose all of
these examples in a framed box (like this one), which may extend over page breaks,
in which case the bottom and top of the frame on the adjacent pages will be missing.
In addition, the collected details of the example can be found in Appendix A.

Electronic resources, including the forms in Appendix B and the Prometheus Design
Tool (PDT), can be found at

http://www.cs.rmit.edu.au/agents/prometheus

Audience

This book is aimed at industrial software developers and at undergraduate students. It
assumes knowledge of basic software engineering but does not require knowledge of
Artificial Intelligence or of mathematics. Familiarity with Java will help in reading the
examples in Chapter 10.

Tool Support

We believe that tool support is, if not essential, incredibly useful in developing large
designs and in helping to keep them consistent. Thus, we have developed a prototype
tool, the Prometheus Design Tool (PDT). This tool supports the process described in
this book, of system specification, architectural design and detailed design. The detailed
design produced by PDT can be straightforwardly converted to the JACK Development
Environment (JDE), and consequently to JACK code. A similar approach could be used
to develop plug-ins that enable PDT to produce skeleton code for a range of agent
programming platforms.

Acknowledgements

This book has evolved out of material originally developed with Agent Oriented Soft-
ware (AOS) and refined over the course of a number of years of teaching an Agent
Oriented Programming and Design course and supervising students in developing multi-
agent systems. We thank our colleagues at AOS, especially Andrew Lucas and Ralph
Rönnquist, as well as the many students who took our courses and provided valuable
feedback.

We acknowledge the support of the Australian Research Council (ARC) under grant
CO01069343, and its continuation, grant LP04534864.

The Prometheus Design Tool was initially developed by Anna Edberg and Christian
Andersson. Further development has been done by Claire Hennekam and Jason Khallouf.

We especially thank Ian Mathieson for his careful reading and commenting – this
book has benefited considerably from his detailed comments.

Lin Padgham & Michael Winikoff
June 2004
Melbourne, AUSTRALIA

3Simplifying the Development of Agent-Oriented Systems, ARC SPIRT Grant, 2001-2003.
4Advanced Software Engineering Support for Intelligent Agent Systems, ARC Linkage Grant, 2004-2006.

1

Agents and Multi-Agent Systems

This book is about designing and implementing intelligent agent systems. We there-
fore begin by answering the obvious first question, namely, ‘What is an agent?’. We
answer this question by discussing the properties that characterize an intelligent agent,
and contrast agents with objects. The usual second question is ‘Why should I bother with
agents?’. We answer this question by arguing that agents are a natural progression from
objects that provide a better abstraction and improved encapsulation, and also, perhaps
more convincingly, by looking at applications of agent technology.

The remaining chapters of this book are dedicated to answering the third question
‘How do I develop agents and agent systems?’.

1.1 WHAT IS AN INTELLIGENT AGENT?

As is to be expected from a fairly young area of research, there is not yet a universal
consensus on the definition of an agent. However, the Wooldridge and Jennings definition
(see below) is increasingly adopted, and it is probably fair to say that most researchers in
the field, when asked to provide their definition, will mention various properties drawn
from those we discuss below.

☞ Definition: The following definition is from (Wooldridge
2002), which in turn is adapted from (Wooldridge and Jennings
1995):

‘An agent is a computer system that is situated in some
environment, and that is capable of autonomous action
in this environment in order to meet its design objec-
tives’.

Wooldridge distinguishes between an agent and an intelligent agent,
which is further required to be reactive, proactive and social
(Wooldridge 2002, page 23).

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

2 AGENTS AND MULTI-AGENT SYSTEMS

Let us first note that we are talking about software agents. Whenever we (or any
other researcher in the field) say ‘agent’, we really mean ‘software agent’. The typical
dictionary definition of agent as ‘an entity having the authority to act on behalf of another’
(e.g. a real estate agent) is not what we mean1.

Two basic properties of software agents are that they are autonomous and that they are
situated in an environment. The first property, being autonomous, means that agents are
independent and make their own decisions. This is one of the properties that distinguishes
agents from objects. When we consider a system consisting of a number of agents, then a
consequence of the agents being autonomous is that the system tends to be decentralized
(we shall return to this in the next section).

The second property (situatedness) does not constrain the notion of an agent very
much since virtually all software can be considered to be situated in an environment.
However, where agents differ is the type of environments. Agents tend to be used
where the environment is challenging; more specifically, typical agent environments2

are dynamic, unpredictable and unreliable. These environments are dynamic in that they
change rapidly. By ‘rapidly’, we mean that the agent cannot assume that the environment
will remain static while it is trying to achieve a goal. These environments are unpre-
dictable in that it is not possible to predict the future states of the environment; often
this is because it is not possible for an agent to have perfect and complete information
about their environment, and because the environment is being modified in ways beyond
the agent’s knowledge and influence. Finally, these environments are unreliable in that
the actions that an agent can perform may fail for reasons that are beyond an agent’s
control. For example, a robot attempting to lift an item may fail for a wide range of
reasons including the item being too heavy.

Agents are often situated in dynamic environments that change rapidly. In particular,
this means that an agent must respond to significant changes in its environment. For
example, an agent controlling a robot playing soccer can make plans on the basis of the
current position of the ball and of other players, but it must be prepared to adapt or aban-
don its plans should the environment change in a significant way. In other words, agents
need to be reactive, responding in a timely manner to changes in their environment.

Another key property of agents is that they pursue goals over time, that is, they are
proactive. One property of goals is that they are persistent; this is useful in that it makes
agents more robust: an agent will continue to attempt to achieve a goal despite failed
attempts.

Although objects can be reactive, and can be seen as having an implicit goal, they are
not proactive in the sense of having multiple goals, and of these goals being explicit and
persistent. Thus, proactiveness is another property that distinguishes agents from objects.

A key issue in agent architectures is balancing reactiveness and proactiveness. On the
one hand, an agent should be reactive, so its plans and actions should be influenced by
environmental changes. On the other hand, an agent’s plans and actions should be influ-
enced by its goals. The challenge is to balance these two (often conflicting) influences:
if the agent is too reactive, then it will be constantly adjusting its plans and not achieve

1Some software agents may act as agents in this sense as well. For example, a software assistant that buys
products or services on behalf of its user.

2A more detailed analysis of different properties of environments can be found in (Wooldridge 2002) based
on the taxonomy of (Russell and Norvig 1995).

WHAT IS AN INTELLIGENT AGENT? 3

its goals. However, if the agent is not sufficiently reactive, then it will waste time trying
to follow plans that are no longer relevant or applicable.

Since failure of actions (and, more generally, of plans) is a possibility in challenging
environments, agents must be able to recover from such failures, that is, they must be
robust. A natural approach to achieving robustness is to be flexible. By having a range
of ways of achieving a given goal, the agent has alternatives that can be used should a
plan fail. These two properties are also distinguishing features of agents as compared to
objects.

Finally, agents almost always need to interact with other agents, that is, agents are
social. This interaction is often at a higher level: instead of just saying that agents
exchange messages, agent interaction can be framed in terms of performatives3 such as
‘inform’, ‘request’, ‘agree’, and so on. These have standard semantics that are defined
in terms of their effects on an agent’s mental state. Agent interaction is often viewed
in terms of human interaction types such as negotiation, coordination, cooperation and
teamwork.

On the basis of these properties, we use the following definition:

☞ Definition: An Intelligent Agent is a piece of software that
is

• Situated – exists in an environment

• Autonomous – independent, not controlled externally

• Reactive – responds (in a timely manner!) to changes in its
environment

• Proactive – persistently pursues goals

• Flexible – has multiple ways of achieving goals

• Robust – recovers from failure

• Social – interacts with other agents.

In addition to these properties, there are a number of other properties that we regard
as less central. This does not mean that these are not important, just that they are not
important for all agent applications.

In pursuing their goals, we want agents to be rational. Part of being rational is that
an agent should not do ‘dumb’ things such as simultaneously committing to two courses
of action that conflict. For example, planning to spend money on a holiday at the same
time as planning to spend that same money on a car. A detailed analysis of what is meant
by ‘rational’ can be found in the work of Bratman (Bratman 1987). This analysis forms
the basis of the Belief-Desire-Intention model for software agents (Rao and Georgeff
1992).

3This is based on speech act theory, which is beyond the scope of this book, and we refer the reader to
Chapter 8 of (Wooldridge 2002) for more details.

4 AGENTS AND MULTI-AGENT SYSTEMS

One definition of agents (strong agency) takes these various properties, and also
requires that agents are viewed as having mental attitudes such as beliefs, goals and inten-
tions. This intentional stance (Dennett 1987) has a surprisingly pragmatic justification:
as a system becomes more complex, its behaviour can be predicted more reliably by
abstracting away from how it achieves its goals and instead reasoning about what are its
goals and beliefs. For example, in attempting to ascertain whether a piece of furniture
will support a person’s weight, we could model the stress and calculate its load-bearing
ability, or we could consider its design and reason that the goal of a chair is to be sat
upon and so any chair should be able to support a person’s weight. The former stance
is the ‘physical stance’, the latter is the ‘design stance’. The ‘intentional stance’ is an
extension of this that is applied to active entities.

Although having agents that learn from their experiences can be essential for some
applications, it can be disastrous for others. Similarly, there are applications in which
modelling human emotions can be useful, such as interface agents or computer games,
but equally, there are many applications in which this is not relevant.

There is a whole body of work devoted to mobile agents (Harrison et al. 1995;
Kotz and Gray 1999). However, there is surprisingly little overlap between the work on
intelligent agents and the work on mobile agents. Mobility is more of a system-level
issue, with much work devoted to questions such as ‘How can a running program be
stopped, moved to another machine and restarted?’ and associated issues in security.

1.2 WHY ARE AGENTS USEFUL?

Having described what agents are, we now turn to the question of why agent technology
is useful. It is important to realize that, like other software technologies such as objects,
agents are not magic. They are simply an approach to structuring and developing software
that offers certain benefits, and that is very well suited to certain types of applications
(in fact, one viewpoint considers agents to be an evolutionary step forward from objects
(Odell 2002)). In order to understand why agents are useful, we need to understand
how the distinctive features of agents translate into properties of software systems that
are designed and built using agents. The usefulness of these properties (such as being
decentralized) depends on the application, and so it is important to also understand how
these software-system properties relate to application types and application areas.

In addition to looking at application types, we try to provide examples of documented
applications. Unfortunately, the field of agents is still quite young, so there are not many
well-documented applications. However, some applications have been documented in the
literature (e.g. Jennings and Wooldridge (1998b)).

Perhaps the single most important advantage of agents is that they reduce coupling.
Agents are autonomous, which can be seen as encapsulating invocation (Odell 2002;
Parunak 1997). Whereas an object makes available methods that are triggered externally,
an agent does not provide any control point to external entities. When a message is
sent to an agent, the agent (being autonomous) has control over how it deals with the
message.

Coupling is reduced not only by the encapsulation provided by autonomy but also
by the robustness, reactiveness and proactiveness of agents. An agent can be relied upon

WHY ARE AGENTS USEFUL? 5

to persist in achieving its goals, trying alternatives that are appropriate to the changing
environment. This means that when an agent takes on a goal, the responsibility for
achieving that goal rests with that agent. Continuous supervision and checking is not
needed. As an analogy, view an object as a reliable employee that lacks initiative and
a sense of responsibility; supervising such an employee requires a significant amount
of communication. On the other hand, an agent can be viewed as an employee that has
a sense of responsibility and shows initiative. Supervising such an employee requires
considerably less communication, and hence less coupling.

Reduced coupling can lead to software systems that are more modular, more decen-
tralized and more changeable. This has led to the application of agents as an architectural
‘glue’ in a range of software applications. In this usage, agents are often used to ‘wrap’
legacy software. For example, see the list of applications built with Open Agent Archi-
tecture (OAA) listed in (Cheyer and Martin 2001).

It has been argued that agents are ‘well suited for developing complex distributed
systems’ (Jennings 2001) since they provide more natural abstraction and decomposition
of complex ‘nearly-decomposable’ systems.

One increasingly important class of systems that exhibit decentralization, complexity
and distribution is open systems: software systems in which different parts are designed
and written by different authors, without there being communication between the different
authors. An example is the World Wide Web, where the authors of a web browser and
of a web server probably did not ever talk to each other. Not surprisingly, standards
play a key role in enabling software that was independently developed to work together.
The web is a simple example of an open system since it is essentially concerned with
transporting static documents, as opposed to providing services that change the state of
servers. Other, more complex, examples of such systems include the semantic web and
web services (Hendler 2001; McIlraith et al. 2001), and grid computing (Moreau 2002;
Moreau et al. 2002).

In addition to providing reduced coupling, agents are also clearly applicable in sit-
uations in which the environment is challenging (dynamic, unpredictable, unreliable),
in which failure is a possibility and in which recovery from failure must be done
autonomously. An extreme example of an agent system that was required to deal with
such situations was Remote Agent (Muscettola et al. 1998), which, in May 1999, was
in control of NASA’s Deep Space 1 for two days, over 96 500 000 kilometres from the
Earth.

Being proactive and reactive makes agents more human-like in the way they deal with
problems. This has led to a number of applications in which software agents are used as
substitutes for humans in certain limited domains. One application is the use of software
agents to substitute for human pilots in military simulations (Tidhar et al. 1998). Other,
more peaceful, applications include entertainment. The recent computer game Black &
White used agents, specifically based on the Belief-Desire-Intention (BDI) model that is
widely used in the agents community:

‘ . . . To make agents who were psychologically plausible, we took the Belief-
Desire-Intention architecture of an agent, fast becoming orthodoxy in the
agent programming community, and developed it in a variety of ways . . . ’
– http://www.gameai.com/blackandwhite.html

6 AGENTS AND MULTI-AGENT SYSTEMS

Another area where agents have been applied is in film-making. The recent film Lord
of the Rings: The Two Towers used a software package called Massive to generate the
armies of Orcs, Elves and Humans. Each individual character was modelled as an agent.

Other application areas where software agents can provide benefits include Intelligent
Assistants (Maes 1994), Electronic Commerce (Luck et al. 2003), Manufacturing (Shen
and Norrie 1999), and Business process modelling (Jennings et al. 2000a,b).

2

Concepts for Building Agents

In the previous chapter, we defined agents as having a number of properties such as being
situated, proactive and reactive. In this chapter, we begin to look at how we can design
and build software that has these properties. We begin by considering what concepts lead
to agents having certain properties. For example, in order for an agent to be proactive, it
needs to have goals. Thus, the concept of a goal is an important one for designing and
building proactive agents.

A software-engineering methodology assumes the existence of a set of concepts that
it builds upon. For example, object-oriented notations such as UML (Booch et al. 1999)
assume certain concepts such as object, class, inheritance, and so on. With agent-oriented
methodologies, we also need an appropriate set of underlying concepts, and, not surpris-
ingly, it turns out that the set of concepts is different to the object-oriented set.

The concepts that we describe in this chapter are used by the Prometheus methodol-
ogy, which is the methodology covered in detail within the later sections of this book.
Prometheus has been developed specifically in response to a need for assistance and
direction in designing and building agent systems.

Our experience has been that the concepts identified are both necessary and sufficient
for building the sort of applications that are appropriately approached using plan-based
agents, and that they are simple and can be understood by undergraduate students. These
concepts are based on the definition of agents, and in the remainder of this chapter, we
explain these concepts and why they are appropriate.

2.1 SITUATED AGENTS: ACTIONS AND PERCEPTS

We began our definition of an agent with the basic property that an agent is software that
is situated in an environment. The two concepts that capture the interface between an
agent and its environment are the percepts from the environment and the actions that the
agent can perform to affect the environment (Russell and Norvig 1995) (see Figure 2.1).

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

8 CONCEPTS FOR BUILDING AGENTS

Percepts

Action

Choose
an action

Environment

Agent

Figure 2.1 Agents are situated. Reproduced from Winikoff et al., (2001), by permission
of Springer-Verlag GmbH & Co. KG

A percept1 is an item of information received from the environment by some sensor.
For example, a fire-fighting robot may receive information such as the location of a
fire and an indication of its intensity. An agent may also obtain information about the
environment through sensing actions.

An action is something that an agent does, such as move north or squirt. Agents
are situated, and an action is basically an agent’s ability to affect its environment. In
their simplest form, actions are atomic and instantaneous and either fail or succeed. In
the more general case, actions can be durational (encompassing behaviours over time)
and can produce partial effects; for example, even a failed move to action may well
have changed the agent’s location. In addition to external actions that directly affect
the agent’s environment, we also want to consider internal actions. These correspond
to an ability that the agent has, which is not structured in terms of plans and goals.
Typically, the ability is a piece of code that either already exists or would not benefit
from being written using agent concepts, for example, image processing in a vision
sub-system.

At a very abstract level, we can view an agent as receiving percepts from an envi-
ronment, somehow selecting an action to perform, and performing that action. These
repeated steps form the execution cycle of an abstract agent. The concepts discussed in
the following sections refine the internal execution of the agent. For example, by adding
goals, these are able to be used to execute a series of actions over a period of time.

2.2 PROACTIVE AND REACTIVE AGENTS: GOALS
AND EVENTS

We want our intelligent agents to be both proactive and reactive. The agent’s proactive-
ness implies the use of goals. A reactive agent is one that will change its behaviour in

1From the Latin ‘perceptum’, which is the root of the English word ‘perceive’.

PROACTIVE AND REACTIVE AGENTS: GOALS AND EVENTS 9

Percepts

Action

Events

GoalsActions

Figure 2.2 Proactive agents achieve goals, reactive agents respond to events. Repro-
duced from Winikoff et al., (2001), by permission of Springer-Verlag GmbH &
Co. KG

response to changes in the environment. An important aspect in decision-making is bal-
ancing proactive and reactive aspects. On the one hand we want the agent to stick with
its goals by default and on the other hand we want it to take changes in the environment
into account. The key to reconciling these aspects, thus making agents suitably reactive,
is identifying significant changes in the situation. These are events (see Figure 2.2).

A goal (variously called task, objective, aim or desire) is something the agent is
working on or towards, for example, extinguish fire, or rescue civilian. Often,
goals are defined as states of the world that the agent wants to bring about; however,
this definition does not allow some types of goals to be expressed such as maintenance
goals (e.g. maintain cruising altitude), avoidance goals or safety constraints (e.g.
never move the table while the robot is drilling). Goals give the agent its
autonomy and proactiveness. An important aspect of proactiveness is the persistence
of goals: if a plan for achieving a goal fails, then the agent will consider alternative
plans for achieving the goal in question, until it is believed impossible or is no longer
relevant.

An event is a significant occurrence that the agent should respond to in some way.
Events are often extracted from percepts, although they may be generated internally by
the agent, for example, on the basis of a clock. An event can trigger new goals, cause
changes in information about the environment and/or cause actions to be performed
immediately. Actions generated directly by events correspond to reflexive actions, exe-
cuted without deliberation. Events are important in creating reactive agents in that they
identify important changes that the agent needs to react to.

Percepts can be seen as particular kinds of events that are generated within the
environment. We note that the percept may well have to be interpreted from the raw
data available, in order to provide the percept/event that has significance to the agent.
Particularly, if the raw data is an image data, it is likely to require significant processing.
The first layer would extract features in the image, but even then it is likely to need to

10 CONCEPTS FOR BUILDING AGENTS

be compared to either existing beliefs, or previous data, in order to determine whether
there is something of interest to the agent.

For example, bitmap data may be processed to provide a fire image at a location.
This needs to be further processed, and depending on history, may provide a new fire
percept or event.

2.3 CHALLENGING AGENT ENVIRONMENTS:
PLANS AND BELIEFS

As we discussed in Chapter 1, agents are often situated in challenging environments
where it is not possible to obtain complete information and where the environment
changes rapidly.

One consequence of being unable to sense the entire environment at once is that
an agent needs to maintain a cache for information that it has received. These are the
agent’s beliefs. A belief is some aspect of the agent’s knowledge or information about
the environment, itself or other agents. For example, an agent might believe there is a
fire at X because it saw it recently, even if the agent cannot see the fire now.

Because agents are situated in dynamic environments, it is not realistic for them to
use traditional AI planning, that is to assemble plans from actions. Although planning
technology and computational speed are improving, planning from action descriptions2

is still incompatible with real-time decision-making. Instead, agents typically use some
kind of ‘library of recipes’ rather than plan from first principles. This ‘library of recipes’
is a collection of plans that is written by the software developer. A plan is a way of
realizing a goal; for example, a plan for achieving the goal extinguish fire might
specify the three steps: determine a route to the fire, follow the route to the fire and
squirt the fire until it has been put out.

Thus, agents in realistic applications that usually have limited computational resources
and limited ability to sense their environment need beliefs and plans (see Figure 2.3).
Although both of these concepts are ‘merely’ aids in efficiency, they are not optional.
Beliefs are essential since an agent has limited sensory ability and needs to build up
its knowledge of the world over time. Plans are also necessary both for computational
reasons and for representational reasons. Planning requires that the developer specify
each action’s preconditions and effects. However, representing the effects of continuous
actions operating over time and space in an uncertain world, in sufficient detail for
first principles planning, is unrealistic for large applications. Pre-defined plans, however,
require only that actions must provide some means for them to be executed.

The notion of plan that we use is fairly general and encompasses a range of plan-
based agent platforms including those based on the Belief-Desire-Intention (BDI) model.
A plan for achieving a goal provides (a) a function that indicates whether the plan is
worth trying in the current situation (i.e. whether it is applicable); and (b) a plan body
that can be executed in order to (attempt to) achieve the goal. We structure plan bodies
in terms of steps that can include the achievement of sub-goals.

Each goal is potentially achievable by a number of different plans. At run time,
the agent will select a plan for achieving a given (sub-)goal. If this selected plan fails,

2These are typically expressed in terms of pre- and postconditions.

CHALLENGING AGENT ENVIRONMENTS: PLANS AND BELIEFS 11

Percepts

Action

Events

GoalsActions

Plans

Beliefs

Figure 2.3 Adding plans and beliefs. Reproduced from Winikoff et al., (2001), by per-
mission of Springer-Verlag GmbH & Co. KG

then another plan will be tried. By doing this, agents are flexible, since they can have
multiple plans to achieve a given (sub-)goal, and robust, since failure of a plan does not
necessarily mean that the goal cannot be achieved.

For example, consider a simplified3 example of a soccer-playing robot, driven by
intelligent agent software. A high-level goal of the robot is to have its team kick goals.
The plans available to achieve this may be as follows:

Plan: Kick direct
Goal achieved: Score goal
Applicable if: Robot at ball AND goal unobstructed
Plan body:
1. Sub-goal: Face goal
2. Action: Kick

Plan: Kick to teammate
Goal achieved: Score goal
Applicable if: Robot at ball AND goal obstructed
Plan body:
1. Sub-goal: Identify best teammate to score
2. Sub-goal: Face teammate
3. Action: Kick

Plan: Get ball
Goal achieved: Score goal

3These plans are for illustration only. There are a number of complexities in this application that are not
addressed by these sample plans.

12 CONCEPTS FOR BUILDING AGENTS

Applicable if: Robot not at ball AND robot knows ball location
Plan body:
1. Sub-goal: Move to ball location facing goal
2. Sub-goal: Score goal

Plan: Find ball and score
Goal achieved: Score goal
Applicable if: Ball location not known
Plan body:
1. Sub-goal: Find ball
2. Sub-goal: Score goal

These plans enable the robot to achieve its goal in different ways, depending on its
beliefs about the situation it is in. Note that it does not have to see the ball to use the
plan Get ball, it only has to believe that it knows where the ball is. Of course, this
plan is a simplification, in that if this belief changes during the execution of the plan,
the plan should fail.

As indicated before, the concept of events, as situational information that the agent
should react to, is also important. Like goals, events are also handled by plans, but the
difference between goal and event handling is that once an event is handled, it is gone.
Goals, on the other hand, are persistent: if a goal resulted in the execution of a plan that
did not achieve the goal, then the agent will continue to try to achieve the goal, if it
is able. For example, if the plan above to run and kick failed because the agent no
longer knew where the ball was, it would continue to try to achieve its goal by executing
the plan Find ball and score. Plans then can either achieve goals or handle events.

An example of an external event, or percept, to which the robot would react, is seeing
the ball at a new location. The following plan could handle this.

Plan: Update ball location
Event handled: Ball seen at X
Applicable if: NOT believed ball at X
Plan body:
1. Update ball location value
2. Update ball location history

2.4 SOCIAL AGENTS

The final attribute of agents according to the definition given in the previous chapter is
that they are social, that is, agents interact with other agents. There are many forms that
this interaction can take, ranging from exchanging messages according to pre-defined pro-
tocols to forming teams that work towards a common goal (Cohen and Levesque 1991).

The basic concept used in Prometheus is that of a message. A message is a single
(one-way) communication. Prometheus does not require that messages are expressed in
terms of performatives.

In addition, the concept of a protocol is used. A protocol is a definition of the
legal interaction patterns (i.e. the sequences of messages that form a conversation). For

AGENT EXECUTION CYCLE 13

example, a protocol for placing a book order might require that the message from a
customer placing an order must be followed by a request from the sales assistant agent
to the customer asking for credit card details. This message can be followed either by a
refusal from the customer (in which case the conversation is over) or by credit card details.

Prometheus currently does not provide specific support for designing teams of agents
that work towards common goals (Cohen and Levesque 1991), nor does it provide specific
and specialized support for designing open systems, though we note that Prometheus
does allow for modelling of interaction with a dynamic environment, and that an open
system is in fact just that. Software-engineering methodologies for designing open agent
systems is still an active area of research and there are no methodologies that are mature.
Preliminary work in this area includes the ROADMAP (Juan et al. 2002), Nemo (Huget
2002) and RIO (Mathieu et al. 2003) methodologies.

2.5 AGENT EXECUTION CYCLE

The concepts of actions, percepts, events, goals, plans and beliefs are related to each
other via the execution cycle that implements the decision-making of the agent. The
execution cycle describes how instances of these concepts interact as an agent executes.
For example, how percepts modify beliefs that in turn affect the agent’s choice of plans
to achieve its goals.

An agent’s execution follows a sense-think-act cycle, where the think part of the cycle
involves rational decision-making. The cycle can be seen as consisting of the following
steps, depicted in Figure 2.4:

1. Events are processed to update beliefs and generate immediate actions.

2. Goals are updated: (i.e. new goals are generated, achieved or impossible goals are
dropped, goal priorities are determined).

3. Plans are selected from the plan library for achieving goals or handling events.

Events

Goals1

3

Actions

Current
Plans

4

Beliefs1

2

Plan
library

Percepts

Actions

2

44

4

Figure 2.4 Agent execution cycle

14 CONCEPTS FOR BUILDING AGENTS

4. A plan step is executed in the next plan, yielding new events, (sub)goals, belief
changes or actions.

For example, consider a fire-engine robot that receives a percept containing informa-
tion about a fire at a certain location. Since the agent has no existing knowledge about
the fire, this percept results in updating of the agent’s beliefs with knowledge of this new
fire. This in turn generates a goal to put out the fire, which then leads to a plan being
selected and executed.

The execution cycle described is high level and fairly abstract. Of course, the details
need to be developed depending on the domain. Extracting relevant information from
percepts and updating beliefs appropriately will depend on the application. However,
there are generic steps that are part of the standard execution cycle that implements BDI-
style decision-making. In the remainder of this section, we focus on describing these
generic steps in some detail, as understanding them is important for developing effective
systems using this model.

2.5.1 CHOICE OF PLAN TO EXECUTE

The process for handling an event or attempting to achieve a goal follows these steps:

1. Determine the relevant plans from the library of plans.

2. Determine the subset of the relevant plans that is applicable.

3. Select one of the applicable plans.

4. Execute the selected plan.

A plan is relevant if it specifies that it can achieve the goal in question. For example,
the Kick direct plan presented earlier is relevant if the goal is to Score goal. It
would not be relevant to a different goal, such as Mark opponent.

A relevant plan is applicable if it makes sense to use it in the current situation. This
is specified using a condition that refers to the agent’s beliefs. This condition is known
as the plan’s context condition. Checking for a plan’s applicability consists of checking
whether the context condition is true.

Selecting a plan from the set of applicable plans can be done in a number of ways
and this is dependent on the implementation.

Executing a plan can succeed, in which case the (sub-)goal is considered to have been
achieved. However, executing a plan can also fail. In this case, if the agent is trying to
achieve a goal, it considers alternative plans. As discussed in Chapter 10, there is some
variation here between implementation platforms: some (such as JACK (Busetta et al.
1999)) re-evaluate applicability, whereas others (such as JAM (Huber 1999)) compute the
set of applicable plans only once. Either way, if a plan fails and there are other applicable
plans for the goal, then an alternative applicable plan is selected and executed.

If there are no (remaining) applicable plans, then the goal fails and this failure is
propagated to the parent plan that in turn fails, causing alternatives to be sought.

AGENT EXECUTION CYCLE 15

Example of agent execution

Let us consider a simple, if slightly artificial, example in which an agent has the
following four plans.

Plan: Walk to University (P1)
Goal achieved: Go to University
Applicable if: It is not raining
Plan body: Walk to University

Plan: Train to University (P2)
Goal achieved: Go to University
Applicable if: It is raining
Plan body: Sub-goal: Catch Train

Plan: Tram to University (P3)
Goal achieved: Go to University
Applicable if: true (always applicable)
Plan body: Sub-goal: Catch Tram

Plan: Catch public transport (P4)
Goal achieved: Catch X

Applicable if: True (always applicable)
Plan body:
1. Walk to station for X

2. Check timetable
3. Fail if long wait
4. Catch X.

Let us now trace through a sample execution. The agent is trying to achieve the
goal Go to University. It begins by determining that P1, P2 and P3 are relevant (but
not P4). Assuming that it is currently raining, the agent then determines that P2 and
P3 are applicable (but not P1). The agent picks P2 and begins executing it, which
results in the sub-goal Catch Train.

The agent is now trying to achieve Catch Train, there is only a single plan that
is relevant, and this plan is also applicable. The agent executes this plan, walks to
the train station, checks the timetable, and, supposing that the agent has just missed a
train, the plan fails because of a long wait.

The agent now considers alternative ways of achieving Catch Train. Since there
are no more applicable plans, Catch Train has failed. This means that the parent plan,
P2, has failed and so the agent now needs to consider alternative ways of achieving
Go to University.

Let us assume that while the agent walks to the train station, it has stopped raining
(Melbourne is known for its rather changeable weather!). The agent determines that
P1 and P3 are applicable and decides to walk to University (plan P1).

16 CONCEPTS FOR BUILDING AGENTS

This execution trace illustrates a number of points:

• Although the agent does not generate new plans from scratch, it does combine
plans hierarchically.

• The choice of plans to achieve a goal, or sub-goal, takes the current state of the
environment into account: the agent chose to walk after it stopped raining.

• By having a number of plans that can be used to achieve a given goal (or react to
a given percept), the agent is flexible.

• If a plan fails, then the agent will try alternative plans. This makes the agent robust.

2.5.2 MANY WAYS TO ACHIEVE A GOAL

Each goal can, in general, have a number of plans that can be used to achieve it. Each
plan can have a number of sub-goals that themselves can have multiple applicable plans.
This can naturally be depicted in a goal-plan tree (see Figure 2.5). The children of each
goal are alternative ways of achieving that goal (OR) whereas the children of each plan
are sub-goals that must all be achieved in order for the plan to succeed (AND).

What is not obvious from the simple example is the large number of alternative ways
of achieving a top-level goal that can be generated by a goal-plan tree. If we denote by
C the number of plans that are applicable for each goal, by S the number of sub-goals
for each plan, and by D the depth of the goal-plan tree, then the number of ways in
which the goal at the root of the goal-plan tree can be achieved is

C((SD−1)/(S−1))

unless S = 1, in which case the number of options is just CD . The sidebar below gives
the derivation of this formula and explains the assumptions made.

As an example, suppose C = 2 and S = 4 so each nonleaf plan has four sub-goals and
each (sub-)goal has two applicable plans. Then the number of possible ways of achieving
the top-level goal for a goal-plan tree of depth 3 is C(SD−1)/(S−1) = 2(43−1)/(4−1) =
2(64−1)/3 = 221 = 2 097 152.

Goal

Plan Plan

SubgoalSubgoal SubgoalSubgoal SubgoalSubgoal

Plan

PlanPlan Plan PlanPlan Plan PlanPlan Plan PlanPlan Plan PlanPlan Plan PlanPlan Plan

OR

AND

OROROROR

OR

OR

ANDAND

Figure 2.5 Goal-plan tree of depth 2

AGENT EXECUTION CYCLE 17

Thus, we see that this style of programming allows for an enormous number of
ways of achieving a goal, without ever needing to program this explicitly. The use
of applicability depending on the current environment ensures that only a small and
relevant part of this space is actually explored in any given execution. A key to making
effective use of this potentially large space of possibilities is to use sub-goals liberally
(rather than ‘in-line’ code), and to separate out different possibilities into alternative
plans.

Calculation of number of possibilities

Let C (‘C’ for ‘choice’) be the number of plans that are applicable for each goal. Let S

be the number of sub-goals per plan, except for the leaves of the goal-plan tree that do
not have any sub-goals. Finally, let D be the depth of the tree, measured in terms of the
number of goal levels. In the example goal-plan tree above, S and D are 2 and C is 3.

So, the question is this: given a collection of goals and plans, depicted as a goal-plan
tree, how many possible ways of achieving the top-level goal are there? Because we
are aiming to illustrate the large number of possibilities, we make the simplifying
assumption that the tree is uniform in that C is the same for all goals and S the same
for all plans.

Let G be a goal that has C applicable plans in which each plan has no sub-goals, then
G can be achieved in C possible ways.

PlanPlan Plan

N=C=3

C=3

Goal

Let P be a plan with S sub-goals in which each sub-goal can be achieved in m possible
ways. Since all of the sub-goals must be (separately) achieved, the number of ways
that P can be executed is the product m × . . . × m, that is, mS .

Plan

SubgoalSubgoal, N=3

PlanPlan Plan PlanPlan Plan

N=mS=32=9

C=3

S=2

Let G be a goal that has C applicable plans in which each plan can be executed in p

possible ways. Since each plan is an alternative, the number of ways that G can be
achieved is the sum p + . . . + p, that is, C × p.

18 CONCEPTS FOR BUILDING AGENTS

Goal

Plan N=mS=32=9 Plan

SubgoalSubgoal SubgoalSubgoal SubgoalSubgoal

Plan

PlanPlan Plan PlanPlan Plan PlanPlan Plan PlanPlan Plan PlanPlan Plan PlanPlan Plan

D
=

2

N=C×mS=3×32=27

N=C=3

We formalize this by defining �G(D), the number of ways that a goal at the root of
a tree of depth D can be achieved. Clearly, �G(1) = C.

For �G(D + 1) in which the goal has C child plans �G(D + 1) = C × �P (D + 1),
where �P (D) is the number of ways in which a plan at the root of a tree of depth
D can be executed. For �P (D + 1) in which the plan has S sub-goals, we have that
�P (D + 1) = �G(D)S . Thus, we have

�G(1) = C

�P (D + 1) = �G(D)S

�G(D + 1) = C × �P (D + 1)

= C × �G(D)S

Expanding out this definition, we obtain

�G(1) = C

�G(2) = C × �G(1)S

= C × CS

= CS+1

�G(3) = C × �G(2)S

= C × C(S+1)S

= C × C(S+1)×S

= C × CS2+S

= CS2+S+1

�G(4) = C × �G(3)S

= C × C(S2+S+1)
S

= C × CS3+S2+S

= CS3+S2+S+1

SUMMARY 19

Thus, more generally, we have that for a goal-plan tree of depth D the number of
options is CS(D−1)+...+S2+S+1.

This can be simplified as follows. Consider the sum x(n−1) + . . . + x2 + x + 1:

Let � = xn−1 + . . . + x2 + x + 1

x� = xn + . . . + x2 + x

(x�) − � = xn − 1

(x − 1)� = xn − 1

� = xn − 1

x − 1

(if x = 1 then � = 1n−1 + . . . + 11 + 1 = n).

Therefore, CS(D−1)+...+S2+S+1. can be simplified to C((SD−1)/(S−1)) (unless S = 1 in
which case the number of options is just CD).

2.6 SUMMARY

In this chapter, we presented the concepts that we see as being important and useful
to designing intelligent agents. These concepts are closely related to the popular Belief-
Desire-Intention (BDI) model, though with some modifications, which though relatively
minor, we consider important for the practical work of building systems.

The BDI model (Georgeff and Rao 1998; Georgeff et al. 1999; Rao and Georgeff
1991, 1992) has its basis in philosophy (Bratman 1987) and offers a logical theory that
defines the mental attitudes of Belief, Desire and Intention; a system architecture; a
number of implementations of this architecture (e.g. PRS (Georgeff and Lansky 1986),
JAM (Huber 1999), dMars (AAII 1996), JACK (Busetta et al. 1999)); and applications
demonstrating the viability of the model.

The central concepts in the BDI model are (Georgeff and Rao 1998, page 144)

Beliefs: Information about the environment

Desires/Goals: Objectives to be accomplished4

Intentions: The currently chosen course of action

Plans: Means of achieving certain future world states.

In comparison, we have identified the key concepts as being the following:

Actions: Ways the agent can operate on the environment

4The subtle difference between goals and desires is that goals are required to be consistent, whereas desires
may be inconsistent.

20 CONCEPTS FOR BUILDING AGENTS

Percepts: Relevant information from the environment

Events: Relevant information about a change in situation (percepts are a subset of events)

Goals: Objectives to be accomplished (should be consistent)

Beliefs: Information about the environment (unchanged)

Plans: Means of achieving goals

Messages: Necessary for agents to interact

Protocols: Specifications of interaction ‘rules’ — usually associated with achieving of
goals.

These differ from the BDI model in that we place a greater focus on the situatedness
of the agent, and the modelling of the environmental interface via percepts and actions.
We also include a multi-agent focus by incorporating messages and protocols. We do
not include intentions as it has proved difficult to teach this concept. While the concept
of intentions are relevant for the underlying philosophical (or logical) foundation on
which the BDI execution cycle is based, it is not necessary for designing and building
multi-agent systems.

3

Overview of the Prometheus
Methodology

In the previous chapter, we covered the concepts that are used by intelligent software
agents. However, there is still a gap – knowing these concepts does not answer the
practical question ‘How do I build a software system based on intelligent agents?’

The next few chapters provide a detailed answer to this question. What is missing is
a process that breaks down ‘build a software system’ into smaller steps that are followed
in order to specify, design and build agent-oriented systems.

In addition to high-level steps such as ‘specify the system’ or even ‘identify the
system’s goals’, a usable methodology needs to provide detailed guidelines explaining
how these steps are carried out. Often, these guidelines are expressed as a collection of
heuristics and examples: it is difficult to give hard rules in a general-purpose methodol-
ogy, and the design decisions often concern trade-offs. Processes and heuristics can help
designers identify the decision points and the reasons for making various choices, but
cannot make choices for them.

As the process is followed, design artifacts are produced – these are used to capture
information about the system and its design. For example, in UML, a class diagram
captures the classes in a system and their relationships. Design artifacts vary in formality
and size – from a weighty tome written in natural English, to diagrams on a white board,
to fully formal specifications written in a precisely defined notation.

Although design artifacts could all be specified using a natural language such as
English, this is undesirable for a number of reasons: natural languages are unstructured,
inherently ambiguous and do not capture certain types of information well. Also, English
cannot be easily supported by software tools. Finally, many software engineers do not
feel comfortable writing.

As a result, design artifacts are often specified in some formal or, more usually,
semi-formal notation. A notation can be graphical or textual (including free English text,
structured text such as forms, etc.).

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

22 OVERVIEW OF THE PROMETHEUS METHODOLOGY

Thus, a methodology should provide a process with detailed guidelines (including
examples and heuristics) and notations that are used to describe the design artifacts.

In the remainder of this chapter, we

• discuss why existing (non-agent) methodologies are not appropriate for designing
agent systems;

• give a brief overview of the Prometheus methodology;

• provide guidelines regarding the use of Prometheus; and

• briefly relate Prometheus to existing agent-oriented methodologies.

3.1 WHY A NEW METHODOLOGY?

One question that might be asked is ‘Why do we need another new methodology’?
Indeed, there are many existing methodologies for designing software. In particular,
object-oriented analysis and design have been extensively studied and developed. Is it
not possible to use object-oriented techniques to build agent systems?

The short answer is ‘Not well!’. Although agents and objects do have similarities,
the differences are significant. It is possible to use object-oriented analysis and design
techniques to design agent systems. However, the fit is not natural and the resulting
design is less likely to make good use of agents.

For example, one important aspect of agents is that they are proactive, that is, that
they pursue their own agenda over time. This is realized in terms of goals. A methodology
that supports proactive agents needs to support the explicit modelling of goals, which is
not generally a part of object-oriented methodologies. By contrast, Prometheus models
goals and thus supports the design of proactive agents.

Some other areas where Prometheus differs significantly from object-oriented method-
ologies include the following:

• The provision of a process for determining the types1 of agents in the system.

• Treating messages as components in their own right, not just as labels on arcs.
This allows a message (or an event) to be handled by multiple plans, which is
crucial to achieving flexibility and robustness.

• Distinguishing percepts and actions from messages, and looking explicitly at per-
cept processing.
Agents are situated in an environment, and it is important to define the interface
between agents and their environment. Percept processing is often important for
agents that are situated in the real world and take their percepts from noisy devices
such as video cameras.

1Agents existing at run time are instances of agent types. For example, in designing an online book store, we
may identify agent types such as a Sales Assistant agent type. At run time, there may be multiple agents that are
instances of this type.

PROMETHEUS: A BRIEF OVERVIEW 23

• Distinguishing passive components (data, beliefs) from active components (agents,
capabilities, plans): with object-oriented modelling, everything is modelled as (pas-
sive) objects.

• One view of agents (the intentional stance (Dennett 1987)) ascribes mental atti-
tudes, such as beliefs, and desires to agents. If we subscribe to this view, then we
would like the design methodology to address these aspects. Existing non-agent
methodologies do not ascribe mental attitudes to software components. It is worth
pointing out that some agent-oriented methodologies (e.g. MaSE) do not subscribe
to this view, and, consequently, do not address mental attitudes. Others, including
Prometheus, do capture mental attitudes during the analysis and design processes.

Note that although there are clear differences between Prometheus and object-oriented
methodologies, there are also commonalities. Although current object-oriented method-
ologies are not sufficient for engineering agent-oriented software, they are relevant –
agents are software, and, indeed, many aspects of the Prometheus methodology have
been based on object-oriented methods and notations. For example, use case scenarios
are adapted from standard practice (Jacobson et al. 1992); interaction diagrams are UML
sequence diagrams; AUML (http://www.auml.org/) (itself an extension of UML) is
used directly, and the Rational Unified Process (RUP) (Kruchten 1998) and Prometheus
share a similar approach to applying an iterative process over clearly delineated phases.

We have argued that the current mainstream methodologies, as exemplified by UML
and RUP, do not provide sufficient support for producing good agent-oriented designs.
We now give a brief overview of the agent-oriented methodology Prometheus, which
will be the focus of much of this book.

3.2 PROMETHEUS: A BRIEF OVERVIEW

The Prometheus2 methodology defines a detailed process for specifying, designing, imple-
menting and testing/debugging3 agent-oriented software systems. In addition to detailed
processes (and many practical tips), it defines a range of artifacts that are produced along
the way. Some of these artifacts are kept, and some are only used as ‘stepping stones’.
Some of the artifacts are graphical while others are structured text (i.e. forms).

Prometheus’ artifacts relate back to the agent concepts that were introduced in the
previous chapter. For example, actions and percepts are captured in the system specifica-
tion phase; the detailed design phase results in plans, events and beliefs; and the entities
used in the various overview diagrams correspond directly to the concepts.

Note that all of the artifacts are structured. This is important in order to be able to
provide tool support for the methodology.

The Prometheus methodology consists of three phases, depicted in Figure 3.1.

2Prometheus was the wisest Titan. His name means ‘forethought’ and he was able to foretell the future.
Prometheus is known as the protector and benefactor of man. He gave mankind a number of gifts including fire.
(from http://www.greekmythology.com/)

3Testing and debugging are not covered in this book. Poutakidis et al. (2002, 2003) have proposed a debugging
method and tool to debug agent interactions, but this is not yet mature enough to be usable for debugging real
systems.

24 OVERVIEW OF THE PROMETHEUS METHODOLOGY

Actions, percepts

Scenarios

Interaction
diagrams

Initial
functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

Data
coupling

Agent
acquaintance

Shared
data

Messages

Protocols

D
et

ai
le

d
de

si
gn

A
rc

hi
te

ct
ur

al
 d

es
ig

n
S

ys
te

m
sp

ec
ifi

ca
tio

n

System goals

Process

Final design
artifact

Intermediate
design tool

Crosscheck

Derives

Key

Figure 3.1 The phases of the Prometheus methodology

1. The system specification phase focuses on identifying the goals and basic function-
alities of the system, along with inputs (percepts) and outputs (actions).

2. The architectural design phase uses the outputs from the previous phase to deter-
mine which agent types the system will contain and how they will interact.

3. The detailed design phase looks at the internals of each agent and how it will
accomplish its tasks within the overall system.

A fourth phase is implementation, which is omitted from Figure 3.1 because its details
depend on the implementation platform chosen.

The following description of these phases is intended to give a rough feel for the
overall structure of the methodology, so that when reading the following chapters, where
Prometheus is described in detail, you have some idea of how the details fit into the
bigger picture.

3.2.1 SYSTEM SPECIFICATION

The system specification phase, described in detail in Chapter 4, focuses on the following:

• Identifying the system goals.

• Developing use case scenarios illustrating the system’s operation.

PROMETHEUS: A BRIEF OVERVIEW 25

• Identifying the basic functionalities of the system.

• Specifying the interface between the system and its environment in terms of actions
and percepts.

These four steps do not proceed in sequence; rather, one shifts between them. For
example, after adding a goal, we might add a use case scenario illustrating how this goal
is achieved. The scenario might include new goals and/or functionalities.

System goals are useful in capturing, at a high level, what the system needs to be
able to do. Because goals are a fairly high-level description, they tend to be less likely
to change over time than functionalities. Identifying the goals results in a collection of
goals, each with a name and description. We also capture the relationship between goals
and sub-goals.

Use case scenarios are examples of the system’s operation. They are useful in that
they are more specific and concrete than goals and thus tend to be more accessible and
easier to visualize. However, they do not tell the whole story. Roughly speaking, a use
case scenario consists of a sequence of steps that occurs during the system’s operation,
along with a description of the context in which this sequence of steps could occur. Use
case scenarios are borrowed from object-oriented design; however the details differ.

Functionalities are chunks of behaviour formed by grouping related goals, together
with related data, percepts and actions. For example, in defining an electronic bookstore
we may include functionalities such as “Delivery Handling Functionality” or “Stock
Purchasing Functionality”. These functionalities should be specific enough that they can
be described adequately in a sentence or two.

We also specify the environment in which the agents will be situated. This is defined
in terms of actions (ways that the agents affect the environment), and percepts (incoming
information from the environment).

3.2.2 ARCHITECTURAL DESIGN

The architectural design phase, detailed in Chapters 5, 6 and 7, focuses on the following:

• Deciding what agent types will be implemented and developing the agent
descriptors.

• Capturing the system’s overall (static) structure using the system overview
diagram.

• Describing the dynamic behaviour of the system using interaction diagrams and
interaction protocols.

A major decision to be made during the architectural design is which agent types
should exist. This is done by grouping functionalities into agent types. Each agent type
consists of one or more functionalities. Given a set of functionalities, there is a large
number of possible groupings. Deciding on a reasonable grouping is guided by consid-
erations of coupling and cohesion. A data coupling diagram is used to help guide this

26 OVERVIEW OF THE PROMETHEUS METHODOLOGY

decision, and an agent acquaintance diagram is used to help assess whether a reason-
able decision was made. Once a grouping is chosen, each agent type is described using
an agent descriptor form.

Once we have decided upon the agents in the system, we identify which agents react
to which percepts, as well as which agents perform particular actions on the external
environment. In addition, we specify the messages between agents and determine the
major shared data repositories. These items form the overall design of the system and
are depicted in the system overview diagram. The system overview diagram is perhaps
the single most important product of the design process. It ties together agents, data,
external input and output, and shows the communication between agents.

The system overview diagram shows the pathways of communication – which agents
talk to which other agents – but not the timing of communication – which messages are
followed by which other messages. The timing of communication is captured initially in
the scenarios: whenever an activity by an agent is followed by an activity of another
agent, there is, implicitly, communication between them. This communication is depicted
explicitly in agent interaction diagrams. Like scenarios, interaction diagrams depict
one possible sequence of messages between agents. In order to describe all possible
interactions, we develop interaction protocols, depicted using Agent UML (AUML4)
(Huget et al. 2003).

3.2.3 DETAILED DESIGN

Detailed design focuses on developing the internal structure of each of the agents and
how it will achieve its tasks within the system.

In essence, we progressively refine each agent by defining capabilities (modules
within the agent), internal events, plans and detailed data structures. This process begins
by describing agents’ internals in terms of capabilities. The internal structure of each
capability is then described, optionally using or introducing further capabilities5. These
are refined in turn until all capabilities have been defined. At the bottom level, capabilities
are defined in terms of plans, events and data. In parallel, we continue to work on
developing the dynamics of the system by refining interaction protocols into process
specifications.

The detailed design process presented in this book is split into two parts. In Chapter 8,
we focus on the following:

• The refinement of agents in terms of capabilities, giving the agent overview dia-
gram and capability descriptors; and

• The development of process specifications.

This part of the process neither assumes nor relies on any particular implementation
platform or architecture.

4We use the revised version of AUML currently being developed. For a brief introduction, see Appendix C.
5Capabilities are allowed to be nested within other capabilities and thus this model allows for as many layers

within the detailed design as are needed in order to achieve an understandable complexity at each level.

GUIDELINES FOR USING PROMETHEUS 27

The agent overview and the capability descriptors are analogous to the system overview
diagram and the agent descriptors, but now focussing within a single agent. The process
specifications provide a detailed view of an individual agent’s part in a particular process,
as defined by the protocol specification at the global level. Each global protocol will have
a number of corresponding local views, each of which defines the process from the point
of view of a particular agent.

In Chapter 9, we continue the detailed design process, focussing on:

• Design of the plans within a capability and the events generated and handled by
these plans, as captured in the capability overview diagrams.

• Specification of the algorithm within each plan, as well as associated data (or
beliefs) and detailed specification of events. These are captured in plan, data and
event descriptors.

The capability overview diagrams are similar in style to the agent overview and system
overview diagrams, although plans must indicate which incoming event is the trigger
event. Plans are part of the specification of the dynamics of the system and in developing
them we take into account the process specifications, as well as structural information
such as what triggers them. The descriptors provide the details necessary to move into
implementation. Exactly what are the appropriate details for these descriptors will depend
on aspects of the implementation platform.

It is only in this final part of the detailed design that we are committing to a particular
implementation style. Specifically, we are assuming that plans are triggered by events
and that it is possible to have multiple plans that handle a given event type, where the
choice of plan to be used is determined at run time. This assumption corresponds to a
whole class of implementation platforms (see Chapter 10) including BDI systems such
as JACK and systems based on hierarchical task networks such as RETSINA.

3.3 GUIDELINES FOR USING PROMETHEUS

Before we discuss the details of Prometheus, we discuss a few issues involved in using
Prometheus:

• Not following the methodology strictly

• The role of iteration and tool support

• When to use agents.

The Prometheus methodology is intended to be interpreted as a set of guidelines, not
followed strictly. In developing Prometheus, we have had to steer a fine balance between
committing to certain ways of doing things and keeping the methodology from becoming
too complex and too specific. We hope that Prometheus, as is, will be useful for a large
range of domains and users. However, we do not expect that Prometheus will be a perfect
fit for all situations. For example, a small and simple agent system may not need to use
capabilities; or an agent system may be simulating an existing (human) organization and
thus the agent types may already be known, making the use of functionalities and of the
data coupling diagram redundant.

28 OVERVIEW OF THE PROMETHEUS METHODOLOGY

In addition, Prometheus is still evolving. There are a number of types of systems that
it does not yet handle well. For example, Prometheus as described in this book does not
address agent teamwork or mobile agents.

The basic principle is that you should use your common sense and judgement. If you
have less experience in the design of agent systems, you will probably want to follow all
of the process steps described. However, as you become more experienced, you should
use your judgement in applying the methodology.

ITERATIVE DEVELOPMENT

A key element of modern software engineering is iteration. Like any other complex
human endeavour, such as writing a book, it is not possible to get everything right the
first time. Instead of attempting to get things perfect before moving on (as in the waterfall
model), modern software engineering processes such as RUP are iterative: although there
are still clearly defined activities such as requirements specification, high-level design,
detailed design, implementation and testing, these activities are not done in sequence a
single time. Rather, the whole process is iterated and the emphasis gradually shifts. The
first few iterations might involve primarily requirements-specification activities; however,
later iterations will introduce other activities. Prometheus also adopts this approach.
Although the following chapters describe the phases and activities in a sequential manner,
we do not advocate that they be applied sequentially.

One issue that arises with any iterative process that modifies an existing design is that
changes in one part of a design can introduce inconsistencies. This necessitates cross-
checking as the design is developed and modified. Although it is possible to perform such
cross-checking manually, this is tedious and, more importantly, error prone. Fortunately,
it is possible to provide automated support that can detect certain inconsistencies. Our
experience has been that this sort of automated cross-checking is very useful in an
iterative process.

WHEN TO USE AGENTS

It is important to consider what parts of a system should be treated as agents and
designed using an agent-oriented methodology (such as Prometheus), and also how the
links between an agent-oriented sub-system and non-agent software can be designed and
implemented.

Not all software components are best viewed, modelled and designed as agents.
Sometimes, you will be designing a system where it makes sense to model it entirely as
a multi-agent system. However, this is not always the case. Some sub-systems may not
make sense or may not benefit from being viewed as a collection of agents. For example,
an image-processing sub-system that extracts the position of a ball from video frames
will not benefit from being viewed as an agent or as a system of agents.

How can we identify which parts of a system should be viewed as agents (and which
parts should not)? The short, pragmatic answer is that we should use agents where they
are more natural and offer a benefit. The following questions can be used to help identify
components that should be treated as agents (if the answers are ‘yes’):

AGENT-ORIENTED METHODOLOGIES 29

• Is it autonomous?

• Does it have goals?

• Viewed as an object, is it active (in the sense of having internal threads that run
concurrently with the rest of the system)?

• Does it do multiple things at once? If so, does it need to reason about interaction
between the different activities?

• Does it need to change the way it is doing things on the basis of changes in its
environment?

If the answers to these questions are mostly ‘yes’, then you should probably think of
the components as agents (and design them accordingly).

EXTERNAL DATA AND CODE

Assuming that some part of the system will be designed as a multi-agent system using
Prometheus and some other parts will be designed using other methods, how can the
designs be integrated? There are two approaches: we can either view a non-agent part
as being an external sub-system with which the agent system as a whole interacts, or as
being an ability of a particular agent type.

The system overview diagram used in Prometheus allows for external data and for
external ‘library code’ to be specified. External data can be accessed by various agent
types, and this is specified in the design of the agent system. External library code can also
be used by agents. The precise mechanism varies: it can be viewed as communicating with
the agent system via messages, or as delivering percepts and accepting action requests.
The specification of the external sub-system, if it is being built (as opposed to simply
using existing code), can be done using whatever methodology is appropriate: object-
oriented design, database design, or some other established method.

Alternatively, we can view non-agent parts as being within a certain agent type.
Agents can include data. This data can be specified, structured and designed in many
ways. Some data might be best viewed as a relational table, other data might be best
viewed as objects. In very simple cases, data might just be provided data types (e.g. an
agent’s velocity could just be a floating point number). In addition to including data,
agents can also include any existing code by including the appropriate function call
within an agent plan. This is viewed as an “internal action”.

3.4 AGENT-ORIENTED METHODOLOGIES

A large number of agent-oriented methodologies have been proposed in recent years
(Brazier et al. 1997; Bresciani et al. 2002; Burmeister 1996; Burrafato and Cossentino
2002; Bush et al. 2001; Caire et al. 2001; Collinot et al. 1996; Cossentino and Potts
2002; Debenham and Henderson-Sellers 2002; DeLoach et al. 2001; Drogoul and Zucker
1998; Elammari and Lalonde 1999; Giunchiglia et al. 2002; Glaser 1996; Iglesias et al.

30 OVERVIEW OF THE PROMETHEUS METHODOLOGY

1999, 1997; Kendall et al. 1995; Kinny and Georgeff 1996; Kinny et al. 1996; Lind
2000; Odell et al. 2000; Shehory and Sturm 2001; Varga et al. 1994; Wagner 2002,
2003; Wooldridge et al. 2000). The aim of this book is to describe Prometheus, not to
survey the many existing methodologies. Thus, this section is intentionally brief and
incomplete. We encourage the interested reader to read the publications describing the
various methodologies and the comparisons between methodologies that are beginning
to appear (Cernuzzi and Rossi 2002; Dam 2003; Dam and Winikoff 2003; O’Malley and
DeLoach 2001; Shehory and Sturm 2001; Sturm and Shehory 2002, 2003).

PROMETHEUS DESIGN GOALS

Prometheus is intended to be useful and usable by industry developers. In order to be
usable, it must be described in sufficient detail and be complete, that is, cover all the nec-
essary activities and phases. In order to be useful, it must support the design of realistically
sized systems and thus must support an iterative mode of application (and, in particular,
cannot assume a ‘waterfall’ process model). A consequence of this is that tool support is,
in our opinion, highly desirable. We also believe that in order to be useful, Prometheus
must focus on designing agents that are flexible and robust. In particular, the use of goals
and plans as an implementation technology allows agents to be flexible and robust.

Thus, the design of Prometheus was guided by the following design criteria, aimed
at ensuring that the methodology be useful and usable:

• Prometheus must be detailed enough to use and must be complete.

• Prometheus must support the development of agents based on goals, plans and
beliefs.

• Prometheus must scale to large systems, and must not use a waterfall process
model.

• Prometheus must facilitate tool support, and such tool support should be imple-
mented.

Additionally, in order to ensure that Prometheus is actually useful to, and usable by,
industry developers, it must be used by industry developers! In our work, we have
both worked closely with the company Agent Oriented Software and have also taught
Prometheus to undergraduate students.

These criteria set Prometheus apart from existing methodologies. Many of the existing
agent-oriented methodologies are not yet ready to be used by industry developers: they are
still under research, and either focus on specific aspects of agent design such as teamwork
(i.e. do not provide a complete methodology), or are not described in sufficient detail. For
example, many of the methodologies are only described in a small number of short (8 to 15
page) conference papers. Additionally, many methodologies do not provide tool support.

SOME SPECIFIC METHODOLOGIES

Of the long list of agent-oriented methodologies, there are some that are described in
detail, that do offer tool support and that do appear to be ready for use. In particular, the

AGENT-ORIENTED METHODOLOGIES 31

MaSE and Tropos methodologies are both complete, have been developed over a period
of time (i.e. are mature) and both provide detailed descriptions.

The Gaia methodology (Wooldridge et al. 2000), like Prometheus, has been developed
over a number of years by people experienced in building agent systems. However, we
have found that the lack of a detailed design process – intentionally absent because of
a desire for generality – meant that it did not provide sufficient support for the needs
of those we were working with. There are similarities between Prometheus and Gaia for
specification and architectural design. Our agent acquaintance diagrams are essentially the
same as those used by Gaia, and the roles of Gaia are similar in concept to functionalities
in Prometheus, although there are slightly different things that are considered.

The Tropos methodology (Bresciani et al. 2002; Giunchiglia et al. 2002) covers early
requirements to detailed design. Its detailed design is oriented very specifically towards
JACK as an implementation platform. Compared to Prometheus, Tropos provides an early
requirements phase, which Prometheus does not (although it would certainly be possible
to adapt Tropos’ early requirements phase for use in Prometheus). Prometheus provides
a more detailed process – particularly in the architectural design phase. Prometheus also
provides tool support and cross-checking; tool support for Tropos is currently only in the
form of a diagram editor rather than the consistency checking and automatic generation
of some parts of the design that is part of the Prometheus Design Tool.

The MaSE methodology (DeLoach et al. 2001) is one of the few methodologies that
appears to have significant tool support. However, MaSE is unsuitable for our purposes
since it views agents ‘ . . . merely as a convenient abstraction, which may or may not
possess intelligence’ (DeLoach et al. 2001, p. 232). Thus, MaSE (intentionally) does not
support the construction of plan-based agents that are able to provide a flexible mix of
reactive and proactive behaviour. Rather, MaSE aims to be general and treats agents as
‘simple software processes that interact with each other to meet an overall system goal’
(DeLoach 2001, p. 232).

PASSI (Burrafato and Cossentino 2002; Cossentino and Potts 2002) is a recent addi-
tion to the list of methodologies. Although it has not, to the best of our knowledge, been
described in detail, it appears to be complete, and provides tool support.

COMPARISONS

Comparisons of the existing methodologies are limited, but are beginning to appear.
MaSE, Prometheus and Tropos are compared using a feature-based approach in which
the assessment of each methodology against the criteria is validated using a survey of
the developers of the methodology (and of students) (Dam and Winikoff 2003). This
work is extended to include MESSAGE and GAIA and to also provide a comparative
analysis of the models and processes of each of the methodologies (Dam 2003). Other
comparisons between agent-oriented methodologies include (Shehory and Sturm 2001),
(Cernuzzi and Rossi 2002), (Sturm and Shehory 2003).

4

System Specification

Actions, percepts

Scenarios

Interaction
diagrams

S
ys

te
m

sp
ec

if
ic

at
io

n
A

rc
h

it
ec

tu
ra

l d
es

ig
n

D
et

ai
le

d
 d

es
ig

n

Initial
Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

Data
coupling

agent
acquaintance

shared
data

messages

Protocols

System goals

Process

final design
artifact

intermediate
design tool

crosscheck

derives

Key

Phases, artifacts and relationships in the design process

This chapter discusses in detail the artifacts and processes in the System Specification
phase, the initial phase of the Prometheus methodology. Often, the initial documents from
which a system analyst or system developer begins are simply a few paragraphs of loose
description, or a rough understanding based on discussions and meetings. From this, a

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

34 SYSTEM SPECIFICATION

clear and precise understanding of the system to be built must be developed. Prefer-
ably, it is developed in a manner that facilitates clear and traceable paths between the
system specification phase and subsequent system development phases, such as design,
implementation and testing.

Considerable work has been done in recent years on requirements engineering, recog-
nizing that care and rigour at this early stage can avoid many more expensive problems at
later stages. The Prometheus methodology focuses particularly on specification of goals,
using some of the work of van Lamsweerde (e.g. (van Lamsweerde 2001)), and on sce-
nario descriptions. In addition, it requires specification of functionalities (small chunks
of behaviour) related to the identified goals. There is also a focus on the important
issue of how the agent system interfaces with the environment in which it is situated,
in terms of percepts that arrive, or can be obtained, from the environment, and actions
that impact on the environment. As part of the interface specification, we also address
interaction with any external data stores or information repositories.

The aspects that we develop in the system specification phase are then as follows:

1. Specification of system goals, resulting in a list of goals and sub-goals, with asso-
ciated descriptors.

2. Development of a set of scenarios that have adequate coverage of the goals, and
which provide a process-oriented view of the system to be developed.

3. Definition of a set of functionalities that are linked to one or more goals, and
capture a limited piece of system behaviour, which can be described in a few
sentences.

4. Description of the interface between the agent system and the environment in
which it is situated, in terms of incoming percepts, outgoing actions and external
information stores with which the system will interact.

These activities interact to support and complement each other, and the developer
typically moves between them in a flexible manner. The productive interaction between
scenario descriptions and goal elicitation has been explored increasingly in the require-
ments engineering literature in recent years (Liu and Yu 2001; Rolland et al. 1999). Our
experience in agent system design is also that this interaction, together with specification
of system interfaces, is natural and productive.

4.1 GOAL SPECIFICATION

The reasons for building the system should always be central in one’s thinking when
specifying the system, and thus goals are a natural construct to use in system specifica-
tion. In addition, goals are central to the functioning of the intelligent software agents
that are going to realize the system. The use of goals at the requirements engineer-
ing or system specification phase thus facilitates a mapping into later detailed design
and implementation, as well as providing an appropriate mechanism for requirements
specification.

GOAL SPECIFICATION 35

4.1.1 IDENTIFY INITIAL GOALS

The initial brief system description usually contains some implicit indications of the system
goals – what it is that the system is supposed to do. These provide a starting point for
building an initial list of system goals. A simple underlining or highlighting of the relevant
words or phrases in the description can be used to provide a first cut at the system goals.

For example, consider the following description:

We wish to develop a student enrolment system that allows students to enrol
in subjects, add and delete subjects in accordance with rules and view their
enrolment. Enrolment rules should be editable by authorized staff.

On the basis of this initial description, it is possible to extract the following system
goals:

• Enrol student

• Add subject to enrolment

• Delete subject from enrolment

• Check enrolment against rules

• View enrolment

• Authenticate staff

• Edit rules.

These can then provide a basis for refinement, which provides an extended list of
goals that can then be grouped into what we call functionalities – small chunks of system
behaviour, describable in a few sentences.

In the rest of this chapter and the following chapters, we will develop an example of
an electronic bookstore to illustrate the design process. To enable easy following of the
example, we will enclose all of the example details in a framed box (which may extend
over page breaks, in which case the bottom and top of the frame on the adjacent pages
will be missing), as below. In addition, the collected details of the example can be found
in Appendix A.

Electronic Bookstore: Case study

Here, we show an initial brief system description of an electronic bookstore and the
set of system goals that can be extracted from that description:

We would like to develop a fully online system for worldwide sale of books.
This system will offer a broad range of books to customers, and a personalized,
friendly user interface. The system must facilitate fast and reliable service at
all stages, from locating a desired book, to delivery of the purchase. The store
should have competitive prices.

36 SYSTEM SPECIFICATION

We identify our initial set of goals by highlighting parts of this description:

We would like to develop a fully online system for worldwide sale of books.
This system will offer a broad range of books to customers, and a person-
alized, friendly user interface. The system must facilitate fast and reliable
service at all stages, from locating a desired book, to delivery of the purchase.
The store should have competitive prices.

This then yields the following extracted system goals:

• Worldwide sale of books

• Fully online system

• Broad range of books

• Personalized, friendly user interface

• Fast and reliable service

• Locating of books

• Delivery of books

• Purchase of books

• Competitive prices.

4.1.2 GOAL REFINEMENT

We now refine these goals somewhat using the simple technique of asking ‘how?’ as
suggested by (van Lamsweerde 2001). We consider each goal and ask ‘how might this
goal be achieved?’; the answers give the sub-goals of the goal under consideration. For
example, the goal of providing worldwide sale of books could be achieved by having
an online system and by delivering books internationally.

It would be possible to also use the abstraction techniques of asking ‘why?’, espoused
by the same author, to build up a much more complete goal tree. However, we have
chosen to limit the set of goals to those arising most directly.

As we refine the original goals to be slightly more specific, it is often the case that
we find similar sub-goals arising under different initial goals. A grouping of similar sub-
goals then provides the basis for what we call ‘functionalities’ – descriptions of limited
chunks of system behaviour.

For example, refining the original goal of fully online system, we obtain sub-goals
find books online, pay online and order online, while the original goal of purchase books
leads to find books, place order, make payment and arrange delivery. Pay online and
make payment are clearly closely related, if not identical, goals, and are therefore grouped
together. Below we show the expanded goal set derived from our initial set of goals,
and the initial arrangement of these into groupings.

GOAL SPECIFICATION 37

Electronic Bookstore: Case study

Here, we have the expanded list of goals and associated sub-goals resulting from
asking ‘how?’ and refining the initial list.

• Worldwide sale of books.
- online system
- deliver internationally

• Fully online system.
- find books online
- order online
- pay online

• Broad range of books.
- books from many publishers
- update catalogue regularly
- multiple suppliers

• Personalized, friendly user interface.
- personalized welcoming
- recommendations based on user profile
- information available about orders in process

• Fast and reliable service.
- arrange courier deliveries
- provide estimates of delivery time
- track delivery problems
- have books available in stock

• Locating of books.
- provide search facility
- provide recommendations

• Delivery of books.
- arrange delivery
- monitor delivery

• Purchase books
- find books
- place order
- make payment
- arrange delivery

• Competitive prices.
- set prices competitively
- temporarily reduce prices to match competitors

38 SYSTEM SPECIFICATION

After refining the goals, we can then start to rearrange them, moving similar goals
together. As we do this we may find the same sub-goal under different parent goals, in
which case we can coalesce them. We can then give a name to the grouping which describes
it. This may be related to one of the original top level goals, or may be a new name.

Electronic Bookstore: Case study

Below is an initial re-arrangement of the goals with moved sub-goals shown in italics.
The name chosen for the resulting grouping is shown in CAPITALS below each group
of sub-goals. In some cases such as competitive prices , the sub-goals are divided into
two functionalities.

• Worldwide sale of books

• Fully online system.
- online system (from Worldwide sale of books)
ONLINE INTERACTION

• Broad range of books.
- books from many publishers
- update catalogue regularly
CATALOGUE MANAGEMENT

• Personalized, friendly user interface.
- personalized welcoming
WELCOMING
- recommendations based on user profile
- provide recommendations (from Locating of books)
PROFILE MONITOR

• Fast and reliable service.
- have books available in stock
- multiple suppliers (from Broad range of books)
STOCK MANAGEMENT

• Locating of books.
- find books online (from Fully online system and also find books from Purchase
books)
- provide search facility
BOOK FINDING

• Delivery of books.
- deliver internationally (from Worldwide sale of books)
- arrange courier deliveries (from Fast and reliable service)
- arrange delivery (also includes arrange delivery from Purchase books)
- monitor delivery
- provide estimates of delivery time (from Fast and reliable service)

GOAL SPECIFICATION 39

- track delivery problems (from Fast and reliable service)
- information available about orders in process (from Personalized, friendly
user interface)
DELIVERY HANDLING

• Purchase books
- place order
- order online (from Fully online system)
- make payment
- pay online (from Fully online system)
PURCHASING

• Competitive prices.
- set prices competitively
PRICE SETTING
- temporarily reduce prices to match competitors
COMPETITION MANAGEMENT

We continue to work with the list of goals and sub-goals, coalescing similar goals and
adding goals as we see that a particular grouping is lacking some aspect. For example,
the sub-goals of deliver internationally, arrange courier delivery and arrange delivery
are coalesced into the single sub-goal arrange delivery.

As we do this, our original set of goals and sub-goals becomes a network of connected
goals as shown in Figure 4.1. Each goal is represented by an oval and arrows join goals
to sub-goals.

We also elaborate goals by adding more detailed sub-goals; for example, we add
to PROFILE MONITOR the sub-goals of registering and updating the customer pro-
file. In some cases, a sub-goal is replaced with a more detailed sub-goal (or collec-
tion of sub-goals). For example, under STOCK MANAGEMENT, we replace have
books available in stock with reorder stock, and sub-goals to log outgoing and arriving
books.

We aim for groupings of approximately two to five goals that belong together in a
way that we can provide a brief but comprehensive description of the functionality to
which these goals belong.

Some of our original goals may disappear if all sub-goals belonging to them are
moved into other groupings. In our example, this happens for the original goal of world-
wide sale of books as the sub-goals indicating how this goal was to be realized – online
system and worldwide delivery – are moved. Similarly, some original goals may expand
into more than one grouping, as is seen with Delivery of books, which leads to two
groupings – one dealing with arranging deliveries and the other dealing with delivery
problems. We may choose to retain goals such as worldwide sale of books, but mark
them as abstract, indicating that they are a motivator for more concrete goals, but will
not appear directly as the details are developed.

Below is the revised set of goal groupings for our example, organized by headings.

40 SYSTEM SPECIFICATION

Woldwide sale of books

Fully online system

Make payment (online)

Place order (online)

Log delivery problems

Book query

Locating of books

Obtain user input

Personalised U.I.

Update customer profile

Provide personalised welcome

Present information

Inform customer

Fast, reliable service

Respond to customer Calculate delivery time estimates

Have books in stock

Log books arriving

Reorder stock

Broad range of books

Update catalogue

Restore book priceLower book price

Monitor competitive response

Set prices competitively

Log books outgoing

Register customer profile

Provide personalised recommendations

Obtain credit card details

Arrange delivery Monitor delivery

Delivery tracking

Determine delivery status

Log tracking information
Update delivery problem

Competitive prices

Delivery of books

Obtain delivery options

Log outgoing delivery

Fill pending order

Figure 4.1 Goals for the electronic bookstore

Electronic Bookstore: Case study

The set of goal groupings that we developed after our initial pass at refining, coalescing
and adding goals as needed:

• ONLINE INTERACTIONS
- obtain user input
- present information

• CATALOGUE MANAGEMENT
- update catalogue
(note that a decision has been made at this point that the goal of having books
from many publishers will be met outside the software system. The system
will simply manage the catalogues it is given. Ensuring that these come from
a wide variety of sources becomes the responsibility of the company using the
system.)

• WELCOMING
- provide personalized welcome

• PROFILE MONITOR
- provide personalized recommendations

FUNCTIONALITIES 41

- register customer profile
- update customer profile

• STOCK MANAGEMENT
- log books arriving
- log books outgoing
- reorder stock

• BOOK FINDING
- book query

• DELIVERY HANDLING
- obtain delivery options
- calculate delivery time estimates
- arrange delivery
- determine delivery status
- log outgoing delivery

• LOST GOODS MANAGEMENT
- log delivery problem
- request delivery tracking
- respond to customer1

- log tracking information

• PURCHASING
- purchase of books
- place order
- make payment

• PRICE SETTING
- set prices

• COMPETITION MANAGEMENT
- lower book price
- monitor competitive response
- restore book price

4.2 FUNCTIONALITIES

Functionality is the term we use for a chunk of behaviour, which includes a grouping
of related goals, as well as percepts, actions and data relevant to the behaviour. A
functionality should be coherent, in that it can be described adequately in one or two
sentences, and can be named in a way that captures its essence. Functionalities allow for
a mixture of both top-down and bottom-up design. They are identified by a top-down

1. . . with the status of the goods ordered.

42 SYSTEM SPECIFICATION

process of goal development. At the same time, they provide a bottom-up mechanism
for determining the agent types and their responsibilities.

The process of refining and then grouping goals suggests an initial set of functionali-
ties. Further work with scenarios and development of the specification may well suggest
additional ones. System specification is an iterative process, starting with identifica-
tion of goals, but then moving between scenarios, goals and functionalities, as well as
identifying actions, percepts and data.

The groupings, namings and additions and merging of goals are continually refined.
Figure 4.2 shows the current revised functionalities developed for the Electronic Book-
store at this stage. Functionalities are depicted by rectangles, goals with ovals, and
actions with an action icon (a rectangle extended with a triangle pointing to the right).
Arrows link functionalities to their goals and actions.

Once we have identified functionalities we can begin to develop functionality descrip-
tors. Each functionality should be able to be described in a few sentences. If the
description is larger than this, then the functionality should be split into multiple func-
tionalities. In addition to a natural language description and information about the goals
and actions that are included, the functionality descriptor should also include what we

Online interaction

Obtain user input

WWW page display

Profile monitor

Register customer profile

Provide personalised recommendations

Fill pending order

Obtain delivery options

Present information

Catalogue management

Update catalogue

Welcoming

Provide personalised welcome

Book finding

Send email

Update customer profile
Stock management Book query

Email stock order

Reorder stockLog books arriving

Delivery handling Log books outgoing

Log outgoing delivery

Determine delivery status

Calculate delivery time estimates

Arrange delivery

Place delivery request

Purchasing

Log delivery problems

Lost goods management

Log tracking information

Request delivery tracking

Make payment (online)

Delivery tracking

Obtain credit card details

Price setting

Set prices competitively

Respond to customer

Update delivery problem

Competition management

Lower book price Restore book price

Monitor competitve response

Place order (online)

Bank transaction

Customer contact

Inform customer

Figure 4.2 Functionalities for the electronic bookstore

SCENARIO DEVELOPMENT 43

call triggers: information about what events or situations will cause activity to be initi-
ated within this functionality. These triggers may include identified percepts, but are not
limited to these. Notes about the data required and produced by the functionality should
also be included.

An example of a functionality descriptor for Purchasing is given below.

Electronic Bookstore: Case study

This is an example functionality descriptor that was developed during system speci-
fication, on the basis of the three goals grouped under Stock Management.

Stock Management Functionality

Description: This functionality monitors the stock available as it comes in and goes
out, ordering new stock as needed. It maintains information as to when stock is
expected to arrive.

Goals: Reorder stock, Log books arriving, Log books outgoing

Actions: E-mail stock order

Triggers: Stock arrival, Stock order delay, Failed stock arrival

Information used: Stock database, Customer order, Stock order

Information produced: Stock database, Delayed orders, Arrived orders

4.3 SCENARIO DEVELOPMENT

Scenarios are complementary to goals in that they show the sequences of steps that
take place within the system. In developing goals, we are typically already building
up scenarios of how these goals will be part of various processes within the system.
Scenarios enable us to specify some of this structure, which in turn may help identify
missing goals.

Scenarios are used primarily to illustrate the normal running of the system, although
it can also be useful to develop some scenarios that indicate what is expected to happen
when something goes wrong. As scenarios are developed, it becomes evident where
there is a need for information from the environment (i.e. percepts) and where actions
are required. Also, as scenarios are developed, it is common to identify additional goals
that are needed. For example, in developing the Query Late Books Scenario in which
the user is querying because their books have not arrived, we identified the need for a
new goal Update delivery problem. We already had Log delivery problem, but discovered
the need to update the information once the information from the tracking request had
been received. Also in this scenario, we can see that two percepts and an action are
required. The two percepts are the original user query from the web interface and the
response to the tracking initiated, which are both input to the system in some way. The

44 SYSTEM SPECIFICATION

action is the request for tracking of the delivery, which goes outside the system and
initiates behaviour in the environment. Below we show the outline of this scenario made
up of existing goals, the newly identified goal, the percepts and the action.

The core of a scenario consists of a sequence of steps. Possible steps are achieving a
goal (Goal), performing an action (Action), receiving a percept (Percept), or referring
to another use case scenario (Scenario). Additionally, we use the step type Other to
cover unusual steps such as waiting for something to happen.

Electronic Bookstore: Case study

Here is the outline of the Query Late Books Scenario developed in the first round
of scenario descriptions:

Query Late Books Scenario
Trigger: user enquiry
Description: When the user enquires about the status of their delivery the system
requests that tracking be performed and waits for the result. In this scenario the result
is that the book could not located and so a replacement book is sent.

1. Goal: Determine delivery status

2. Goal: Log delivery problems

3. Action: Request delivery tracking

4. Goal: Inform customer

5. Other: wait for response . . .

6. Percept: tracking info received

7. Goal: Arrange delivery

8. Goal: Log books outgoing

9. Goal: Inform customer

10. Goal: Update delivery problem

In the process of developing scenarios, it is common to find the need for new Goal
steps. These are then added to the appropriate functionality, if there is a natural place
where they belong. It may be the case that there is a need to also introduce a new
functionality. This can happen either because a new goal does not naturally belong
within any of the existing groupings or if a grouping becomes too large, so there is a
need to divide it. For example, in the process of developing the above scenario, the new
goal Inform Customer was identified. This was considered for inclusion with the goals
in the Online Interaction functionality. However, since informing the customer could be

SCENARIO DEVELOPMENT 45

done either via the web or by email, and since email is not an Online Interaction , it
was decided to have two different functionalities for interacting with the customer, and
a Customer Contact functionality was introduced.

4.3.1 GOAL STEP DETAILS

We also attach to each GOAL step, the name of the functionality it belongs to, the
information that is used, and the information that is produced or written. So for the step
Arrange delivery, we also attach the name of the functionality (Delivery Handling), the
information used (Order record) and the information produced (none). For example2,

Step Data used
Num. type Step Functionality and produced

5. Goal Arrange delivery Delivery Handling Customer Order
Customer Order

Below we show the steps of the Query Late Books scenario, with the full informa-
tion for each step.

Electronic Bookstore: Case study

Fully developed steps for the Query Late Books scenario:

Key for functionality and data abbreviations:

DH Delivery Handling
LGM Lost Goods Management
CC Customer Contact
SM Stock Management
Cust. Info.: Customer Information
Cust. Order: Customer Order
Del. Problem: Delivery Problem

Step Functionality Data used and
type Step produced

1 Goal: Determine DH Cust. Order
delivery status none

2 Goal: Log delivery LGM Cust. Order
problems Del. Problem

3 Action: Request delivery LGM Cust. Order
tracking Del. Problem

2In order to avoid tables that extend past the width of the page, we put the data used on the first line and the
data produced on a second line.

46 SYSTEM SPECIFICATION

4 Goal: Inform customer CC Del. Problem
Cust. Info.

5 Other: Await response
6 Percept: tracking info received
7 Goal: Arrange delivery DH Cust. Order

Cust. Order
8 Goal: Log books SM Book Info

outgoing Stock DB
9 Goal: Inform customer CC Cust. Order

Cust. Info.
10 Goal: Update delivery LGM Track. Resp.

problem Cust. Order (used)
Del. Problem

As can be seen, the above scenario is in two pieces. After an action requesting
tracking of the delivery, nothing more can be done until a response is received (or a
sufficient delay has occurred to conclude that no response will be received). The scenario
could be split into two pieces, with the second piece being triggered by the arrival of the
tracking information, or a sufficient time delay. We have chosen to keep it as a single
scenario in order to more easily see the entire chain of events arising from the initial
trigger. We have used the step type ‘Other’ in order to allow us to indicate the delay
and to clarify that there is a wait at this point in the scenario.

4.3.2 CAPTURING ALTERNATIVE SCENARIOS

Scenarios describe a single sequence of steps that can occur. We partially capture alter-
natives using two techniques. The first technique is that with each scenario we include
a description of possible alternatives. These are usually minor variations on the scenario
that can be easily described.

Electronic Bookstore: Case study

Alternatives for the Query Late Books scenario:

Alternative 1: Book is within or close to expected estimate for delivery time so no
tracking is requested and steps 6 to 9 are deleted.

Alternative 2: The tracking information received indicates that the book is on its way,
so there is no need for a new delivery. Steps 7 and 8 are deleted.

Alternative 3: After a delay (and possible further requests and delays), no response
is received to the tracking request. This situation replaces the percept at step 6, but
other steps remain the same.

INTERFACE DESCRIPTION 47

The second technique for capturing alternatives is to use a collection of scenarios
that all relate to a single underlying process. For example, one scenario might describe
a normal book order (with minor variations) and another might describe a book order in
which the book cannot be obtained and the order is refunded.

Scenarios are intended to give a clearer idea of the system, not to fully define it. Given
that there is no attempt to describe all possible scenarios, it may be difficult to know when
enough have been developed. There should be a scenario written for at least one version
of each important process within the system. A good check is to ensure that all goals,
actions and percepts are included in at least one scenario. It is often useful to develop one
or two scenarios showing the system functioning when something unexpected happens or
an error occurs, to give a sense of how these things will be handled. However, it is usually
not productive to define large numbers of exceptional scenarios, as these can clutter the
design document and actually make it more difficult to understand the planned system.

Electronic Bookstore: Case study

The list of scenarios developed for the electronic bookstores is as follows:

• Book finding scenario

• Order book scenario

• Pending order arrives scenario

• Stock order scenario

• Stock arrival scenario

• Stock delayed scenario

• Missed stock arrival scenario

• Query late books scenario

• Order status query scenario

• Customer profile update scenario

• WWW site arrival scenario

• Cheaper price notification scenario

• New catalogue scenario

4.4 INTERFACE DESCRIPTION
Agent systems are typically situated in a changing and dynamic environment that can be
affected, though not totally controlled, by the agent system. An early question that must be
answered is, how is the agent system going to interact with the environment? Specifically,

48 SYSTEM SPECIFICATION

what input about the environment will be available to the agent system while it is running;
and what will the agent system do to interact with and affect the environment? In line
with standard texts on agents (Russell and Norvig 1995), we call the incoming information
‘percepts’ and the mechanisms for affecting the environment ‘actions’.

4.4.1 PERCEPTS AND ACTIONS

Percepts often require some processing in order to extract the information that is of
value to the agent system. For example, vision frames from a robot camera are not in
themselves what the agent system needs to reason about. They must first be processed
both to extract the symbolic data, such as ‘ball at 15, 10; robot at 25, 70’ and to extract
significant information from this symbolic data. If there is a stream of incoming data,
the agent system may want to react only when there is an event of some significance,
often determined by change from the previous situation. For example, if a soccer-playing
robot sees the ball when it did not do so previously, this is significant. Changes from
expectations can also indicate significance. For example, if our robot turns towards where
it expects to see the ball and does not see it, this is also significant.

In planning and designing the agent system around the percepts, the designer must
take into consideration how data is obtained – does it just arrive, or must the system
actively seek the data – as well as the exact nature of the data, and to what extent it can
be processed to provide information of interest. It is extremely important to investigate
and experiment early on with the exact nature of the percepts available to the system. It
is not uncommon for a whole system to be designed and implemented, only to find that
the quality of the incoming percepts simply does not allow for reliable provision of the
information required by the system.

In systems where percepts originate from physical sensing devices of some sort, the
data often contains significant amounts of noise, which may require the use of techniques
to filter and cleanse the data. This may be done outside the agent system, however, these
issues must be considered carefully at design stage and the developer must establish
exactly what it is possible to provide as percepts to the system.

Actions may also be complex, requiring significant design and development outside
the realm of the reasoning system, possibly including monitoring for failure or continual
feedback loops. This is especially true when manipulation of physical effectors is involved.
For example, a system may be designed to have an action move, with parameters giving
distance and speed. This action will require complex feedback loops within the effector
system to enable this action to be carried out. Even electronic actions such as sending a
message typically rely on additional low-level code, although this is usually provided in
communication interfaces and is not something the developer needs to consider.

Typically, an application has some number of obvious percepts and actions that
are the initial definition of how the system will interact with the environment. As the
specification is developed, the required interface also becomes further defined. It is
extremely important to ensure that these interfaces are correct and/or achievable.

In the electronic bookstore, some initial percepts and actions identified were

• WWW page display (action)

• Bank transaction (action)

INTERFACE DESCRIPTION 49

• Deliver book (action)

• Arrival at WWW site (percept)

• Bank transaction response (percept)

• Stock arrival (percept)

• User input (percept).

As the specification developed, particularly with the development of scenarios, addi-
tional necessary actions and percepts were noted, and some were modified. For example,
the electronic system was not able to actually Deliver book, so this was changed to an
action Place delivery request, which sent the delivery request to a courier or to the postal
room. The full list of percepts and actions is given below.

Electronic Bookstore: Case study

Following are the percepts and actions identified for the electronic bookstore.

Percepts

• Arrival at WWW site

• Bank transaction response

• Cheaper price report

• Failed stock arrival

• Tracking info

• No tracking response

• Stock arrival

• Stock order delay

• New catalogue

• User input

Actions

• Bank transaction

• E-mail stock order

• Place delivery request

• Request delivery tracking

50 SYSTEM SPECIFICATION

• Send e-mail

• WWW page display.

As the design develops, decisions may be made to pre-process percepts to provide
a number of different percepts to the system. For example, a fairly generic percept
such as ‘user input’ might be replaced by a collection of more specific percepts such
as ‘user book query’, ‘user book order’, and so on. The original incoming percepts
should still be documented, and information should be provided as to what processing
is required. However, they may no longer be a direct part of the interface to the agent
system.

At this stage, we simply develop lists of percepts and actions, but leave the descriptors
and the details until Architectural Design. However, notes may be kept and prototyping
done, to determine feasibility.

4.4.2 DATA

As scenarios and functionalities are developed, it is also important to note the data that is
a part of these. While developing functionalities and scenarios we note both data that is
produced and data that is used. An example of data produced by the Stock Management
functionality is the Stock database, while an example of data used in a scenario is the
Customer order data used in the first step of the Query Late Books scenario by the GOAL
step Determine delivery status.

At the system specification phase, we need to especially note any data that is external
to the agent system, as this forms part of the interface and should be specified at this
stage.

An additional part of the system interface that may need to be specified is the
interaction with any other software.

Electronic Bookstore: Case study

In the electronic bookstore, we identify two external data stores that we will use:
Courier DB and Postal DB. These contain information about courier companies’
areas/rates, and postal rates respectively.

In addition, we identify the following clusters of information, without as yet defining
all their details:

• Customer DB – contains information about customers, their profile, their history
of visits to the site and orders.

• Customer Orders – contains records of orders that have been (fairly recently)
sent.

CHECKING FOR COMPLETENESS AND CONSISTENCY 51

• Pending Orders – contains records of orders that have been placed but not yet
sent.

• Delivery Problems – contains records of queries about items that have not
arrived and the investigation of these situations.

• Books DB – contains a comprehensive listing of books, with information on
suppliers, prices, and so on. Not all books are necessarily stocked.

• Stock DB – contains records of books that are stocked.

• Stock Orders – contains records of stock orders placed and awaiting delivery.

4.5 CHECKING FOR COMPLETENESS
AND CONSISTENCY

One of the advantages of doing design in a structured way is that it becomes possible to
specify a range of checks for consistency and completeness. Many of these can actually
be automated, as is done for a number of them in the prototype Prometheus Design Tool.

NAMES SHOULD BE CONSISTENT

One of the most basic but nevertheless important checks is that names should be consis-
tent. A goal that is named credit check in one place in the design, should not be called
check credit in another place. While the designer may think the equivalence is obvious,
it can be very confusing for the person trying to understand the design – and certainly
it does not facilitate straightforward mapping to implementation. Having a design tool
greatly simplifies maintaining naming consistency.

EVERY GOAL IN A SCENARIO AND FUNCTIONALITY

At the system specification phase, the main checks that can be done apart from naming
consistency are to ensure that the system is adequately specified with respect to the
system goals. It is desirable for all goals to be in some way covered in a scenario. There
are three ways a goal can be covered:

• It can be specifically mentioned as a step or a trigger.

• All its sub-goals may be mentioned specifically.

• Its parent goal may be mentioned specifically.

All goals that are not labelled as abstract goals should also be contained in some
functionality. This is needed to ensure that they are addressed as the design progresses.

52 SYSTEM SPECIFICATION

SCENARIOS AND FUNCTIONALITIES FOR EVERY ACTION
AND PERCEPT

All percepts and actions should also be shown somewhere in a scenario, and should
belong to at least one functionality. If they are missing from the scenarios, then it is
possible that some significant behaviour has been overlooked. However, it may also
be that it is mentioned in a scenario variation, rather than being specifically covered.
For example, if the bank transaction response percept had been modelled as an accept
response and a reject response, it is quite possible that the reject response would occur
only in a scenario variation, rather than in a scenario step.

Checking at this phase is really a matter of drawing the attention of the developer
to things that may have been overlooked, rather than identifying things that are clearly
wrong or inconsistent. Nevertheless, automated support for this can be very helpful.

5

Architectural Design: Specifying
the Agent Types

Actions, percepts

Scenarios

S
ys

te
m

sp
ec

if
ic

at
io

n
A

rc
h

it
ec

tu
ra

l d
es

ig
n

D
et

ai
le

d
 d

es
ig

n

Interaction
diagrams

Initial
Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

Data
coupling

agent
acquaintance

shared
data

messages

Protocols

System goals

Process

final design
artifact

intermediat
design tool

e

crosscheck

derives

Key

Phases, artifacts and relationships in the design process

In the system specification phase we developed system goals, scenarios and functionality
descriptions. In the next three chapters we will cover the architectural design phase
where we use these artifacts as the basis for developing the high-level design of the
agent system. As noted earlier, it is expected that all the phases interact with each other,

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

54 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

1. Deciding on the agent types used in the application (Chapter 5)

1.1 Group functionalities into agents considering alternatives

1.2 Review coupling using agent acquaintance diagrams and decide
on a preferred grouping

1.3 Develop agent descriptors

2. Describe the interaction between agents using interaction diagrams and
interaction protocols (Chapter 6)

2.1 Develop interaction diagrams from scenarios

2.2 Generalise interaction diagrams to interaction protocols

2.3 Develop protocol and message descriptors

3. Design the overall system structure (described using a system overview
diagram, Chapter 7)

3.1 Identify the boundaries of the agent system and the interactions
with other sub-systems

3.2 Describe the percepts, and actions, and the relationships between
these and relevant agents

3.3 Define all shared data, both external persistent and internal shared
data

3.4 Develop the system overview diagram

Figure 5.1 The process of architectural design

and that developing the design is an iterative process, also involving implementation. The
aspects of architectural design covered in this and the subsequent two chapters interact
with each other as well as with system specification.

The three aspects that are developed during architectural design, as shown in Fig-
ure 5.1 are:

1. Deciding on the agent types used in the application.

2. Describing the interactions between agents using interaction diagrams and inter-
action protocols.

3. Designing the overall system structure (described using a system overview diagram).

This chapter focuses primarily on the process of deciding on the agent types to
be used, while Chapter 6 focuses on defining the interactions, and Chapter 7 covers the
system overview.

The architectural design defines what agents are to be a part of the system and how
these agents interact with each other to meet the required functionality of the system. It
defines the interface of the system to the external environment, and also the interfaces of
the individual agents within the system. As the design develops, it is also likely that aspects
of the previous stage are revisited and revised, to achieve a cleaner architectural design.

A major decision that is made during the architectural design is the types of agents
used. Agent types are formed by combining functionalities. The choice of how function-
alities are to be combined is made by considering the functionalities and scenarios and

ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES 55

developing possible groupings of functionalities into agents, which are then evaluated
according to the standard software engineering criteria of coupling and cohesion. One
proposed grouping of functionalities is better than another if it gives lower coupling and
higher cohesion.

☞ Definition: Coupling and Cohesion
Coupling: Coupling is a property of a group of components. The
coupling of components is the extent to which they depend on
one another. If a component A depends on component B, then
changing B may require changing A as well. Low coupling yields
a system in which changes are more likely to be localized. High
coupling yields a system in which changing one component is
likely to require changes to many other components, thus making
the system harder to change. In Agent systems coupling is exhibited
primarily in communication between agents, although use of a
shared data store is another possible form of coupling.

Cohesion: Cohesion is a property of a single component. A
component is cohesive if all of its parts are related. For example,
an object is cohesive if all its data and methods are related to a
single clear goal or functionality. There are a number of ways in
which an agent can exhibit cohesion. For example, it could manage
a series of actions that occur at the same time (e.g. initialization).
An agent could also be responsible for the operations involving
a particular data store, including consistency management. Most
often, cohesion in an agent is based on the goals of the agent being
closely related.

As with any design, there is a large space of possibilities and no clear right or wrong
decisions. What is provided here are some methods and tools to develop and document
a design, as well as some ways to evaluate the comparative merits of alternative design
options. The data coupling diagram and the agent acquaintance diagram are tools used
to develop and assess proposed groupings.

Once we have decided upon the agents in the system, we identify the pathways
of communication (which agents talk to which other agents) as well as the timing of
communication (which messages are followed by which other messages). The timing
of communication is captured initially in the scenarios: whenever an activity by an
agent is followed by an activity of another agent, there is, implicitly, communication
between them. This communication is depicted explicitly in agent interaction diagrams.
Like scenarios, interaction diagrams depict one possible sequence of messages between
agents. In order to describe all possible interactions, we develop interaction protocols;
depicted using the Agent UML (AUML) notation (Huget et al. 2003).

Finally, we specify the interactions between the agents, and the system interface in
terms of percepts, actions and external data. We also identify any shared data. The overall
design of the system is then depicted in the system overview diagram, which brings all
the items together. The system overview diagram is perhaps the single most important

56 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

product of the design process. It ties together agents, data, external input and output and
shows the communication between agents.

☞ Tip: It is possible to show some timing information in a sys-
tem overview diagram by marking the arcs between agents and
messages with numbers. However, our experience has been that,
except for very simple cases, this quickly becomes cumbersome
and complex. Generally, it is simpler to keep dynamic and static
information separate.

5.1 DECIDING ON THE AGENT TYPES

The single most important decision in the architectural design is which agents the system
will include. Different options are evaluated using the criteria of coupling and cohesion.
Each agent should be cohesive, in that it can be sensibly described with a short title.
The system of agents should be as loosely coupled as possible. It is preferable to have a
system in which each agent needs to know about only a limited number of other agents
within the system.

The steps we go through in this part of the process are:

1. Group functionalities into agents considering alternative groupings.

2. Review coupling (using agent acquaintance diagrams) and decide on a preferred
grouping.

3. Develop agent descriptors.

5.2 GROUPING FUNCTIONALITIES

Given a collection of functionalities, there are obviously many ways in which they can be
grouped into agents.1 At one extreme, every functionality could correspond to a different
agent. This is undesirable in that having closely related functionalities in different agents
leads to a high degree of dependency, or coupling, between agents. At the other extreme,
all of the functionalities could be grouped into a single agent. This is undesirable in
that grouping unrelated functionalities together leads to overly complex agents lacking
in cohesion.

1The term ‘agent’ is somewhat overloaded in that it can refer to both the ‘agent type’ and to the ‘agent
instance’. The agent type is a template for agents (similar to a class in object-oriented programming), whereas
the agent instance is a run-time entity (similar to an object in object-oriented programming). Context determines
which use of agent is intended. At times, we explicitly use ‘agent type’ or ‘agent instance’ for extra clarity, but
this is cumbersome if used constantly.

GROUPING FUNCTIONALITIES 57

The main reasons for deciding to group certain functionalities together into a single
agent are:

• The functionalities seem related – it ‘makes sense’ to group them. For example,
the Price setting and Competition management functionalities in our case study are
clearly related.

• The functionalities require a lot of the same information. If grouped into a single
agent, this can then be represented in internal agent data structures. If separate agents
are used, the information must be passed via messages unless a shared data store is
used, which is not usually a good design decision (see Section 7.4 on page 88).

Reasons for not grouping functionalities are primarily the following:

• The functionalities are clearly unrelated

• The functionalities exist on different hardware platforms

• Different numbers of functionalities are required at run time.
For example, you might have two related functionalities: an Online Interaction
functionality, and a Customer Contact functionality, both of which have to do with
customer interaction. However, the Online Interaction functionality is required to
be part of an agent type where there is one agent per active user. The Customer
Contact functionality, on the other hand, is required to be in an agent type where
there is a single agent of this type in the system. Although the two functionalities
are related, we cannot group them together in a single agent type because we cannot
simultaneously have exactly one agent of a given agent type and multiple agents
of a given type. We term this situation a cardinality mismatch.

Other reasons for not grouping functionalities include security and privacy – if data
associated with one functionality should not be available to another functionality; and
modifiability – if a functionality will change, or will be modified by different people.

One technique that we use to systematically examine the properties that lead to cou-
pling and cohesion is the data coupling diagram. Potential groupings are then evaluated
and possibly refined using an agent acquaintance diagram. We explain each of these in
detail in the following sections.

DATA COUPLING DIAGRAMS

One strong reason for grouping functionalities together is data coupling – they use the
same data. In order to more easily visualize groupings suggested by data coupling, we
can use the functionality descriptors to develop what we call data coupling diagrams.

A data coupling diagram consists of the functionalities and all identified data (not only
persistent data but also data that the functionalities require to fulfil their job). Directed
links are then inserted between functionalities and data, where an arrow pointing towards
the data indicates the data is produced or written by that functionality, whereas an arrow
pointing towards the functionality indicates the data is used by the functionality. A
double-headed arrow indicates that the functionality both uses and produces the data.

The diagram must be checked to ensure that all data is produced somewhere, unless
it has been determined that it is provided externally on system start-up and is static.

58 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

Functionality A

Functionality B

Functionality C

Functionality D

Functionality E

data 1 data 2

Figure 5.2 Simple data coupling diagram

Also, the existence of data that is produced but not used usually indicates an omission
elsewhere in the design.

Once the diagram is complete, it can then be assessed visually for groupings that are
linked by their data use. When assessing the diagram visually, we are looking for clusters
of functionalities around data. Each such grouping must also be assessed for cohesion – do
the functionalities fit naturally together into a single area of responsibility? It must also be
assessed with respect to whether there is some reason to keep the functionalities separated.

☞ Tip: Checking that all data is produced/written by some func-
tionality can often reveal missed ‘data produced’ fields in the
functionality descriptors. This is where a functionality should pro-
duce certain data, but this fact has not been recorded in the design.
This is a typical example of refinements and revisions that are
commonly made to the system specification documents during the
architectural design stage.

Consider the simple example data coupling diagram in Figure 5.2. We see that A
and B exhibit data coupling as do C and D, while E is not data-coupled to anything.
Let us assume that A, B, C and E are somewhat conceptually related, while C is also
conceptually related to D. Let us also assume that C should not be in the same agent as A,
as they need to be on different platforms. We tentatively put A and B into agent X, because
of their data coupling, and C and D into agent Y. These decisions are consistent with
cohesiveness, and also avoid the undesired grouping of C with A. Since E is conceptually
related to A and B, it could be included into agent X without destroying cohesion.
Alternatively, we could create a third agent, Z, containing functionality E. Consequently,
we decide to consider two alternative groupings: {Agent X = A, B, E; Agent Y = C, D}
or {Agent X = A, B; Agent Y = C, D; Agent Z = E}. Both these designs can then be
considered further.

GROUPING FUNCTIONALITIES 59

We note that the data coupling diagram does not capture all interaction between
functionalities: some interaction may be based on message passing, possibly for transfer
of control as well as of data. For instance, a sales transaction functionality may pass
control to a delivery management functionality once it has completed its job. We have
experimented using diagrams that show this kind of interaction, but have not found these
as useful as the data coupling diagrams.

Electronic Bookstore: Case study

Taking the functionality descriptors for the electronic bookstore (see Appendix A)
and drawing a data coupling diagram, we obtain the figure below:

Customer
DB

Customer
orders

Stock DB

Stock
orders Pending

orders

Delivery
problems

Books DB

Postal
DB

Courier
DB

Customer
contact

Welcoming
Online

interaction

Purchasing

Profile
monitor

Lost goods
management

Delivery
handling

Price
setting

Competition
management

Book
finding

Stock
management

Catalogue
management

Initial data coupling diagram

We have highlighted the produced by arrows by making them heavier as it is most
critical to keep writing of a data source within a single agent.

Sometimes, as in the bookstore example, there are initially no clear groupings that
emerge from the data coupling diagram. In such a case, it is necessary to then make some
design decisions that enable groupings to be made. These may include such things as
deciding that a particular functionality will manage all interactions (or at least all writing)
with a particular data store, or rethinking the details of scenarios and functionalities to
eliminate some of the complexity of data interactions.

60 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

Electronic Bookstore: Case study

In the initial bookstore data coupling diagram (shown previously), we observe that
there are many produced by arrows from different functionalities for the data sources
Customer DB and Customer Orders. We make the design decision that all writes
to these data sources will go via the functionalities Profile Monitor and Delivery
Handling. We remove all produced by arrows to these data sources, other than from
these functionalities. At this point, there emerge three clusters of functionalities (i.e.
potential agents) as shown in the following figure.

Customer
DB

Customer
orders

Stock
DB

Stock
orders

Delivery
problems

Books
DB

Postal
DB

Courier
DB

Customer
contact

Welcoming
Online

interaction

Purchasing

Profile
monitor

Lost goods
management

Delivery
handling

Price
setting

Competition
management

Book
finding

Stock
management

Catalogue
management(1)

(2)

(3)

Pending
orders

Natural functionality groupings after removing write links

• The first cluster (1) involves Stock management and Price setting. The Stock
DB is written to by both Price setting and Stock management and so we want
to keep the two functionalities in the same agent. The book finding function-
ality reads both the data stores here and so we (for now) put it in the same
agent.

• The second cluster (2) revolves around the Customer DB and interactions with
the customer. These functionalities read and write the Customer DB and some
also read Customer Orders.

• The third cluster (3) is the functionality and data stores associated
with delivering orders. Note that we have moved the data stores

GROUPING FUNCTIONALITIES 61

Courier DB and Postal DB outside the cluster as we have previously determined
that these will be external data stores.

• The functionality for Lost goods management stands alone at this stage and
could be incorporated into one of the three clusters.

We have indicated previously a number of reasons for and against grouping partic-
ular functionalities together, and these must all be considered in relation to the initial
groupings suggested by the data coupling diagram. Depending on the situation, these
considerations may even result in design decisions being made prior to the initial data
coupling diagram. For example, if it is known that certain functionalities are required to
reside on a separate hardware platform, a decision may be made early on as to which data
stores are required on that platform. Two data coupling diagrams may then be developed,
one for each platform, to facilitate further decisions about groupings into agents.

Cardinality is one of the key issues to consider, and this is addressed for the bookstore
example that follows.

Electronic Bookstore: Case study

In analysing the grouping so far with respect to cardinality issues, we note that the
functionalities Online interaction, Welcoming and Purchasing all require one instance
per customer, whereas Profile monitor and Customer contact require one instance for
the whole system. Consequently, we split these into two separate groupings as follows.
Note that when splitting the clusters, data is kept with the functionalities that produce it.

Customer
DB

Customer
orders

Stock DB

Stock
orders

Delivery
problems

Books DB

Postal DB

Courier DB

Customer
contact

Welcoming
Online

interaction

Purchasing

Profile
monitor

Lost goods
management

Delivery
handling

Price
setting

Competition
management

Book
finding

Stock
management

Catalogue
management

N
1

1

1

Pending
orders

Revision due to cardinality differences

62 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

As has been indicated previously, cohesion is extremely important, and whatever
clusterings are being considered, cohesion of the resulting groupings is a major concern.
Adjustments to groupings may well need to be made or considered in order to improve
this design aspect.

Electronic Bookstore: Case study

The first issue we look at in reviewing cohesion is whether the Lost goods management
functionality can sensibly be placed with any of the existing clusters. We determine
that it belongs well with Delivery handling, in a grouping that deals with deliveries
of customer orders.

We also consider whether Book finding may fit better, in terms of cohesion, with the
Online interaction grouping than with the Stock management one. The next figure
shows both the above changes. We decide to explore two possible agent groupings,
with the two alternative placements of Book finding.

Customer
DB

Customer
orders

Stock DB

Stock
orders

Pending
orders

Delivery
problems

Books DB

Postal DB

Courier DB

Customer
contact

Welcoming
Online

interaction

Purchasing

Profile
monitor

Lost goods
management

Delivery
handling

Price
setting

Competition
management

Book
finding

Stock
management

Catalogue
management

Modifications based on cohesion considerations

The result of the analysis described (step 1 on page 56) is some number of designs
where a design is a set of possible agent types and an agent is a collection of functional-
ities. The next step is to assess each proposed design (i.e. set of agent types) and decide
on the most appropriate one.

REVIEW AGENT COUPLING – ACQUAINTANCE DIAGRAMS 63

☞ Tip: A simple but well-used and effective heuristic for assess-
ing cohesiveness is whether a suitable name for the agent can be
found that adequately encompasses all of its functionalities. An
agent that is cohesive should be able to be described by a single
term without any conjunctions (‘and’). For example, Sales Assis-
tant agent is a simple descriptive name suitable for the combination
of the functionalities of Book Finding, Purchasing, Welcoming and
Online interaction. This suggests that the grouping of function-
alities is cohesive. While only a ‘rule of thumb’, this is often
an effective (and quick) way of assessing cohesion in proposed
designs.

5.3 REVIEW AGENT COUPLING – ACQUAINTANCE
DIAGRAMS

One of our design criteria is to aim for a system that is as loosely coupled as possible.
We do not want all agents to have to know about all other agents.

In order to evaluate a potential grouping for coupling, we use an agent acquaintance
diagram. This diagram represents each of the agent types. Information about agent
interaction is extracted from the functionality descriptors and each agent is linked with
the other agents it interacts with. Links can be decorated with the cardinality of the
relationship if desired (e.g. one Stock Manager agent interacts with many Sales Assistant
agents).

We then analyse the resulting diagram in two ways. One is simply an analysis of the
density of the links within the diagram. It is a measure of the ratio of the actual coupling
to the maximal possible coupling. If the system has four agents, then each agent could
potentially be linked to a maximum of three other agents, giving a total number of 4∗3/2
possible links.2 To get the link density, we simply count the links and divide by this
number.

It is likely that all agents in the system are linked in some way, and if this is the case,
the minimum number of links will be one less than the number of agents. An obvious
design that has such a number of links is a star design, where each agent is coupled to
one central agent. Although this has a low level of coupling, it is an undesirable design
for two reasons: firstly, change to the central agent type is likely to affect many of the
other agents; and secondly, it is a situation that can potentially lead to a bottleneck at
run time when many agents are trying to communicate with a single agent.

Consequently, we also consider bottlenecks. If we ignore agent cardinality, the bot-
tleneck factor can be assessed simply by examining the number of links that an agent
has. The largest number of links from an agent type can be used as an indication of the
worst bottleneck in the system for the purpose of comparing designs.

2Links are not directional, so a link from A to B is the same as a link from B to A, hence the division by two.

64 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

n

n

n

1
possible
runtime
bottleneck

many dependencies
if design change

Figure 5.3 It is important to consider different kinds of bottlenecks in the design

However, it is also important to consider situations in which there are some larger
numbers of agent instances of a given type as this can produce run-time bottlenecks
(Figure 5.3). For example, if we have multiple Sales Assistant agent (one per customer)
communicating with a single Stock Manager agent, this is a potential run-time bottleneck.
To decide whether it is actually a problem requires consideration of the actual situation
– how many customers do we expect to be dealing with concurrently, and how many
interactions do we expect the Sales Assistant agent to have with the Stock Manager
agent? It is not possible to provide a metric for assessing bottlenecks, partly as the
number of instances is often not fixed, but rather is a function of system usage – for
example, one Sales Assistant agent for each customer. Also, the numbers themselves
do not necessarily provide useful information. Rather, it is important to consider the
possible bottleneck issues and weigh these against the various other factors in deciding
the preferred design.

A design with lower link density is less highly coupled and is therefore preferable, all
else being equal. However, issues such as bottlenecks and cohesion, as well as possible
additional factors such as agent size, must all be considered.

Electronic Bookstore: Case study

The agent acquaintance diagram is identical for each of the two groupings to be
considered in our electronic bookstore example and is shown below:

Stock
Manager

Sales
Assistant

Delivery
Manager

Customer
Relations

1

1

1 1

11

n

n

Agent coupling diagram

DEVELOP AGENT DESCRIPTORS 65

We note that this configuration is quite highly coupled, with a link density of 4
6 .

We also observe that there are potential run-time bottlenecks with multiple Sales
Assistant agents talking to one of the other agents. However, on consideration it is
not felt that the number of Sales Assistant agents or the volume of communication
will be a problem.

Possibly, further design work could lead to a more decoupled design that was also
cohesive and met all constraints. However, we decide to continue with the design that
incorporates Book finding into the Sales Assistant agent.

☞ Tip: The agent acquaintance diagram can also be used to review
whether all the links are in fact necessary. Often, in reviewing
an agent acquaintance diagram some links seem natural – you
would expect those agents to interact – whereas others appear less
intuitive. It is often possible to eliminate some of the less intuitive
interactions by revisiting the scenarios and revising ideas as to
what should happen when. This can often lead to a cleaner, more
decoupled design than was initially possible.

5.4 DEVELOP AGENT DESCRIPTORS

The decision as to which design is to be pursued is made after reviewing the agent
acquaintance diagrams and considering issues such as agent size and cohesion.

During and after making the decision as to which agent types we will have within
the system, there are a number of questions that need to be resolved:

• How many agents of each type will there be (singleton, a set number, or multiple
instances based on dynamics of the system, for example one Sales Assistant agent
per customer that arrives at a website)?

• What is the lifetime of each agent? If agents are created or destroyed during normal
system operation (i.e. other than at start-up and shut-down of the whole system),
what triggers this? For example, a new agent might be created when a user accesses
the system for the first time.

• Agent initialization – what needs to be done?

• Agent demise – what clean up needs to be done?

Each agent type should have an agent descriptor containing the just-mentioned infor-
mation plus the name of the agent, a natural language description of what this agent
does within the system and a list of the functionalities from the previous phase that are
incorporated within this agent.

In addition, we extract from the functionality descriptors the following information
that becomes a part of the agent descriptor:

66 ARCHITECTURAL DESIGN: SPECIFYING THE AGENT TYPES

• What are the goals of this agent?

• What percepts will this agent react to?

• What actions (if any) will it take?

• What data does this agent use or produce?

We also require a brief description of the interaction protocols that it uses.
Additional details are also added during Detailed Design. The complete descriptor

can be seen in Appendix A.

Electronic Bookstore: Case study

For example, consider the following agent descriptor from our electronic bookstore
example:

Name: Sales Assistant agent.
Description: Greets customer, follows through site, arranges purchases.
Cardinality: One/customer.
Lifetime: Instantiated on customer arrival at site. Demise when customer logs out or
after inactivity period.
Initialization: Obtains cookie. Reads Customer DB, Stock DB.
Demise: Closes open DB connections.
Functionalities included: Online interaction, Purchasing, Welcomer, Book finding.
Uses data: Customer DB, Customer Orders, Books DB, Stock DB.
Produces data: Customer preferences, orders, queries
Goals: Welcome customer; Update customer details; Respond to queries; Facilitate
purchases;
Percepts responded to: Arrival at WWW site, Bank transaction response.
Actions: WWW page display, Bank transaction
Protocols and interactions: Book finding with Stock Manager, Book ordering and
Order status querying with Delivery Manager.

6

Architectural Design: Specifying
the Interactions

Protocols

Actions, percepts

Scenarios

Interaction
diagrams

Initial
Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

Data
coupling

agent
acquaintance

shared
data

messages

System goals

Process

final design
artifact

intermediate
design tool

crosscheck

derives

Key

S
ys

te
m

sp
ec

if
ic

at
io

n
A

rc
h

it
ec

tu
ra

l d
es

ig
n

D
et

ai
le

d
 d

es
ig

n

Phases, artifacts and relationships in the design process

Once the agent types are decided, the next aspect of the architectural design is to specify
the interaction between agents, capturing the dynamic aspects of the system. This builds
on both the agent types and also on the scenario descriptors from the System Specification
phase.

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

68 ARCHITECTURAL DESIGN: SPECIFYING THE INTERACTIONS

The development of the specification of the interaction between agents (step 2 in
Figure 5.1) has the following stages:

1. Develop interaction diagrams from use case scenarios.

2. Generalize interaction diagrams to interaction protocols.

3. Develop protocol and message descriptors.

Like use case scenarios, interaction diagrams describe only a single example of the
system’s behaviour. The fully specified interaction protocols are then developed from
these and are the final design artifact.

6.1 INTERACTION DIAGRAMS FROM SCENARIOS

Interaction diagrams are borrowed directly from object-oriented design, but show interac-
tion between agents rather than objects. The process for developing interaction diagrams
is to take the scenarios developed in the specification phase and to build corresponding
interaction diagrams.

This involves (a) replacing each functionality with the agent that includes it; (b) inser-
ting a communication between agents where it is needed and then (c) expressing the result
as an interaction diagram. This process is summarized in Figure 6.1.

For example, suppose we have a scenario that includes the following steps:

1. GOAL: Update user record (functionality Student Records)

2. GOAL: Check money owing (functionality Student Finances)

3. GOAL: Request graduation (functionality Graduation)

Use case

1. X F1

2. Y F2

3. Z F3

· · ·

Use case

1. X, Y A1

3. Z A2

· · ·

Messages (agents)

2:3 A1 → A2:m2

· · ·· · ·

(a)

(b)

A1:F1, F2

A2:F3

Agent grouping

A1 A2

m2

Interaction Diagram

(c)

Figure 6.1 From use case scenarios to interaction diagrams

INTERACTION DIAGRAMS FROM SCENARIOS 69

Suppose that the first two functionalities (Student Records and Student Finances) are both
in an agent ‘Student Manager’ and that Graduation is in an agent ‘Awards’. Then the
first two steps are done by Student Manager and the third step by Awards. The Awards
agent needs to be told (by Student Manager) when to request a graduation, thus there is
a message from Student Manager to Awards after step 2 (and before step 3).

Of the three steps depicted in Figure 6.1, the first and third are quite simple. Step (a)
involves replacing functionalities with agents on the basis of the grouping of function-
alities into agents. If a functionality F has been grouped into agent type A, then steps
in a use case scenario that are done by the functionality F are considered to be done by
the agent A.

The result of step (b) is a list of messages. Step (c) involves a simple change of
notation from this list of messages (with sender, recipient and message details) to the
interaction diagram notation.

☞ Definition: Interaction Diagram Notation: The notation used
for interaction diagrams is standard. Time increases as one moves
down the page. Each agent has a lifeline, depicted as a vertical
line with the name of the agent in a box at the top of the line.
Messages are depicted as horizontal arrows between lifelines with
a brief description of the message above the arrow. The simple
example below shows two agents named User and System where
the User sends a Query message to the System. This is followed
by the System sending a Response message to the User.

User System

Query

Response

☞ Tip: Depicting Actions and Percepts: Sometimes, showing
actions and percepts on interaction diagrams can be important. For
example, often an interaction is triggered by a percept. There are a
number of ways that actions and percepts can be depicted in inter-
action diagrams. They can be shown as messages from an invisible
lifeline (left in the example below), they can be shown as text on
the lifeline of the relevant agent (centre in the example below), or
they can be shown as messages to an explicit environment lifeline
(right-hand side, below).

Agent Agent Agent Environment

Percept Percept

Action Action
Percept

Action

70 ARCHITECTURAL DESIGN: SPECIFYING THE INTERACTIONS

In the remainder of this section, we focus on the interesting step: determining where
communication between agents is required. Wherever there is a step in the scenario
that involves a functionality from a new agent, there must be some interaction from a
previously involved agent to the newly participating agent. While it is not possible to
automatically derive the interaction diagrams from the use case scenarios, substantial
consistency checking is possible (see Section 4.5).

More generally, determining when communication between agents is needed (step (b)
above) involves identifying the sequential dependencies between steps in the scenario.
Whenever a step n must occur after step m (and the two steps are performed by func-
tionalities that are not in the same agent), then there needs to be a message.

Analysing the sequential dependencies will identify where messages are required, and
we then need to name the message type, and eventually develop a message descriptor
for the type. Initially, it is usually useful to assume that each message in an interaction
diagram (or protocol) is a new type (i.e. has a unique name). It may later be possible to
coalesce some number of messages into a single implementation type, but for clarity of
design information, they should usually be kept separate at this stage.

In many use case scenarios, the steps are sequential: step 2 must occur after step 1,
step 3 must occur after step 2, and so on. However, this is not always the case. For
example, looking at Figure 6.2 showing the end of the scenario where a user buys a
book (Order Book scenario), the last three steps involve the Stock Manager logging the
outgoing delivery (step 12 below), the customer relations agent registering the purchase
in the user’s profile (step 13) and sending the customer an e-mail (step 14). Although the
use case scenario presents these steps in a particular order, in fact they are not required
to occur in that order.

Looking at Figure 6.2, we see that steps 10 and 11 are in the same agent (actually
in the same functionality), so no message is required. We now consider a number of
possible dependencies in the remaining steps.

Option 1: The steps are required to be in the given sequence, that is, step 12 must
occur after step 11, step 13 after 12 and step 14 after step 13.

In this case, we would clearly need messages from Delivery Manager to Stock Man-
ager, and Stock Manager to Customer Relations. We might consider that as steps 13
and 14 are within the same agent, no message is required here. This would require the
Profile Monitor functionality to tell the Customer Contact functionality to e-mail the
customer when it has finished registering the purchase. However, this design decision
would not be a good one: this scenario is dealing with ordering books, and the Profile
Monitor should not be responsible for telling the Customer Contact functionality that it

Step Functionality Agent
...

10. Place delivery request Delivery Handling Delivery Manager
11. Log outgoing delivery Delivery Handling Delivery Manager
12. Log books outgoing Stock management Stock Manager
13. Update Customer Profile Profile Monitor Customer Relations
14. Send email Customer Contact Customer Relations

Figure 6.2 Final steps in a scenario, showing also agent information

INTERACTION DIAGRAMS FROM SCENARIOS 71

should let the user know that their order has been sent. Consequently, we require the
Delivery Manager to notify the Customer Relations agent when it is time to send e-mail
to the customer. This requires the addition of a reply message to the Delivery Manager,
indicating when the profile updating is completed, as is shown in Figure 6.3.

Option 2: Steps 12, 13 and 14 must all occur after step 11, but can occur in any order.
In this case, after step 11, messages are sent from the Delivery Manager to the other two
agents, as shown in Figure 6.4 Because the interaction diagram captures a particular
ordering, showing of this potential parallelism is left for the interaction protocol. The
interaction diagram simply captures the same (arbitrary) ordering as that shown in the
use case scenario. However, establishing whether there is a need for strict sequencing
can effect what messages are necessary, as we have seen.

☞ Tip: In some cases, hard-to-read interaction diagrams can be
improved by changing the order of the agents. For example, the
following diagram is not very readable.

SalesAssistant Stock Manager DeliveryManager

UserQuery ?

DeliveryQuery ?

TrackOrder

Investigating

TrackingResponse

UpdateStock ?

BookResent

<Wait for response>

However, by changing the order of agents, we obtain a more read-
able diagram:

DeliveryManager SalesAssistant Stock Manager

UserQuery ?

DeliveryQuery ?

TrackOrder

Investigating

TrackingResponse

UpdateStock ?

BookResent

<Wait for response>

☞ Tip: Including the trigger: The table of steps in the use case
scenario may not include the trigger. When developing the interac-
tion diagrams, consider whether it is useful to include the triggering
message or percept within the interaction diagram.

72 ARCHITECTURAL DESIGN: SPECIFYING THE INTERACTIONS

Delivery Manager Stock Manager Customer Relations

LogOrder

RegisterPurchase

PurchaseRegistered

SendEmail

...

Figure 6.3 Option 1, interaction diagram for sequential steps in scenario

Delivery Manager Stock Manager Customer Relations

LogOrder

RegisterPurchase

SendEmail

...

Figure 6.4 Option 2, interaction diagram where strict sequencing from scenario was not
necessary

Following is a larger worked example from the Electronic Bookstore.

Electronic Bookstore: Case study

Here is the outline of the Query Late Books Scenario developed in the first round
of scenario descriptions:

Query Late Books Scenario
Trigger: User query (via Online Interaction)

Key for functionalities:

DH Delivery Handling
LGM Lost Goods Management
CC Customer Contact
SM Stock Management

Step type Step Functionality

1 GOAL: Determine delivery status DH
2 GOAL: Log delivery problem LGM
3 ACTION: Request delivery tracking LGM
4 GOAL: Inform customer CC

INTERACTION DIAGRAMS FROM SCENARIOS 73

5 OTHER: Wait for response DH
6 PERCEPT: Tracking info received DH
7 GOAL: Arrange delivery DH
8 GOAL: Log books outgoing SM
9 GOAL: Inform customer CC
10 GOAL: Update delivery problem LGM

We begin by replacing functionalities with agents. We use numbers in brackets to
indicate steps that occur in the same agent as the preceding step.

Key for agents:

DM: Delivery Manager
CR: Customer Relations
SM: Stock Manager

Step type Step Agent

1 GOAL: Determine delivery status DM
(2) Log delivery problem DM
(3) Request delivery tracking DM
4 GOAL: Inform customer CR
5 delay . . .

6 PERCEPT: Tracking info received DM
(7) Arrange delivery DM
8 GOAL: Log books outgoing WM
9 GOAL: Inform customer CR
10 GOAL: Update delivery problem DM

We now consider the dependencies between these steps. Steps 1 to 3 are within an
agent, and so we do not capture the dependencies between them at this level.

Step 4, informing the user that tracking has been requested, can be done in parallel
with steps 1 to 3, or could be required to be done only after the delivery tracking
has actually been requested. In this case, we assume the latter: the system will wait
until tracking has been requested before telling the user that it is investigating. By
showing step 3 on the interaction diagram, we can show that step 4 must occur after
the tracking is initiated.

Steps 5 (delay) and 6 (percept being received) must occur in sequence after step 4,
and are thus shown in that order on the interaction diagram.

Step 7 (arrange delivery) is required to occur after step 6, but since it is internal to the
Delivery Manager agent (which has just received the percept in step 6), no inter-agent
communication is required.

74 ARCHITECTURAL DESIGN: SPECIFYING THE INTERACTIONS

Step 8 (log books outgoing) is required to be after step 7 (arrange delivery), because
we do not want to log books as being sent until we are certain that the delivery has
been arranged and they will be sent. So, once delivery has been arranged (which is not
shown in the interaction diagram), the Delivery Manager sends a message (Update
Stock) to the Stock Manager, at which point the Stock Manager can log the outgoing
books.

Step 9 (inform customer) is required to be after step 7 (but not necessarily after
step 8): we do not want to tell the customer that their books have been resent until
we know that they actually will be sent (i.e. after step 7), but we do not need to
wait for the stock to be updated in order to tell the customer, so step 7 and step 8
can occur in parallel. Thus, after step 7 there the Delivery Manager sends a message
(Book Resent) to the Customer Relations.

The two messages (triggering steps 8 and 9) can be sent simultaneously.

Finally, step 10 is required to be after step 7: we do not need to wait for the customer
to be informed or for the stock records to be updated in order to update the delivery
problem record, but we do want to wait for the delivery to be arranged. So, step 10
must come after step 7; since both steps are performed by the Delivery Manager, the
dependency is internal and no message is required between agents.

This yields the following interaction diagram. Note that the trigger of the scenario
is a Delivery Query message (possibly from Customer Relations or Sales Assistant)
received by the Delivery Manager.

Customer Relations Delivery Manager Stock Manager

Delivery Query

Investigating

Update StockBook Resent

Request Delivery Tracking

Wait for response

<Tracking Response received>

6.2 INTERACTION PROTOCOLS FROM
INTERACTION DIAGRAMS

As with scenarios, we would expect to have only a representative set of interaction dia-
grams, not a complete set. In order to have complete and precisely defined interactions,

INTERACTION PROTOCOLS FROM INTERACTION DIAGRAMS 75

Merchant Bank

Credit check request

System Unavailable
Break

Card details request

Abort
Break

Card details

Approve

Reject

Fraud
Option

Parallel

Alternative

sd Credit Check

Figure 6.5 Protocol diagram for credit checking

we progress from interaction diagrams to protocols that define exactly which interaction
sequences are valid within the system. Because protocols must show all variations, they
are often larger than the corresponding interaction diagram and may need to be split into
smaller chunks.

In order to give an example of developing a complete interaction protocol, we
need a notation for describing interaction protocols. Since interaction protocols include
sequencing, choices, iteration and other control structures, the notation needs to be quite
expressive. A range of notations exist for describing protocols including UML activity
diagrams, AUML (Agent UML) (Odell et al. 2000), and Petri nets (e.g. (Cost et al.
1999; Nowostawski et al. 2001; Poutakidis et al. 2002)). We will be using the revised
version of Agent UML, (Huget et al. 2003) currently under development.

Developing protocols is done by considering alternatives. For each message (or per-
cept) that an agent receives, we ask ‘what are the possible messages that the agent could

76 ARCHITECTURAL DESIGN: SPECIFYING THE INTERACTIONS

send as a response?’ We then repeat the process for these messages. More generally, we
ask ‘what are the possible continuations (i.e. sequences of messages)?’

In some cases, the alternatives are best described in terms of parallelism or
looping. For example, if an interaction diagram shows message m1 followed by m2
and an alternative is that m2 is sent first followed by m1, then we could describe
this as an alternative, but it is simpler to say that the two messages are sent in
parallel.

For example, consider a credit card–checking protocol involving a merchant and
a bank. The protocol starts with the merchant sending the bank a credit card request
message. The bank will respond to this with a card details request; there are no alternative
responses. The merchant, upon receiving the card details request, will respond with the
card details; again there are no alternative responses. When the bank receives the card
details, it can respond with a number of possible messages. One possibility is to respond
with an Approve. Another possibility is to respond with a Reject. Finally, in some cases,
the bank will respond with both a reject message (to the merchant) and also a Fraud
message. Figure 6.5 shows this protocol. Note that sending Reject and Fraud can happen
in either order or simultaneously.

In considering possible alternatives, one source of possibilities is the variation field
of the use case scenarios. Another source of possibilities is different use case sce-
narios. Often, there will be multiple scenarios that relate to the same concepts. For
example, one scenario might show what happens when a customer orders a book that
is in stock and another scenario might show what happens when a customer orders an
out-of-stock book. Since interaction protocols are meant to cover all possibilities, we
would consider both of these use case scenarios to be alternatives in a single interaction
protocol.

Electronic Bookstore: Case study

The diagram below shows the protocol for the query late books use case scenario.

In developing it from the interaction diagram given earlier, we considered at each
step what were the possible alternatives. In this case, we focus on the alternatives that
occur in response to the tracking request. The use case scenario given in Chapter 4
outlines three variations to the case where the book is determined to be lost and is
resent:

1. The book is within (or close to) the time window of expected delivery. In this
case, no request is issued to track the order and the user is informed that the
order is expected soon.

2. The tracking information received indicates that the book is on its way, thus
there is no need for a new delivery.

3. The tracking request does not return any information (NoTrackingResponse). In
this case, the book is resent.

DEVELOP PROTOCOL AND MESSAGE DESCRIPTORS 77

Customer Relations Delivery Manager Stock Manager

Delivery Query

Book Expected Soon

Option

Investigating

Book Resent

Update Stock

Parallel

Book Located

Alternative

Book Resent

Update Stock

Parallel

Alternative

sd Query Late Books

[Within expected delivery time]

End

Request Delivery Tracking

<delay: wait for response>

<Tracking Response received>

[Book not found]

[Book located]

<No Tracking Response>

End

6.3 DEVELOP PROTOCOL AND MESSAGE
DESCRIPTORS

As with each of the final design entities in the system, we have descriptors for protocols
and for messages. Descriptors allow us both to collect together information existing in
other places and also to specify additional details about the particular entity.

78 ARCHITECTURAL DESIGN: SPECIFYING THE INTERACTIONS

The template that we use for the protocol descriptor is as follows:

• Name

• Description – brief natural language description

• Scenarios – lists the scenarios that are included in this protocol

• Agents – lists the agents involved in the protocol

• Messages – lists the messages involved in the protocol

• Notes – and other miscellaneous information.

During protocol development, a number of messages have been identified, which are
the messages between agents in the system. In some cases, there are inter-agent messages
that do not require a protocol, as they are a single message, or a message reply pair. If
desired, these can be specified as degenerate protocols, but they can also be specified
simply as messages.

In detailed design, there will also be additional internal messages added to the design.
Descriptors for messages clearly need to contain information about the content of

the message. It is also useful to indicate the purpose of the message, which may be, for
example, to transfer control to another agent or functionality, to request a service, or to
update information.

For example, a Sales Assistant agent in the Electronic Bookstore may tell the Stock
Manager that a book has been sold, with the primary purpose of updating the Stock
Manager’s records. The same Sales Assistant agent may send a message about the sale
to a cashier agent with the primary purpose of transferring control to the cashier agent,
which will then obtain necessary details for doing the financial transaction. Messages
may of course perform multiple functions.

Fields in our template descriptor for messages are as follows:

• Name – brief identifier
• Description – natural language description containing any relevant information
• From agent
• To agent
• Purpose – for example, update of data, request service, transfer control, and so on
• Information carried – what information fields will this message carry.

Some additional fields will be described and added during detailed design.

Electronic Bookstore: Case study

An example message from the Electronic Bookstore is Order Sent, which is sent by
the Delivery Manager agent to the Customer Relations agent when a pending order
has been sent out.

DEVELOP PROTOCOL AND MESSAGE DESCRIPTORS 79

• Name – Order Sent.

• Description – contains information about the contents of a pending order that
has now been sent. It allows the sending of notification to the customer and
updating of the customer record.

• From agent – Delivery Manager.

• To agent – Customer Relations.

• Purpose – to update the customer record and also to trigger sending an e-mail
to the customer, if appropriate.

• Information carried – order reference, list of books sent, customer ID, date,
carrier.

7

Finalizing the Architectural
Design

Actions, percepts

Scenarios

Interaction
diagrams

Initial
Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

Data
coupling

agent
acquaintance

shared
data

messages

Protocols

System goals

Process

final design
artifact

intermediate
design tool

crosscheck

derives

Key

S
ys

te
m

sp
ec

if
ic

at
io

n
A

rc
h

it
ec

tu
ra

l d
es

ig
n

D
et

ai
le

d
 d

es
ig

n

Phases, artifacts and relationships in the design process

Having specified the agents within the system and the communications between them,
we now bring this information together in a System Overview Diagram, which captures
diagrammatically the overall architecture of the agent system. In order to do this, we also
need to develop a fuller understanding of the data needed as well as of the environmental

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

82 FINALIZING THE ARCHITECTURAL DESIGN

information that will be responded to and the actions that the agent may take within the
environment.

7.1 OVERALL SYSTEM STRUCTURE

In building a multi-agent system, it is often the case that some portions of the overall
system are more appropriately developed outside of an agent paradigm. Such aspects
typically fall into one of four categories:

• Data representation and management

• Percept processing

• Action management

• Pre-existing code.

In this final step of the System architecture phase (see Figure 5.1, Page 54), we

1. identify the boundaries of the agent system and the interactions with other sub-
systems;

2. describe the percepts and actions, and the relationships between these and relevant
agents;

3. define all shared data, both external persistent data and internal shared data within
the system;

4. develop the system overview diagram.

7.2 IDENTIFYING BOUNDARIES OF THE AGENT
SYSTEM

Agent systems are always operating within some environment, and thus the specification
of the interfaces to that environment are very important. The boundaries of the agent
system may be the physical environment, but there are also quite likely to be software
boundaries where the agent system forms part of a larger application.

One part of the interface is the information coming from the (usually dynamic)
environment, which we have called percepts. Depending on the application, the raw data
from the environment may require significant processing in order to be of any use to the
agents in the system. It may well be more appropriate for this processing to take place
in a non-agent sub-system, than to incorporate it within an agent. Reasons for this may
include existence of more suitable languages than that being used for agent development,
lack of benefit of the agent paradigm or pre-existing libraries that can be used.

For example, in an agent system controlling a robot, the perceptual input may be
vision data from a camera, in the form of a series of bitmaps. However, this requires
significant pre-processing before it is of interest to the agent. Firstly, there must be

IDENTIFYING BOUNDARIES OF THE AGENT SYSTEM 83

some processing to identify relevant objects within the bitmap. However, even this
is not really sufficient. In order to act within the environment, the agent wants to
notice when interesting or significant things have happened. It does not want to rea-
son about every frame that is essentially the same as the previous one. Typically, it
will want to notice differences between frames, particularly unexpected differences. It
may also notice differences between frames and its expectations – for example, if an
agent believes, on the basis of previous information, that a ball is just to its left, but
when it turns and looks at that spot it does not see a ball, then this is significant
information.

We use the term percept to refer to the environmental information that the agent
receives, although we acknowledge that this may well have received significant process-
ing from the raw data obtained.

Similarly, there may be some aspects of managing the agent’s actions in the envi-
ronment, which are best performed outside of an agent paradigm. Using our robot
example again, a typical action may well be to move to a specified point. However,
there is a significant amount of motor control programming required in order to effec-
tively implement this. This is most appropriately seen as a behavioural sub-system for
each agent, which is designed and implemented outside of the agent paradigm being
described here.

It may also be the case that pre-existing code performing some relevant functionality
is to be incorporated into the agent system. The interface between such sub-systems and
the agent system must also be identified. This can be represented in terms of messages,
which may be requests and responses, but may also include incoming messages generated
by the external sub-system if it runs asynchronously and can generate data other than as
a synchronized response to a request. Alternatively, the external sub-system can be seen
as part of the environment, and interaction can be represented in terms of percepts and
actions.

The implementation of the interface to an external sub-system may involve wrapping
pre-existing code as agents and using agent messaging, or may simply be the use of
a defined API. This decision is not important at design time and is left as an imple-
mentation decision. However, the information needed and provided by the pre-existing
sub-system is important and should be documented as part of either messages or percepts
and actions.

Issues to Consider

Some issues to consider when making the decision regarding whether to include some-
thing within the agent system or to make it a separate sub-system are as follows:

1. Is there any benefit (currently or in future extensions of the system) of the agent
paradigm with aspects such as autonomy, flexibility and goal orientation?

2. Does keeping it separate make for less coupling, allowing it to be developed
separately?

3. What is the simplest approach to integrating, or interfacing to, existing code?

84 FINALIZING THE ARCHITECTURAL DESIGN

4. Does the processing in question need to be on a different time cycle than the agent
processing? For example, processing frames from a video camera may need to be
done 50 times a second, whereas higher-level decision-making may take place at
a much lower rate (such as five times a second).

7.3 DESCRIBING PERCEPTS AND ACTIONS

In this step, we develop descriptors for the input and output interface entities, percepts
and actions, and link these to relevant agents.

Percepts are the information (possibly processed) that the agent receives from the
environment, while actions represent the effects the agent can have on the external
environment. We discuss these, identifying issues to consider and providing a template
for recording of important information for understanding the design.

☞ Tip: Although the exact details of the interface to the exter-
nal environment may be considered as implementation, or perhaps
detailed design, it is critical to establish some aspects of this at an
early stage. If it is impossible, or very difficult, to obtain particular
data, then this will affect the design of the system at a high level.

PERCEPTS

It is important at this stage to clarify exactly what information is provided as dynamic
input to the agent system. Most percepts will be a result of ongoing events happening in
the external environment, but some may also have to do with initialization of the agent
system. For example, a percept ‘TCP/IP connection established’ may be something that
will be noticed by the agent at system start-up and which should cause some agents to
read in data and establish internal data structures.

Identification of percepts to be obtained is driven by the information the agent system
requires in order to achieve the goals identified in the initial phase. However, this is also
constrained by what is feasible given the sensors or other mechanisms for obtaining data
and the processing techniques available. Where substantial processing of raw data is
required, great care should be taken to ensure that extraction of relevant information is
feasible, prior to continuing the design of the agent system.

It is important to identify the format of the raw data, including whether there are
any important intermediate formats of relevance for the pre-processing and extraction
of agent percepts. For example, the vision frame from the robot camera has an initial
format as a bitmap of a certain size. An intermediate format is a data structure containing
certain objects. If existing software is being used, this data structure may have pre-
defined contents or limitations, which are important to understand. It is then important to
define the information contained in the final processed percept, as well as any additional
information that may be required to obtain the desired percept.

For example, suppose we want to extract a percept ‘ball at position X, Y’ from vision
data, with an intermediate representation that provides objects and their global location

DESCRIBING PERCEPTS AND ACTIONS 85

information. We want this percept generated only when it is new information, not at every
frame. In order for this to happen, we must at least maintain information regarding (one
or more) previous frames. In addition, we may need access to information regarding what
the agent currently believes – if it has momentarily turned so that the ball is out of sight,
then turns back, it may be inappropriate to generate a percept when the ball is perceived
in its expected location, despite the fact that it was not seen in the previous frame. On
the other hand, failure to see the ball as expected may require percept generation.

It is also important to consider the likely frequency of such percepts and whether
this is manageable by the agent system. If, for example, it is possible that a certain type
of percept may on occasion happen with too high a frequency to be managed, then this
may be a reason for some pre-processing. The percept could in normal cases be passed
on directly, but in cases of high frequency we might need to either pass on only some
percentage of the percepts, or aggregate percepts before passing them on.

Many percepts will result in an update of the agent’s knowledge as well as potential
action on the part of the agent. Knowledge updates resulting from the percept should be
explicitly identified.

Our template descriptor for percepts is as follows:

• Name – Short name suitable for use in diagrams.

• Description – Brief description indicating the situation in which this percept is
received.

• Information carried – Indicates what information is available regarding this percept.
This often requires careful checking regarding the actual interface to the external
environment.

• Knowledge updated – This will be either directly extracted from the information
carried, or will be a result of some reasoning about the information carried.

• Source – Indicates how the information is obtained from the environment. In phys-
ical systems, this is likely to be a sensor.

• Processing – Indicates whether the percept is received directly from the agent
sensor, or whether it is first processed in software, and if so how.

• Agents responding – Indicates which agents react to this percept in some way.

• Expected frequency – Describes how often one would expect to receive percepts
of this type, with additional information regarding handling of extreme cases if
appropriate.

Electronic Bookstore: Case study

An example of a percept from the electronic bookstore example is Failed Stock
Arrival.

• Name – Failed Stock Arrival.

86 FINALIZING THE ARCHITECTURAL DESIGN

• Description – Occurs when stock is expected to arrive at a certain time, but
the time passes (with some margin) and it does not arrive.

• Information carried – The reference to the stock order.

• Knowledge updated – Reliability of supplier, expected arrival date for waiting
orders, expected arrival date for stock.

• Source – An indication from a previously set system alarm clock. (The stock
orders DB is also accessed for information regarding the particular order.)

• Processing – When the ‘alarm’ goes off, records may need to be checked
to ensure that the order has not in fact arrived, or been cancelled, or been
previously notified.

• Agents responding – Stock Manager reacts to percept and notifies Delivery
Manager if necessary, which may in turn notify Customer Relations.

• Expected frequency – Occasional.

☞ Tip: Percept processing is often an area where some prototyping
is necessary at an early stage to avoid development of a design
that is infeasible because of the difficulty of reliably extracting the
required information from the raw data.

ACTIONS

Actions, like percepts, may also be complex, requiring significant design and develop-
ment outside the realm of the reasoning system. This is especially true when manipulation
of physical effectors is involved.

Actions can be classified depending on a number of properties:

• Is the action effectively instantaneous, or does it take a certain amount of time to
perform (durational)?
For example, sending an e-mail is an effectively instantaneous action. Following
a ball is a durational action. Another durational action might be downloading a
large file.

• If the action is durational, does the action have parameters that can be changed
while it is executing?
Downloading a file usually does not allow any parameters to be set – one simply
waits for the download to complete. On the other hand, following a ball has a
number of parameters including speed, the amount of acceleration that should be
applied (for example, it might be desirable to conserve energy by using lower

DESCRIBING PERCEPTS AND ACTIONS 87

acceleration levels), and so on. These factors apply to the design of the actions
(outside of the agent part of the system) but also affect the design of agents,
functionalities and plans that use these actions.

• Can the action fail? Most actions involving the real world can fail. Even in a
software-only system, failures can occur: an e-mail address may be wrong, a web-
site may be down, a network connection may be temporarily out of action.

• If the action can fail, does it always report failure when it occurs?

• Can the action have partial effects? For example, an e-mail is either delivered or
not delivered. An attempt to move to a location may fail if the robot gets stuck
halfway, but will still have changed the state of the world.

If actions are durational, that is, they take time, it is important to consider whether
it is appropriate for the agent to do other tasks while this action is executing. In robot
soccer, moving to a location is durational. While it is not appropriate for the agent to
do other actions whilst doing this as it uses all the effectors, and any other action would
interfere, it is important that the agent is free to do reasoning tasks on the basis of new
perceptions.

In our electronic bookstore example, most of the actions are effectively instantaneous,
such as sending an e-mail. Some, such as querying the status of a delivery, can be viewed
either as a durational action that includes waiting for a reply, or as an instantaneous action
of sending an e-mail (where receipt of the reply lies outside the action).

Our action descriptor template is as follows:

• Name

• Description – Indicates what the action is and its intended result.

• Parameters – Identifies parameters that can affect how the action is performed.
For example, which printer to use may be a parameter to an action to print a file.
Which speed to use may be a parameter for a robot move-to action.

• Temporality – Durational/instantaneous. If durational, indicate approximate length
of time.

• Failure detection – Is there a notification if failure occurs (yes/no/maybe)? If so,
what form does that notification take? If there is no notification, is it possible to
check for success/failure in some way?

• Partial change – If the action does not succeed, what, if any, is the change that
results from doing (or attempting) the action?

• Side effects – Indicates the side effects of an action, for example, the side effect
of a move-to action may be a reduction in battery power.

88 FINALIZING THE ARCHITECTURAL DESIGN

Electronic Bookstore: Case study

An example action from the electronic bookstore is to order new stock:

• Name – Order stock

• Description – This action orders a list of books, in varying quantities, from a
single supplier. The result of the action is that the supplier receives the order.
An expected consequence is that the supplier sends a message confirming the
order, and that eventually the books arrive. The latter are indirect results of the
action rather than direct results.

• Parameters – Supplier e-mail address(es), order list, priority.

• Temporality – Instantaneous. (Indirect effects may take some
days.)

• Failure detection – E-mail bounce may be detected. Only way to check success
is to send e-mail requesting confirmation. Failure may go undetected.

• Partial change – Mail message file may exist.

• Side effects – None.

The percepts and actions provide the necessary interface between the system and its
larger environment. To complete our understanding of the system at this level, we also
need to include data sources.

7.4 DEFINING SHARED DATA OBJECTS

During the system specification stage, the persistent data has been identified. Now deci-
sions must be made about what kind of persistent data stores will be used – a database
or a file, and earlier ideas about which data items will be grouped together in a single
data store must be confirmed and developed.

It must also be determined whether there will be any shared data within the system,
accessible to more than one agent. A good design will minimize this, but there may be
situations where it is reasonable to have shared data objects.

If multiple agents will be writing to shared data objects, this will require signif-
icant additional care for synchronization (as agents operate concurrently with each
other). Consideration must be given as to whether this can potentially result in incon-
sistent data states containing parts of two different updates. This will depend partly on
details of the implementation environment. Simple forms of locking can be used. We
do not discuss locking further here since it is a standard topic in concurrent program-
ming. However, it is important to ensure that locks are released both on success and
failure.

DEFINING SHARED DATA OBJECTS 89

☞ Tip: A common problem in multi-agent systems, which can be
especially hard to debug, is race conditions. Data stores that are
used by more than one agent can easily lead to race conditions
because of synchronization issues. This can result in nondetermin-
istic execution where the results of running the system can differ,
even if the inputs are identical. This is one of many good reasons
to avoid shared data stores.
A race condition is where the behaviour of a program depends
on timing. Usually, such behaviour is unexpected. For example,
consider two people, Alice and Bill, trying to update a bank account
by reading the amount of money, adding 100 to it, and saving
the result back to the account. The desired (and expected) result
is that the account balance will be increased by 200. However,
if the following sequence takes place, then the account will be
incremented by only 100:

1. Alice reads the account balance (say, 150)

2. Bill reads the account balance (150)

3. Bill computes balance + 100 (i.e. 150 + 100 = 250)

4. Bill saves balance + 100 (i.e. 250) to the account

5. Alice computes balance + 100, that is, 150 + 100 (note that
the original balance is being used, since that is what Alice
read in step 1)

6. Alice saves balance + 100 (i.e. 250) to the account, over-
writing Bill’s change.

Database systems use transactions to avoid these problems, but
such mechanisms are not always available or appropriate in agent
systems.

Most applications have significant amounts of data with complex structure. If this data
is to be stored within an external database, then it is appropriate to use database design
techniques for specifying the design. If the data represents instances of interrelated classes
that will be kept in main memory and possibly stored externally in some file format,
then it is appropriate to use object-oriented design. The design should be developed and
documented during this and subsequent phases, but we do not provide details here as
there are already plenty of available materials providing methodology. Data may also
have different internal and external representations.

Some important questions to ask at this stage about persistent data objects are as
follows:

• Is there an in-memory version of the data?

90 FINALIZING THE ARCHITECTURAL DESIGN

• When is the external data updated – whenever an in-memory version changes,
or not?

• Are any consistency checks needed on this data – if so what?

• How do agents access this data? (via requests to another agent, via DB access,
reading a file, direct access to attributes of data object, via methods on a data
object, and so on.)

It is important to note that when we talk about data, we need to differentiate data
objects from data types. For example a hospital system may have a patient database
which contains a set of patient records. There may also be a tuberculosis register which
all hospitals in the state are required to use, also containing a set of patient records.
It is not sufficient in the design to show these both as being of the same type, patient
records database. To do so would have the effect of showing only one copy in design
diagrams, which is very confusing, as they serve very different purposes. Rather, the
two databases should be separated at design time, but would later be implemented as
instances of the same class. Saying that we have a tuberculosis database and a hospital
patients database provides useful information. Thus data stores that are collections of
records are usually captured at the instance level on design diagrams, rather than at the
type level as for other entities.

For shared data that is not persistent – that is, it exists only at run time, the main
issues (other than the structure of the data), have to do with potential inconsistencies. If
multiple agents can write data, what mechanisms prevent potential destruction of data?
Are there any intermediate points when data is being modified, where it should not be
accessed, due to incompleteness or inconsistency?

It is important to record with the documentation of the data, relevant information
that is also available elsewhere in the design. This includes which agents read and write
the data.

Our template for data descriptors is as follows:

• Name

• Description – What this data object represents.

• Data type – This should refer to part of a class diagram, or a database view.

• Included fields/aspects – What data, (perhaps named as necessary for certain func-
tionalities) is considered part of this data object (or corresponding class).

• Produced by – Agent(s), capabilities, plans.

• Used by – Agent(s), capabilities, plans.

• Persistent – Indicates whether it is stored on an external device, file, database, etc.

• Initialization – What is initialization process or values.

• Used when – Indicates what the data is used for and when it is updated.

SYSTEM OVERVIEW DIAGRAM 91

☞ Tip: Often, what at first appears to be a shared data object
can be re-conceptualized as a data source managed by a single
agent, with information provided to other agents as they need it.
Alternatively, each agent may have its own version of the infor-
mation, without there being any need for a single centralized data
object.

7.5 SYSTEM OVERVIEW DIAGRAM

The above steps have identified all the pieces of the system architecture. There are two
artifacts that collect this information together – the system overview diagram and the
data dictionary.

The system overview diagram is arguably the single most important artifact of the
entire design process, although of course it cannot really be understood fully in isolation.
The various descriptors provide the more detailed information that may be required.

The symbols used in the system overview diagram are shown in Figure 7.1.
We start by placing icons for each percept type and action type as well as external

data stores, at the boundaries of the figure. If there is a sub-system that is processing
data to provide (some of) the percepts prior to them being provided to the agents, then
this sub-system can be shown as a box (or multiple boxes), with the percepts originat-
ing from within it. Similarly, a non-agent sub-system that manages the details of agent
actions can be shown as a box between the agent system entities producing the actions,
and the actual actions.

We place within the figure a named agent symbol for each agent type. We then
link percepts to agents that use them, and actions to agents that are responsible for
them. We also place an incoming link from each agent that writes to an external data
store and an outgoing link from each external data store to each agent that directly
accesses its data. Double-headed links (arrows at both ends) indicate both read and
write.

percept

action

agent

message

message
with reply

data

protocol

Figure 7.1 Graphical symbols used in the system overview diagram

92 FINALIZING THE ARCHITECTURAL DESIGN

Once we have arranged the agents and the interface entities, we add shared inter-
nal data stores, interaction information between agents and information regarding any
additional external sub-systems.

We next place all protocols into the figure, by placing a named protocol link between
each pair of agents that communicate via at least one message within a given protocol. If
there are additional agent communications that exist outside the specified protocols, we
indicate these by placing a named message symbol and linking to and from the relevant
agent. If the communication is a message and response pair, then this is shown using
the special ‘message with reply’ symbol.

If external code is being incorporated into the system, this is shown by a box with
appropriate message or percept/action interface to some agent(s).

The example system overview diagram in Figure 7.2 depicts the four agents Agent1,
Agent2, Agent3 and Agent4. Agent1 initiates ProtocolA involving also Agent3 and
Agent2, as well as participating in ProtocolB. It also receives a message from Agent2
and percept P1 from the environment. It reads and writes database DB1. Agent2, as well
as participating in ProtocolA and sending a message to Agent1, also interacts with an

Action
management

Percept
processing

Agent1
P1

P4

P3

P2

Agent4 Action1

Action2

Agent3
Agent2

ProtocolB

ProtocolA

ProtocolA

MsgX

Int. Msg

ProtocolB

External
subsystem

DB1

Figure 7.2 Example of system overview diagram

SYSTEM OVERVIEW DIAGRAM 93

external sub-system via an interface message, and receives two percepts, P2 and P3.
Agent3 executes Action2 as well as initiating ProtocolB and participating in ProtocolA.
Agent4 receives percept P4 and does Action1, as well as participating in ProtocolB.
As only external and shared databases are shown at this level, we see that DB1 is an
external database, (read and written by Agent1).

Electronic Bookstore: Case study

The following is a list of percepts, actions and protocols for the bookstore example,
followed by the system overview diagram for the example.

Actions: Bank transaction, E-mail stock order, Place delivery request, Request deliv-
ery tracking, Send e-mail, WWW page display.

Percepts: Arrival at WWWsite, User input, Bank transaction response, Cheaper price
report, Stock arrival, Failed stock arrival, Stock order delay, Regular order trigger,
Tracking info, No tracking response, New catalogue.

Protocols: Book finding, Book ordering, Order status querying, Query late books,
Stock arrival, Stock delay, Update customer profile.

Send email

Customer Relations

Update customer profile protocol
Customer DB

user input

Sales Assistant

Arrival at wwwsite

Bank transaction response

www page display

Bank transaction

Stock order delay

Stock Manager

Regular order trigger

Stock arrival

new catalogue

Cheaper price report

Email stock order

Failed stock arrival

Book ordering protocol

No tracking response
Courier DB Postal DB

Tracking info

Place delivery request

Request delivery tracking

Delivery Manager

Book ordering protocol

Book finding protocol

Book ordering protocol

Query late books protocol

Query late books protocol

Stock delay protocol

Stock delay protocol

Stock arrival protocol

Stock arrival protocolOrder status querying protocol

System overview diagram for electronic bookstore

Note that the system overview diagram shows agent types, not agent instances.
If desired – and depending on the application – it is possible to provide addi-

tional overview diagrams showing agent instances, and partial views of system func-
tionality. Often, these partial views would be focussing on a particular scenario or
protocol.

94 FINALIZING THE ARCHITECTURAL DESIGN

Data Dictionary

The data dictionary is a list of all entities in the design. A data dictionary should be
started at the beginning of the project and developed further at each stage.

A data dictionary should be maintained to allow for easy organization and location
of the descriptors for the various entities.

One option is to organize the data dictionary into separate sections for agents, capa-
bilities, plans, events and data, organized alphabetically within sections. The other option
is to have a flat alphabetical structure. With tool support multiple views (automatically
generated) can be provided as well as indexing.

☞ Tip: It is useful to develop the data dictionary in such a way
that it can be sorted by name, by type, or by location defined. A
spreadsheet can be a useful tool here.

Electronic Bookstore: Case study

An excerpt of the data dictionary for the book store is below.

Name Type Page Notes
Bank transaction action page 160
. . .

Online interaction functionality page 141 one per customer
Customer DB database page 187 one in system
. . .

Books DB database page 187 one in system
. . .

7.6 CHECKING FOR COMPLETENESS
AND CONSISTENCY

Even more than with the system specification phase, there are a number of ways in which
the design should be checked for consistency and completeness. This consistency check-
ing is also likely to incorporate some revision of artifacts from the system specification
phase. As with system specification, naming consistency is the most basic check.

The additional checking at this stage falls into a number of main categories:

• consistency between agent descriptors and the descriptors of included functionalities;

• consistency between interaction diagrams, scenarios and protocols;

• consistency of communication specifications: that is, between protocols, system
overview and agent descriptors and

• consistency between the descriptors and the system overview diagram.

CHECKING FOR COMPLETENESS AND CONSISTENCY 95

The first two of the above are essentially vertical checks – ensuring that consistency is
maintained with work at an earlier phase. The second two are horizontal checks ensuring
consistency between different views within the same phase.

7.6.1 CONSISTENCY BETWEEN AGENTS AND FUNCTIONALITIES

The first check is to ensure that each functionality is assigned to exactly one agent.1

Consistency between functionality descriptors and agent descriptors requires a num-
ber of basic checks. For the goals and actions fields, the agent descriptor field should
be the union of the values in the equivalent field in the functionality descriptors of
the included functionalities. Information used and produced by functionalities should be
checked against data read, data written and internal data of the agent. This may not be
a check that can be automated as apparent inconsistency can result from the fact that
during architectural design, early thoughts about data needs have been revised and data
representations have developed greater clarity and specificity. However, it is important
to check that data needs identified during functionality specification are not inadvertently
dropped. Depending on resources and the level of tool support, it may be desirable to
update functionality descriptors in the light of further design work. However, as they are
not regarded as a final design artifact, necessary for understanding of the final system,
this may not be worthwhile.

7.6.2 CONSISTENCY BETWEEN INTERACTION DIAGRAMS,
SCENARIOS AND PROTOCOLS

Scenarios, interaction diagrams and protocols are closely related, as is evident from the
process described earlier for generating both interaction diagrams and protocols. Things
that should be checked are as follows:

• Each scenario should have a corresponding interaction diagram, unless all func-
tionalities involved in the scenario belong to the same agent. It is helpful if naming
of interaction diagrams indicates clearly which scenario they are derived from, or
if they are tagged in some way to provide this information.

• The interaction diagram corresponding to a given scenario should obey the follow-
ing rules:

– For each functionality mentioned in the scenario, the corresponding agent
should exist in the interaction diagram.

– Each agent in the interaction diagram should receive some information (either
from another agent or via a percept or trigger) prior to sending out any
message. The interaction diagram should really be manually checked to ensure

1Possibly it is reasonable to have functionalities that are included in multiple agents. However, at the system
specification phase, the authors have never actually found this useful. If required, it is a fairly straightforward
modification. Of course at detailed design there will very likely be pieces of code – we call them capabilities –
which will be included or reused in multiple agents.

96 FINALIZING THE ARCHITECTURAL DESIGN

that an agent has received the relevant information before each interaction –
that is, that the information flow makes sense. (This cannot be automated
without requiring more detail than is appropriate at this stage of the design.)

• Every interaction diagram that is more than a single message (possibly with res-
ponse) should be represented within some protocol. This can be checked by map-
ping each interaction diagram to a scenario and then checking that it is in the
Included scenarios field of some protocol descriptor. (Single interactions may be
shown either by a degenerate protocol specification or by an individual message
or message + reply).

• A protocol that is not related to any scenarios should probably result in returning to
the system specification phase to specify some scenarios for design completeness.
Scenarios are an important part of the final design document for understandability.

• The protocol describing a certain interaction should cover all possibilities. Specif-
ically, if a protocol includes a use case scenario, then it should cover all of the
scenario’s variations. By ‘cover’ we mean that the sequence of messages in the
interaction diagram corresponding to the use case scenario is one of the sequences
that are allowed by the protocol.

7.6.3 CONSISTENCY OF COMMUNICATION SPECIFICATIONS

Communication between agents is specified in three different places within the architec-
tural design. These are within protocols, within the system overview diagram and within
agent descriptors. These three specifications need to be consistent – and in some cases,
consistency can be actively maintained by a tool during development.

For example, the prototype Prometheus Design Tool ensures that if a protocol defines
message passing between two agents, then there is a corresponding link indicated in
the system overview diagram. Sometimes, however, it is practical only to automate
consistency maintenance in one direction. For instance, it is easy to ensure that a protocol
step showing a message between two agents results in a protocol linking these two on
the system overview. However, it is less clear that it is desirable to automatically insert
a message into a protocol on the basis of the designer indicating a protocol link between
two agents. There is insufficient information to completely automate this step – we do
not know what message is sent or when in the protocol it should happen – so it may
be preferable simply to use the information to direct consistency checking at the end of
the phase.

The particular consistencies we want to ensure are as follows:

• If there is a protocol link between two agents on the system overview, then there
should be some message between these two agents in the protocol, and the protocol
should be mentioned in both agent descriptors. Similarly, if there is a message
between two agents in a protocol, it should be reflected in descriptors and the
system overview diagram.

• If an agent descriptor lists that the agent interacts with another agent type, then that
interaction should be evident in some protocol descriptor (or some single message

CHECKING FOR COMPLETENESS AND CONSISTENCY 97

or pair of messages if protocols are not used for this case). Similarly, all agents
that are interacted with according to protocol specifications should be listed in the
agent descriptor.

7.6.4 CONSISTENCY BETWEEN DESCRIPTORS AND THE SYSTEM
OVERVIEW DIAGRAM

There is considerable overlap in the information that is conveyed by the agent descriptors
and that conveyed by the system overview diagram. The descriptors contain significant
additional information, but for facilitating completeness, they also contain information
that can be extracted from other design artifacts. Again, if an automated tool is used,
much of this is trivial. If not, it is still straightforward, but surprisingly necessary in order
to ensure that the design is indeed consistent. We have already covered above the agent
interaction issues that need to be checked between descriptors and system overview.
Additional items are as follows:

• Ensure that each agent is represented in the system overview diagram.

• Ensure that all persistent data stores are shown in the system overview and that
reads and writes are consistent with agent descriptors, as well as data descriptors.

• Ensure that all percepts are shown in the diagram and are appropriately linked to
agents, consistent with agent descriptor declarations.

• Ensure that all actions are shown in the diagram and are appropriately linked to
agents, consistent with agent descriptors.

8

Detailed Design: Agents,
Capabilities and Processes

Actions, percepts

Scenarios

Interaction
diagrams

Initial
Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
Overview

Data
coupling

agent
acquaintance

shared
data

messages

Protocols

System goals

Process

final design
artifact

intermediate
design tool

crosscheck

derives

Key

S
ys

te
m

sp
ec

if
ic

at
io

n
A

rc
h

it
ec

tu
ra

l d
es

ig
n

D
et

ai
le

d
 d

es
ig

n

Phases, artifacts and relationships in the design process

During architectural design, we developed an overview of which agents are in the system
(the system overview diagram) and how these will interact to achieve system goals (the
protocols), as well as descriptors for each agent. In the detailed design, we take these
and, for each individual agent, flesh out what capabilities are needed for the agent to

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

100 DETAILED DESIGN: AGENTS, CAPABILITIES AND PROCESSES

fulfil its responsibilities as outlined in the functionalities it contains. We also develop the
protocol specifications to indicate more of the internal processing of individual agents.

As we get into greater detail (in Chapter 9), we further develop the capability descrip-
tions to specify the individual plans, beliefs and events needed within the capabilities. We
also further develop the views that show processing of particular tasks within individual
agents. It is during this final phase of detailed design that the methodology becomes
specific to agents that use event-triggered plans in order to achieve their tasks. This will
be discussed further in the following chapter.

In this initial part of detailed design, the aspects that are addressed are as follows:

1. Decisions regarding the capabilities needed by an agent to fulfil its tasks.

2. Description of the relationships between the capabilities using an agent overview
diagram.

3. Development of the protocol specifications to indicate some of the internal pro-
cessing of individual agents.

4. Summarizing information about each capability in capability descriptors.

For the purpose of continuing our running example, we will focus on the Stock
Manager agent type.

As with all software engineering, it is appropriate, especially at the detailed design
stage, to combine top-down design with bottom-up. In the framework of agent design,
top-down design translates to designing the capabilities and their interactions, and then
the plans that will be a part of those capabilities. The alternative practice of bottom-up
design involves directly designing plans that will accomplish the tasks of the agent, later
grouping these into the relevant capabilities. As part of the bottom-up design process,
there is also likely to be implementation intermixed with the design. Use of a design
tool that generates skeleton code greatly facilitates this process. The reality is that there
is usually a mix of bottom-up and top-down development. The larger and more complex
the agent is, the greater focus there is likely to be on top-down design, first specifying
the capabilities.

In the presentation, we will present first the design of capabilities, then of plans and
events. Whichever process is used in the actual development, it is useful in the design
documentation to present it from a top-down perspective, to allow the reader to gradually
understand greater detail.

8.1 CAPABILITIES

In the architectural design, we have determined what functionalities should be encom-
passed by each agent, and the list of these functionalities is a natural starting place for
the agent capabilities.

Sometimes, there is also functionality akin to ‘library routines’ that is required in
multiple places – either within multiple agents, or within several capabilities within a
single agent. Such functionality should also be extracted into a capability that can then
be included into other capabilities or agents as required.

CAPABILITIES 101

Capabilities may be nested within other capabilities and thus this model allows for
arbitrarily many layers within the detailed design, in order to achieve an understandable
complexity at each level. As the design develops, what was originally a single function-
ality may well be split into smaller modules, each of which is a capability. It is also
sometimes the case that a capability is formed by merging two or more functionalities
where the functionalities in question are closely related and would result in very simple
capabilities if left apart. As previously, the principle of cohesion is paramount. Each
capability should be a well-defined collection of plans, using particular beliefs or data,
which addresses a specific set of goals (or sub-goals) of the agent.

For each capability, we need to determine the goals it is to achieve within the system.
If it is derived from a functionality, this information already exists, although there may
be some rearrangements at this stage. It is useful, as the design is refined, to also modify
the goal and functionality information, if this makes sense.

☞ Tip: When to modify goals and functionalities developed in
System Specification: This is of course a matter of judgement.
If the refinements involve things like splitting a functionality into
two capabilities, or adding a new low-level capability that will
be included in other capabilities, then there is no need at all to
consider modifying functionalities and goals. Indeed, it can be
counter-productive to do so, as it can clutter the high-level design
with unnecessary detail, making it harder to understand. On the
other hand, if the change is significant and reflects rethinking the
design, then it can be useful to also consider updating the func-
tionalities. For example, if a goal G is assigned to functionality
F but during the design process it is determined that it is better
to achieve the goal in capability C (which corresponds to func-
tionality F2), then it can be useful to update the functionalities by
moving G from F to F2. The main criterion is understandability.
If it makes the high level more understandable, then we would
move it. If not, then we would leave it, but note at the detailed
design the reason for the move.

Electronic Bookstore: Case study

Taking the example of the Stock Manager agent, we develop the capabilities on the
basis of the included functionalities. The capabilities and their related goals are as
follows:

• Stock managing (Goals: Have books in stock, Log books arriving, Log books
outgoing, Reorder stock)

• Pricing (Goals: Competitive prices, Set prices competitively)

• Cataloging (Goals: Update catalogue)

• Managing competition (Goals: Competitive prices, Lower book price, Monitor
competitive response, Restore book price).

102 DETAILED DESIGN: AGENTS, CAPABILITIES AND PROCESSES

percept

action message

message
with reply

data

capability

plan

Figure 8.1 Graphical symbols used in the agent overview diagram

8.2 AGENT OVERVIEW DIAGRAMS

The information as to what goal(s) each capability is to achieve, combined with the
information of the protocols the agent engages in (from the previous phase), is usually
sufficient to enable us to draw the agent overview diagram. This diagram shows the
relationships between the capabilities, thus providing a top level view of the agent
internals. It is very similar in style to the system overview diagram, but instead of agents
within a system, it shows capabilities within an agent. This diagram shows the top-level
capabilities of the agent and the message flow between these capabilities, as well as data
internal to the agent. It is also possible to have some plans at this level if there is some
agent functionality that is sufficiently simple that it would be redundant to place it within
a capability. Figure 8.1 shows the graphical symbols for the Agent Overview diagram.

To develop the Agent overview diagram, one begins with the interface to the agent
as specified in the System Overview diagram. The capabilities are then added to the
diagram, and each interface element is linked to at least one capability. The protocol
descriptions can then be used to guide the specification of the messages that need to
pass between capabilities. Development of initial activity diagrams (based on UML, but
described further below) can also assist in this process.

☞ Tip: It is often useful to link the names of messages to the
name of the sub-goal to which they are related. For instance, when
developing protocols, goals in scenarios can guide the naming of
messages in the protocols. Similarly, there are typically a number
of sub-goals to be achieved, by a particular capability, and it can
be useful for the message indicating the need for achievement of
the sub-goal to have a name related to that sub-goal. For example,
one of the sub-goals of the Profile Monitor functionality, within
the Customer Relations agent, is to Update customer profile. When
this is needed, the relevant capabilities (Purchasing, Delivery Man-
ager, Online Interaction) may well send an Update customer profile
message. An alternate name for this message could also have been
Request update customer profile. This helps in linking messages to
the goals to be achieved, as specified in the initial phases.

PROCESS SPECIFICATIONS 103

Figure 8.2 Agent overview diagram: stock manager

Electronic Bookstore: Case study

Figure 8.2 shows an agent overview diagram for a Stock Manager agent in the elec-
tronic bookstore. Faded entities are the interface to the agent, that is, they depict
external entities such as incoming events, actions and percepts.

This agent has the capabilities of Stock managing, Pricing, Cataloging and Managing
competition. Note that there is also a single plan for responding to queries on the
Books DB and the Stock DB.

8.3 PROCESS SPECIFICATIONS

During system specification, high-level processes were specified by scenarios, which
were then refined and more fully specified using interaction diagrams and protocols
during architectural design. In detailed design, we also want some mechanism to specify
process as well as structure. For this, we use a slight variant of UML activity diagrams.
Figure 8.3 illustrates the concepts and the notation of our extended variant of activity
diagrams. Note that rather than using swimlanes to separate activities of different agents,
as would perhaps be the most obvious modification of UML, we choose instead to
focus only on the activity within a single agent, indicating interaction with other agents
via the inclusion of messages within the diagram. We believe this is a better choice,
partly because it avoids diagrams being overly cluttered, and perhaps more importantly,
because it allows for modular development of agents, with shared knowledge only about
the interface. It may also be useful in some circumstances to give a process specification
diagram which does put together the specifications from all agents involved in that
process.

104 DETAILED DESIGN: AGENTS, CAPABILITIES AND PROCESSES

X Z

Y

A true

A false

Do X, followed by Y if A is
true, Z if A is false.

X Z

Y

A true

A false

Secondary decision: Do X, followed by Y
if A is true If A is false, follow X by W
if B is true, and by Z if B is false.

W

B true

B false

X

Y

Do X, followed by Y
and Z in parallel.
When Y and Z both
finish, do Z.

Z

Z

Send message P
to another agent,
in parallel with
doing Y.

X

Y

Z

P

Q

After Y is
completed, and
message Q is
received, do Z.

start

end

activity

secondary
choice

parallel

message

KEY

merge

fork

Figure 8.3 Diagram illustrating notation for process specifications

For further information on standard Activity Diagrams, see (Fowler and Kendall
2003).

We identify the process diagrams to be developed by looking at the protocols involv-
ing the Stock Manager, as well as the scenarios developed and the goals of the agent.
Some process diagrams will not be identified from the protocols as they do not involve
significant interaction with another agent.

Electronic Bookstore: Case study

By looking at the scenarios or protocols originating with the Stock Manager agent,
and by looking at the goals of the agent, we come up with 5 process diagrams for
the Stock Manager agent. They are

PROCESS SPECIFICATIONS 105

• Stock maintenance

• Stock arrival

• Stock delay

• Cataloging

• Pricing reduction.

Stock maintenance and Stock arrival activity diagrams are shown in
Figure 8.4.

Notice that stock maintenance is not derived from a protocol. However, the existence
of such goals as Reorder stock and Have books in stock indicate the need for a
specification of a process for achieving this. As can be seen, there is no need for a
protocol as there is only a single message involved at the end of (one branch of) the
activity.

An outgoing message in a process diagram should be able to be mapped either to a
process diagram within the receiving agent, or to a possible entry point within a process
diagram within the receiving agent. The former is of course simply a special case of the
latter, where there is only one entry point and it is the relevant message. Figure 8.5 shows
the process for Updating a user profile within the Sales Assistant Agent, and the related
activity of Manage customer profile within the Customer Relations Agent. The Update
customer profile message from the Sales Assistant activity diagram is one of the possible
entry points into the Manage customer profile activity diagram in the Customer Relations
agent.

Register
order

arrived

Fill pending
orders

Update
Stock DB

Stock
arrival info

Stock
arrival

Stock arrival activity diagram

Check
Stock orders

Stock low

Not
ordered

Immediate
order

Add to
monthly

order

Produce
order
list

Monthly
timer

Email stock
order

Stock maintenance activity diagram

No stock

Not in
stock

Figure 8.4 Diagram of some of the processes in the stock manager agent

106 DETAILED DESIGN: AGENTS, CAPABILITIES AND PROCESSES

Register new
customer in

Customer DB

Infer additional
Customer

profile

Store inferred
info in

Customer DB

Register
new customer

Get full
customer

record

Store updated
info in

Customer DB

Update
customer

profile

Activity diagram for updating a user profile
in Sales Assistant Agent

Obtain profile
revisions

Update
customer

profile
Local checks;
spelling, etc

Activity diagram for managing a user profile
in Customer Relations Agent

Connection from
Sales Assistant

diagram

Figure 8.5 Diagram of manage customer profile process in the customer relations agent

8.4 DEVELOP CAPABILITY AND PROCESS
DESCRIPTORS

We continue the practice of having structured textual descriptors for each of the sig-
nificant entities in the system. At this stage, we develop descriptors for each of the
Capabilities, and for each of the Process Diagrams. The information for the Capability
Descriptor can be extracted almost entirely from existing information, but it is useful
to have it gathered in the one place. Use of a support tool can automate most of the
process of developing the capability descriptors.

Each Capability Descriptor should have the following fields:

• Name:

• Description: Brief natural language description.

• Goals: Can often be taken from a related functionality, but may need refinement.

• Processes: A list of the processes within the agent that the capability is involved in.

• Protocols: A list of the system-level protocols that this capability is involved in.

• Outgoing messages: A list of messages sent, along with which capability/agent
they are sent to, and which goal they relate to.

• Incoming messages: A list of messages received, along with which capability/agent
they are received from and which goal they relate to.

DEVELOP CAPABILITY AND PROCESS DESCRIPTORS 107

• Internal messages: A list of messages internal to the capability.

• Percepts: A list of percepts received directly by this capability.

• Actions: A list of actions done directly by this capability.

• Included capabilities: Any included capabilities, along with the goals associated
with those capabilities.

• Data used: Imported: Data imported to the capability

• Data produced: Exported: Data exported from the capability.

• Data internal: Data used internally.

• Included capabilities: Capabilities within this capability.

• Included plans: Plans within this capability.

• Notes: Any relevant design notes.

Electronic Bookstore: Case study

Here is the capability descriptor for the Ordering capability within the Stock Manager
Agent.

Name:
Description: This capability manages the ordering of stock from sup-
pliers – either on a regular basis, or if necessary when stock runs out
Goals: Order stock
Processes: Stock maintenance
Protocols: Book ordering protocol
Outgoing messages: Book available, not in stock
Incoming messages: Book required
Internal messages: Modify monthly order, decide supplier, Get number required, No
stock, stock low
Percepts: Regular order trigger
Actions: E-mail stock order
Included capabilities: None
Data used: Imported Pending Orders, Books DB
Data produced: Exported Stock Orders, Pending Orders
Data internal: Monthly Order
Included capabilities: none
Included plans: Check stock, Add to order, Out of stock response, Number by index,
Get number by price, Get number by sales, Decide supplier by time, Decide supplier
by price, Delete items, Add to supplier order, Build monthly orders
Notes: (none).

108 DETAILED DESIGN: AGENTS, CAPABILITIES AND PROCESSES

The Process Descriptor also contains information that is available in the rest of the
system, but can be useful to have accumulated in one place, so that it can be viewed
along with the Process Diagram to obtain additional information such as the receiving
agents of a message.

We use a Process Descriptor with the following fields:

• Name:

• Description:

• Activities: May be existing (sub-)goals, or newly identified such

• Triggers: List of goals/messages/percepts

• Messages: <message name, to-agent>

• Protocols: Those protocols this process participates in

• Notes: (none).

Electronic Bookstore: Case study

Here is the process descriptor for the ‘Stock maintenance’ process, within the Stock
Manager Agent.

• Name: Stock maintenance.

• Description: The activity whereby there is an attempt to maintain sufficient
stock to immediately fill orders. The activity is responsive to immediate de-
mands as well as maintaining stock levels from month to month.

• Triggers: Book required, Monthly timer.

• Activities: Check Stock DB, Immediate order, Add to monthly order, Produce
order list.

• Messages: <Update customer profile, to Customer Relations Agent>, <Book
purchase, to Delivery Manager Agent>

• Protocols: Book ordering protocol, Stock arrival protocol, Query late books
protocol.

• Capabilities: Stock managing.

• Notes: (none).

9

Detailed Design: Capabilities,
Plans and Events

Actions, percepts

Scenarios

Interaction
diagrams

Initial
Functionality
descriptors

Agent
descriptors

Capability
descriptors

Plan
descriptors

Data
descriptions

Event
descriptors

System
Overview

Agent
Overview

Capability
overview

Data
coupling

agent
acquaintance

shared
data

messages

Protocols

System goals

Process

final design
artifact

intermediate
design tool
crosscheck

derives

Key

S
ys

te
m

sp
ec

if
ic

at
io

n
A

rc
h

it
ec

tu
ra

l d
es

ig
n

D
et

ai
le

d
 d

es
ig

n

Phases, artifacts and relationships in the design process

At this final stage of the detailed design, each capability is broken down either into
further capabilities or, eventually, into the set of plans that provide the details of how
to react to situations, or achieve goals. At this stage, a number of details regarding the
implementation platform become important. We focus on Belief-Desire-Intention (BDI)

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

110 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

platforms in particular, which are characterized by a representation that has hierarchical
plans with triggers, and a description for each plan that indicates the context in which it
is applicable. BDI systems choose among the plans that are applicable, backtracking to
try another plan if the one initially chosen does not succeed.

Although a number of the issues we address at this point are specific to the way BDI
systems work and are written, the principles are easily adapted to a range of other agent
systems. In particular, any system using agents with plans that react to events can easily
be accommodated. At the same time, if the precise development platform is known, then
additional issues can be considered and noted during design.

The details we provide here are oriented towards BDI systems, but not towards any
particular BDI implementation platform. We do, however, provide examples of additional
detail that could be added for a particular platform, using JACK Intelligent Agents as an
example platform.

The main steps covered in this final stage are as follows:

1. Further decomposition using capability overview diagrams

2. Sub-tasks and alternative plans
• Identifying context conditions

• Coverage and overlap

3. Developing the events and messages

4. Action and percept details

5. Details of data.

9.1 CAPABILITY OVERVIEW DIAGRAMS

In the previous chapter, we developed agent overview diagrams. A further level of detail
is provided by capability diagrams that take a single capability and describe its internals.
At the bottom level, these will contain plans, with internal messages providing the con-
nections between plans, just as they do between capabilities. At intermediate levels, they
may contain nested capabilities or a mixture of capabilities and plans. These diagrams
are similar in style to the system overview and agent overview diagram, although one of
the incoming messages to a plan needs to be identified as the triggering message. Each
plan must have exactly one triggering message.

Figure 9.1 shows a capability diagram for the Stock managing capability of the Stock
Manager agent shown in the previous chapter (Figure 8.2 on page 103). This capability
was quite large, as can be seen from the number of incoming and outgoing items on the
Stock Manager agent overview diagram from the previous chapter. Consequently, we
choose to break it down into the three further capabilities, Ordering, Delay handling and
Handling new stock.

Figure 9.2 shows the plans that realize the Ordering capability. Consistent with the
parent diagram of the Stock managing capability, it has one incoming message, two
outgoing messages, an action and four external data sources. In addition, it introduces
one new data source internal to this capability – the Monthly Order.

CAPABILITY OVERVIEW DIAGRAMS 111

Figure 9.1 Capability diagram: Stock managing capability

Figure 9.2 Capability overview diagram: Ordering capability

112 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

9.2 SUB-TASKS AND ALTERNATIVE PLANS

At the lowest level of detail, each incoming message to the capability must have one
or more plans that respond to that message. Multiple plans responding to the message
provide multiple ways of reacting to the situation. This allows each individual plan
to be simple and straightforward, responding to the relevant message for a particular
situation.

Each plan can typically be broken down into some number of sub-tasks, each of
which is represented by an internal message. Depending on the implementation platform,
sub-tasks can be combined using programming control structures – sequence, parallel,
if, or, and so on. These control structures are not shown in the capability overview dia-
gram – like the other overview diagrams, it captures only static structure.

Electronic Bookstore: Case study

In Figure 9.2 of the ordering capability, we see that the Check stock plan has four
messages or sub-tasks: Stock low, No stock, Book available and Not in stock. These
actually represent two cases requiring ordering of stock, as well as a third case not
requiring stock ordering. In one case there is no stock, with an internal message
generated to handle this situation and a message sent to the entity requiring the book,
stating that it is not in stock. In the second case, stock is low, and so a message is
sent back saying the book is available as well as an internal message being generated
to handle the low stock situation. The third case (not requiring any ordering of stock)
simply sends the Book available message.

The two stock-ordering situations trigger two separate plans to deal with the two
situations. Figure 9.3 shows the items relevant to the situation in which stock is
low. In this situation, the Stock low message triggers a plan Add to order, which
adds the book to the monthly order form, after first checking in the Stock orders
DB that it is not already ordered and awaiting delivery, and the Monthly Order DB
to ensure it is not already on this month’s order list. Add to order then has three
sub-tasks: Get number required, which determines the number of books to order,
Decide supplier, which determines which supplier to order from and Modify monthly
order, which adds the required number of books to the monthly order for the relevant
supplier.

The Get number required message is an example of a situation in which there are
several different plans or ways of achieving this sub-task. Get number by index sim-
ply obtains the number on the basis of a categorization of the book, and a standard
number of copies to order for this book category. Get number by price determines
the number of copies to order on the basis of the price of the book – perhaps not
wishing to have too much money tied up in many copies of expensive books. Get
number by sales looks at the sales history for the book and determines an order num-
ber on the basis of this information. The availability of these different plans, allows
the system to be flexible and choose depending on circumstances. For example, if

SUB-TASKS AND ALTERNATIVE PLANS 113

Book required

Check stock

Stock low Book available

Stock DB

Stock Orders
Add to order

Decide supplier

Modify monthly order

Monthly Orders

Add to supplier order

Decide supplier by price

Books DB

Get number required

Get number by index Get number by price

Get number by sales

Figure 9.3 Low stock situation within the Ordering capability

there is a cash flow problem, it may be most appropriate to use Get number by
price. This decision can be made at run time. (We note that each of these plans
would actually need access to data that is not currently shown in the diagram).

It is often the case that initially only one plan may be provided for achieving a
particular sub-goal. Usually, this is the most straightforward or standard way of doing
something. Later, additional plans can be added to address more unusual situations, or
to provide alternative approaches that can be useful in some situations.

9.2.1 IDENTIFYING CONTEXT CONDITIONS

Each plan is triggered by a specific event. This event may be the arrival of a percept,
arrival of a message from another agent, or an internal message or sub-task within the
agent. We use the term event to include each of these, as it is also a commonly used
term in many agent systems. If there are several plans that could be triggered by a given
event, then it is important to specify the conditions or situation under which the various
plans are applicable. We call this the context condition, and in many agent systems (and
all BDI systems), this maps quite directly to an implementation concept.

114 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

APPLICABILITY

The context condition most often represents information about the state of the environ-
ment, which makes the plan suitable for use in that situation. For example, a plan to
recompense a customer for a lost book by immediately sending a new book may have as
a context condition that the required book is in stock. An alternative plan may provide
the customer with a refund and have as a context condition that the book is not in stock.
Additional plans providing more options may be added later.

Information required in context conditions has implications for other parts of the
design, in particular, data representations. Exactly what is possible will depend to some
extent on the implementation platform. Some systems provide a specialized data structure
for representing agent beliefs, which can then be accessed in context conditions. There
may also be internal data structures in the host programming language, which contain
information about the environment. There may also be functions that can be run as
needed as part of a check of context condition. Care should be taken to specify context
conditions precisely at this stage and to ensure that the design includes the relevant data.

MULTIPLE BINDINGS

Many BDI systems provide the ability to bind variables as part of a context condition,
giving the possibility of multiple plan instances, with different bindings of some vari-
ables. For example, a plan to courier a book requires that the destination be in an area
that is served by a courier in the database. There may well be several such couriers.
Binding of a courier variable to these different options gives multiple plan instances,
each using a different courier. This gives flexibility and robustness, in that if a plan to
use one courier fails, because perhaps they do not respond, then another plan (with a
different courier) will be tried.

FULL SPECIFICATION

In some cases, a context condition should be specified even if there is only one plan
available. If there is some situation that is necessary for the successful execution of the
plan, then this should be specified as a context condition, even if there is no other option
available. (By doing this, the system is able to efficiently and effectively recognize a
failure situation, and possibly remedy it by making other choices elsewhere.)

Sometimes, inexperienced agent programmers fail to represent context conditions
that they expect to be true, on the basis of previous actions. However, it is important to
remember that an agent does not have complete control of the environment, and external
events can change the environment during the time an agent is pursuing a series of plans
towards a particular goal. Representation of necessary context conditions helps ensure
the correct functioning of the agent.

Electronic Bookstore: Case study

Returning to the example of the different plans for Get number required in our example
in Figure 9.2, we could define context conditions as follows:

SUB-TASKS AND ALTERNATIVE PLANS 115

Get number by index
Context: Book has category assigned
Data requirements: Category field in Stock DB; Data structure (Ordering-categories)
mapping categories to a default number to order.

Get number by price
Context: Wholesale book price greater than $100
Data requirements: Wholesale book price as a sub-field of supplier in Books DB.

Get number by sales
Context: Sales for month greater than default number orders for category
Data requirements: Data structure (Monthly sales) that holds number of sales per
book; structures for determining default (index) order values as for Get number by
index plan.

9.2.2 COVERAGE AND OVERLAP

Having multiple plans to respond to an event is a powerful mechanism that facilitates
robustness, flexibility and modularity. However, it does require that the designer consider
potential interactions between the plans. Coverage is the term we use to refer to the
concept of whether, for a given event, there will always be some plan with a matching
context condition. Overlap refers to whether it is possible, in some situations, to have
more than one plan that is applicable, necessitating a choice between them.

If there is a plan with no context condition, then coverage is guaranteed. It can
be useful to have such a plan to ensure coverage. However, it is important, as noted
previously, to not ignore (and fail to represent) conditions that are actually required for
successful execution, but which one expects will hold. Coverage can also be guaranteed
if there is a pair of plans whose context conditions are the complement of each other.
For example, if one plan has a context condition that book price is less than $100, and
another has a context condition that book price is greater than or equal to $100, then
there is coverage. If, however, the second plan has only book price greater than $100,
then (if these are the only two plans) there is not (complete) coverage, as in the case
where book price is exactly $100, neither plan will be applicable. It is important for the
designer to do a careful analysis of coverage to ensure that, unless intended otherwise,
there is no gap in coverage. If it is intended that there be no response in some situations,
then a gap in coverage may be appropriate. However, it is important to check how this is
handled by the implementation platform and to implement accordingly; in some systems,
it may be necessary to have an ‘empty’ plan that does nothing, to obtain the desired
behaviour.

A related concept to coverage is that of overlap. We say that there is overlap in
response to a trigger if it is possible for there to be multiple plans that are applicable
in some situation. There are two mechanisms by which this can happen. One is when
two context conditions overlap, that is, there is some situation in which both could be
true simultaneously. The other is where the context condition contains variables that can
potentially take on multiple values at a single point in time, leading to multiple plan

116 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

instances of a single plan type. Overlap is a kind of redundancy and can be very useful
in building a system that is robust and able to recover from failures. However, it is very
important that it be considered and understood at design time.

☞ Tip: Interactions between context conditions that have not been
foreseen are one of the very common bugs that arise in agent
systems. Sometimes there is a failure or lack of response, due to an
unintended gap in coverage. At other times, there is an unintended
overlap in context conditions, leading to a different plan being
executed than that which was intended. Careful and systematic
analysis during detailed design helps eliminate these bugs.

Preferences

If there is overlap, one plan will be chosen (initially) from all those that are applicable. It
may be that although several plans are viable, there are preferences as to which should be
tried first. The mechanisms available for specifying and controlling this vary from system
to system. However, it is important that the designer consider whether such preferences
exist, and if so, what they are. If the implementation platform lacks a mechanism for
controlling the order in which plans from an applicable set are chosen, then the designer
must weigh up the advantages of controlling ordering by tighter specification of context
against the advantages of robustness by not excluding less preferred but possible plans.

9.3 EVENTS AND MESSAGES

As indicated, we use the term event to denote things that can trigger the choice and exe-
cution of a plan. These can be the messages that we have identified between agents, the
percepts coming from the environment, or the messages internal to an agent, indicating
sub-tasks or messages between plans and/or capabilities.

The most important issue associated with the events is the precise specification of
the information carried by that event. Again, the exact way in which this is carried
is dependent on the implementation platform. The important design issue is to specify
clearly what information is required as part of the event. Both the type of information,
and, where relevant, the allowable values should be specified. In some cases (for percepts
or messages between agents), this will have been specified at an earlier stage. However,
it may need to be refined or added to during detailed design. In addition, it is important
at this stage to add additional information such as that regarding coverage and overlap.
Many new events (or internal messages) are developed as the plans take shape and
sub-tasks are identified.

For example, if there is a book order event, presumably it is important for that event
to carry the information as to which book is being ordered. It may also be necessary
to carry information about who is ordering and the delivery address. This information
has possibly been identified during architectural design. As a plan is being developed, it

ACTION AND PERCEPT DETAILED DESIGN 117

becomes evident precisely which information is required, and as a result, the information
to be carried by the event is refined. Some events may only serve as a trigger and may
not need to carry additional information.

For messages between agents, it is also important to specify whether a reply is
expected and the details of that reply.

Events representing percepts from the environment must specify the information
carried as part of the percept. This may have been extracted from raw data as part of a
processing phase.

Electronic Bookstore: Case study

Referring to Figure 9.3, we see six different events. Many of these events will need
to carry the information regarding the book under consideration. The exception is the
Book available message, which is a response to a request, and therefore may not need
to explicitly carry this information.

The Modify monthly order event would need, in addition to book id, to carry the
following data:

• supplier

• number of copies.

9.4 ACTION AND PERCEPT DETAILED DESIGN

Actions and percepts have been identified during earlier stages. If there is processing
of incoming data required to obtain percepts, this needs to be designed and specified.
If a non-agent approach is being used to process the data (as is common in, say, image
processing), then design can be done using a notation and methodology suitable for the
approach being used. What is important is that the design of this part of the system is not
forgotten, and, in particular, that wrong assumptions are not made as to what will/can
be provided.

Like percepts, actions may be simple or complex. They may be simple system
calls that invoke well-known and supported functionality, such as sending an e-mail
or, alternatively, they may require customized design and implementation. Particularly
in physical systems, actions often require significant work in order to obtain satisfactory
behaviour. For example, in robocup, a move-to-point action required addressing issues
such as how close to the point would be considered ‘at’ the point, what velocities and
accelerations should be used, whether these should be parameters to the action and if so
how they should be dealt with, as well as issues to do with the feedback loop between
effectors and code. If actions are complex, then design documentation regarding them
is an important part of the design of the system as a whole. Like percept process-
ing, the notation and methodology used for designing the action components should be
appropriate for the approach being used.

118 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

9.5 DATA

Data representation is an important part of any system design activity, and agent systems
are no exception. However, as mentioned earlier, we do not focus on this aspect as
existing techniques are suitable for this purpose. Nevertheless, data representations must
be decided and specified, using some appropriate methodology.

Some agent development environments do offer some specialized support for data
representation, such as the beliefsets available in JACK. If available, such specialized
data representations can be useful as they typically provide some additional functionality.
However, this is again an implementation platform issue. For arbitrary data structures,
object-oriented class diagrams and access methods can be an appropriate representation.

What is important at the detailed design phase is to ensure that all significant data
structures are well specified. All data required by plans should be identified and the
location of that data should be specified.

9.6 DEVELOP AND REFINE DESCRIPTORS

The final design artifacts required are the individual descriptors that provide the detailed
information for each item. The new descriptor type introduced during detailed design is
the plan descriptor. Other descriptor types often obtain additional fields at this stage. For
example, agents and capabilities need fields added to indicate which plans are included.
Messages and percepts need to be extended with information about such things as cover-
age and overlap. In addition, many new instances will be added at this stage, in particular,
many new internal messages representing sub-tasks, and many new data descriptors.

The descriptors provide the details necessary to move into implementation. Some
of these details will depend on aspects of the implementation platform, while others
are more generic. For example, if the context in which a plan type is to be used is
split into two separate checks within the system being used (as is the case in JACK),
then it is appropriate to specify these separately in the descriptor. Fields added to per-
cepts and messages, specifying what information an event carries will depend on the
structure of events within the system, and so on. The guiding principle is that these
descriptors should (a) carry enough information for the reader to thoroughly understand
the capability overview diagram, and (b) carry sufficient information to move directly
to implementation.

The plan descriptors we use provide an identifier, the triggering event type, a context
specification indicating when this plan should be used, the plan steps as well as a short
natural language description, messages received and sent and a list of data used and
produced. At this stage, data lists should always be specifically tied to particular data
descriptors, rather than being generic descriptions.

The coverage and overlap information discussed earlier should be added to all mes-
sage and percept descriptors. An event is covered if there is always at least one handling
plan that is applicable; that is, for any situation, at least one of the matching plans will
have a true context condition. There is overlap if it is possible to have multiple plan
instances available to respond to this event. No overlap means that there is always at
most one plan that is applicable in any situation. If there is overlap, then some notes

CHECKING FOR COMPLETENESS AND CONSISTENCY 119

should be made regarding this, and the preferences between overlapping plans should
be made clear, if there are any.

If the implementation system allows sub-typing of events, (as can, for example,
be done using JACK’s relevance field), then this should also be added as additional
information in the message/percept descriptor.

Data descriptors should specify the fields and methods of any classes used for data
storage within the system. If specialized data structures are provided for maintaining
beliefs, these should also be specified. The data dictionary should also be updated and
checked at this stage.

Electronic Bookstore: Case study

Following is an example of a plan descriptor for a plan to add a book to the stock
order.

Plan: Add to order
Description: Order more stock of a book.
Trigger: Stock low
Context: Book not already ordered
Data used & produced: Reads Stock Orders and Monthly Order
Goal: Have books in stock
Failure: never fails
Failure recovery: not applicable
Procedure:
1. Determine how much stock to order (Get number required)
2. Determine which supplier to use (Decide supplier)
3. Add the order to the monthly order (Modify monthly order).

9.7 CHECKING FOR COMPLETENESS
AND CONSISTENCY

As with system specification and architectural design, the detailed design also needs to
be checked for completeness and consistency. As with previous phases, this is greatly
assisted by the use of a tool that can automate a large part of this work. As with earlier
phases, naming consistency is important, but we do not further discuss it here. At this
stage, there is a proliferation of entities and many will have related names, so it is critical
to know that only the exact same name refers to the same entity.

We structure the things that we check at this stage into four main areas:

1. Checking the completeness of each agent:
Does it implement the required functionality? Are all messages required for its
specified participation in protocols generated and received?

120 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

2. Nothing is missing or redundant:
Ensure that all data is both used and produced (except for external data, where it
is possible for it to be only used or produced). Ensure that all messages are both
sent and received.

3. Checking the consistency between final design artifacts:
We need to ensure consistency of interfaces between levels. We require consistency
between overview diagrams and descriptors, and we check consistency of plan details.

4. Following through important scenarios

As mentioned previously, these checks are a combination of horizontal checks, within
the artifacts generated during this phase, and vertical checks with artifacts generated
during previous phases.

9.7.1 AGENT COMPLETENESS

One of the most basic checks is to ensure that each agent is in fact covering the full
range of functionality that was assigned to it in the architectural design. Often, each
functionality is directly represented by a capability, in which case it is straightforward
to ensure that no functionalities have been missed.

It is also a good idea to ensure that each message required by the protocol specifi-
cations in which the agent participates is in fact received or generated by the agent.

Plans implement the details of the functionality provided and therefore it is wise to
carefully review the subsets of plans that implement particular processes. In particular,
it is useful to review the set of plans that respond to a single trigger, to ensure that
all situations are covered by some plan (or that it is acceptable if this is not the case).
Overlap between plans can also be reviewed at this stage.

9.7.2 MISSING OR REDUNDANT ITEMS

As a system is developed, it is extremely common to end up with some redundant or
missing information. As functionality is trimmed, or different ways are decided on for
doing things, items that were previously needed are no longer relevant. As functionality
is added, there is addition of items, but sometimes not all of them are fully integrated.

Missing information will of course show up in some way in the implemented system,
possibly manifesting as some kind of an error. Redundancy, however, may never be
noticed – resulting in additional work for no benefit during implementation, and code
that is harder to maintain.

The specific items that we check in this area are messages, data, actions and percepts.

MESSAGES MUST BE BOTH SENT AND RECEIVED

All messages in the system must be ultimately sent from at least one plan. Similarly, all
messages must be received by at least one plan. Usually this will be as a plan trigger,

CHECKING FOR COMPLETENESS AND CONSISTENCY 121

although some messages may be received within a plan body. This check can be done by
looking at plan descriptors and their incoming and outgoing messages. If an incoming
message is not also a trigger, then the procedure should be checked to ensure there is a
mechanism for receiving the message.

DATA MUST BE BOTH USED AND PRODUCED (USUALLY)

Usually, it is the case that if data is produced, we would want to see that it is also used.
An exception may be if the data is being produced purely for external purposes, for
example, a summary report of the number of storms in a year from a weather bureau,
or a statistical report on sales from our electronic bookstore.

Certainly, data that is used must be produced or obtained somewhere. Data can come
basically from three sources. It can be produced by some entity within the system; it can
come from environmental information via percepts; or it can come from external data
stores. If it is not being produced within the system, it is a good idea to check carefully
the source.

ACTIONS AND PERCEPTS

It is of no use having actions defined (and perhaps implemented) that are never actu-
ally executed. Similarly, spending time inputting percepts, and perhaps collecting and
processing data for these, is wasted effort if they are not used in some way.

During architectural design, it was established which agents were receiving which
percepts and executing which actions. Now it is important to ensure that some plan within
the relevant agent(s) actually executes each action. For each percept, it is important to
ensure that within the relevant agent(s) it either triggers some plan (which is the most
common case) or that it automatically updates some knowledge or belief store, without
use of a plan, or that it is accessed from within a plan body. Checking off percepts that
are used as plan triggers is easily automated via descriptors and/or overview diagrams.
The remaining cases should be checked manually.

9.7.3 CONSISTENCY BETWEEN ARTIFACTS

As the design is developed, it is important to continue to monitor consistency between
the interfaces at the more abstract and the more detailed levels, as well as consistency
between different kinds of representations.

CONSISTENCY BETWEEN OVERVIEW DIAGRAMS

The interfaces between the various overview diagrams can be simply and effectively
checked for consistency. All incoming and outgoing links from an agent in the system
overview diagram must translate to the same incoming and outgoing links within the

122 DETAILED DESIGN: CAPABILITIES, PLANS AND EVENTS

Event1

Event2

data1

Agent A

Event1

Event2

data1
Agent A

Figure 9.4 Interfaces should match for every entity at different diagram levels

agent overview diagram. Similarly, the incoming and outgoing links from a capability
within an agent overview diagram must be identical to the incoming and outgoing links
in the capability overview diagram for that capability. The same principle applies to
nested capabilities. Figure 9.4 illustrates this principle: the events and data that form the
agents interface in the system overview diagram (left) also appear in the agent overview
diagram (right).

This check sounds very trivial, but it is surprising how often an interface item is
inadvertently added or dropped.

☞ Tip: The authors have found that large numbers of minor errors
and omissions that would most likely percolate into code are eas-
ily found by mechanical and routine consistency checking, much
of which can be automated. We have also found that design doc-
uments with widespread inconsistencies are extremely difficult to
understand if one has not been involved in the design process.

CONSISTENCY BETWEEN OVERVIEW DIAGRAMS AND DESCRIPTORS

Consistency between all overview diagrams and the relevant descriptors should be per-
formed, in a manner similar to that described in Section 7.6.4. Capability descriptors
should be checked against the agent overview diagram, or in the case of nested capa-
bilities, against the relevant capability overview diagram. If a capability is used in more
than one place, then it should be checked against all relevant overview diagrams.

Plan descriptors should be checked against the capability overview diagram (or in
some cases, the agent overview) to ensure that incoming and outgoing messages and data
uses are consistent. With regard to plan descriptors, it is also useful to check some aspects
against the procedure description. For example, it should be evident within the procedure
description where each outgoing message is posted. Similarly, for any incoming message
that is not the trigger, it should be evident where it is accessed. A similar check can be
made with respect to actions and percepts if relevant.

CHECKING FOR COMPLETENESS AND CONSISTENCY 123

Descriptors for messages, data stores, percepts and actions should also be checked
for consistency with overview diagrams.

CONSISTENCY OF SCENARIOS, PROCESSES AND PLAN SETS

Scenarios were developed at an early stage to capture important aspects of the system
functionality. Before detailed design can be considered complete, a check should be made
to ensure that these scenarios are captured by processes and plan sets within each of the
relevant agents. It is not uncommon that in the process of detailed design, scenarios do
change somewhat. Depending on the project, it can be important to update the scenarios,
as they are important in helping to understand a design. If they are not updated, they
should at least be marked as no longer current when inconsistencies are detected, and it
is determined that it is the scenario that should be changed.

PROCESSES CONSISTENT WITH PROTOCOLS AND OVERVIEW
DIAGRAMS

Processes are a detailed description of the dynamics of various activities within a partic-
ular agent. They should be checked especially against the protocol related to the activity,
particularly to ensure that messages in and out are consistent with the message exchanges
indicated in the relevant protocol. Similarly, triggers for the activity should be found
(as percepts or messages) on the agent overview diagram, unless they are confirmed to
originate within the agent.

These checks are not readily automatable, but structured manual checking is quite
effective.

9.7.4 IMPORTANT SCENARIOS

It can be useful to do a ‘design walk through’ of key scenarios together with a colleague.
Flaws can often be seen at this stage and it is preferable to rethink and remedy them
within the design.

10

Implementing Agent Systems

The design process of Prometheus results in descriptors and diagrams that describe a
range of design entities such as goals, functionalities, agents, capabilities, plans, percepts,
actions, messages, data, protocols and scenarios. However, not all of these design entities
are carried through to implementation. For example, functionalities are used to determine
the agent types but they do not correspond to any run-time entity. Roughly speaking, the
entities that are implemented are those that are produced in the detailed design phase:
namely, agents, capabilities, plans, messages and beliefs; as well as actions, percepts
and goals. In this chapter, we briefly look at how we undergo a transition from detailed
design to implementation and how certain agent platforms support a very direct mapping
of these concepts.

Clearly, the concepts of messages, plans and beliefs (as well as agents and capabilities)
do not map directly into object-oriented languages such as C++ or Java. Although it is
possible to implement an agent-oriented design using an object-oriented language, this
is akin to trying to realize an object-oriented design in a non-OO language such as C:
awkward and difficult to maintain.

10.1 AGENT PLATFORMS

Fortunately, there exist a range of ‘agent-oriented’ programming languages. Generally,
these languages also provide libraries and infrastructure, such as naming services (‘white
pages’), and so we shall use the term ‘agent platform’. When considering which agent
platform to use, it is important to be aware that not all agent platforms support plan-based
agents. Roughly speaking, there are three classes of agent platforms:

1. Those that focus on internal agent reasoning and support plans, goals, and so on.

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

126 IMPLEMENTING AGENT SYSTEMS

Examples: PRS1 (Georgeff and Lansky 1986; Ingrand et al. 1992), UMPRS2 (Lee
et al. 1994), JAM3 (Huber 1999), JACK4 (Busetta et al. 1999), DECAF5, Zeus6,
AgentBuilder7 and JADEX8 (which is an extension of JADE9).

2. Those that focus on inter-agent communications. These usually provide infrastruc-
ture for inter-agent communication (for example, a way of sending messages in a
certain syntax) as well as facilities for locating agents on the basis of names (white
pages) and/or a description of the service that the agents provide (yellow pages).
More recent platforms in this class tend to conform to the FIPA10 standards.
Examples: JADE11, Zeus12, OAA13 (Cheyer and Martin 2001)

3. Those that focus on mobile agents.
Examples: Grasshopper14, D’Agents15, Aglets16

Although inter-agent communication is a specialty of class 2 platforms, all (realistic)
platforms provide some support for agent communication (for example, although JACK is
listed as being a class 1 platform, it provides support for agent messaging and for locating
agents by name). A few platforms provide support for multiple areas. For example, a
FIPA-compliance module for JACK is available17. Another example is JADEX18, which
extends the FIPA-platform JADE with plans, events, goals and beliefs. Another example
is JAM, which is primarily a Belief-Desire-Intention (BDI) architecture (class 1), but
provides support for agent mobility.

The first class is most useful in terms of providing support for implementing designs
developed by following the full Prometheus methodology (including final detailed design).

The aim of this chapter is not to provide a detailed survey of a wide range of
platforms. The range and status of available agent platforms changes and the most up-to-
date information can be found online. Thus, we give pointers to existing surveys rather
than provide a survey that will be out of date by the time this book is published. Two
sites that provide extensive lists of tools are

1http://www.ai.sri.com/∼prs/
2http://www.marcush.net/IRS/irs downloads.html
3http://www.marcush.net/IRS/irs downloads.html
4http://www.agent-software.com
5http://www.eecis.udel.edu/∼decaf/
6http://more.btexact.com/projects/agents/zeus/
7http://www.agentbuilder.com/
8See http://sourceforge.net/projects/jadex
9http://sharon.cselt.it/projects/jade/

10Foundation for Intelligent Physical Agents, http://www.fipa.org
11http://sharon.cselt.it/projects/jade/
12http://more.btexact.com/projects/agents/zeus/
13http://www.ai.sri.com/∼oaa/
14http://www.grasshopper.de/
15http://agent.cs.dartmouth.edu/
16http://www.trl.ibm.com/aglets/
17From http://www.cs.rmit.edu.au/agents/protocols/
18See http://sourceforge.net/projects/jadex

EXAMPLE 127

• http://www.cems.uwe.ac.uk/∼rsmith/ECOMAS/agent toolkit list (courtesy of bt).
htm19

• http://www.agentbuilder.com/AgentTools/index.html

Additionally, Luck et al. (2004) discusses a number of platforms.
In the remainder of this chapter, we focus on illustrating how the detailed design that

has been produced can be implemented using a plan-based agent system. Specifically,
we show the close match between the results of the detailed design and the concepts
supported by agent platforms such as JACK20. We begin by briefly describing the JACK
platform, then discuss issues in mapping the detailed design entities produced by fol-
lowing Prometheus to JACK and give JACK code corresponding to a small part of the
detailed design for the book store example.

10.2 JACK

JACK is an agent platform based on the BDI model. It views an agent as having plans
that are triggered by events where messages are viewed as a specific sub-type of event. A
JACK program consists of declarations of entities: agents, capabilities, plans, events and
beliefsets (also termed ‘databases’). Each declaration links to other entities; for example,
an agent declaration specifies what plans and capabilities it contains, what beliefsets it
has, what messages it receives and sends and what events it posts internally.

Many of the Prometheus concepts map directly to JACK. For example, a Prometheus
agent just becomes a JACK agent. JACK also supports capabilities (Busetta et al. 1999)
and so capabilities in Prometheus map directly to JACK capabilities.

JACK does not have concepts corresponding to percepts and actions. We represent
percepts as events. Actions are simply performed within the plan body using Java code.

Also, BDI systems (including JACK) do not implement goals directly. Instead, they
model the acquisition of a new goal as an event. Thus, goals are realized by creating an
event type corresponding to the goal. As discussed by Thangarajah et al. (2002), this has
problems such as top-level goals being dropped if there are no applicable plans in the
current situation.

10.3 EXAMPLE

As an example, we focus on the highlighted portion of Figure 10.121, which sits within
the Ordering capability that is within the Stock managing capability within the Stock
Manager agent type (see Figure 10.2). This excerpt shows an (internal) message (Stock
low) that triggers a plan (Add to order). The plan makes use of the Stock Orders and
Monthly Order databases, and posts a number of internal messages that trigger further

19The text ‘(courtesy of bt)’ is part of the URL.
20A commercial product of Agent Oriented Software, http://www.agent-software.com
21The figure focuses on the Add to order plan and its context and is incomplete – the complete capability

overview diagram is in Figure 10.5 on page 132.

128 IMPLEMENTING AGENT SYSTEMS

Book required

Check stock
Stock DB

Book availableStock low

Add to order
Stock Orders

Get number required Decide supplier Modify monthly order

Get number by index

Get number by sales

Get number by price

Decide supplier by price

Books DB

Add to supplier order

Monthly Orders

Figure 10.1 Low stock situation within the Ordering capability

plans. The Stock Orders database is internal to the agent (but external to the capabilities).
The Monthly Order database is internal to the Ordering capability.

In addition to the database, there is also an object type book record that is carried by
the messages. This contains information about the book that has low stock, including the
book identifier (bookid), the wholesaleprice and the (optional) category of the book.

We consider in turn agents, capabilities, data, messages/events22, and plans. For each
entity type, we give an example descriptor, discuss the issues in mapping the design
entity to JACK code and give sample JACK code. The code we give is skeleton code
and is intended to illustrate how individual design entities map to JACK code, not to be
complete and detailed23.

10.3.1 AGENTS

We begin with declarations for the agent and two capabilities shown in Figure 10.2. The
plans, data and events are all within the Ordering capability that in turn is within a Stock
managing capability that is within a Stock Manager agent.

22Prometheus uses the term ‘message’, whereas JACK uses the term ‘event’.
23JACK does not allow for spaces in names and so we either remove spaces (and use capitals to indicate

multiple words) or replace spaces with underscores.

EXAMPLE 129

Stock Manager

Stock managing

Ordering
Stock low

Add to order

Stock orders

Get number required Decide supplier Modify monthly order

Monthly order

Figure 10.2 Nesting of capabilities within the Stock Manager agent

An agent declaration in JACK takes the form

agent AgentName extends Agent {
...

}

The body (‘...’ above) consists of declarations specifying what capabilities and plans the
agent has, what beliefsets it has and what events it handles, sends and posts.

The Stock Manager agent has a database called Stock Orders and has Stock man-
aging capability. Having a capability is expressed using a declaration of the
form

#has capability CapabilityName handle;

The Stock Manager agent has a single beliefset of type Stock Orders, which is
accessed by the capabilities and their sub-capabilities and plans. Having a beliefset is
expressed using a declaration of the form

#private data DataType name;

Finally, an agent declaration contains declarations of which events the agent posts,
sends and handles. The difference between posting and sending an event is that sending
takes place between agents, whereas posting is internal to an agent. JACK treats messages
as a type of event and thus there is no distinction between receiving a message (from
another agent) and handling an (internally posted) event: both are declared using handles
event.

We thus have the following agent declaration, which is based on Figure 10.3 (which
is a copy of Figure 8.2 on page 103).

130 IMPLEMENTING AGENT SYSTEMS

Figure 10.3 Agent overview diagram: stock manager

agent StockManager extends Agent {
#has capability StockManaging sm;
...

#private data Stock_Orders stockorders();
...

/* Percepts */
#handles external event Stock_order_delay;
#handles external event Failed_stock_arrival;
#handles external event Stock_arrival;
#handles external event Cheaper_price_report;
#handles external event New_Catalogue;
...

/* Incoming messages */
#handles external event Log_Outgoing_Books_Message;
...

/* Outgoing message */
#sends event Stock_arrival_info stockarrivalinfo;
#sends event Stock_arrival_delayed stockarrivaldelayed;
...

}

10.3.2 CAPABILITIES

Capability declarations are almost identical to agent declarations. They take the form

capability CapabilityName extends Capability {
...

}

EXAMPLE 131

Figure 10.4 Capability diagram: stock managing capability

The body of the declaration is identical in format to that of agent declarations. In this
example, the Stock Managing capability has Ordering as a sub-capability. Both capa-
bilities access the agent’s Stock Orders beliefset, which is declared using import data
rather than private data. This indicates that the database is external to the capability.
In addition to accessing the agent’s Stock Orders database, the Ordering capability also
has a private database of Monthly Order.

The following JACK code is based on Figures 10.4 and 10.5 (which are copies of
Figures 9.1 and 9.2 on page 111).

capability Stockmanaging extends Capability {
#has capability Ordering ordercap;
...

/* import agent’s databases */
#imports data Stock_Orders stockorders();
...

/* Percepts */
#handles external event Stock_order_delay;
#handles external event Failed_stock_arrival;
#handles external event Stock_arrival;
...

/* Incoming messages */
#handles external event Book_required;
...

/* Outgoing messages (external to agent) */
#sends event Stock_arrival_info stockarrivalinfo;
#sends event Stock_arrival_delayed stockarrivaldelayed;
...

132 IMPLEMENTING AGENT SYSTEMS

Figure 10.5 Capability overview diagram: ordering capability

/* Outgoing events (internal to agent) */
#posts event Book_available;
#posts event Not_in_stock;
...

}

The following
capability Ordering extends Capability {

/* import agent’s databases */
#imports data Stock_Orders stockorders();
#private data Monthly_Order monthlyorder();
...

/* Incoming messages */
#handles external event Book_Required;
...

/* Internal events */
#handles event Stock_low;
#posts event Stock_low;
#handles event Get_number_required;
#posts event Get_number_required;
#handles event Decide_supplier;

EXAMPLE 133

#posts event Decide_supplier;
#handles event Modify_monthly_order;
#posts event Modify_monthly_order;
...

/* Plans that the capability has */
#uses plan Check_stock;
#uses plan Add_to_order;
#uses plan Get_number_by_index;
#uses plan Get_number_by_sales;
#uses plan Get_number_by_price;
...

}

10.3.3 DATA

Data can be represented in a range of ways. Data that is represented as objects can, in
JACK, be simply programmed in Java.

Data that is represented as relational databases is described using the following
descriptor form24:
Data: name
Description: Description of the data
Included fields/aspects: What fields does the database contain?
Key(s): Which of these fields are the key, that is, which fields are sufficient to uniquely
determine a tuple.

Electronic Bookstore: Case study

Data: Stock Orders
Description: Stores the amount of each book that is on order. The bookid is the key.
Data type: relational database
Included fields/aspects: bookid (number), amount on order (number)
Persistent: no
External to system: no

Data that is represented as relational databases can be mapped into JACK beliefsets.
The Stock Orders database maps directly to the following JACK code.

beliefset Stock_Orders extends ClosedWorld {
#key field int bookid
#value field int amount_on_order
#indexed query getord(int bookid, logical int amount_on_order);

}

24The descriptors in this chapter include information that can be found only in the descriptors. For example,
in the data descriptor, the fields ‘produced by’ can be obtained from the diagrams and so are not included.

134 IMPLEMENTING AGENT SYSTEMS

The ClosedWorld means that the database stores facts, and anything not stored is
assumed to be false. An OpenWorld database stores both positive and negative information,
and anything not stored is assumed to be unknown. Usually, ClosedWorld is appropriate.

The declaration of the query uses logical variables to indicate outputs. So, the dec-
laration above automatically generates a method getord that takes a bookid and looks
up the corresponding amount on order.

10.3.4 MESSAGES/EVENTS

Messages are described using the following descriptor form:
Message: name
Description: Description of the message
Purpose: What is the aim of the event?
Carried Information: What data does the event carry/contain?
Coverage & Overlap: Will there always be at least one applicable plan?
Will there always be at most one applicable plan instance?

Electronic Bookstore: Case study

Message: Stock low
Purpose: Cause more stock to be ordered
Carried Information: Book record, current stock held (number)
Coverage & Overlap: Covered, no overlap

Message: Get number required
Purpose: Determine how many copies to order
Carried Information: Book record, current stock held, number
Coverage & Overlap: not covered: There can be situations where no plan matches,
if for instance not all books have a category field, overlap: Get number by sales, Get
number by price and Get number by index can all overlap. Preference ordering is
sales, price, index.

Message: Decide supplier
Purpose: Decide on which supplier to use
Carried Information: Book record, current stock held, amount to order
Coverage & Overlap: Covered, no overlap

Message: Modify monthly order
Purpose: Modify the monthly order
Carried Information: Book record, current stock held, amount to order, supplier to
use
Coverage & Overlap: Covered, no overlap

Mapping these descriptors to a JACK implementation is straightforward. The JACK
code for each event declares the data carried by the event and provides a posting method
that creates the event.

One issue that needs to be considered in JACK is the type of the event: JACK
provides a number of event types with different properties including MessageEvent

EXAMPLE 135

(for messages between agents) and BDIGoalEvent for goals. As a rough rule, an event
should be of type BDIGoalEvent when there are multiple plans that can handle the
event and it should be of type MessageEvent when it is being sent between agents.

The message get number required is not covered. This means that an attempt
to determine how many copies to order could fail. This could be addressed either by
requiring that any plan that posts get number required be prepared to fail, or by
adding additional plans to handle the message. For example, one could add a plan
that simply asked a clerk how many books to order. Finally, another alternative is to
make (and document!) assumptions that will guarantee that the message is covered, for
example, assuming that all books have categories will ensure that the message is covered.

event Stock_low extends BDIGoalEvent {
BookRecord bookrecord;
int currentstock;

#posted as stocklow(BookRecord br, int st) {
currentstock = st;
bookrecord = br;

}
}

event Get_number_required extends BDIGoalEvent {
BookRecord bookrecord;
int currentstock;
int amount;

#posted as get_number_required(BookRecord br, int st) {
currentstock = st;
bookrecord = br;

}
}

event Decide_supplier extends Event {
BookRecord bookrecord;
int currentstock;
int amount;
String supplier;

#posted as decide_supplier(BookRecord br, int st, int am) {
currentstock = st;
bookrecord = br;
amount = am;

}
}

event Modify_monthly_order extends Event {
BookRecord bookrecord;
int currentstock;
int amount;
String supplier;

136 IMPLEMENTING AGENT SYSTEMS

#posted as modify_monthly_order(
BookRecord br, int stock, int am, String supp)

{
currentstock = stock;
bookrecord = br;
amount = am;

}
}

10.3.5 PLANS

Finally, each plan in the Prometheus detailed design maps to a JACK plan. Plans are
described using the following descriptor form:

Plan: name
Description: Description of the plan
Trigger: What message or percept causes the plan to execute?
Context: In what situation should this plan be applicable?
Data used & produced: What data does this plan read and/or write?
Goal: What is the goal achieved by this plan?
Failure: When might the plan fail?
Failure recovery: What needs to be done to recover from failure?
Procedure: What is the sequence of steps that the plan performs?

Electronic Bookstore: Case study

Plan: Add to order
Description: Order more stock of a book.
Trigger: Stock low
Context: Book not already ordered
Data used & produced: Reads Stock Orders and Monthly Order
Goal: Have books in stock
Failure: never fails
Failure recovery: not applicable
Procedure:
1. Determine how much stock to order (Get number required)
2. Determine which supplier to use (Decide supplier)
3. Add the order to the monthly order (Modify monthly order)

This plan can be implemented in JACK with the code below. The important point
is that the mapping is one-to-one: each plan in the detailed design becomes a single-
plan declaration in a BDI platform such as JACK. The mechanism for running plans in
response to events being posted is provided by the BDI platform.

EXAMPLE 137

The information in the plan descriptor also gives much of the information in the
JACK plan declaration. For example, the handles event declaration is the trigger in
the plan descriptor and the context condition is given in pseudo-code in the descriptor.

The JACK plan declaration needs to declare the events posted and sent by the plan
as well as data access. This information can be seen in the capability overview diagram
where the plan appears. Finally, the plan body needs to be expressed in code rather than
pseudo-code. In JACK, the language used to write plan bodies is Java extended with ‘@
statements’ such as @achieve or @send.

The plan body below follows the four steps in the plan descriptor. Steps two, three and
four are realized by posting an event as a sub-task of the current plan using @subtask.
In all three cases, the processing of the plan suspends until the event either succeeds or
fails. The difference between @subtask and @post is that the latter is asynchronous –
it does not suspend the plan while the event is handled.

☞ Tip: Often, when a plan posts an event to trigger other plans,
there will be some information that results from the sub-tasks.
For example, posting Decide supplier results in a supplier being
chosen. One way of communicating this information back to the
parent plan is to have an additional field in the event that is set by
the child plan.

plan Add_to_order extends Plan {
/* Trigger */
#handles event Stock_low stocklow;

/* Events/messages sent */
#posts event Get_number_required getnumber;
#posts event Decide_supplier decidesupplier;
#posts event Modify_monthly_order modifymonthlyorder;

/* Data read/modified */
#reads data Stock_Orders stockorders;
#reads data Monthly_Order monthlyorder;

/* Context condition */
context() {

stockorders.getord(stocklow.bookrecord.bookid,sorder)
&& sorder.as_int()==0 && ... ;

}

/* The body of the plan */
body() {

logical int sorder;
/* Create event */
getnumber = getnumber.get_number_required(

stocklow.bookrecord, stocklow.currentstock);
/* Post the event */
@subtask(getnumber);

138 IMPLEMENTING AGENT SYSTEMS

decidesupplier = decidesupplier.decide_supplier(stocklow.bookrecord,
stocklow.currentstock, getnumber.amount);

@subtask(decidesupplier);

modifymonthlyorder = modifymonthlyorder.modify_monthly_order(
stocklow.bookrecord, stocklow.currentstock,
getnumber.amount, decidesupplier.supplier);

@subtask(modifymonthlyorder);
} // body()

} // plan Add_to_order

10.4 AUTOMATIC GENERATION
OF SKELETON CODE

In this chapter, we have shown how the results of a Prometheus detailed design map
naturally to (skeleton) code in an agent-oriented programming language, specifically
JACK. In fact, much of this code can be automatically generated from a structured
design. The JACK Intelligent Agents environment contains a tool, ‘JACK Development
Environment’ (JDE), which supports this automatic generation of skeleton (JACK) code
from a graphical design.

We have developed a prototype tool ‘Prometheus Design Tool’ (PDT), available at
www.cs.rmit.edu.au/agents/pdt. This tool supports the process described in this
book, of system specification, architectural design and detailed design. The detailed
design produced by PDT can be straightforwardly converted to JDE, and consequently
to JACK code. A similar approach could be used to develop plug-ins that enable PDT
to produce skeleton code for a range of agent-programming systems. It is our hope that
the structured methodology presented, combined with tools that support the process, will
assist developers in exploring the powerful agent-programming paradigm.

A

Electronic Bookstore

This appendix provides an example of the kind of design document that can be generated
from the final design artifacts, after following the Prometheus methodology. This report
is generated largely automatically from the Prometheus Design Tool that supports the
methodology. The design is not complete in that it does not cover all parts of the system
at all levels of detail. Rather, as we have progressed the level of detail, we have narrowed
the scope. Also, not all aspects are equally well developed, even within the scope we
have chosen. However, there is some example of all aspects of the design, and we hope
this will assist in making concrete the approach.

Also, there is no claim that this is an especially good design! There are many places
where it can clearly be improved. It is developed as a way of concretely illustrating the
methodology. In fact, having the methodology enables one to see and recognize where
improvements can be made. If a real system was being developed, prototype implemen-
tation would also almost certainly have fed into the design. This has not happened in this
case (as there was never an intent to actually build the system). Also, data descriptions
are not developed in detail as it is assumed users know how to do this using alternative
methodologies.

Name Electronic Bookstore
Description
Author Lin Padgham and Michael Winikoff
Version
Prometheus version 1.2
Report generation date 2003-12-08

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

140 ELECTRONIC BOOKSTORE

1. System Specification

1.1 Goal Overview Diagram

Have books in stock

Update catalogue

Worldwide sale of books

Fully online system

Obtain user input

Locating of books

Book query

Provide personalised recommendations

Place order (online)

Register customer profile

Inform customer

Update customer profile

Personalised U.I.

Fast, reliable service

Respond to customer

Determine delivery status

Delivery tracking

Monitor delivery

Log tracking information
Update delivery problem

Log delivery problems

Log outgoing delivery

Fill pending order
Arrange delivery

Delivery of books

Obtain credit card details

Make payment (online)

Obtain delivery options

Log books arriving

Broad range of books

Log books outgoing

Reorder stock

Competitive prices

Restore book priceLower book price

Monitor competitive response

Set prices competitively

Calculate delivery time estimates

Present information

Provide personalised welcome

ELECTRONIC BOOKSTORE 141

1.2 Functionalities

Functionalities Diagram

Online interaction

Profile monitor

Delivery handling

Provide personalised recommendations

Obtain user input

Register customer profile Update customer record

Inform customer

Fill pending order

Arrange delivery

Place delivery request

Obtain delivery options

Calculate delivery time estimates

Send email

Stock management
Book query

Email stock order

Order stock

Set prices competitively

Log books outgoing

Lost goods management

Log tracking information

Update delivery problemLog delivery problems

Delivery tracking

Purchasing

Bank transaction

Place order (online)
Obtain credit card details

Make payment (online)

Request delivery tracking

Competition management

Lower book price Restore book price

Monitor competitive response

Log books arriving

Log outgoing delivery

Determine delivery status

Customer contact

Update BooksDB

Catalogue management Welcoming

Book finding

Price setting

Respond to customer

Provide personalised welcome

www page display

Present information

(In the functionality descriptors shown below, data which was initially specified within
the functionality, but later removed due to design decisions, is shown in parentheses)

Functionality Online interaction

Name Online interaction
Description This functionality manages the online interaction with a single user, via the
website.
Triggers user input
Actions WWW page display
Information used Customer DB, Customer Orders
Information produced (Customer DB, Customer Orders)
Goals Obtain user input, Present information

142 ELECTRONIC BOOKSTORE

Functionality Catalogue management

Name Catalogue management
Description Ensures that there is an up-to-date catalogue for a wide variety of books.
Updates the catalogue whenever information arrives from suppliers.
Triggers new catalogue
Actions
Information used Catalogue
Information produced Books DB
Goals Update BooksDB

Functionality Welcoming

Name Welcoming
Description Provide personalized and contextualized welcome messages when a user
logs into the WWWsite.
Triggers Arrival at WWWsite
Actions
Information used Customer DB, Customer Orders
Information produced Temporary WWWpage data, (Customer DB)
Goals Provide personalized welcome

Functionality Profile monitor

Name Profile monitor
Description manages the user’s personal profile and any information contributing to or
based on that profile
Triggers Update customer profile, Register customer profile, Request profile information
Actions
Information used Customer DB
Information produced Customer DB
Goals Provide personalized recommendations, Register customer profile, Update cus-
tomer record

Functionality Stock management

Name Stock management
Description Keeps track of stock on hand, ordering stock as required and monitoring
delivery of those orders.
Triggers Failed stock arrival, Stock arrival, Stock order delay
Actions Email stock order
Information used Stock DB, Books DB, Stock Orders, Pending Orders

ELECTRONIC BOOKSTORE 143

Information produced Stock DB, Stock Orders, Pending Orders
Goals Log books arriving, Log books outgoing, Order stock

Functionality Book finding

Name Book finding
Description Locates book or book information according to specification. (Currently
limited to searching books Searches for books in the Stock DB and in the Books DB,
but could be extended to search pro-actively for books not in these sources.)
Triggers Book query
Actions
Information used Stock DB, Books DB
Information produced Temporary booklist
Goals Book query

Functionality Delivery handling

Name Delivery handling
Description This functionality manages delivery of orders to customers
Triggers
Actions Place delivery request
Information used Courier DB, Postal DB, Customer Orders
Information produced Customer Orders
Goals Arrange delivery, Calculate delivery time estimates, Determine delivery status,
Log outgoing delivery, Obtain delivery options, Fill pending order

Functionality Lost goods management

Name Lost goods management
Description Manages queries about books that have not arrived. Does tracking and
arranges duplicate books if needed.
Triggers Tracking info, No tracking response
Actions Request delivery tracking
Information used Delivery Problems
Information produced Delivery Problems, (Customer DB, Customer Orders)
Goals Log delivery problems, Delivery tracking, Log tracking information, Update deliv-
ery problem

Functionality Price setting

Name Price setting
Description Set prices competitively, based on cost of books. (Further development could
allow for mark-up to be based also on the popularity of the title. It could also allow for
pro-active checking of prices elsewhere.)
Triggers New catalogue, Temporary reduction, Remove reduction

144 ELECTRONIC BOOKSTORE

Actions
Information used Stock DB, Books DB
Information produced Stock DB
Goals Set prices competitively

Functionality Purchasing

Name Purchasing
Description Manages on-line sales of books, including credit card transaction.
Triggers Bank transaction response
Actions Bank transaction
Information used Customer Orders, Customer DB
Information produced Purchase approval (temporary) (Customer DB, Customer Orders)
Goals Place order (online), Make payment (online), Obtain credit card details

Functionality Competition management

Name Competition management
Description Lowers prices temporarily if needed to stay competitive. Monitors situation
and restores prices when possible.
Triggers Cheaper price report
Actions
Information used Books DB, Stock DB
Information produced Stock DB
Goals Lower book price, Monitor competitive response, Restore book price

Functionality Customer contact

Name Customer contact
Description contacts customer with information on delivery details as needed. Contact
point for customer queries regarding orders.
Triggers Book delivery information, response to Late delivery query
Actions Send email
Information used Customer DB, Customer Orders
Information produced
Goals Inform customer, Respond to customer

1.3 Scenarios
Scenario Query late books

Name Query late books
Description This scenario illustrates what happens when a user enquires about books
ordered which have not arrived. Information is obtained from delivery records and as the

ELECTRONIC BOOKSTORE 145

book is delayed, a tracking process is started. The customer is notified. After a wait, the
book cannot be located and a new book is sent.
Trigger Late delivery query
Steps

Type Name Functionality Data
1 Goal Determine delivery

status
Delivery handling uses: Customer Orders

2 Goal Log delivery problems Lost goods
management

produces: Delivery
Problems

3 Action Request delivery
tracking

Lost goods
management

uses: Customer
Orders, Courier DB
produces: tracking
request

4 Goal Inform customer Customer contact uses: Customer DB
5 Other Wait
6 Percept Tracking info Lost goods

management
7 Goal Arrange delivery Delivery handling uses: Customer Orders

produces: Delivery
Problems

8 Goal Log books outgoing Stock management uses: Customer Orders
produces: Stock DB

9 Goal Inform customer Customer contact uses: Customer DB
10 Goal Update delivery

problem
Lost goods
management

produces: Delivery
Problems

Scenario Book finding scenario

Name Book finding scenario
Description Finds book(s) as requested by the user and displays the result.
Trigger user request
Steps

Type Name Functionality Data
1 Goal Book query Book finding uses: Stock DB,

Books DB
2 Goal Present information Online interaction uses: temporary

booklist
3 Action WWW page display Online interaction

Variation No books found that match request. Provide message and suggest changes to
request.

146 ELECTRONIC BOOKSTORE

Scenario Order book

Name Order book
Description An order is received from the WWW page interface (goal Place order)
Information is obtained in order to place the order and the order is placed.
Trigger Goal: Place order
Steps

Type Name Functionality Data
1 Goal Obtain delivery options Delivery handling uses: Courier DB,

Postal DB
2 Goal Calculate delivery time

estimates
Delivery handling customer order record,

Courier DB, Postal
DB
produces: time
estimates

3 Goal Present information Online interaction uses: temporary data
4 Percept user input Online interaction Get delivery choice
5 Goal Obtain credit card

details
Purchasing uses: Customer DB

6 Percept user input Online interaction uses: Customer DB
produces: CC details
(if needed), agreed
transaction

7 Action Bank transaction Purchasing transaction details
(temp)

8 Percept Bank transaction
response

Purchasing

9 Goal Arrange delivery Delivery handling produces: Customer
Orders,
uses and produces:
customer order record

10 Action Place delivery request Delivery handling uses: customer order
record

11 Goal Log outgoing delivery Delivery handling produces: Customer
Orders

12 Goal Log books outgoing Stock management uses: customer order
record
produces: Stock DB

13 Goal Update customer record Profile monitor produces: Customer
DB

14 Action Send email Customer contact uses: Customer DB

Variation 1: Book is not currently available. Include information with delivery options.
Replace steps 7-12 with steps to add the order to an orders pending file.

ELECTRONIC BOOKSTORE 147

Scenario Pending order arrives

Name Pending order arrives
Description Stock arrives that is needed for a pending order. Delivery is arranged,
internal data updated and customer notified.
Trigger Message that book for a pending order has arrived.
Steps

Type Name Functionality Data
1 Percept Stock arrival Stock management
2 Goal Fill pending order Delivery handling produces: Pending

Orders
3 Goal Arrange delivery Delivery handling produces: Customer

Orders,
uses and produces:
customer order record

4 Action Place delivery
request

Delivery handling uses: customer order
record

5 Goal Inform customer Customer contact uses: Customer DB,
customer order record

6 Goal Log books outgoing Stock management uses: customer order
record
produces: Stock DB

7 Goal Log outgoing
delivery

Delivery handling produces: Customer
Orders

Variation Waiting on additional books. Book is held aside.

Scenario Stock arrival

Name Stock arrival
Description Fills pending orders and updates stock information
Trigger Stock arrival percept.
Steps

Type Name Functionality Data
1 Goal Fill pending order Delivery handling uses and produces:

Pending Orders
2 Goal Log outgoing delivery Delivery handling produces: Customer

Orders
3 Goal Log books outgoing Stock management uses: customer order

record
produces: Stock DB

Variation No pending orders to fill. Leave out those steps.

148 ELECTRONIC BOOKSTORE

Scenario Stock delayed

Name Stock delayed
Description Supplier notifies delay. Check pending orders delayed. Notify customer
contact, who may notify customer.
Trigger message from supplier.
Steps

Type Name Functionality Data
1 Goal Identify affected orders Stock management uses and produces:

Pending Orders
2 Goal Inform customer Customer contact uses and produces:

Customer DB

Scenario Stock order

Name Stock order
Description Order made and no stock available, so order is placed. When stock arrives,
order is filled and sent.
Trigger order made and no stock available.
Steps

Type Name Functionality Data
1 Goal Order stock Stock management produces: Stock

Orders
2 Action Email stock order Stock management order list (temp)
3 "Other" wait for stock to

arrive4 Scenario Stock arrival

Variation Stock may not arrive, in which case replace Stock arrival scenario by Missed
stock arrival scenario.

A message may come saying that stock arrival is delayed, in which case replace Stock
arrival scenario by Stock delayed scenario.

Various other stock ordering scenarios. Stock drops below a threshold and is placed on
an order list. Regular data-based order schedule.

Scenario Order status query

Name Order status query
Description A request is received to review order status. Information is obtained and
presented to the user.
Trigger user request received via WWW page

ELECTRONIC BOOKSTORE 149

Steps

Type Name Functionality Data
1 Goal Determine delivery status Delivery handling uses: Customer Orders,

Pending Orders
2 Goal Present information Online interaction uses: temporary

message
3 Goal Update customer record Profile monitor produces: Customer

DB

Scenario Customer profile update

Name Customer profile update
Description update the user’s profile at user request
Trigger trigger: User input specifying update.
Steps

Type Name Functionality Data
1 Goal Confirm changes Online interaction uses: Customer DB

produces: customer
profile record

2 Goal Update customer record Customer contact uses: updated info
(temp)
produces: Customer DB

Variation User doesn’t confirm changes. Leave unchanged–i.e. don’t do step 2.

Scenario WWWsite arrival
Name WWWsite arrival
Description New customer arrives. Welcome page displayed.
Trigger new arrival at site.
Steps

Type Name Functionality Data
1 Goal Provide personalized

welcome
Welcoming uses: Customer DB

2 Action WWW page display Online interaction uses: welcome text
(temp)

Variation Customer nor previously registered. Add initial steps to obtain profile and
register customer.

Scenario Cheaper price notification
Name Cheaper price notification
Description Cheaper price from competitor notified. System price is temporarily adjusted,
monitored, and then reset to normal when possible.

150 ELECTRONIC BOOKSTORE

Trigger cheaper price report (percept)
Steps

Type Name Functionality Data
1 Goal Lower book price Competition

management
uses: Books DB
produces: Stock DB

2 Goal Monitor competitive
response

Competition
management

3 Goal Restore book price Competition
management

produces: Stock DB

Scenario New catalogue

Name New catalogue
Description New book catalogue arrives from supplier. Books DB is updated.
Trigger New catalogue (percept)
Steps

Type Name Functionality Data
1 Goal Update BooksDB Catalogue

management
produces: Books DB

Scenario Missed stock arrival

Name Missed stock arrival
Description Stock does not arrive when due. No information available from supplier.
Contact supplier for info then notify delay.
Trigger Trigger: Arrival time passes and no stock arrival.
Steps

Type Name Functionality Data
1 Action Send email Stock management uses: Stock Orders
2 "Other" Stock management wait for response

re delay
3 Scenario Stock delayed

Variation No response from supplier in given time. Do stock delayed scenario and keep
trying to contact.

1.4 Percepts

Percept user input
Name user input
Description user input from WWWsite.
Defined: Page 156

ELECTRONIC BOOKSTORE 151

Percept Arrival at WWWsite

Name Arrival at WWWsite
Description Indication of a new arrival at the WWWsite
Defined: Page 157

Percept Bank transaction response

Name Bank transaction response
Description Response to request for credit card payment
Defined: Page 157

Percept Tracking info

Name Tracking info
Description response from courier company to a tracking request
Defined: Page 157

Percept new catalogue

Name new catalogue
Description New catalogue information from a supplier
Defined: Page 157

Percept Stock arrival

Name Stock arrival
Description information that stock has arrived
Defined: Page 158

Percept Failed stock arrival

Name Failed stock arrival
Description Indication that a stock order has not arrived when expected.
Defined: Page 158

Percept Stock order delay

Name Stock order delay
Description Information from supplier regarding delivery delay
Defined: Page 158

Percept Cheaper price report

Name Cheaper price report

152 ELECTRONIC BOOKSTORE

Description External report indicating a supplier selling a book at a cheaper price than
this company.
Defined: Page 158

Percept Regular order trigger

Name Regular order trigger
Description Timer-based trigger for placing regular stock orders
Defined: Page 159

Percept No tracking response

Name No tracking response
Description Percept generated by system monitor if no response received after a set
time.
Defined: Page 159

1.5 Actions

Action Email stock order

Name Email stock order
Description Action to order stock from a supplier
Defined: Page 159

Action Request delivery tracking

Name Request delivery tracking
Description send request to courier or postal service to track an item which has not
arrived.
Defined: Page 160

Action Place delivery request

Name Place delivery request
Description Send an email request for delivery pick-up, either by courier, or by the
postal room.
Defined: Page 160

Action Send email

Name Send email
Description Send email message (generic)
Defined: Page 160

ELECTRONIC BOOKSTORE 153

Action WWW page display

Name WWW page display
Description Displays WWW page content
Defined: Page 160

Action Bank transaction

Name Bank transaction
Description Action which executes a bank transaction
Defined: Page 160

1.6 Data

External

Courier DB
Contains information about courier companies, areas and rates.

Postal DB
Contains information about postal rates.

Other

Customer DB
contains information about customers, their profile, their history of visits to the site and
orders, etc.

Customer Orders
contains records with orders that have been (fairly recently) sent.

Pending Orders
contains records with orders which have been placed, but not yet sent.

Delivery Problems
contains records of queries about nonarriving items and the investigation of such.

Books DB
contains a comprehensive listing of books, with information on suppliers, prices, etc. Not
all books are necessarily stocked.

154 ELECTRONIC BOOKSTORE

Stock DB
contains records of books that are stocked.

Stock Orders
contains records of stock orders placed and awaiting delivery.

2. Architectural Design

2.1 System Overview Diagram

Send email
Book ordering protocol

Query late books protocol

Stock delay protocol

Stock arrival protocol

Email stock order

new catalogue

Stock arrival

Cheaper price report

Customer Relations

Update customer profile protocol
Order status querying protocol

Book ordering protocol

Book finding protocol

Book ordering protocol
Query late books protocol

Stock delay protocol

Request delivery tracking

Place delivery request

Tracking info

Stock arrival protocol

Bank transaction response

Sales Assistant

Bank transaction

WWW page display

user input

Delivery Manager

No tracking response

Stock Manager

Courier DB

Failed stock arrival

Arrival at wwwsite

Stock order delay

Regular order trigger

Postal DB

Customer DB

2.2 Agents

Agent Sales Assistant

Name Sales Assistant
Description This agent deals with all online interaction with a customer - analogous to
a shop assistant in a physical store. This includes helping the customer find appropriate
books as well as passing on other enquiries such as information update or order tracking
requests.

ELECTRONIC BOOKSTORE 155

Cardinality minimum 0
Cardinality maximum many
Lifetime while a particular user is at the WWWsite
Initialization Data from Customer DB
Demise Ensures that customer profile information is passed on to Customer Relations.
Releases all temporary data structures. Closes any communications lines.
Percepts user input, Arrival at WWWsite, Bank transaction response
Actions WWW page display, Bank transaction
Uses data Customer DB
Produces data customer order record
Internal data not yet defined
Goals Locating of books, Make payment (online), Obtain credit card details, Obtain
delivery options, Obtain user input, Personalized U.I., Present information, Provide per-
sonalized welcome, Register customer profile, Update customer record
Functionalities Book finding, Online interaction, Purchasing, Welcoming
Protocols Order status querying protocol, Update customer profile protocol, Book finding
protocol, Book ordering protocol

Agent Delivery Manager

Name Delivery Manager
Description Arranges all aspects of delivery to customer. Deals with any problems with
deliveries, including notifying customer relations agent of issues that affect customers.
Cardinality minimum 1
Cardinality maximum 1
Lifetime ongoing
Initialization
Demise Write out all internal data structures.
Percepts No tracking response, Tracking info
Actions Request delivery tracking, Place delivery request
Uses data Postal DB, Courier DB
Produces data Postal DB, Courier DB
Internal data Customer Orders
Goals Fill pending order, Obtain delivery options, Arrange delivery, Calculate delivery
time estimates, Determine delivery status, Log outgoing delivery, Log delivery problems,
Delivery tracking, Log tracking information, Update delivery problem
Functionalities Delivery handling, Lost goods management
Protocols Query late books protocol, Order status querying protocol, Stock arrival pro-
tocol, Stock delay protocol, Book ordering protocol

Agent Customer Relations

Name Customer Relations
Description This agent deals with all offline interaction with the customer (e.g. sending
updates on orders, etc.) as well as maintenance of the DB of customer information and
profiles.

156 ELECTRONIC BOOKSTORE

Cardinality minimum 1
Cardinality maximum 1
Lifetime ongoing
Initialization
Demise None
Percepts
Actions Send email
Uses data Customer DB
Produces data Customer DB
Internal data
Goals Inform customer, Provide personalized recommendations, Register customer pro-
file, Respond to customer, Update customer record
Functionalities Customer contact, Profile monitor
Protocols Query late books protocol, Update customer profile protocol, Stock arrival
protocol, Stock delay protocol, Book ordering protocol

Agent Stock Manager

Name Stock Manager
Description Deals with all aspects of books available from store. Includes ensuring that
books are available, pricing, reordering, monitoring deliveries, etc.
Cardinality minimum 1
Cardinality maximum 1
Lifetime
Initialization
Demise N/A. All data written out on an ongoing basis.
Percepts Stock order delay, new catalogue, Cheaper price report, Failed stock arrival,
Stock arrival, Regular order trigger
Actions Email stock order
Uses data
Produces data
Internal data Books DB, Stock Orders, Stock DB
Goals Log books outgoing, Log books arriving, Order stock, Lower book price, Mon-
itor competitive response, Restore book price, Set prices competitively, Monitor stock
arrivals, Manage new stock
Functionalities Catalogue management, Competition management, Stock management,
Price setting
Protocols Query late books protocol, Book finding protocol, Stock arrival protocol, Stock
delay protocol, Book ordering protocol

2.3 Percepts

Percept user input

Name user input

ELECTRONIC BOOKSTORE 157

Description user input from WWWsite.
Information carried Selection of item, accompanying field values
Knowledge updated
Source WWWpage
Processing WWWpage software translates mouseclicks and location to symbolic items.
Agents responding Sales Assistant
Expected frequency Can be 1–2 per second.

Percept Arrival at WWWsite

Name Arrival at WWWsite
Description Indication of a new arrival at the WWWsite
Information carried Customer ID (if cookie available)
Knowledge updated Customer visit history
Source WWWsite listener
Processing Extraction of relevant information from cookie.
Agents responding Sales Assistant
Expected frequency No higher than 10 per minute

Percept Bank transaction response

Name Bank transaction response
Description Response to request for credit card payment
Information carried Accept/Reject, fraud (optional), amount, account ID
Knowledge updated none
Source bank processing system
Processing none
Agents responding Sales Assistant
Expected frequency Individual agent unlikely to receive more than 1 in total. Certainly
no more than 1 every few minutes, maximum. System as a whole could potentially
receive around 10 per minute maximum.

Percept Tracking info

Name Tracking info
Description response from courier company to a tracking request
Information carried Tracking request ID, Located/not located, damaged/undamaged
Knowledge updated courier reliability, problem record
Source courier company input
Processing Structured input system, processing for correct values etc.
Agents responding Delivery Manager
Expected frequency infrequent

Percept new catalogue

Name new catalogue
Description New catalogue information from a supplier

158 ELECTRONIC BOOKSTORE

Information carried Book information, pricing, release dates, etc.
Knowledge updated Books DB records
Source supplier interface system
Processing Parsing of information and extraction of relevant fields to standard format.
Agents responding Stock Manager
Expected frequency No more than 10/month

Percept Stock arrival

Name Stock arrival
Description information that stock has arrived
Information carried Stock order ID, item list, supplier ID
Knowledge updated Supplier reliability
Source External system
Processing Fields extracted from input received from external system.
Agents responding
Expected frequency Approximately 10 per month. Never closer than a few minutes.

Percept Failed stock arrival

Name Failed stock arrival
Description Indication that a stock order has not arrived when expected.
Information carried Stock order ID
Knowledge updated Reliability of supplier, expected date of arrival of order.
Source System monitor, using system time.
Processing Checking that order has not in fact arrived and also whether any information
has been received.
Agents responding Stock Manager
Expected frequency Infrequent

Percept Stock order delay

Name Stock order delay
Description Information from supplier regarding delivery delay
Information carried stock order ID, supplier ID, previous expected delivery date, new
expected delivery date, reason.
Knowledge updated Supplier reliability, expected delivery date
Source supplier input system.
Processing none
Agents responding Stock Manager
Expected frequency infrequent.

Percept Cheaper price report

Name Cheaper price report
Description External report indicating a supplier selling a book at a cheaper price than
this company.

ELECTRONIC BOOKSTORE 159

Information carried Book ID, price, competitor information, date, information source.
Knowledge updated Competition records
Source Human interface
Processing None
Agents responding Stock Manager
Expected frequency Relatively seldom. Could be several per minute at a particular time
(when person is inputting information).

Percept Regular order trigger

Name Regular order trigger
Description Timer-based trigger for placing regular stock orders
Information carried none
Knowledge updated none
Source system monitor attached to system clock.
Processing none
Agents responding Stock Manager
Expected frequency Once every set period, possibly monthly.

Percept No tracking response

Name No tracking response
Description Percept generated by system monitor if no response received after a set
time.
Information carried tracking request ID
Knowledge updated courier reliability records, delivery problem record
Source monitor attached to system clock.
Processing none

Agent Sales Assistant

Agents responding Delivery Manager
Expected frequency Infrequent

2.4 Actions

Action Email stock order

Name Email stock order
Description Action to order stock from a supplier
Parameters supplier email address, order list, urgency
Duration Immediate (results take time but order action is immediate)
Failure May receive bounced email message at a later time. Failure can go unnoticed.
Partial change None
Side effects None

160 ELECTRONIC BOOKSTORE

Action Request delivery tracking

Name Request delivery tracking
Description send request to courier or postal service to track an item which has not
arrived.
Parameters Courier or postal service email address, package ID, date package sent,
address on package
Duration Immediate
Failure May bounce or not arrive.
Partial change None
Side effects None

Action Place delivery request

Name Place delivery request
Description Send an email request for delivery pick-up, either by courier, or by the
postal room.
Parameters email address (postal room, courier company, etc), delivery address, goods
list
Duration Immediate (action to send request is immediate - results will take time)
Failure Mail may bounce. May also not be received without visible bounce.
Partial change None
Side effects None

Action Send email

Name Send email
Description Send email message (generic)
Parameters address, content, sender address
Duration Immediate
Failure May bounce or fail to arrive.
Partial change N/A
Side effects None

Action WWW page display

Name WWW page display
Description Displays WWW page content
Parameters Content, terminal type
Duration Durational - may take several seconds.
Failure Crash of browser process, hanging of browser process.
Partial change N/A
Side effects None

Action Bank transaction

Name Bank transaction
Description Action which executes a bank transaction

ELECTRONIC BOOKSTORE 161

Parameters Amount, bank account number, transaction-type
Duration Durational, normally a few seconds
Failure Usually failure message received if failure experienced
Partial change None
Side effects None

2.5 Protocols

Protocol Book finding protocol

Name Book finding protocol
Description Interaction around a user query regarding (a) book(s)
Included messages Book query message, Book query response message
Scenarios Book finding scenario
Agents Sales Assistant, Stock Manager
Notes

Protocol Update customer profile protocol

Name Update customer profile protocol
Description Protocol for updating of customer profile.
Included messages Update customer profile message, Register new customer message
Scenarios Customer profile update
Agents Sales Assistant, Customer Relations
Notes

Protocol Book ordering protocol

Name Book ordering protocol
Description Interactions as a result of customer placing an order.
Included messages Get delivery information message, Delivery options information,
Book purchase, Book required, Not in stock, Book available, Book delivery information
Scenarios Order book
Agents Sales Assistant, Delivery Manager, Stock Manager, Customer Relations
Notes

Protocol Order status querying protocol

Name Order status querying protocol
Description Interaction following a customer enquiry about order status
Included messages Determine delivery status message, Determine delivery status reply
message
Scenarios order status query
Agents Sales Assistant, Delivery Manager
Notes

162 ELECTRONIC BOOKSTORE

Protocol Query late books protocol

Name Query late books protocol
Description Interaction following customer enquiry about late arriving books.
Included messages Late delivery query, Book expected soon, Investigating, Book re-
quired, Not in stock, Book available, Book delivery information, Book located,
Scenarios Query late books scenario
Agents Customer Relations, Sales Assistant, Delivery Manager
Notes

Customer Relations Delivery Manager Stock Manager

Delivery Query

Book Expected Soon

Option

Investigating

Book Resent

Update Stock

Parallel

Book Located

Alternative

Book Resent

Update Stock

Parallel

Alternative

sd Query Late Books

[Within expected delivery time]

End

Request Delivery Tracking

<delay: wait for response>

<Tracking Response received>

[Book not found]

[Book located]

<No Tracking Response>

End

ELECTRONIC BOOKSTORE 163

Protocol Stock arrival protocol

Name Stock arrival protocol
Description Interaction resulting from arrival of new stock. Includes filling of pending
orders.
Included messages Stock arrival info, Book delivery information,
Scenarios stock arrival, Pending order arrives
Agents Stock Manager, Delivery manager, Customer Relations
Notes Note that I have planned to include pending order arrived scenario within this
(maybe)–else add pending order arrived.

Protocol Stock delay protocol

Name Stock delay protocol
Description Interaction resulting from delayed stock arrival.
Included messages Stock arrival delayed, Book delivery information
Scenarios Missed stock arrival, Stock delayed
Agents Stock Manager, Delivery Manager, Customer Relations
Notes note this includes both notified delay, and also just not turning up. Two different
triggers.

2.6 Messages

Message Determine delivery status message

Name Determine delivery status message
Description Message to obtain information on delivery status of an order
Distribution Sales Assistant → Delivery Manager
Purpose To obtain information for presentation to an online user.
Carried information Order ID

Message Late delivery query

Name Late delivery query
Description Message querying books that are late and not arrived.
Distribution Sales Assistant → Delivery Manager, Customer Relations → Delivery
Manager
Purpose To obtain information, or to start a tracking process.
Carried information Order ID

Message Book delivery information

Name Book delivery information
Description Information sent to customer relations regarding the delivery details of a
book that has been ordered.

164 ELECTRONIC BOOKSTORE

Distribution Delivery Manager → Customer Relations
Purpose To allow customer Relations to notify customer that the book has been sent.
Carried information date sent, order ID, customer ID

Message Determine delivery status reply message

Name Determine delivery status reply message
Description Status information regarding an order
Distribution Delivery Manager → Sales Assistant
Purpose To provide information to be given to customer online.
Carried information List of items, date sent, address sent to, method of delivery,
expected arrival date.

Message Update customer profile message

Name Update customer profile message
Description Message to update a customer’s profile
Distribution Sales Assistant → Customer Relations
Purpose To pass information for updating to Customer Relations agent
Carried information customer profile record

Message Book query message

Name Book query message
Description Query regarding a book, formulated from user request.
Distribution Sales Assistant → Stock Manager
Purpose To be used in querying the Stock DB and/or the Books DB to return a response
to the user.
Carried information A well formulated query.

Message Book query response message

Name Book query response message
Description Response from book query: a list of book records.
Distribution Stock Manager → Sales Assistant,
Purpose For use in displaying a response to the user.
Carried information Book records, availability.

Message Stock arrival info

Name Stock arrival info
Description Indicates that stock has arrived and lists the new stock.
Distribution Stock Manager → Delivery Manager
Purpose To allow Delivery Manager to process pending orders
Carried information Book IDs and quantity of newly arrived stock

ELECTRONIC BOOKSTORE 165

Message Stock arrival delayed

Name Stock arrival delayed
Description Indicates that an order of stock is delayed
Distribution Stock Manager → Delivery Manager
Purpose To inform Delivery Manager so that pending orders can be checked and cus-
tomers notified if necessary.
Carried information Stock order (Book IDs), expected delivery date

Message Book expected soon

Name Book expected soon
Description Response from delivery manager, following a query about books that have
not arrived.
Distribution Delivery Manager → Customer Relations
Purpose To allow response to customer regarding query.
Carried information Date order sent. Also customer ID, order ID.

Message Investigating

Name Investigating
Description Message indicating that late delivery is being investigated.
Distribution Delivery Manager → Customer Relations
Purpose To provide information.
Carried information Order details, date sent, date should have arrived.

Message Book located

Name Book located
Description Message resulting from tracking of books that have not arrived.
Distribution Delivery Manager → Customer Relations
Purpose To enable Customer Relations agent to tell customer that books have been
located and should arrive shortly.
Carried information Date, Order ID, Customer ID

Message Get delivery information message

Name Get delivery information message
Description Request for information on delivery options to an area, for a particular
order.
Distribution Sales Assistant → Delivery Manager
Purpose To obtain information from Delivery manager on delivery options.
Carried information Order list, address.

Message Delivery options information

Name Delivery options information

166 ELECTRONIC BOOKSTORE

Description Message outlining delivery options and pricing for a particular area and set
of books.
Distribution Delivery Manager → Sales Assistant
Purpose To provide information which will be given to the user for selection of preferred
option.
Carried information Options, each containing price and time estimate.

Message Book purchase

Name Book purchase
Description Information required by delivery manager for arranging delivery of the
book(s)
Distribution Sales Assistant → Delivery Manager
Purpose To provide information for delivery and to trigger arranging of the delivery.
Carried information Book(s) ordered, delivery address, customer ID, delivery method
chosen

Message Register new customer message

Name Register new customer message
Description Message to register a new customer.
Distribution Sales Assistant → Customer Relations
Purpose To provide information and trigger adding the customer to the Customer DB.
Carried information Customer profile record.

Message Book required

Name Book required
Description Book ID required for delivery to customer.
Distribution Delivery Manager → Stock Manager
Purpose To establish if book is available, and if so to notify Stock Manager to reduce
quantity on hand.
Carried information Book ID, quantity.

Message Not in stock

Name Not in stock
Description Text string response message
Distribution Stock Manager → Delivery Manager
Purpose Indicator that book requested cannot be supplied. Possible response to Book
required message.
Carried information none

Message Book available

Name Book available
Description Response to ‘Book Required’ message. Indicates book is in stock.

ELECTRONIC BOOKSTORE 167

Distribution Stock Manager → Delivery Manager
Purpose Indicates that arranging of delivery can proceed.
Carried information none

3. Detailed Design

3.1 Agent Stock Manager

3.1.1 Capabilities

Capability Stock managing

168 ELECTRONIC BOOKSTORE

Name Stock managing
Description Ensures that stock levels are satisfactory, either by placing regular orders,
or by placing immediate orders if stock runs out and the book is ordered.
Goals Order stock, Log books outgoing, Log books arriving
Processes
Protocols Stock arrival, Stock delay, Book ordering
Incoming messages Book required
Outgoing messages Stock arrival info, Stock arrival delayed, Book available, Not in
stock
Internal messages
Percepts Stock order delay, Failed stock arrival, Stock arrival, Regular order trigger
Actions Email stock order
Data used: Imported Books DB
Data produced: Exported
Data internal Stock DB, Stock Orders, Pending Orders
Included plans
Included capabilities Delay handling, Ordering, Handling new stock
Notes

Capability Ordering

Name Ordering
Description This capability manages the ordering of stock from suppliers–either on a
regular basis, or, if necessary, when stock runs out.
Goals Order stock

ELECTRONIC BOOKSTORE 169

Processes Stock maintenance, (further not yet defined)
Protocols Book ordering protocol
Incoming messages Book required
Outgoing messages Book available, Not in stock,
Internal messages Modify monthly order, Decide supplier, Get number required, No
stock, Stock low
Percepts Regular order trigger
Actions Email stock order
Data used: Imported Pending Orders, Books DB
Data produced: Exported Stock Orders, Pending Orders
Data Internal Monthly Order, (not further developed)
Included plans Check stock, Add to order, Out of stock response, Get number by index,
Decide supplier by price, Decide supplier by time, Get number by price,
Get number by sales, Add to supplier order, Delete items, Build monthly orders
Included capabilities None
Notes

Capability Handling new stock
This capability is not yet developed. Descriptor results from external information.

Name Handling new stock
Description Manages arrival of new stock, updating Stock DB and providing information
for any pending orders.
Goals Manage new stock
Processes Stock arrival, (not further defined)
Protocols Book ordering
Incoming messages
Outgoing messages Stock arrival info
Internal messages not yet defined
Percepts Stock arrival
Actions
Data used: Imported Pending Orders, Stock Orders
Data produced: Exported Stock DB, Pending Orders
Data internal not yet defined
Included plans not yet developed
Included capabilities none
Notes

Capability Delay handling
This capability is not yet developed. Descriptor results from external information.

Name Delay handling
Description Manage the effects of delays in arrival of books.
Goals Monitor stock arrivals
Processes not yet defined
Protocols Stock delay
Incoming messages
Outgoing messages Stock arrival delayed

170 ELECTRONIC BOOKSTORE

Internal messages not yet defined
Percepts Stock order delay, Failed stock arrival
Actions
Data used: Imported Pending Orders
Data produced: Exported Stock Orders, Pending Orders
Data internal Not yet defined
Included plans
Included capabilities
Notes

Capability Cataloging

This capability is not yet developed. Descriptor results from external information.

Name Cataloging
Description Updates the Books DB with information from catalogues or other informa-
tion sources.
Goals Update BooksDB
Processes Not yet defined
Protocols None
Incoming messages None
Outgoing messages None
Internal messages Not yet defined
Percepts new catalogue
Actions
Data used: Imported
Data produced: Exported Books DB
Data internal Not yet defined
Included plans Not yet defined
Included capabilities
Notes

Capability Managing competition
This capability is not yet developed. Descriptor results from external information.

Name Managing competition
Description Sets book prices competitively. Maintains information about competitor
prices and makes temporary reductions as necessary to maintain lowest price.
Goals Competitive prices, Lower book price, Restore book price, Set prices competi-
tively
Processes Not yet defined
Protocols None
Incoming messages
Outgoing messages Temporary reduction, Remove reduction,
Internal messages Not yet defined
Percepts Cheaper price report
Actions

ELECTRONIC BOOKSTORE 171

Data used: Imported Books DB
Data produced: Exported
Data internal Not yet defined
Included plans Not yet defined
Included capabilities
Notes

Capability Pricing
This capability is not yet developed. Descriptor results from external information.

Name Pricing
Description Manages pricing of books in Stock DB, usually from the catalogue, but
possibly also as a result of a notification due to low competitor prices.
Goals Set prices competitively
Processes Not yet defined
Protocols None
Incoming messages Temporary reduction Remove reduction,
Outgoing messages
Internal messages Not yet defined
Percepts
Actions
Data used: Imported Books DB
Data produced: Exported Stock DB
Data internal Not yet defined
Included plans Not yet defined
Included capabilities
Notes

3.1.2 Processes

Process Stock Arrival process

Register
order

arrived

Fill pending
orders

Update
Stock DB

Stock
arrival info

Stock
arrival

172 ELECTRONIC BOOKSTORE

Name Stock Arrival process
Description describes the process of updating the Stock DB and notifying arrival of
books for pending orders, when new stock arrives.
Activities Fill pending orders, Register order arrived, Update Stock DB
Triggers Stock arrival
Messages <Stock arrival info, to Delivery Manager>
Protocols Stock arrival protocol
Capabilities Stock Management.
Notes:

Stock Maintenance process

Check
Stock orders

Stock low

Not
ordered

Immediate
order

Add to
monthly

order

Produce
order
list

Monthly
timer

Email stock
order

No stock

Not in
stock

Name Stock maintenance
description The activity whereby there is an attempt to maintain sufficient stock to
immediately fill orders. The activity is responsive to immediate demands as well as
maintaining stock levels from month to month.
Triggers Book required, Monthly timer
Activities Check Stock DB, Immediate order, Add to monthly order, Produce order list.
Messages <Update customer profile, to Customer Relations Agent>, <Book purchase,
to Delivery Manager Agent>
Protocols Order book protocol, Stock Arrival Protocol, Query Late Order
Capabilities Stock Management.
Notes

Further processes not yet defined

ELECTRONIC BOOKSTORE 173

3.1.3 External Messages

Message Book required

Defined Page 166
Description Book ID required for delivery to customer.
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Book ID; ID number>

Message Book available

Defined Page 166
Description Response to ‘Book Required’ message. Indicates book is in stock.
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Book ID; ID number>

Message Not in stock

Defined Page 166
Description Text string response message
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Book ID; ID number>, <Expected arrival; date>

Message Stock arrival info

Defined Page 164
Description Indicates that stock has arrived and lists the new stock.
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Booklist; list of ID numbers>

Message Stock arrival delayed

Defined Page 165
Description Indicates that an order of stock is delayed
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Booklist; list of ID numbers>

174 ELECTRONIC BOOKSTORE

Message Book query message

Defined Page 164
Description Query regarding a book, formulated from user request.
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Query; well formed query>

Message Book query response message

Defined Page 164
Description Response from book query: a list of book records.
Additional fields:
Coverage and overlap Full coverage, no overlap
Information carried: fields and value types/ranges:
<Query; well formed query>, <Response list; list of book records>

3.1.4 Internal Messages

Message Temporary reduction

Name Temporary reduction
Description Message to temporarily reduce a book price
Distribution Managing competition → Pricing
Purpose To temporarily reduce a book price due to a lower price elsewhere.
Information carried New price, Book ID
Coverage and overlap Full coverage, no overlap

Message Remove reduction

Name Remove reduction
Description Message indicating that temporary price reduction on a particular book
should be removed.
Distribution Managing competition → Pricing
Purpose To trigger return to standard pricing for a particular book.
Information carried Book ID.
Coverage and overlap Full coverage, no overlap

Message Stock low

Name Stock low
Description Message that stock for a particular book has gone below a set threshold.
Distribution Check stock → Add to order
Purpose To trigger a process to add this item to an order, if it is not already ordered.
Information carried Book record.

ELECTRONIC BOOKSTORE 175

Coverage and overlap Partial coverage, no overlap. No plan available if book already
on order.

Message No stock

Name No stock
Description Message indicating that a book is out of stock, and is ordered.
Distribution Check stock → Out of stock response, Add to order
Purpose Trigger to order new stock outside the regular schedule.
Information carried Book ID, number ordered, date
Coverage and overlap Full coverage, Add to order overlaps with Out of stock response.
Out of stock response takes precedence.

Message Get number required

Name Get number required
Description Message containing ID of book to be ordered.
Distribution Add to order → Get number by index, Get number by sales, Get number
by price
Purpose To trigger calculation of number of copies to order.
Information carried Book ID
Coverage and overlap Full coverage, Get number by index overlaps with Get num-
ber by price and with Get number by sales. Get number by index has lower
priority.

Message Decide supplier

Name Decide supplier
Description Message containing Book ID, number to be ordered, date and urgency.
Distribution Add to order → Decide supplier by time, Decide supplier by price
Purpose To trigger decision regarding which supplier to use.
Information carried Book record (possibly only limited fields), number required,
urgency
Coverage and overlap Full coverage, Decide supplier by price overlaps with Decide
supplier by time. Decide supplier by time takes precedence

Message Modify monthly order

Name Modify monthly order
Description Message to add or delete items from an order for a particular supplier.
Distribution Out of stock response → Delete items, Add to supplier order
Purpose To add or delete the indicated items from the order being developed.
Information carried Add/delete, book ID, number/all.
Coverage and overlap Full coverage, no overlap

176 ELECTRONIC BOOKSTORE

3.1.5 Plans

Plan Respond book query

Name Respond book query
Description Queries Books and Stock DB and provides response to query.
Trigger Book query message
Context none
Incoming messages Book query message
Outgoing messages Book query response message
Used data stock DB, Books DB
Produced data List of book records
Failure Unable to access either DB
Failure recovery send message to system support. Reply with response to try again
later.
Procedure:

Connect to Stock DB
Run query
If > 1 book record returned

Return response
Else

Connect to Books DB
Run query
Return message with response (+ not in stock annotation)

endif

Plan Check stock

Name Check stock
Description Determines whether book required is available in stock.none
Trigger
Context none
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure can’t read file
Failure recovery email system support
Procedure:

Access stock record for book ID (from message)
If stock number > 0

ELECTRONIC BOOKSTORE 177

send reply "Book available"
Else

Send reply "not in stock"
Post message "No stock"

If reorder threshold exists
If stock number -1 < reorder threshold

post message stock low
endif

Else if stock number -1 > standard reorder threshold
Post message stock low

endif

Plan Add to order

Name Add to order
Description Plan to add an item to an order list, due to stock becoming low
Trigger
Context Not already ordered
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure Fail to write to file
Failure recovery Send email to system support. Possibly repost event, with counter to
prevent infinite looping.
Procedure:

Subtask: Determine number to order
Subtask: Determine supplier
Subtask: Add item to monthly order for chosen supplier

Plan Out of stock response

Name Out of stock response
Description Places an immediate order, if appropriate, if stock is completely out and
book is required.
Trigger
Context Date > 2 days from next regular order date
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data

178 ELECTRONIC BOOKSTORE

Goal
Failure bounced email (Failure of action). Won’t be immediately evident.
Failure recovery need general procedure for receiving, fixing and resending bounced
emails.
Procedure:

subtask: Decide supplier (Urgent = YES)
subtask: get number required
subtask: modify monthly order, (delete items ordered now)
Action: email stock order

Plan Get number by index

Name Get number by index
Description Uses an index that classifies the type of book and provides a standard order
number for that classification.
Trigger
Context none
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure No entry for book
Failure recovery Send message to technical support.
Procedure:

Identify book category as POPULAR, STANDARD, or OCCASIONAL
If category = POPULAR

number = highorder
If category = STANDARD

number = medium-order
If category = OCCASIONAL

number = loworder

Plan get number by price

Name get number by price
Description Determines number of books to order dependent on cost and current
cashflow.
Trigger
Context Cashflow = POOR or CRITICAL AND Price > 20
Incoming messages
Outgoing messages

ELECTRONIC BOOKSTORE 179

Percepts
Actions
Used data
Produced data
Goal
Failure
Failure recovery
Procedure:

If Cashflow = CRITICAL
Number = MIN(100/bookprice, standard-order-number)

Else IF
Cashflow = POOR
Number = MIN(500/bookprice, standard-order-number)

end elseif
endif

Plan get number by sales

Name get number by sales
Description Calculates number of books to order based on average monthly sales of that
book.
Trigger
Context Average monthly book sales for Book ID available AND Cashflow NOT=
(POOR or CRITICAL)
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure
Failure recovery
Procedure:

Number = Average monthly sales * 3

Plan Decide supplier by time

Name Decide supplier by time
Description Finds fastest reliable supplier for book
Trigger
Context Urgency = YES
Incoming messages
Outgoing messages

180 ELECTRONIC BOOKSTORE

Percepts
Actions
Used data
Produced data
Goal
Failure No supplier found
Failure recovery Send message to manager indicating no supplier for item
Procedure:

Obtain record from Books DB
For each supplier in supplier list

Obtain supplier record
Note normal delivery time
Note reliability index

Calculate fastest supplier
If fastest supplier reliability < "good reliability" (set values in file)
Find fastest supplier with < good reliability
If difference in delivery time (fastest, fastest reliable)

< "small delivery difference"
Identify and record fastest reliable supplier

Else
Identify and record fastest supplier

Plan Decide supplier by price

Name Decide supplier by price
Description Finds cheapest supplier
Trigger
Context Urgency = NO
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure No supplier found
Failure recovery Email manager indicating no supplier for item
Procedure:

Obtain Book record
Compare book price for each supplier in supplier list
Identify and record cheapest supplier

Plan Add to supplier order

Name Add to supplier order
Description Adds item to an order from a particular supplier.

ELECTRONIC BOOKSTORE 181

Trigger
Context supplier X
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure Fail to write to order file
Failure recovery Email system support. Possibly try reposting with counter to prevent
infinite looping.
Procedure:

If order file exists for supplier X
open order file

Else
Create order file for supplier X
Open file

Write items to order
Close file

Plan Delete items

Name Delete items
Description Delete items from a monthly order for a given supplier
Trigger
Context none
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure fail to write to file fail to open file
Failure recovery email system support
Procedure:

Open file for supplier X
Find item
If number required > number to delete

modify number required to number required - number to delete
Else

remove item

182 ELECTRONIC BOOKSTORE

Plan Build monthly orders

Name Build monthly orders
Description Prepares the monthly orders and sends them out.none
Trigger
Context none
Incoming messages
Outgoing messages
Percepts
Actions
Used data
Produced data
Goal
Failure 1) Email bounces (i.e. action fails) 2) Problems reading file / corrupted file
Failure recovery 1) need general procedure for receiving, fixing and resending bounced
emails. 2) Contact system support in failure method
Procedure:

For each supplier order file:
Format order
Action: Email stock order
Annotate file with order date
Archive file

3.2 Agent Sales Assistant

ELECTRONIC BOOKSTORE 183

3.2.1 Capabilities

Bookfinding

Not developed.

Online interaction

Mostly not developed.

Purchasing

Not developed.

Welcoming

Not developed.

3.2.2 Processes

Mostly not developed

Process Manage Customer Profile process (SA)

Obtain profile
revisions

Update
customer

profile
Local checks;
spelling,etc

Name Manage Customer Profile process (SA)
description Obtains customer profile information, checks it locally and sends to Customer
Relations agent
Activities Obtain profile revisions, Local checks
Trigger user input
Messages <Update customer profile, to Customer Relations>
Protocols Update customer profile protocol

Notes:

No further development . . .

184 ELECTRONIC BOOKSTORE

3.2.3 External Messages

Not shown

3.2.4 Internal Messages

Message New arrival

Name New arrival
Description Indicator that a new person has arrived at WWWsite.
Distribution Online interaction → Welcoming
Purpose To trigger individualized response.
Information carried Cookie/ID if available.

Message Personalized welcome

Name Personalized welcome
Description message containing individualized welcome for display to WWW page.
Distribution Welcoming → Online interaction
Purpose To provide content for display to WWW page.
Information carried Customer name, current orders, welcome text, recommendations,
etc

Message Book order

Name Book order
Description The order from the WWW interface, as requested by the user.
Distribution Online interaction → Purchasing
Purpose For purchasing capability to arrange the payment and then pass onto Delivery.
Information carried Books ordered, delivery method chosen, delivery address, total
cost, credit card details, customer ID

Message Book request

Name Book request
Description User request regarding a book. May include keywords, or some information
fields of book record.
Distribution Online interaction → Bookfinding
Purpose To be used in formulating a well formed query for searching the Stock DB and
the Books DB.
Information carried whatever user provided.

Not further developed.

ELECTRONIC BOOKSTORE 185

3.2.5 Plans

Not developed

3.3 Agent Delivery Manager

Not developed

3.4 Agent Customer Relations

3.4.1 Capabilities

Not developed.

3.4.2 Processes

Process Manage Customer Profile process (CR)

Register new
customer in

Customer DB

Infer additional
Customer

profile

Store inferred
info in

Customer DB

Register
new

customer

Get full
customer

record

Store updated
info in

Customer DB

Update
customer

profile

186 ELECTRONIC BOOKSTORE

Name Manage Customer Profile process
description Process to register information about a customer when new information is
provided. Includes inferring additional information.
Activities Register new customer, Store updated information, Infer additional information
Trigger Register new customer, Update customer profile
Messages none
Protocols Update customer profile protocol
Notes:

Not further developed

3.4.3 Data

Data Stock DB

Name Stock DB
Description Contains records of all books stocked
Data type Set of stock records
Included fields/aspects Each stock record contains book record, selling price, current
stock number, stock order record reference, preferred suppliers.
Persistent Yes
External to system No
Initialization N/A
Produced by Stock Managera, Stock managingc, Pricingc, Handling new stockc

Used by Stock Managera , Stock managingc Orderingc, Respond book queryp

Used when Used when customer requests book information, book delivery goes out, new
stock arrives.

Data Courier DB

Name Courier DB
Description Contains information regarding courier companies.
Data type Structure of courier records. Maintained as a readable file.
Included fields/aspects Courier records
Persistent Yes
External to system Yes
Initialization Initialized from a file (which can be updated external to the system)
Produced by Delivery Managera,
Used by Delivery Managera ,
Used when Used when determining which courier to use for a delivery.

Data Postal DB

Name Postal DB

ELECTRONIC BOOKSTORE 187

Description contains information about postal rates and approximate delivery times.
Data type Database. Use externally available DB from postal services.
Included fields/aspects not developed
Persistent Yes
External to system Yes
Initialization Build an in-memory data structure with most commonly used information.
Produced by
Used by Delivery Manager
Used when Used when providing delivery options information to customer ordering
books.

Data Customer DB

Name Customer DB
Description Database of customer information, including customer profiles, purchasing
history, etc. (Requires further design)
Data type Database
Included fields/aspects customer records
Persistent Yes
External to system No
Initialization N/A
Produced by Customer Relationsa

Used by Welcomingc, Sales Assistanta , Customer Relationsa

Used when Used to provide information for customization, marketing and any commu-
nications with customer.

Data Books DB

Name Books DB
Description Contains book records indicating potential suppliers, as well as information
regarding the book.
Data type Database containing book records.
Included fields/aspects Book records
Persistent Yes
External to system No
Initialization
Produced by Catalogingc, Pricingc

Used by Pricingc, Managing competitionc, Orderingc, Stock managingc, Respond to
queryp, Stock Managera
Used when Used to determine suppliers of books to be stocked. Used to answer user
queries about books where these cannot be answered from the Stock DB.

Data Customer Orders

Name Customer Orders
Description Records of book orders placed by customers. Contains all order data, as
well as data such as when it was sent, or when it is expected to be sent, etc.
Data type Set of order records.

188 ELECTRONIC BOOKSTORE

Included fields/aspects order details, date sent, date expected, carrier, . . .

Persistent Yes
External to system No
Initialization Read in from file at start up. Written out to file as safety measure to avoid
loss of data if system goes down.
Produced by Delivery Managera
Used by Delivery Managera
Used when written when order is placed. Used when order status is required or when
customer complains that order is late.

Data Delivery Problems

Name Delivery Problems
Description List of records with orders which have not arrived and where the user has
made a query. Includes information built up as the problem is investigated.
Data type Set of problem records.
Included fields/aspects Date contacted, order record, tracking requests, tracking res-
ponses, status, actions taken.
Persistent Yes
External to system No
Initialization N/A
Produced by Delivery Managera
Used by Delivery Managera
Used when Record started when a query is made regarding a book arrival. Used in mon-
itoring and tracking the problem until book is found and sent to customer, or replacement
book is sent. Information transferred to courier DB and to customer DB after resolution.

Data Stock Orders

Name Stock Orders
Description Records of stock orders placed
Data type set of orders to suppliers.
Included fields/aspects Order includes stock items ordered, date, expected delivery date,
updates, etc.
Persistent Yes
External to system No
Initialization
Produced by Stock managingc, Orderingc, Delay handlingc, Stock managera
Used by Stock managingc, Handling new stockc, Stock managera
Used when Order includes stock items ordered, date, expected delivery date, updates,
etc.

Data customer record

Name customer record
Description Record containing information about a customer, including contact details,
profile, orders they have made, history of interactions, etc.
Data type Record structure

ELECTRONIC BOOKSTORE 189

Included fields/aspects User supplied profile (name, address, email, phone, interests,
etc.) (encrypted) credit card details, purchase history, interaction history, . . .

Persistent Yes
External to system No
Initialization
Produced by Customer Relationsa

Used by Customer Relationsa

Used when updated at user request, or on interaction with user. Used for providing
specific recommendations, individual welcome, etc. Also used for initializing information
in customer order record.

Data customer order record

Name customer order record
Description Record of customer order. Maintained until after order (believed) delivered.
Data type Record structure
Included fields/aspects order details, date sent, date expected, carrier, . . .

Persistent Yes
External to system No
Initialization Some fields initialized from customer DB where possible. (e.g. address,
(partial) credit card details.
Produced by Sales assistanta , Delivery Managera
Used by Delivery Managera
Used when arranging delivery. Also used if any status query, or late books query.

Data Pending Orders

Name Pending Orders
Description Records of orders which are awaiting arrival of stock.
Data type Set of order records
Included fields/aspects order details, date sent, date expected, carrier, . . .

Persistent Yes
External to system No
Initialization Stored on file as safety measure. Read in from file on start up.
Produced by Orderingc Delivery Managera
Used by Delay handlingc, Handling new stockc, Orderingc, Delivery Managera
Used when used when stock arrives, to fill back-orders. Also when stock delayed to
notify customer relations in case customers should be notified.

Data Monthly Order

Name Monthly Order
Description Record of books which are to be ordered in the upcoming monthly order.
Data type List of stock orders
Included fields/aspects book id, number to order, supplier, . . .

Persistent Yes (only a month at a time)

190 ELECTRONIC BOOKSTORE

External to system No
Initialization Stored on file as safety measure. Read in from file on start up.
Produced by Orderingc Delivery Managera
Used by Orderingc Delivery Managera
Used when used when system notices stock is low and adds information. Used monthly
to produce regular order.

Data transaction details (temp)

Name transaction details (temp)
Description Record created for purpose of obtaining credit card payment.
Data type Transaction record
Included fields/aspects credit card number, expiry date, amount, name, card type
Persistent No
External to system No
Initialization Initialize some values from customer DB if available.
Produced by Purchasingc, Sales Assistanta
Used by Purchasingc, Sales Assistanta
Used when Used as part of book ordering process. Used for communication of transaction
with bank.

Data updated info (temp)

Name updated info (temp)
Description Updated customer profile
Data type customer profile record
Included fields/aspects Name, address, email, phone, interests
Persistent No
External to system No
Initialization Initialized to current values in customer DB if these exist.
Produced by Online interactionc, Sales Assistanta
Used by Customer Relationsa

Used when Created when customer wishes to update their profile.

Data welcome text (temp)

Name welcome text (temp)
Description Created when customer wishes to update their profile.
Data type record to be converted to html page
Included fields/aspects
Persistent No
External to system No
Initialization N/A
Produced by Welcomingc, Sales Assistanta
Used by Online interactionc, Sales Assistanta
Used when Developed when user logs in.

ELECTRONIC BOOKSTORE 191

Dictionary

Listed by name:

Name Page Entity
Add to order Page 177 Plan
Add to supplier order Page 180 Plan
Arrange delivery Page 140 Goal
Arrival at WWWsite Page 157 Percept
Bank transaction Page 160 Action
Bank transaction response Page 157 Percept
Book available Page 166 Message
Book delivery information Page 163 Message
Book expected soon Page 165 Message
Book finding Page 143 Functionality
Book finding protocol Page 161 Protocol
Book finding scenario Page 145 Scenario
Book located Page 165 Message
Book order Page 184 Message
Book ordering protocol Page 161 Protocol
Book purchase Page 166 Message
Book query Page 140 Goal
Book query message Page 164 Message
Book query response message Page 164 Message
Book request Page 184 Message
Book required Page 166 Message
Bookfinding Page 183 Capability
Books DB Page 187 Data
Broad range of books Page 140 Goal
Build monthly orders Page 182 Plan
Calculate delivery time estimates Page 140 Goal
Cataloging Page 170 Capability
Catalogue management Page 142 Functionality
Cheaper price notification Page 149 Scenario
Cheaper price report Page 158 Percept
Check stock Page 176 Plan
Competition management Page 144 Functionality
Competitive prices Page 140 Goal
Confirm changes Page 140 Goal
Courier DB Page 186 Data
Customer DB Page 187 Data
Customer Orders Page 187 Data
Customer order record Page 189 Data
Customer record Page 188 Data
Customer Relations Page 155 Agent
Customer contact Page 144 Functionality

192 ELECTRONIC BOOKSTORE

Name Page Entity
Customer profile update Page 149 Scenario
Decide supplier Page 175 Message
Decide supplier by price Page 180 Plan
Decide supplier by time Page 179 Plan
Delay handling Page 169 Capability
Delete items Page 181 Plan
Delivery Manager Page 155 Agent
Delivery Problems Page 188 Data
Delivery handling Page 143 Functionality
Delivery of books Page 140 Goal
Delivery options information Page 165 Message
Delivery tracking Page 140 Goal
Determine delivery status Page 140 Goal
Determine delivery status message Page 163 Message
Determine delivery status reply message Page 164 Message
Email stock order Page 159 Action
Failed stock arrival Page 158 Percept
Fast, reliable service Page 140 Goal
Fill pending order Page 140 Goal
Fully online system Page 140 Goal
Get delivery information message Page 165 Message
Get number by price Page 178 Plan
Get number by sales Page 179 Plan
Get number by index Page 178 Plan
Get number required Page 175 Message
Handling new stock Page 169 Capability
Have books in stock Page 140 Goal
Identify affected orders Page 140 Goal
Inform customer Page 140 Goal
Investigating Page 165 Message
Late delivery query Page 163 Message
Locating of books Page 140 Goal
Log books arriving Page 140 Goal
Log books outgoing Page 140 Goal
Log delivery problems Page 140 Goal
Log outgoing delivery Page 140 Goal
Log tracking information Page 140 Goal
Lost goods management Page 143 Functionality
Lower book price Page 140 Goal
Make payment (online) Page 140 Goal
Manage new stock Page 140 Goal
Managing competition Page 170 Capability
Missed stock arrival Page 150 Scenario
Modify monthly order Page 175 Message
Monitor competitive response Page 140 Goal

ELECTRONIC BOOKSTORE 193

Name Page Entity
Monitor delivery Page 140 Goal
Monitor stock arrivals Page 140 Goal
New arrival Page 184 Message
New catalogue Page 150 Scenario
New catalogue Page 157 Percept
No stock Page 175 Message
No tracking response Page 159 Percept
Not in stock Page 166 Message
Obtain credit card details Page 140 Goal
Obtain delivery options Page 140 Goal
Obtain user input Page 140 Goal
Online interaction Page 141 Functionality
Online interaction Page 183 Capability
Order book Page 146 Scenario
Order status query Page 148 Scenario
Order status querying protocol Page 161 Protocol
Order stock Page 140 Goal
Ordering Page 168 Capability
Out of stock response Page 177 Plan
Pending order arrives Page 147 Scenario
Pending Orders Page 189 Data
Personalized U.I. Page 140 Goal
Personalized welcome Page 184 Message
Place delivery request Page 160 Action
Place order (online) Page 140 Goal
Postal DB Page 186 Data
Present information Page 140 Goal
Price setting Page 143 Functionality
Pricing Page 171 Capability
Profile monitor Page 142 Functionality
Provide personalized recommendations Page 140 Goal
Provide personalized welcome Page 140 Goal
Purchasing Page 144 Functionality
Purchasing Page 183 Capability
Query late books Page 144 Scenario
Query late books protocol Page 162 Protocol
Register customer profile Page 140 Goal
Register new customer message Page 166 Message
Regular order trigger Page 159 Percept
Remove reduction Page 174 Message
Request delivery tracking Page 160 Action
Respond book query Page 176 Plan
Respond to customer Page 140 Goal
Restore book price Page 140 Goal
Sales Assistant Page 154 Agent

194 ELECTRONIC BOOKSTORE

Name Page Entity
Send email Page 160 Action
Set prices competitively Page 140 Goal
Stock DB Page 186 Data
Stock Manager Page 156 Agent
Stock Orders Page 188 Data
Stock arrival Page 158 Percept
Stock arrival Page 147 Scenario
Stock arrival delayed Page 165 Message
Stock arrival info Page 164 Message
Stock arrival process Page 171 Process
Stock arrival protocol Page 163 Protocol
Stock delay protocol Page 163 Protocol
Stock delayed Page 148 Scenario
Stock low Page 174 Message
Stock maintenance process Page 172 Process
Stock management Page 142 Functionality
Stock managing Page 168 Capability
Stock order Page 148 Scenario
Stock order delay Page 158 Percept
Temporary reduction Page 174 Message
Tracking info Page 157 Percept
Transaction details (temp) Page 190 Data
Update BooksDB Page 140 Goal
Update customer profile message Page 164 Message
Update customer profile protocol Page 161 Protocol
Update customer record Page 140 Goal
Update delivery problem Page 140 Goal
Updated info (temp) Page 190 Data
User input Page 156 Percept
Welcoming Page 142 Functionality
Welcoming Page 183 Capability
Welcome text (temp) Page 190 Data
Worldwide sale of books Page 140 Goal
WWW page display Page 160 Action
WWWsite arrival Page 149 Scenario

Listed by type:

Type Name Page
Action Bank transaction Page 160
Action Email stock order Page 159
Action Place delivery request Page 160
Action Request delivery tracking Page 160

ELECTRONIC BOOKSTORE 195

Type Name Page
Action Send email Page 160
Action WWW page display Page 160
Agent Customer Relations Page 155
Agent Delivery Manager Page 155
Agent Sales Assistant Page 154
Agent Stock Manager Page 156
Capability Bookfinding Page 183
Capability Cataloging Page 170
Capability Delay handling Page 169
Capability Handling new stock Page 169
Capability Managing competition Page 170
Capability Online interaction Page 183
Capability Ordering Page 168
Capability Pricing Page 171
Capability Purchasing Page 183
Capability Stock managing Page 168
Capability Welcoming Page 183
Data Books DB Page 187
Data Courier DB Page 186
Data Customer DB Page 187
Data Customer Orders Page 187
Data Customer order record Page 189
Data Customer record Page 188
Data Delivery Problems Page 188
Data Pending Orders Page 189
Data Postal DB Page 186
Data Stock DB Page 186
Data Stock Orders Page 188
Data Transaction details (temp) Page 190
Data Updated info (temp) Page 190
Data Welcome text (temp) Page 190
Functionality Book finding Page 143
Functionality Catalogue management Page 142
Functionality Competition management Page 144
Functionality Customer contact Page 144
Functionality Delivery handling Page 143
Functionality Lost goods management Page 143
Functionality Online interaction Page 141
Functionality Price setting Page 143
Functionality Profile monitor Page 142
Functionality Purchasing Page 144
Functionality Stock management Page 142
Functionality Welcoming Page 142
Goal Arrange delivery Page 140
Goal Book query Page 140

196 ELECTRONIC BOOKSTORE

Type Name Page
Goal Broad range of books Page 140
Goal Calculate delivery time estimates Page 140
Goal Competitive prices Page 140
Goal Confirm changes Page 140
Goal Delivery of books Page 140
Goal Delivery tracking Page 140
Goal Determine delivery status Page 140
Goal Fast, reliable service Page 140
Goal Fill pending order Page 140
Goal Fully online system Page 140
Goal Have books in stock Page 140
Goal Identify affected orders Page 140
Goal Inform customer Page 140
Goal Locating of books Page 140
Goal Log books arriving Page 140
Goal Log books outgoing Page 140
Goal Log delivery problems Page 140
Goal Log outgoing delivery Page 140
Goal Log tracking information Page 140
Goal Lower book price Page 140
Goal Make payment (online) Page 140
Goal Manage new stock Page 140
Goal Monitor competitive response Page 140
Goal Monitor delivery Page 140
Goal Monitor stock arrivals Page 140
Goal Obtain credit card details Page 140
Goal Obtain delivery options Page 140
Goal Obtain user input Page 140
Goal Order stock Page 140
Goal Personalized U.I. Page 140
Goal Place order (online) Page 140
Goal Present information Page 140
Goal Provide personalized recommendations Page 140
Goal Provide personalized welcome Page 140
Goal Register customer profile Page 140
Goal Respond to customer Page 140
Goal Restore book price Page 140
Goal Set prices competitively Page 140
Goal Update BooksDB Page 140
Goal Update customer record Page 140
Goal Update delivery problem Page 140
Goal Worldwide sale of books Page 140
Message Book available Page 166
Message Book delivery information Page 163
Message Book expected soon Page 165

ELECTRONIC BOOKSTORE 197

Type Name Page
Message Book located Page 165
Message Book order Page 184
Message Book purchase Page 166
Message Book query message Page 164
Message Book query response message Page 164
Message Book request Page 184
Message Book required Page 166
Message Decide supplier Page 175
Message Delivery options information Page 165
Message Determine delivery status message Page 163
Message Determine delivery status reply message Page 164
Message Get delivery information message Page 165
Message Get number required Page 175
Message Investigating Page 165
Message Late delivery query Page 163
Message Modify monthly order Page 175
Message New arrival Page 184
Message No stock Page 175
Message Not in stock Page 166
Message Personalized welcome Page 184
Message Register new customer message Page 166
Message Remove reduction Page 174
Message Stock arrival delayed Page 165
Message Stock arrival info Page 164
Message Stock low Page 174
Message Temporary reduction Page 174
Message Update customer profile message Page 164
Percept Arrival at WWWsite Page 157
Percept Bank transaction response Page 157
Percept Cheaper price report Page 158
Percept Failed stock arrival Page 158
Percept New catalogue Page 157
Percept No tracking response Page 159
Percept Regular order trigger Page 159
Percept Stock arrival Page 158
Percept Stock order delay Page 158
Percept Tracking info Page 157
Percept User input Page 156
Plan Add to order Page 177
Plan Add to supplier order Page 180
Plan Build monthly orders Page 182
Plan Check stock Page 176
Plan Decide supplier by price Page 180
Plan Decide supplier by time Page 179
Plan Delete items Page 181

198 ELECTRONIC BOOKSTORE

Type Name Page
Plan Get number by index Page 178
Plan Get number by price Page 178
Plan Get number by sales Page 179
Plan Out of stock response Page 177
Plan Respond book query Page 176
Process Stock arrival process Page 171
Process Stock maintenance process Page 172
Protocol Book finding protocol Page 161
Protocol Book ordering protocol Page 161
Protocol Order status querying protocol Page 161
Protocol Query late books protocol Page 162
Protocol Stock arrival protocol Page 163
Protocol Stock delay protocol Page 163
Protocol Update customer profile protocol Page 161
Scenario Book finding scenario Page 145
Scenario Cheaper price notification Page 149
Scenario Customer profile update Page 149
Scenario Missed stock arrival Page 150
Scenario New catalogue Page 150
Scenario Order book Page 146
Scenario Order status query Page 148
Scenario Pending order arrives Page 147
Scenario Query late books Page 144
Scenario Stock arrival Page 147
Scenario Stock delayed Page 148
Scenario Stock order Page 148
Scenario WWWsite arrival Page 149

B

Descriptor Forms

This appendix contains each of the descriptors, with all their fields. Templates can be
downloaded from http://www.cs.rmit.edu.au/agents/prometheus. The web site also con-
tains printable versions, which are suitable for printing out and using in classes or
workshops for paper-based design work. An alternative to using paper or electronic
templates is to use the Prometheus Design Tool (PDT) that can be freely downloaded
from http://www.cs.rmit.edu.au/agents/pdt.

Many of the fields in these forms are redundant with respect to the diagrams. For example,
given the system overview diagram, one can determine for each agent what percepts it
handles, what actions it performs, what messages it sends to other agents and which agents
these messages are sent to and what external data it accesses. By using the Prometheus
Design Tool, the contents of such fields can be automatically derived.

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

200 DESCRIPTOR FORMS

Goal Descriptor
Name:
Description:
Subgoals:

Functionality Descriptor
Name:
Description:
Triggers:
Actions:
Information Used:
Information Produced:
Goals:

Agent Descriptor
Name:
Description:
Cardinality: (min-max)
Lifetime:
Initialisation:
Demise:
Incoming and Outgoing Messages: For each indicate the source and destination,
e.g. acknowledge (AnAgent → AnotherAgent)
Internal Messages: For each indicate the source and destination,
e.g. CheckAvailability (MyPlan → MyCapability)
Percepts:
Actions:
Uses data:
Produces data:
Internal data:
Goals:
Functionalities:
Protocols:
Included plans:
Included capabilities:

DESCRIPTOR FORMS 201

Capability Descriptor
Name:
Description:
Goals:
Processes:
Protocols:
Incoming and Outgoing Messages: For each indicate the source and destination,
e.g. acknowledge (ACapability → AnotherCapability)
Internal Messages: For each indicate the source and destination,
e.g. CheckAvailability (MyPlan → MyCapability)
Percepts:
Actions:
Uses data:
Produces data:
Internal data:
Included plans:
Included capabilities:
Notes:

Plan Descriptor
Name:
Description:
Trigger:
Context:
Incoming and Outgoing Messages: For each indicate the source and destination,
e.g. acknowledge (APlanp → AgentXa) message2 (APlanp → AnotherPlanp)
Percepts:
Actions:
Uses data:
Produces data:
Goal:
Failure:
Failure Recovery:
Procedure:

202 DESCRIPTOR FORMS

Percept Descriptor
Name:
Description:
Information Carried:
Knowledge Updated:
Source:
Processing:
Agents responding:
Expected Frequency:

Action Descriptor
Name:
Description:
Parameters:
Duration:
Failure:
Partial Change:
Side Effects:

Message Descriptor
Name:
Description:
Distribution: List of Sender → Receiver pairs.
Purpose:
Carried Information:
Coverage & Overlap: A message is covered if there will always be at least one applicable plan
to handle it; otherwise it is uncovered. A message has no overlap if there is always at most one
applicable plan to handle it; otherwise it has overlap.

Data Descriptor
Name:
Description:
Data type:
Included fields/aspects:
Persistent: (yes/no)
External to system: (yes/no)
Produced by:
Used by:
Used when:

DESCRIPTOR FORMS 203

Protocol Descriptor
Name:
Description:
Included Messages: For each indicate the source and destination, e.g. request (AnAgent →
AnotherAgent)
Scenarios:
Agents:
Notes:

Scenario Descriptor
Name:
Description:
Trigger:
Steps: Type is one of Action, Percept, Goal, Scenario or Other

Type Name Functionality Description Data produced Data used

Variations:

Process Descriptor
Name:
Description:
Triggers:
Activities:
Messages: For each message type give the destination
Protocols:
Capabilities:

C

The AUML Notation

This appendix provides a brief introduction to those parts of the AUML-2 notation which
we use with Prometheus. For more details, see the AUML website (www.auml.org). In
the following description, ‘AUML’ refers to the revised version of AUML. We will
use ‘AUML-1’ to explicitly refer to the older version of AUML and will use ‘AUML-
2’ to explicitly refer to the revised version of AUML where confusion may otherwise
arise.

This description of AUML-2 is necessarily out of date – AUML-2 is still evolving.
We have tried to reduce the likely impact of changes by using a subset of AUML
that we believe is likely to remain stable (and that is very similar to UML 2.0 (OMG
2003)).

☞ NOTE: In order to understand the relationships between AUML-1, AUML-2
and UML 2.0, it can be useful to have some idea of the history. At the time that
AUML-1 was developed, UML provided sequence diagrams that captured a
single interaction scenario. AUML’s contribution was to provide a notation
that allowed all possible interaction scenarios to be captured in a single
diagram. UML version 2.0 was developed after AUML-1. UML 2.0 extended
sequence diagrams so they could either be instance (i.e. capture a single
interaction scenario) or generic (i.e. cover a number of possible interaction
scenarios). AUML-2 was developed after UML 2.0 and in many ways is closer
to UML 2.0 than it is to AUML-1. However, there are differences between UML
2.0 and AUML-2, and AUML-2 is (at the time of writing) still being developed.

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

206 THE AUML NOTATION

The AUML notation is an extension of interaction diagram. As such, an AUML sequence
diagram1 has lifelines for each agent with messages depicted by arrows between the
lifelines and with time increasing as one moves downward. So, the example below
shows a User agent sending a Query message to a System agent followed by the System
agent sending a Response message to the User agent.

User System

Query

Response

AUML places this within a frame. The ‘sd’ stands for ‘sequence diagram’ and is followed
by the name of the sequence diagram.

User System

Query

Response

sd Example Protocol

The primary way that AUML allows alternatives, parallelism, and so on to be specified
is using boxes. A box is a region within the sequence diagram that contains messages
and may contain nested boxes. Each box has a tag that describes the type of box (e.g.
Alternative, Parallel, Option, etc.). A box can affect the interpretation of its contents in
a range of ways depending on its type. For example, an Option box indicates that its
contents may be executed as normal, or may be not executed at all (in which case the
interpretation of the sequence diagram continues after the Option box). Whether the box
is executed can be specified by guards. A guard, denoted by text in square brackets,
indicates a condition that must be true in order for the Option box to execute.

The example below uses an Option box and says that after the User sends their Query to
the System, the System may reply with a Response (if the system is operational, specified
in the guard). If the system is not operational, then nothing happens in response to the
user’s Query.

1AUML-2 changed terminology from ‘interaction diagram’ (used in AUML-1) to ‘sequence diagram’ in order
to be consistent with UML 2.0.

THE AUML NOTATION 207

User System

Query

Response

Option

sd Example Protocol

[System Operational]

Most box types can be divided into regions indicated by heavy horizontal dashed lines.
For example, an Alternative box can have a number of regions (each with its own guard)
and exactly one region will be executed. The example below shows an example of nested
boxes. The Option box, as before, indicates that nothing happens if the system is not
operational. If the system is operational, then we have two Alternatives (separated by
a horizontal heavy dashed line). The first alternative is that the System sends the user
a Response message. The second alternative is that the System indicates that the user’s
query was not understood. In this example, there are no guards, so the sequence diagram
indicates that the System can respond with two different messages, but does not indicate
under what conditions a given response is chosen.

User System

Query

Response

Not Understood

Alternative

Option

sd Example Protocol

[System Operational]

208 THE AUML NOTATION

The following are some of the box types that are defined by AUML (and include all of
the box types that we use):

• Alternative: Specifies that one of the box’s regions occurs. One of the regions
may have ‘else’ as the guard.

• Option: Can only have a single region. Specifies that this region may or may not
occur. An Option box is equivalent to an Alternative tag with an empty second
region:

A B

Option

[Guard]

ref Stuff

A B

Alternative

[Guard]

ref Stuff

else

• Break: Either none of the regions of the box occur (in which case the box is treated
as if it were absent) or one of the regions occurs. If one of the regions occurs, then
the end of the Break box terminates the protocol. A Break box is equivalent to an
Alternative where the Alternative box contains the contents of the Break box and
also has an additional region that contains the rest of the protocol.

A B

Break

[Guard]

ref Stuff

ref Rest of Protocol

A B

Alternative

[Guard]

ref Stuff

else

ref Rest of Protocol

• Parallel: Specifies that each of the regions takes place simultaneously and the
sequence of messages is interleaved. In the example below, the possible sequences
of messages are qrst, qsrt, qstr, sqrt, sqtr and stqr.

THE AUML NOTATION 209

A B

q

r

s

t

Parallel

• Critical Region: Specifies that no interleaving should take place with the contents
of the box. In the example below, messages q or r cannot occur between s and t
so the possible sequences of messages are qrst, qstr, and stqr.

A B

q

r

s

t

Critical Region

Parallel

• Loop: Can only have a single region. Specifies that the region is repeated some
number of times. The tag gives the type (‘Loop’) and also an indication of the
number of repetitions that can be a fixed number (or a range) or a Boolean con-
dition. The current AUML specification is not very clear on the format, so the
examples below are based on UML 2.0 (OMG 2003, page 413).

– Loop(1,3) – at least one repetition, at most 3 repetitions

– Loop(1,*) – at least one repetition, no upper limit (‘*’ specifies infinity)

– Loop – same as Loop(0,*), i.e. any number of repetitions

– Loop(2,2) – exactly two repetitions

– Loop(3) – same as Loop(3,3)

210 THE AUML NOTATION

• Ref: This box type is a little different in that it does not contain sub-boxes or
messages. Instead it contains the name of another protocol. This is basically a
form of procedure call – the interpretation of the Ref box is obtained by replacing
it with the protocol it refers to. The example below shows an existing authen-
tication protocol being used before the user issues a query. The name of the
protocol is given in the body of the box and lifelines are not shown within the
Ref box.

User System

Query

Response

Not Understood

Alternative

Option

sd Example Protocol

ref Authenticate

[System Operational]

Although boxes are the primary mechanism that AUML provides for describing control
flow, there is also a goto mechanism, ‘continuations’. There are two types of continua-
tions: incoming (labels) and outgoing (gotos). When interaction reaches an outgoing con-
tinuation, it continues at the incoming continuation with the same name. Each outgoing
continuation must have exactly one matching incoming continuation. Both continuations
are depicted by rounded rectangles; outgoing continuations (goto) have a right-pointing
triangle on their right side, whereas incoming continuations (labels) have a right-pointing
triangle on their left side (see Figures C.1 and C.2 for examples).

The example in Figure C.1 shows the use of continuations to specify a repeated inter-
action: if the system’s response to the user is either Response or Not Understood, then
interaction continues with the user sending another Query.

Continuations are gotos, and although they can be useful for describing exceptional
conditions or for terminating an interaction, they should be used with care. Overuse
of continuations yields sequence diagrams that are difficult to read, understand and
modify.

THE AUML NOTATION 211

User System

Query

Response

Not Understood

Shutting down

Alternative

Option

sd Example Protocol

Continue

[System Operational]

Continue

Continue

Figure C.1 Example of AUML continuations

The example in Figure C.2 demonstrates the features of AUML that we have discussed,
including all of the features that we use. The figure shows the top-level interaction of
a hypothetical database system with a backup that is kept up to date. The top-level
interaction is a loop. Within this loop, there are three alternatives:

1. The user can send a Retrieve message and receive a Results.

2. The user can specify an Update to the data. After this message is received by the
system, two things happen in parallel:

• The system responds to the user (but only if tracing has been enabled).

• The system updates the backup. The Critical Region box specifies that nothing
else should occur between the Update request to the Backup and the Backup’s
response.

212 THE AUML NOTATION

User System Backup

Retrieve

Results

Update

Updated

Option

Update

UpdateDone

Critical Region

Parallel

Shutdown

Shutdown

Alternative

Loop

sd Database Update

[Tracing Enabled]

End

End

Figure C.2 AUML example showing notational elements

3. The user can ask the system to shutdown. The system relays the request to the
backup and then the interaction jumps to the end.

In addition to sequence diagrams, AUML (and UML 2.0) also provides Interaction
Overview Diagrams. These extend activity diagrams by allowing sequence diagrams to
appear as building blocks. They tend to become very cluttered if the sequence diagrams

THE AUML NOTATION 213

are too fine grained (e.g. individual messages) and so they are useful more as a means
of structuring protocols than as a means of specifying protocols. For more details, see
(Huget et al. 2003).

☞ NOTE: There are minor differences between AUML and UML 2.0. For
example, the notation for continuations in AUML has a triangle indicating
whether it is incoming (label) or outgoing (goto). In AUML, the names of boxes
are used, whereas UML uses abbreviations (e.g. ‘Alternative’ becomes ‘alt’).

Bibliography

AAII 1996 dMARS Technical Overview. The dMARS V1.6.11 System Overview.
Booch G, Rumbaugh J and Jacobson I 1999 The Unified Modeling Language User Guide, Object

Technology Series. Addison-Wesley.
Bratman ME 1987 Intentions, Plans, and Practical Reason. Harvard University Press, Cambridge,

MA.
Brazier FMT, Dunin-Keplicz BM, Jennings NR and Treur J 1997 DESIRE: Modelling multi-agent

systems in a compositional formal framework. International Journal of Cooperative Information
Systems 6(1), 67–94.

Bresciani P, Giorgini P, Giunchiglia F, Mylopoulos J and Perini A 2002 Tropos: An agent-oriented
software development methodology. Technical Report DIT-02-0015, University of Trento, Depart-
ment of Information and Communication Technology, Trento, Italy.

Burmeister B 1996 Models and methodology for agent-oriented analysis and design. Working Notes
of the KI’96 Workshop on Agent Oriented Programming and Distributed Systems.

Burrafato P and Cossentino M 2002 Designing a multi-agent solution for a bookstore with
the PASSI methodology. Proceedings of the Fourth International Bi-Conference Workshop
on Agent-Oriented Information Systems (AOIS-2002), Toronto, Canada. Available from
http://mozart.csai.unipa.it/passi/.

Busetta P, Rönnquist R, Hodgson A and Lucas A 1999 JACK – Components for Intelligent Agents in
Java. Technical Report No. 1, Agent Oriented Software Pty. Ltd, Melbourne, Australia. Available
from http://www.agent-software.com.

Bush G, Cranefield S and Purvis M 2001 The Styx agent methodology. The Information Science
Discussion Paper Series 2001/02, Department of Information Science, University of Otago, Otago,
New Zealand. Available from http://divcom.otago.ac.nz/infosci.

Caire G, Leal F, Chainho P, Evans R, Garijo F, Gomez J, Pavon J, Kearney P, Stark J and
Massonet P 2002 Agent oriented analysis using MESSAGE/UML. In Agent-Oriented Soft-
ware Engineering II Second Internation Workshop, AOSE 2001, Montreal, Canada. Published
as Lecture Notes in Computer Science, Vol. 2222 (eds. Wooldridge M, Ciancarini P and
Weiss G), pp. 101–108. Springer.

Cernuzzi L and Rossi G 2002 On the evaluation of agent oriented modeling methods. Proceed-
ings of the OOPSLA 2002 Workshop on Agent-Oriented Methodologies, Seattle, WA. Published
by the Centre for Object Technology Applications and Research (COTAR) at the University of
Technology, Sydney (eds. Debenham J, Henderson-Sellers B, Jennings N and Odell J).

Cheyer A and Martin D 2001 The open agent architecture. Journal of Autonomous Agents and
Multi-Agent Systems 4(1), 143–148.

Cohen PR and Levesque HJ 1991 Teamwork. Nous 25(4), 487–512.

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

216 BIBLIOGRAPHY

Collinot A, Drogoul A and Benhamou P 1996 Agent oriented design of a soccer robot team. Pro-
ceedings of ICMAS’96, Kyoto, Japan.

Cossentino M and Potts C 2002 A CASE tool supported methodology for the design of multi-
agent systems. Proceedings of the International Conference on Software Engineering Research and
Practice (SERP’02), Las Vegas. Available from http://mozart.csai.unipa.it/passi/.

Cost RS, Chen Y, Finin T, Labrou Y and Peng Y 1999 Using colored Petri nets for conver-
sation modeling. Workshop on Agent Communication Languages at the Sixteenth International
Joint Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden. Available from http:
//www.csee.umbc.edu/∼jklabrou/.

Dam KH 2003 Evaluating agent-oriented software engineering methodologies. Master’s Thesis,
School of Computer Science and Information Technology, RMIT University, Melbourne, Australia.
(supervisors: Michael Winikoff and Lin Padgham).

Dam KH and Winikoff M 2003 Comparing agent-oriented methodologies. In Proceedings of the
Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems (ed. Giorgini
P, Henderson-Sellers B and Winikoff M), pp. 52–59. Melbourne, Australia.

Debenham J and Henderson-Sellers B 2002 Full lifecycle methodologies for agent-oriented sys-
tems – the extended OPEN process framework. Proceedings of Agent-Oriented Information Systems
(AOIS-2002) at CAiSE’02, Toronto, Canada.

DeLoach SA 2001 Analysis and design using MaSE and agentTool. Proceedings of the 12th Midwest
Artificial Intelligence and Cognitive Science Conference (MAICS 2001).

DeLoach SA, Wood MF and Sparkman CH 2001 Multiagent systems engineering. International
Journal of Software Engineering and Knowledge Engineering 11(3), 231–258.

Dennett DC 1987 The Intentional Stance. MIT Press.
Drogoul A and Zucker J 1998 Methodological issues for designing multi-agent systems with machine

learning techniques: capitalizing experiences from the robocup challenge. Technical Report LIP6
1998/041, Laboratoire d’Informatique de Paris 6.

Elammari M and Lalonde W 1999 An agent-oriented methodology: high-level and intermediate
models. In Proceedings of the 1st International Workshop on Agent-Oriented Information Systems
(eds. Wagner G and Yu E) Available from http://www.aois.org.

Fowler M and Kendall 2003 UML Distilled: A Brief Guide to the Standard Object Modeling Language,
third edition, Object Technology Series. Addison-Wesley.

Georgeff MP and Lansky AL 1986 Procedural knowledge. Proceedings of the IEEE Special Issue on
Knowledge Representation 74, 1383–1398.

Georgeff M and Rao A 1998 Rational software agents: from theory to practice. In Agent Technol-
ogy: Foundations, Applications, and Markets (eds. Jennings NR and Wooldridge MJ), Chapter 8,
pp. 139-160, Springer.

Georgeff M, Pell B, Pollack M, Tambe M and Wooldridge M 1999 The belief-desire-intention model
of agency. Proceedings of Agent Theories, Architectures, and Languages ATAL ’98, 1998. Published
as Lecture Notes in Computer Science, Vol. 1555 (eds. Giunchiglia F, Odell J and Weiss G).
Springer, 1999.

Giunchiglia F, Mylopoulos J and Perini A 2002 The Tropos software development methodology:
processes, models and diagrams. Third International Workshop on Agent-Oriented Software Engi-
neering Lecture Notes in Computer Science series (LNCS 2585), (eds. Giunchiglia F, Odell J and
Weiß G), pp. 162–173. Springer.

Glaser N 1996 The CoMoMAS methodology and environment for multi-agent system development.
In Multi-Agent Systems Methodologies and Applications (eds. Zhang C and Lukose D), pp. 1-16.
Springer LNAI 1286. Second Australian Workshop on Distributed Artificial Intelligence.

Harrison CG, Chess DM and Kershenbaum A 1995 Mobile Agents: Are they a good idea? Technical
Report No. RC 19887, T. J. Watson Research Center, Yorktown Heights, New York.

BIBLIOGRAPHY 217

Hendler J 2001 Agents and the semantic web. IEEE Intelligent Systems 16(2), 30–37.
Huber MJ 1999 Jam: A BDI-theoretic mobile agent architecture. Proceedings of the Third Interna-

tional Conference on Autonomous Agents, (Agents’99), pp. 236-243. Seattle, WA.
Huget MP 2002 Nemo: an agent-oriented software engineering methodology. Proceedings of the

OOPSLA 2002 Workshop on Agent-Oriented Methodologies, Seattle, WA. Published by the Cen-
tre for Object Technology, Sydney (eds. Debenham J, Henderson-Sellers B, Jennings N and
Odell J).

Huget MP, Odell J, Haugen Ø, Nodine MM, Cranefield S, Levy R and Padgham. L 2003 FIPA
modeling: interaction diagrams on www.auml.org under “Working Documents”. FIPA Working
Draft (version 2003-07-02).

Iglesias C, Garijo M and González J 1999 A survey of agent-oriented methodologies. In ATAL-98
(ed. Müller J, Singh MP and Rao AS), pp. 317–330. Springer-Verlag, Heidelberg, Germany.

Iglesias CA, Garijo M, González JC and Velasco JR 1997 Analysis and design of multiagent systems
using MAS-commonKADS. Proceedings of Agent Theories, Architectures, and Languages (ATAL),
1997. Published as Lecture Notes in Computer Science, Vol. 1365 (eds. Singh MP, Rao AS and
Wooldridge M). Springer, 1998.

Ingrand FF, Georgeff MP and Rao AS 1992 An architecture for real-time reasoning and system
control. IEEE Expert 7(6), 34–44.

Jennings NR 2001 An agent-based approach for building complex software systems. Communications
of the ACM 44(4), 35–41.

Jennings NR and Wooldridge MJ (ed.) 1998a Agent Technology: Foundations, Applications, and
Markets. Springer.

Jennings N and Wooldridge M 1998b Applications of intelligent agents. In Agent Technology: Foun-
dations, Applications, and Markets (eds. Jennings NR and Wooldridge MJ), Chapter 1, pp. 3-28.
Springer.

Jennings NR, Faratin P, Norman TJ, O’Brien P and Odgers B 2000a Autonomous agents for
business process management. International Journal of Applied Artificial Intelligence 14(2),
145–189.

Jennings NR, Faratin P, Norman TJ, O’Brien P, Odgers B and Alty JL 2000b Implementing a business
process management system using ADEPT: A real-world case study. International Journal of
Applied Artificial Intelligence 14(5), 421–465.

Juan T, Pearce A and Sterling L 2002 ROADMAP: Extending the Gaia methodology for complex
open systems. Proceedings of the First International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2002), Bologna, Italy, pp. 3–10. ACM Press.

Kendall EA, Malkoun MT and Jiang CH 1996 A methodology for developing agent based systems. In
Distributed Artificial Intelligence: Architecture and Modelling, First Australian Workshop on DAI,
Canberra, ACT, Australia, November 13, 1995. Published as Lecture Notes in Computer Science.
Vol. 1087 (ed. Zhang C and Lukose D). Springer.

Kinny D and Georgeff M 1996 Modelling and design of multi-agent systems. Agent Theories, Archi-
tectures, and Languages (ATAL), 1996. Published as Lecture Notes in Computer Science, Vol. 1193
(eds. Müller JP, Wooldridge M and Jennings NE). Springer, 1997.

Kinny D, Georgeff M and Rao A 1996 A methodology and modelling technique for systems of
BDI agents. Agents Breaking Away, 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World, Eindhovenm, The Netherlands, January 22–25, 1996, Proceedings.
Lecture Notes in Computer Science 1038 (eds, Van de Velde W and Perram W), pp. 56–71.
Springer.

Kotz D and Gray B 1999 Mobile agents and the future of the Internet. ACM Operating Systems
Review 33(3), 7–13.

Kruchten P 1998 The Rational Unified Process, Object Technology Series. Addison-Wesley.

218 BIBLIOGRAPHY

Lee J, Huber MJ, Kenny PG and Durfee EH 1994 UM-PRS: An implementation of the procedural
reasoning system for multirobot applications. Proceedings of the Conference on Intelligent Robotics
in Field, Factory, Service, and Space (CIRFFSS’94), pp. 842–849.

Lind J 2000 A development method for multiagent systems. Cybernetics and Systems: Proceedings of
the 15th European Meeting on Cybernetics and Systems Research, Symposium “From Agent Theory
to Agent Implementation”.

Liu L and Yu E 2001 From requirements to architectural design - using goals and scenarios ICSE-
2001 Workshop: From Software Requirements to Architectures (STRAW 2001), Toronto, Canada,
pp. 22–30.

Luck M, Ashri R and d’Inverno M 2004 Agent-Based Software Development. Artech House. ISBN
1-58053-605-0.

Luck M, McBurney P and Preist C 2003 Agent Technology: Enabling Next Generation Comput-
ing (A Roadmap for Agent Based Computing), AgentLink. ISBN 0854 327886. Available from
www.agentlink.org/roadmap.

Maes P 1994 Agents that reduce work and information overload. Communications of the ACM 37(7),
31–40.

Mathieu P, Routier JC and Secq Y 2003 Towards a pragmatic methodology for open multi-agent
systems. Foundations of Intelligent Systems, 14th International Symposium, ISMIS 2003, Maebashi
City, Japan, October 28–31, 2003, Proceedings. Lecture Notes in Computer Science 2871 (eds.
Zhong N, Ras ZW, Tsumoto S and Suzuki E), pp. 206–210. Springer.

McIlraith SA, Son TC and Zeng H 2001 Semantic web services. IEEE Intelligent Systems 16(2),
46–53.

Moreau L 2002 Agents for the grid: a comparison for Web services (Part 1: the transport layer). In
Second IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID 2002)
(eds. Bal HE, Lohr KP and Reinefeld A), pp. 220–228. IEEE Computer Society, Berlin, Germany.

Moreau L, Miles S, Goble C, Greenwood M, Dialani V, Addis M, Alpdemir N, Cawley R, Roure DD,
Ferris J, Gaizauskas R, Glover K, Greenhalgh C, Li P, Liu X, Lord P, Luck M, Marvin D, Oinn T,
Paton N, Pettifer S, Radenkovic MV, Roberts A, Robinson A, Rodden T, Senger M, Sharman N,
Stevens R, Warboys B, Watson P and Wroe C 2002 On the Use of Agents in a BioInformatics Grid.
Network Tools and Applications in Biology (NETTAB’2002) — Agents in Bioinformatics, Bologna,
Italy.

Muscettola N, Nayak PP, Pell B and Williams B 1998 Remote agent: To boldly go where no AI
system has gone before. Artificial Intelligence 103(1-2), 5–48.

Nowostawski M, Purvis M and Cranefield S 2001 A layered approach for modelling agent con-
versations. Proceedings of the 2nd International Workshop on Infrastructure for Agents, MAS,
and Scalable MAS, 5th International Conference on Autonomous Agents, pp. 163-170. Montreal,
Canada.

Odell J, Parunak H and Bauer B 2000 Extending UML for agents. Proceedings of the Agent-Oriented
Information Systems Workshop at the 17th National conference on Artificial Intelligence, pp. 3–17.

Odell J 2002 Objects and agents compared. Journal of Object Technology 1(1), 41–53.
O’Malley SA and DeLoach SA 2001 Determining when to use an agent-oriented software engineer-

ing. Proceedings of the Second International Workshop On Agent-Oriented Software Engineering
(AOSE-2001), pp. 188–205. Montreal, Canada.

OMG 2003 UML 2.0 superstructure specification object management group. Available from
www.omg.org, document ptc/03-08-02.

Parunak HVD 1997 “go to the ant”: Engineering principles from natural multi-agent systems. Annals of
Operations Research 75, 69–101. (Special Issue on Artificial Intelligence and Management Science).

BIBLIOGRAPHY 219

Poutakidis D, Padgham L and Winikoff M 2002 Debugging multi-agent systems using design
artifacts: the case of interaction protocols. Proceedings of the First International Joint
Conference on Autonomous Agents and Multi Agent Systems (AAMAS’02), Bologna, Italy
pp. 960–967.

Poutakidis D, Padgham L and Winikoff M 2003 An exploration of bugs and debugging in multi-
agent systems. Proceedings of the 14th International Symposium on Methodologies for Intelligent
Systems (ISMIS), pp. 628–632. Maebashi City, Japan.

Rao AS and Georgeff MP 1991 Modeling rational agents within a BDI-Architecture. In Procedings
of the 2nd International Conference on Priniciples of Knowledge Representation and Reasoning
(KR’91). Cambridge, MA, USA, April 22–25, 1991 (eds. Allen J, Fikes R and Sandewall E),
pp. 473–484 Morgan Kaufmann.

Rao AS and Georgeff MP 1992 An abstract architecture for rational agents. In Proceedings of the 3rd
International Conference on Principles of Knowledge Representation and Reasoning, Cambridge,
MA October 25–29 1992 (eds. Rich C, Swartout W and Nebel B), pp. 439–449. Morgan Kaufmann
Publishers, San Mateo, CA.

Reisig W 1985 Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science.
Springer-Verlag. ISBN 0-387-13723-8.

Rolland C, Grosz G and Kla R 1999 Experience with goal-scenario coupling in requirements engi-
neering. Proceedings of the Fourth IEEE International Symposium on Requirements Engineering
(RE’99) Limerick, Ireland.

Russell S and Norvig P 1995 Artificial Intelligence: A Modern Approach. Prentice Hall.
Shehory O and Sturm A 2001 Evaluation of modeling techniques for agent-based systems. Proceed-

ings of the Fifth International Conference on Autonomous Agents, Montreal, Canada pp. 624–631.
ACM Press.

Shen W and Norrie D 1999 Agent-based systems for intelligent manufacturing: a state-of-the-art
survey. Knowledge and Information Systems, An International Journal 1(2), 129–156. Extended
version available online at http://imsg.enme.ucalgary.ca/publication/abm.htm.

Sturm A and Shehory O 2002 Towards industrially applicable modeling technique for agent-based
systems (poster). Proceedings of International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS 2002), Bologna. ACM Press.

Sturm A and Shehory O 2003 A framework for evaluating agent-oriented methodologies. In Pro-
ceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented Information Systems
(eds. Giorgini P and Winikoff M), pp. 60–67. Melbourne, Australia.

Thangarajah J, Padgham L and Harland J 2002 Representation and reasoning for goals in BDI agents.
Australasian Computer Science Conference, Jan 2002.

Tidhar G, Heinze C and Selvestrel M 1998 Flying together: modelling air mission teams. Applied
Intelligence 8(3), 195–218.

van Lamsweerde A 2001 Goal-oriented requirements engineering: a guided tour. Proceedings of the
5th IEEE International Symposium on Requirements Engineering (RE’01), pp. 249–263, Toronto,
Canada.

Varga LZ, Jennings NR and Cockburn D 1994 Integrating intelligent systems into a cooperating
community for electricity distribution management. Int Journal of Expert Systems with Applications
7(4), 563–579.

Wagner G 2002 A UML profile for external AOR models. In Proceedings of Third International
Workshop on Agent-Oriented Software Engineering (AOSE-2002), held at Autonomous Agents &
Multi-Agent Systems (AAMAS 2002), Palazzo Re Enzo, Bologna, Italy, July 15, 2002, Springer-
Verlag LNAI 2585.

220 BIBLIOGRAPHY

Wagner G 2003 The agent-object-relationship metamodel: towards a unified view of state and behav-
ior. Information Systems 28, 5. http://AOR.rezearch.info.

Winikoff M, Padgham L and Harland J 2001 Simplifying the development of intelligent agents. In
AI2001: Advances in Artificial Intelligence. 14th Australian Joint Conference on Artificial Intelli-
gence, Adelaide, December 2001, pp. 557–568.

Wooldridge M 2002 An Introduction to MultiAgent Systems. John Wiley & Sons, Chichester, UK.
ISBN 0 47149691X, http://www.csc.liv.ac.uk/∼mjw/pubs/imas/.

Wooldridge M and Jennings NR 1995 Intelligent agents: theory and practice. The Knowledge Engi-
neering Review 10(2), 115–152.

Wooldridge M, Jennings N and Kinny D 2000 The Gaia methodology for agent-oriented analysis and
design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–312.

Index

Action, 7, 8, 44, 48, 52, 69, 84, 86,
117, 121, 127, 152, 159

Add to order, 112, 127, 177
Add to supplier order, 180
Agent, 1, 2, 4, 7, 8, 10, 12, 13, 22, 28,

29, 54–56, 63, 65, 82, 95,
102, 120, 125, 128, 154

Autonomous, 1–4
Flexible, 3, 16, 30
Mobile, 4
Proactive, 1–3, 5, 7, 8, 22
Rational, 3
Reactive, 1–3, 5, 8, 9
Robust, 2, 3, 16, 30
Situated, 1–3, 7, 34
Social, 1, 3, 12

Agent acquaintance diagram, 26, 55,
57, 63, 65, 110

Agent overview diagram, 26, 102
Agent UML, 26, 55, 75
AgentBuilder, 126
Architectural design, 24, 25, 50, 53, 54,

56, 67, 96, 119, 154
Arrange delivery, 36, 39, 45
Arrival at WWWsite, 151, 157
AUML

see Agent UML

Bank transaction, 153, 160
Bank transaction response, 52, 151, 157
BDI

see Belief Desire Intention
Belief, 4, 10, 13, 14, 114, 118, 125

Developing Intelligent Agent Systems L. Padgham & M. Winikoff
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86120-7 (HB)

Belief Desire Intention, 3, 5, 10, 19,
109, 126

Book available, 112, 117, 166, 173
Book delivery information, 163
Book expected soon, 165
Book finding, 60, 62, 63, 65, 143
Book finding protocol, 161
Book finding scenario, 145
Book located, 165
Book order, 12, 47, 50, 116, 184
Book ordering protocol, 161
Book purchase, 166
Book query, 50, 145
Book query message, 164, 174
Book query response message, 164,

174
Book request, 184
Book required, 166, 173
Bookfinding, 183
Books DB, 51, 103, 153, 187
Broad range of books, 36
Build monthly orders, 182

Calculate delivery time estimates, 143,
155

Capabilities, 26, 95, 99–102, 106, 110,
122, 130, 131, 167, 183, 185

Capability overview diagram, 27, 110,
122, 127

Cataloging, 103, 170
Catalogue management, 142
Cheaper price notification, 149
Cheaper price report, 151, 158

222 INDEX

Check stock, 112, 176
Cohesion, 25, 55, 56, 62, 101
Competition management, 57, 144
Competitive prices, 36, 38
Completeness, 51, 94, 97, 119, 120

Actions, 52, 84, 121
Agents, 95, 120
Data, 121
Functionalities, 51, 52, 95
Interaction Diagrams, 95
Interaction Protocols, 95
Messages, 120
Percepts, 52, 84, 121
Plans, 123
Scenarios, 51, 52, 95, 123
System Overview Diagram, 91,

121
Confirm changes, 149
Consistency, 51, 94–97, 119, 121–123

Actions, 52, 84, 121
Agent Descriptors, 97
Agents, 95, 120
Communication, 96
Data, 121
Descriptors, 97, 122
Functionalities, 51, 52, 95
Interaction Diagrams, 95
Interaction Protocols, 95
Messages, 120
Names, 51
Overview Diagrams, 97, 121, 122
Percepts, 52, 84, 121
Processes, 123
Scenarios, 51, 52, 95, 123
System Overview Diagram, 91,

121
Coupling, 4, 5, 25, 55, 56
Courier DB, 50, 61, 153, 186
Coverage, 115, 118
Customer contact, 45, 57, 61, 70, 144
Customer DB, 50, 60, 153, 187
Customer order record, 189
Customer Orders, 50, 60, 153, 187
Customer profile update, 149
Customer record, 188

Customer Relations, 71, 74, 102, 155,
185

Data, 26, 29, 50, 88, 94, 118, 121, 131,
133, 153, 186

Shared, 26, 55, 57, 88, 90, 91
Data coupling diagram, 25, 27, 55, 57,

59, 61
DECAF, 126
Decide supplier, 112, 137, 175
Decide supplier by price, 180
Decide supplier by time, 179
Delay handling, 169
Delete items, 181
Delivery handling, 25, 45, 60, 62, 143
Delivery Manager, 70, 71, 102, 155,

185
Delivery of books, 39
Delivery options information, 165
Delivery Problems, 51, 153, 188
Delivery tracking, 143, 155
Descriptors, 27, 65, 67, 77, 78, 97,

106, 118, 122, 134, 199
Action, 202
Agent, 200
Capability, 201
Data, 202
Functionality, 200
Goal, 200
Message, 202
Percept, 202
Plan, 201
Process, 203
Protocol, 203
Scenario, 203

Detailed design, 23, 24, 26, 66, 99,
100, 103, 116–119, 127, 138,
167

Determine delivery status, 50
Determine delivery status message, 163
Determine delivery status reply

message, 164
Diagram

Agent acquaintance, 26, 55, 57,
63, 65, 110

Agent Overview, 26, 102

INDEX 223

Capability overview, 27, 110, 122,
127

Data coupling, 25, 27, 55, 57, 59,
61

Interaction, 26, 55, 68–70, 74, 95
Process, 103–106, 108
System overview, 26, 27, 29, 54,

55, 91, 93, 96, 97, 110, 121,
154, 199

dMars, 19

Electronic Bookstore, 25, 47, 48, 50,
72, 78

Email stock order, 152, 159
Event, 8, 9, 14, 23, 26, 27, 48, 110,

113, 116–118, 134

Failed stock arrival, 151, 158
Fast, reliable service, 35, 36
Fill pending order, 143, 147, 155
FIPA, 126
Fully online system, 35, 36
Functionality, 34, 35, 41, 42, 51,

53, 55–57, 65, 69, 101,
141

Gaia, 31
Get delivery information message, 165
Get number by index, 112, 178
Get number by price, 112, 178
Get number by sales, 112, 179
Get number required, 112, 175
Goal, 4, 7–10, 12, 14, 16, 25, 30,

34–36, 39, 43, 45, 51, 53,
127

Handling new stock, 110, 169
Have books in stock, 39, 105

Identify affected orders, 148
Implementation, 24, 30, 34, 83, 84
Inform customer, 44
Intelligent, 1, 3, 8, 110
Intention, 4, 20
Intentional stance, 4, 23
Interaction Diagram, 26, 55, 68–70, 74,

95

Interaction Protocol, 26, 68, 74, 75
Investigating, 165

JACK, 14, 19, 27, 31, 110, 118,
126–129, 134, 136–138

JACK development environment, 138
JADE, 126
JADEX, 126
JAM, 14, 19, 126
JDE

see JACK development
environment

Late delivery query, 163
Locating of books, 36
Log books arriving, 143, 156, 168
Log books outgoing, 143, 145–147,

156, 168
Log delivery problems, 43
Log outgoing delivery, 143, 146, 147,

155
Log tracking information, 143, 155
Lost goods management, 45, 61, 143
Lower book price, 144, 150, 156,

170

Make payment (online), 36
Manage new stock, 156
Managing competition, 103, 170
MaSE, 31
Mental attitudes, 4, 23
MESSAGE, 31
Message, 12, 26, 69, 70, 75, 77, 78,

110, 116–118, 120, 134, 163,
173, 174

Missed stock arrival, 150
Modify monthly order, 112, 117, 175
Monitor competitive response, 144,

150, 156
Monitor delivery, 38
Monitor stock arrivals, 156

New arrival, 184
New catalogue, 150, 151, 157
No stock, 112, 175
No tracking response, 152, 159
Not in stock, 112, 166, 173

224 INDEX

OAA, 5, 126
Obtain credit card details, 144, 146,

155
Obtain delivery options, 143, 146, 155
Obtain user input, 141, 155
Online interaction, 45, 57, 61–63, 102,

141, 183
Open systems, 5, 13
Order book, 146
Order status query, 148
Order status querying protocol, 161
Order stock, 143, 148, 156
Ordering, 110, 112, 128, 131, 168
Out of stock response, 177
Overlap, 115, 116, 118

PASSI, 31
PDT

see Prometheus Design Tool
Pending order arrives, 147
Pending Orders, 51, 153, 189
Percepts, 7, 9, 25, 34, 44, 48–50, 52,

69, 82, 84, 93, 117, 121, 150,
156

Personalized U.I., 155
Personalized welcome, 184
Petri net, 75
Place delivery request, 49, 152, 160
Place order (online), 36
Plans, 10, 26, 27, 110, 112, 136, 176,

185
Postal DB, 50, 61, 153, 186
Present information, 141, 145, 146,

149, 155
Price setting, 57, 60, 143
Pricing, 171
Process Diagram, 104–106, 108
Profile monitor, 40, 60, 61, 70, 102,

142
Prometheus, 7, 12, 13, 21–23, 27, 30,

31, 33, 34, 125
Prometheus Design Tool, 31, 96, 138,

199
Protocol

see Interaction Protocol
Provide personalized recommendations,

142, 156

Provide personalized welcome, 142,
149, 155

PRS, 19, 126
Purchasing, 43, 61, 63, 102, 144, 183

Query late books, 43–46, 50, 72, 144
Query late books protocol, 162

Register customer profile, 142, 155,
156

Register new customer message, 166
Regular order trigger, 152, 159
Remove reduction, 174
Request delivery tracking, 152, 160
Respond book query, 176
Respond to customer, 144, 156
Restore book price, 144, 150, 156, 170
RETSINA, 27

Sales Assistant, 22, 63–65, 105, 154,
159, 182

Scenario, 25, 26, 43, 44, 46, 47, 51–53,
68, 95, 96, 123, 144

Send email, 152, 160
Set prices competitively, 144, 156, 170,

171
Shared data, 26, 55, 57, 88, 90, 91
Stock arrival, 105, 147, 148, 151, 158
Stock arrival delayed, 165, 173
Stock arrival info, 164, 173
Stock arrival process, 171
Stock arrival protocol, 163
Stock DB, 51, 60, 154, 186
Stock delay protocol, 163
Stock delayed, 148
Stock low, 112, 127, 174
Stock maintenance process, 172
Stock management, 39, 43, 45, 60, 62,

142
Stock Manager, 63, 64, 70, 74, 101,

104, 128, 129, 167
Stock managing, 110, 127, 129, 131,

167
Stock order, 112, 148
Stock order delay, 151, 158
Stock Orders, 51, 127–129, 133, 154,

188

INDEX 225

System overview diagram, 26, 27, 29,
54, 55, 91, 93, 96, 97, 110,
121, 154, 199

System specification, 24, 34, 42, 67,
94, 119, 140

Temporary reduction, 174
Tracking info, 151, 157
Transaction details (temp), 190
Tropos, 31

UML, 7, 21, 23, 75, 102, 103, 205,
213

UMPRS, 126
Update BooksDB, 142, 150, 170
Update customer profile message, 102,

164

Update customer profile protocol, 161
Update customer record, 142, 146, 149,

155, 156
Update delivery problem, 43, 143, 145,

155
Updated info (temp), 190
Use case scenario, 23, 25, 44, 70, 76,

96
User input, 50, 150, 156

Welcome text (temp), 190
Welcoming, 61, 63, 142, 183
Worldwide sale of books, 39
WWW page display, 153, 160
WWWsite arrival, 149

Zeus, 126

	Developing Intelligent Agent Systems
	Contents
	Foreword from the Series Editor
	Preface
	Acknowledgement
	1 Agents and Multi-Agent Systems
	1.1 What is an Intelligent Agent?
	1.2 Why are Agents Useful?

	2 Concepts for Building Agents
	2.1 Situated Agents: Actions and Percepts
	2.2 Proactive and Reactive Agents: Goals and Events
	2.3 Challenging Agent Environments: Plans and Beliefs
	2.4 Social Agents
	2.5 Agent Execution Cycle
	2.5.1 Choice of Plan to Execute
	2.5.2 Many Ways to Achieve a Goal

	2.6 Summary

	3 Overview of the Prometheus Methodology
	3.1 Why a New Methodology?
	3.2 Prometheus: A Brief Overview
	3.2.1 System Specification
	3.2.2 Architectural Design
	3.2.3 Detailed Design

	3.3 Guidelines for Using Prometheus
	3.4 Agent-Oriented Methodologies

	4 System Specification
	4.1 Goal Specification
	4.1.1 Identify Initial Goals
	4.1.2 Goal Refinement

	4.2 Functionalities
	4.3 Scenario Development
	4.3.1 Goal Step Details
	4.3.2 Capturing Alternative Scenarios

	4.4 Interface Description
	4.4.1 Percepts and Actions
	4.4.2 Data

	4.5 Checking for Completeness and Consistency

	5 Architectural Design: Specifying the Agent Types
	5.1 Deciding on the Agent Types
	5.2 Grouping Functionalities
	5.3 Review Agent Coupling – Acquaintance Diagrams
	5.4 Develop Agent Descriptors

	6 Architectural Design: Specifying the Interactions
	6.1 Interaction Diagrams from Scenarios
	6.2 Interaction Protocols from Interaction Diagrams
	6.3 Develop Protocol and Message Descriptors

	7 Finalizing the Architectural Design
	7.1 Overall System Structure
	7.2 Identifying Boundaries of the Agent System
	7.3 Describing Percepts and Actions
	7.4 Defining Shared Data Objects
	7.5 System Overview Diagram
	7.6 Checking for Completeness and Consistency
	7.6.1 Consistency between Agents and Functionalities
	7.6.2 Consistency between Interaction Diagrams, Scenarios and Protocols
	7.6.3 Consistency of Communication Specifications
	7.6.4 Consistency between Descriptors and the System Overview Diagram

	8 Detailed Design: Agents, Capabilities and Processes
	8.1 Capabilities
	8.2 Agent Overview Diagrams
	8.3 Process Specifications
	8.4 Develop Capability and Process Descriptors

	9 Detailed Design: Capabilities, Plans and Events
	9.1 Capability Overview Diagrams
	9.2 Sub-tasks and Alternative Plans
	9.2.1 Identifying Context Conditions
	9.2.2 Coverage and Overlap

	9.3 Events and Messages
	9.4 Action and Percept Detailed Design
	9.5 Data
	9.6 Develop and Refine Descriptors
	9.7 Checking for Completeness and Consistency
	9.7.1 Agent Completeness
	9.7.2 Missing or Redundant Items
	9.7.3 Consistency between Artifacts
	9.7.4 Important Scenarios

	10 Implementing Agent Systems
	10.1 Agent Platforms
	10.2 JACK
	10.3 Example
	10.3.1 Agents
	10.3.2 Capabilities
	10.3.3 Data
	10.3.4 Messages/Events
	10.3.5 Plans

	10.4 Automatic Generation of Skeleton Code

	A Electronic Bookstore
	B Descriptor Forms
	C The AUML Notation
	Bibliography
	Index

