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Abstract—In 2003, Gusfield introduced the Haplotype Inference by Pure Parsimony (HIPP) problem and presented an integer

program (IP) that quickly solved many simulated instances of the problem [1]. Although it solved well on small instances, Gusfield’s IP

can be of exponential size in the worst case. Several authors [2], [3] have presented polynomial-sized IPs for the problem. In this

paper, we further the work on IP approaches to HIPP. We extend the existing polynomial-sized IPs by introducing several classes of

valid cuts for the IP. We also present a new polynomial-sized IP formulation that is a hybrid between two existing IP formulations and

inherits many of the strengths of both. Many problems that are too complex for the exponential-sized formulations can still be solved in

our new formulation in a reasonable amount of time. We provide a detailed empirical comparison of these IP formulations on both

simulated and real genotype sequences. Our formulation can also be extended in a variety of ways to allow errors in the input or model

the structure of the population under consideration.

Index Terms—Computations on discrete structures, integer programming, biology and genetics, haplotype inference.
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1 INTRODUCTION

FOR the last few years, an emphasis in human genomics
has been on identifying common human genetic varia-

tions. A particular focus has been on identifying Single
Nucleotide Polymorphisms (SNPs), point mutations found
with only two common alleles in the population, and in
tracking their inheritance.

Technological limitations make this problem difficult. At

genomic positions where an individual inherited two

different alleles, it is currently expensive to connect parents

with the alleles inherited from them [4]. Instead, instru-

ments can only identify that the individual is heterozygous

at that position. If we could identify maternal and paternal

inheritance better, we could trace the structure of human

populations more accurately and improve our ability to

map disease genes. This process of going from genotypes

(which include this ambiguity at heterozygous positions) to

haplotypes (where we connect parents to the alleles

inherited from them) is called haplotype inference.
Gusfield [5] brought this problem into the combinatorial

literature. In 2003, he studied the variant where, given

genotypes of several members of the same population, we

are to find the smallest collection of haplotype sequences

that could explain all of the genotype sequences [1]. This

problem, which he called Haplotype Inference by Pure

Parsimony (HIPP), is the focus of this paper.
Gusfield [1] gave an integer linear programming (IP)

formulation for the HIPP problem, which he called the

RTIP. Its size grows exponentially with the number of

heterozygous positions in genotypes. For problems giving

rise to moderate-sized IP instances, the IP typically solves
extremely quickly, but many instances are simply too big.

Two separate groups, Halldórsson et al. [2] and Lancia
et al. [3], have published polynomial-sized IP formulations
for HIPP. We independently discovered the same IP as
Halldórsson et al. and augmented it with several constraints
that can be added to the formulation to assist in solving it
(Section 4). One of these classes of cuts is data-driven
constraints based on patterns in the input genotype data.
These constraints have the interesting property that, as the
size of the pattern increases, the constraints become
stronger and have great potential in helping to solve many
of our instances. We have learned from Edwards [6] that the
work of Halldórsson et al. was done at approximately the
same time and that they also found similar cuts to those
presented in Section 4, but did not present these results.

In our experiments, we note that the polynomial-sized IP
solved many problem instances, but was typically much
slower than Gusfield’s RTIP. The primary concern with the
RTIP is whether it is small enough to be stored in memory.
For large instances of HIPP, the RTIP is very large.

In Section 5, we produce a compromise between these
approaches. We give a polynomial-size IP formulation for
the HIPP problem, which we call the HybridIP, that
achieves much of the speed advantage of the exponential-
size RTIP formulation [1]. Like Gusfield’s approach, it
chooses a set of possible explaining haplotypes for some of
the genotypes. However, it does not consider all possible
haplotypes for a population, which could be of exponential
size. Like the polynomial IP of Halldórsson et al. [2], it
explicitly represents the haplotypes chosen to explain every
member of the population.

Our experiments show that our new formulation solves
much faster than the initial polynomial-sized IP. While its
runtimes never approach the speed of Gusfield’s IP for
instances where Gusfield’s can be stored, they are still
practical; many problems where Gusfield’s would be too
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large to be stored can still be solved by our HybridIP in
practical runtimes.

We also show how our new formulation can be adapted
to a variety of extensions of HIPP recently summarized by
Kalpakis and Namjoshi [7]. Most of these extensions
concern various types of error in the data, but one concerns
possible instrument limitations and two begin to bring the
problem into a scenario where some of the structure of the
population under study is known. We also provide a set of
additional constraints which may help in solving some
HIPP instances.

Our results give a better approach than was previously
known to solve potentially difficult instances of HIPP and
offer possible heuristic approaches to improve solution
times when they are too large.

2 PROBLEM DEFINITION, NOTATION, AND PREVIOUS

FORMULATIONS

In the haplotype inference problem, we are given as an
input a collection of n genotype vectors, each of which
corresponds to a different population member p1; . . . ; pn.
Each of these n vectors tests the same m SNPs, s1; . . . ; sm.
Our task is to identify which allele each parent of
population member pi contributed at each SNP sj. To
simplify, we identify each allele as being 0 or 1.

Using notation suggested by He and Zelikovsky [8], we
will treat this collection of genotypes as an n�m matrix
G 2 f0; 1; 2gn�m. In this matrix, we set G½i; j� ¼ 0 when
population member pi is homozygous with allele 0 at
position sj, G½i; j� ¼ 1 when pi is heterozygous at position sj,
and G½i; j� ¼ 2 when pi is homozygous with allele 1 at
position sj. (We use this notation because, under it, a
genotype is equal to the sum of its haplotypes. It is not the
standard used in the biological literature, wherein the roles
of 1 and 2 are typically reversed.) We will refer to the rows
of G as genotype vectors; each vector includes the
genotypes of all tested SNPs in one population member.

In this representation, a haplotype vector is a binary
m-vector, h, which represents the sequence of a single
chromosome; h½i� ¼ 0 if the chromosome has allele 0 at
SNP si and h½i� ¼ 1 if the chromosome has allele 1 at SNP si.
In haplotype inference, we attempt to identify haplotype
vectors that represent the haplotypes contributed by the
parents of the genotypes in G. We make no distinction
between the maternal and paternal haplotypes and refer to
these haplotypes simply as the parents of a genotype.
Genotype g is explained by two haplotypes h1 and h2 (and h1

and h2 form an explaining pair for g) if g½j� ¼ h1½j� þ h2½j� at
all positions j of the genotype g. At homozygous positions
in g, with value 0 or 2, both parents must have the same
value, while, at heterozygous positions, with value 1, one
parent must have allele 1, while the other has allele 0. We
order the parents of a genotype lexicographically, resolving
the first ambiguous site in the genotype.

Haplotype inference involves picking a set H of
haplotypes such that every genotype in G is explained by
a pair of haplotypes from H. A simple objective is to find
the smallest set H� of haplotypes, where every genotype is
explained by a pair of members of H�. Gusfield [1] justified

this objective by noting that few haplotypes seem to be

found in recombination-free blocks of the human genome

[9], [10] and by noting that previous methods for haplotype

inference, most notably those due to Clark [11], found that

their results were more likely correct when they returned

small sets of haplotypes. New studies of variations in

humans and dogs have confirmed the observation of few

haplotypes in recombination-free blocks [12], [13], [14]. This

goal of minimizing the number of haplotypes is called

Haplotype Inference by Pure Parsimony and has been studied

by several authors (e.g., [1], [2], [3], [7], [15], [16], [17], [18]).
The HIPP problem is NP-complete (Gusfield [1] cites

correspondence from Hubbell for this fact; a proof is in

Lancia et al. [3]) and the best known approximation ratio for

this problem comes from a simple linear programming

rounding approach giving an exponential guarantee on the

approximation factor [3]. As such, exponential time algo-

rithms such as integer programming are appropriate as a

way to solve the problem exactly.
In 2003, Gusfield [1] developed the TIP formulation, an

exponential-sized IP formulation for the HIPP problem. We

create a set H of all possible haplotypes that can explain the

genotypes by expanding all possible pairs of parents for

each genotype. For each genotype gi, its explaining set is

Ri ¼ fðj; kÞ : hj and hk are an explaining pair for gig. For

each pair � in Ri, we create a binary variable wi;�, set to 1

exactly when the pair is selected to resolve genotype gi. For

each possible haplotype hi (i ¼ 1 . . . jHj), there is a

variable xi; its value is 1 if the haplotype is used and 0

otherwise.
Constraint (1) ensures that each genotype is explained by a

pair of haplotypes. Constraints (2) and (3) ensure that ifwi;ðj;kÞ
is 1, selecting pair ðj; kÞ, the required haplotypes j and k are

included in the set of haplotypes chosen. The objective is to

minimize the number of chosen haplotypes, which is the sum

of the xi variables. The IP is shown in Fig. 1.
Gusfield also presented a size reduction for the IP that

avoids expanding out all possible parents and, so, reduces

the number of variables. Instead, it only includes pairs

where at least one parent could partly explain another

genotype. This reduced formulation, the RTIP, is much

smaller in practice, though still exponential-size in the

worst case. Gusfield shows how to create the RTIP in time

proportional to its size plus a polynomial in the problem

instance size, so, if it is of moderate size, it can be produced

in reasonable runtime.
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Fig. 1. Gusfield’s TIP formulation for Haplotype Inference by Pure

Parsimony [1].



3 A POLYNOMIAL-SIZED IP

In 2003, two groups [2], [3] independently identified similar

polynomial-sized formulations for HIPP. Slightly later, and
also independently, we discovered the same formulation as

Halldórsson et al. [2] and experimented with it to see if it is

practical [16]. We will call this formulation the PolyIP. It
explicitly represents the chosen haplotype vectors in

decision variables.
For each genotype gi, we create variables representing

each of the m characters of the two explaining haplotypes.
Genotype gi is explained by h2i�1 and h2i and variable yi;k
represents the value of haplotype i in position k.

Constraint (4) ensures that each genotype is properly
explained.

To count the unique haplotypes explaining the input

genotypes, we use binary variables to mark pairwise

differences between two haplotypes. For each pair ði; jÞ of
haplotypes 1 � i < j � 2n, we create a variable di;j, equal to

1 when hi 6¼ hj. If hi 6¼ hj, there is some position k in the

haplotypes where hi½k� 6¼ hj½k� ¼ 0, or hi½k� 6¼ hj½k� ¼ 1, and
(5) or (6) will force di;j to 1.

For each haplotype hi, we introduce a binary variable xi,

which is 1 if hi is unique in ðh1; . . . ; hiÞ. This condition is

enforced by (7). We can minimize the number of unique
haplotypes used by minimizing the sum of these xi
variables. The complete PolyIP formulation is in Fig. 2.

Clearly, many of the variables in the IP can take only one

possible value in a feasible solution. When creating an IP to
solve, variables with predetermined values should be

replaced by constants, thus simplifying or eliminating the

constraints involving those variables. We also order the
parents of a genotype lexicographically, which resolves the

first ambiguous site in every genotype during the construc-

tion of the IP.

4 CUTS AND MODIFICATIONS

Solving an IP is NP-Hard in general. Typically, one solves

an IP by relaxing the program, replacing integrality
constraints with corresponding range constraints, thus

producing the linear programming (LP) relaxation. Feasible

solutions to a minimization IP are also feasible for its
LP relaxation, so an optimal solution to the LP relaxation

gives a lower bound on the optimal solution to the IP.

The LP relaxation can be solved efficiently. If its solution
is integral, it optimizes the IP. Otherwise, a common
approach is to find new constraints, called valid cuts, that
are violated by the solution to the LP relaxation, but are
satisfied by all feasible integer solutions. Or, one can branch,
by picking a single variable and creating a series of new
programs where it is set to each of its possible integer
values. The best solution found is the optimal solution to
the original IP. The process of adding valid cuts and
branching when no effective cuts can be found is called
branch-and-cut [19].

Unfortunately, the PolyIP formulation in the previous
section does not behave well under LP relaxation. At
heterozygous positions, the yi;k variables will often have
value 0:5 in the optimal LP solution. This does not resolve
the haplotypes and allows the di;j variables to have value
zero, which gives no information. Thus, we need to
strengthen the formulation. In this section, we describe a
series of enhancements to tighten the gap between the
optimal solution to the LP relaxation and the optimal
solution to the IP. We both augment the objective function
and show several new valid constraints.

4.1 Augmented Objective Function

A weakness of the PolyIP (and of its LP relaxation) is that
optimal solutions may allow di;j ¼ 1 even when haplotypeshi
and hj are the same. This is harmless for the IP, but, in the
case of the LP, it allows the yi;k variables to take fractional
values. Fundamentally, it also violates our intuition in
designing the program itself: The di;j variables should only
equal 1 when haplotypes hi and hj are different.

The LP relaxation has some other undesirable beha-
viours. Constraint (7) depends strongly on the order of the
genotypes in the input. Consider some haplotype hi. If
hi ¼ h1, then xi will be set to 0 in an optimal solution
regardless of the values of d2;i; d3;i; . . . di�1;i. This means that
each such dj;i can be assigned 1 in an optimal solution.
Again, we want dj;i to be assigned 1 only when hi and hj
differ.

To bias the di;j variables toward 0, we slightly perturb the
objective function to bias the program away from solutions
with positive di;j variables. Perturbation is a classical linear
programming approach to avoid degeneracy [20], which
helps optimize linear programs in small amounts of time,
but we can also use it to slightly bias the LP solver toward
solutions of the same overall objective function value that
have more of the di;j variables resolved to zero. Tradition-
ally, small perturbations either take random form or are
treated as symbolic constants; we have chosen the first of
these for simplicity. (Indeed, many contemporary LP solvers
use perturbation approaches; again, the distinction is that
we require the perturbations to always be positive.) We add
a small random perturbation ri;j to each coefficient, which
gives the following extended objective function:

minimize
X2n
i¼1

ðxiÞ þ
X2n
i¼2

Xi�1

j¼1

ð�þ ri;jÞ � di;j: ð8Þ

By choosing � so that � < 1
8n2 ,and choosing ri;j uniformly

over ð0; �2Þ, we ensure that the coefficients are all in the same
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scale and that the sum of all the di;j coefficients is strictly
less than 1.

This difficulty in setting the di;j variables can be
addressed in a different IP modeling approach to the HIPP
problem; in this approach, we have a difference variable dki;j,
set to 0 if hi½k� ¼ hj½k� and 1 otherwise. We will use these
new dki;j variables to set the di;j variables, both from below
and from above. This is equivalent to the approach of
Lancia et al. [3].

The constraints used to assign these difference variables
are based on an observation about the product of binary
variables. For two binary variables u and v, let P ðu; vÞ be a
binary variable representing their product. We can force
P ðu; vÞ ¼ uv with three linear constraints:

P ðu; vÞ � u; ð9Þ

P ðu; vÞ � v; ð10Þ

P ðu; vÞ � uþ v� 1: ð11Þ

We now define the constraints for the dki;j variables. We
wish to have dki;j ¼ yi;k � ð1� yj;kÞ þ ð1� yi;kÞ � yj;k. If the two
binary y variables take the same value, then the expression
evaluates to 0. If the variables take different values, then the
expression evaluates to 1. However, this is not a linear
constraint. We need to introduce product variables as in (9)-
(11). This gives the constraint:

dki;j ¼ yi;k þ yj;k � 2 � P ðyi;k; yj;kÞ: ð12Þ

Note that if one of the genotypes involved is homo-
zygous at site k, then the product variable P ðyi;k; yj;kÞ is not
needed. If both genotypes are homozygous at site k, then
the dki;j variable is a constant. There are Oðmn2Þ of these
constraints, with Oðmn2Þ additional variables needed for
the products. The advantage to using the product for this
calculation is that the dki;j variables behave as desired in any
integer feasible solution.

We now have an indication of whether the haplotypes
differ at each site. We need to mark differences at the string
level. To do this, we introduce variables di;j, which are
assigned 0 if the haplotypes hi and hj are equal and 1
otherwise. Each di;j variable needs to be larger then than
each of the individual character variables dki;j. To force tight
conformance to the desired behavior, we also require that
the di;j is less than the sum of the character difference
variables dki;j. We introduce the following constraints:

di;j � dki;j for all 1 � i < j � 2n
and each site k;

ð13Þ

di;j �
X
k

dki;j for all 1 � i < j � 2n: ð14Þ

As an integer programming modeling technique, this is
appropriate, though it builds a much larger integer
program. Unfortunately, it may not extend well to the LP
relaxation since we can wind up with the di;j variables
constrained to a very large range when the lower bound
(any single value of dki;j) is as small as 1=m, while the upper
bound (the sum of the dki;j values) is 1. As such, while this

approach properly sets the di;j values in the integer

program, it need not do so for their LP relaxations.

4.2 Transitivity Constraints

The di;j variables are intended to equal 1 if hi and hj are

different and 0 otherwise. The new objective function

partially helps us achieve this behavior for the LP

relaxation, but adding new constraints can help further.

We add the following transitivity constraints for all

1 � i < j < k � 2n:

di;j þ di;k � dj;k; ð15Þ

di;j þ dj;k � di;k; ð16Þ

di;k þ dj;k � di;j: ð17Þ

Consider three haplotypes, hi, hj, and hk. If hi ¼ hj and

hi ¼ hk, then we can conclude that hj ¼ hk. Therefore, if di;j
and di;k are both 0, (15) forces dj;k to also be 0. The constraint

also enforces the contrapositive: If hj 6¼ hk, then dj;k ¼ 1 and

(15) ensures that di;j þ di;k � 1. Since these variables are

binary, this constrains at least one of hj and hk to be

different from hi.
With the original objective function, it is possible that

integer solutions to the IP will violate this new constraint,

but there are always equivalent integer solutions that do

not. We show that these constraints are still valid for an

optimal solution to the HIPP problem by considering any

optimal solution to the problem. If we modify the solution

such that di;j ¼ 1 if hi and hj are different and di;j ¼ 0 when

hi and hj are the same, leaving all other variables the same,

this is an optimal solution for the HIPP instance that

satisfies all the transitivity constraints.

4.3 Data-Driven Cuts

We next consider cuts that depend on input data patterns.

These constraints are violated by many fractional solutions.

They thus reduce the gap between the optimal solutions of

the LP relaxation and the IP.
Consider input genotypes g1 and g2 and suppose there

exists a k such that g1½k� ¼ 1 and g2½k� ¼ 0. Then, d1;3 þ d2;3 �
1 since the parents of g1 cannot both be 0 at position k, while

the parents of g2 must both be 0 at position k. This can be

concluded directly from the transitivity constraint (17),

which says that d1;3 þ d2;3 � d1;2, since the parents of g1 must

be different, and d1;2 ¼ 1. In general, if gi½k� ¼ 1 and

gj½k� ¼ 0, then the following are valid cuts:

d2i�1;2j�1 þ d2i;2j�1 � 1; ð18Þ

d2i�1;2j þ d2i;2j � 1: ð19Þ

While these constraints are implied by the transitivity

constraints, the data-driven cuts can be extended to

stronger cuts based on larger patterns. Consider once again

two genotypes, but consider two characters in each, such as

k1 and k2. Then, an occurrence of this pattern in population

members i and j,
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gi½k1; k2� ¼ 10

gj½k1; k2� ¼ 01;

gives the valid constraint:

d2i�1;2j�1 þ d2i;2j�1 þ d2i�1;2j þ d2i;2j � 3: ð20Þ

This constraint requires that at most one parent of gi is
the same as a parent of gj. Assume, without loss of
generality, that the first parent of gi equals the first of gj.
Then, both of these parents have value 0 in positions k1 and
k2. The second haplotype for gi has h2i½k1; k2� ¼ 10, while the
second haplotype for gj has h2j½k1; k2� ¼ 01, so no other
equalities can occur among these haplotypes. The constraint
d2i�1;2j�1 þ d2i;2j�1 þ d2i�1;2j þ d2i;2j � 3 is valid for all feasi-
ble integer solutions to the IP.

This new constraint is strictly stronger than the
transitivity constraints (18) and (19). Consider the
fractional solution d2i�1;2j�1 ¼ d2i;2j�1 ¼ d2i�1;2j ¼ d2i;2j ¼ 1

2 .
These variable assignments satisfy d2i�1;2j�1 þ d2i;2j�1 � 1
and d2i�1;2j þ d2i;2j � 1, but violate the new constraint
d2�1i;2j�1 þ d2i;2j�1 þ d2i�1;2j þ d2i;2j � 3, which forces the
average of the four pairwise difference variables to be at
least 3

4.
This approach generalizes to patterns in a set A ¼

fgi; gj1
; gj2

; . . . ; gj‘�1
g of ‘ genotype vectors. As before, we

generate a constraint that allows at most one parent of the
first genotype gi to be the same as a parent of at most one of
the remaining ‘� 1 genotypes in A. The constraint also
enforces that the genotypes of A� fgig all have entirely
different parents. We ensure this is correct by requiring that
all pairs of genotypes in A� fgig have a position in which
one genotype vector has a 2 and the other a 0. We also
require one column k1 in which gi½k1� ¼ 1 and all other
genotypes in A have the same non-1 value. This column k1

guarantees that if h2i�1 equals the parent of a member of
A� fgig, then h2i is different from all the other parents of
the members of A� fgig. Finally, we require a column k in
which gi½k� is not 1 and all other genotypes are 1. This
column forces the parents of each gj to be different from
each other and thus equal to only one of gi’s parents. When
such a collection of rows and columns occurs, we obtain the
valid cut:

X‘�1

x¼1

ðd2i�1;2jx�1 þ d2i�1;2jx

þ d2i;2jx�1 þ d2i;2jxÞ � 4‘� 5:

ð21Þ

This constraint allows at most one parent of the first
genotype gi to be a parent of at most one of the ‘� 1
remaining genotypes. It forces the average of the pairwise
difference variables to be at least 4‘�5

4‘�4.
For example, here is a case for ‘ ¼ 4:

gi½k1; k2; k3; k� ¼ 1110

gj1
½k1; k2; k3; k� ¼ 0001

gj2
½k1; k2; k3; k� ¼ 0021

gj3
½k1; k2; k3; k� ¼ 0221:

From the argument above, this data pattern gives the
valid cut:

X3

x¼1

ðd2i�1;2jx�1 þ d2i�1;2jx

þ d2i;2jx�1 þ d2i;2jxÞ � 11:

ð22Þ

This constraint is stronger than the constraints for the

subpatterns of size-3� 3. By assigning all pairwise difference

variables the fractional value 7
8, all of the size-3� 3 con-

straints will be satisfied. However, the size-4� 4 constraint

is violated by this fractional solution since 12 � 7
8 < 11.

These data patterns need not strictly occur as described.

In particular, the final column k exists to show that each gj
has a heterozygous position; in fact, they need not all be in

the same column.
We wish to find an algorithm to enumerate all cuts of

this type for a given genotype matrix. Here, we show a

graph formulation where maximal cliques in an incompat-

ibility graph correspond to maximal data driven cuts.
All of the data driven cuts are relative to a specific

reference genotype g, which serves the role of gi in the

constraint. For each g, we construct an incompatibility

graph Gg as follows: The vertex set is all genotypes that can

share a haplotype with g. Formally, V ðGgÞ ¼ fg0 : g0 is

heterozygous and g0½j� ¼ g½j� or g0½j� ¼ 1 or g½j� ¼ 1 for all

positions 1 � j � mg. We connect two vertices g1 and g2 if

they can both participate in one of our data-driven cuts.

This is the case if the following two conditions hold:

. There exists a site j1 where g1½j1� ¼ 0 and g2½j1� ¼ 2
or g1½j1� ¼ 2 and g2½j1� ¼ 0.

. There exists a site j2, where g½j2� ¼ 1 and
g1½j2� ¼ g2½j2� 6¼ 1.

The first condition ensures that the two genotypes cannot

share a common haplotype. The second condition guaran-

tees that the two genotypes cannot both be partially

explained by the two haplotypes for genotype g. They

cannot both share the same haplotype because of the first

condition and they cannot each be partially explained by

different haplotypes since the two haplotypes for g disagree

at site j2, while both g1 and g2 require the same value at j2.
Cliques in this incompatibility graph have the property

that no pair of genotypes can share a haplotype and no two

genotypes can simultaneously both share a haplotype with

g. This is exactly the condition that was required for the

data driven cuts and only maximal cliques need to be

explored since the constraints for nonmaximal cliques will

be strictly dominated by those for maximal cliques.
We can find all maximal data-driven cuts by building

the incompatibility graph Gg for each genotype g and

then enumerating all maximal cliques, using a heuristic

clique enumeration algorithm, such as the Bron-Kerbosch

algorithm [21].
For a given genotype, we can compute the vertices of the

graph in OðnmÞ time. We can find edges of the graph in

Oðn2mÞ time. So, all the graphs can be built in Oðn3mÞ time.

The time spent on the enumeration of the cliques may be

very long. However, this is only likely when there are many

maximal cliques, at which point these cuts will be most

useful. We evaluate the effect of these maximal clique

constraints in Section 6.4.
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5 A NEW INTEGER LINEAR PROGRAMMING

FORMULATION

The PolyIP formulation presented in Section 3 establishes a
nice theoretical result. However, although we are able to
solve many problem instances with it, the experimental
results presented in Section 6 show that, when the RTIP
formulation can solve the problem, it is much faster.

Thus, we seek an integer programming formulation with
both practical size and reasonable runtimes. Here, we
satisfy this goal with a formulation that draws upon ideas
from both the RTIP and the PolyIP. We call this IP the
HybridIP.

The RTIP formulation’s strength is that many genotypes
have few explaining pairs. However, large problems may
have some genotypes with billions of explaining pairs, so
the IP is too huge to use. In our HybridIP, we expand only a
few possible explaining parents and allow parents that were
not among those expanded.

5.1 Construction of the HybridIP

As in the PolyIP, every genotype gi is explained by two
haplotypes, h2i�1 and h2i. These haplotypes are expanded in
the decision variables: hi½k� is represented by decision
variable yi;k; (26) requires that haplotypes properly explain
their genotypes.

Unlike for the PolyIP, we also choose a set He ¼
fh01; . . . ; h0Kg of K specific possible haplotypes. We can
explain genotype gi using zero, one, or two haplotypes from
He. For every explaining pair ðh0j; h0kÞ for genotype gi, where
both h0j and h0k are in He, we create a variable wi;ðj;kÞ, as in the
RTIP formulation. If there is an explaining pair ðh0j; �Þ, where

h0j is inHe, but � is not, we create a variablewi;ðj;�Þ. If there is an
explaining pair ð�1; �2Þ for gi where both haplotypes are not in

He, we create a variable ui; this variable will be set to 1 when

the chosen explaining pair for gi uses no haplotypes fromHe.

LetWi be the set of allwi;ðj;kÞ andwi;ðj;�Þ variables. The selection
constraint (23) mandates that we explain all genotypes, either

through expanded or partially expanded parent pairs

(corresponding to one or two haplotypes fromHe) or through

two parents not from He.
We use d and d0 variables to mark differences between

haplotypes; the da;b variables, set by (27) and (28), register
differences between the explicitly enumerated haplotypes,

as for the PolyIP. The d0a;b variables, set by (29) and (30),

identify whether the haplotype hb, described by the vector

of yb;i variables, equals the preselected haplotype choice h0a
from He. If we explain genotype gi by setting wi;� ¼ 1, (33)

and (34) ensure that the haplotypes are properly set.

Meanwhile, if we choose an explaining pair neither of

whose members are in He, (31) and (32) ensure both
haplotypes are kept different from all haplotypes in He.

As before, we calculate how many unique haplotypes are

used by a solution. As in Gusfield’s TIP formulation, we

have one decision variable, x0j, for all h0j in our specified set

of haplotypes He, set to 1 if haplotype h0j is ever chosen. This
is enforced by (24) and (25). We also must count the unique

haplotypes not from He. As in the PolyIP, for each

haplotype vector, we create a variable xi, equal to 1 if hi
is not in He and is unique in ðh1; . . . ; hiÞ; (35) enforces this.
Our objective of minimizing the number of unique

haplotypes used is equivalent to minimizing the sum of

the x0 and x variables. The complete HybridIP is in Fig. 3.
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If K, the size of He, is a constant or even polynomial in
the size of the input, the program is polynomial in size and
can be created in polynomial time. If K is zero, the program
is essentially the same as the PolyIP. If every possible
explaining haplotype is included in He, the program is
analogous to Gusfield’s TIP formulation [1], but with many
added variables.

As with the PolyIP, we again introduce small positive
perturbations to the coefficients of the d and d0 variables in
the objective function. We also introduce similar small
random perturbations for the w variables. Finally, we
introduce a slightly larger positive perturbation to the
coefficients for the ui variables. This causes the program to
favor selecting from the expanded set He. We justify this
bias by the assumption that the algorithm used to populate
the set He chooses haplotypes that are more likely to be in
the optimal solution.

Many possible approaches exist to populate the set He of
prespecified haplotypes. We populated the set of haplo-
types to be partially expanded by sequentially expanding
parents of the genotypes starting with those with fewest
heterozygous sites, until the number of unique haplotypes
expanded reached a cutoff K. This set completely deter-
mines which wi;� variables were in the formulation. When
generating the IP, we resolved wi;ðj;�Þ to get rid of the
unspecified parents (identified by asterisks) by adding the
appropriate haplotype to the expansion set. We used this
new haplotype only to resolve the unspecified parents and
did not introduce any new wi;� variables. This resolution
appears to give a stronger formulation and remains
polynomial in size. In Section 6.2, we evaluate the effect
of varying the value of K. Although there is no clear best
choice, we find that a value of K ¼ 24 yields good results.

All of the valid cuts shown in Section 4 are also valid for
the HybridIP, giving an additional way to improve the
speed of solving the HIPP problem through integer
programming.

6 EXPERIMENTS

The HIPP problem is both an abstraction of a real
biologically motivated problem and a discrete optimization
problem with interesting structure. It is natural to empiri-
cally analyze the performance of any new proposed method
to solve HIPP. Our work was motivated by two goals: to
eliminate the exponential dependency of the RTIP and to
achieve similar runtime to that of the RTIP on the instances
where the RTIP can be formulated. With these goals in
mind, we will use the performance of the RTIP as a baseline
for comparison.

We wish to emphasize that our experiments are simply
to evaluate the runtime performance of these IP techniques
for solving HIPP. We neither attempt to evaluate the
effectiveness of HIPP for haplotype inference nor compare
our algorithm to haplotype inference solvers that do not use
the parsimony objective; this analysis has previous been
performed by both Gusfield [1] and Wang and Xu [15].

6.1 Implementations

We created a branch-and-cut prototype implementation of
the PolyIP to solve instances of the HIPP problem. We used

CPLEX 8.1.1 [22] to solve the LP relaxations and then added
cuts or set branched variables directly. Commercial LP
solvers provide powerful IP solvers that may have some
success solving this problem. However, implementing the
simple branch-and-cut algorithm allows us to explore
different branching rules and cuts.

In the PolyIP, we branched only on the pairwise
difference variables di;j because they have strong influence
on the IP. If all di;j variables are integral and all transitivity
constraints are satisfied, there is an integral solution to the
problem with the same objective value. In practice, when
the di;j variables solved to integer values, all other variables
were assigned integer variables by the solver. Setting a di;j
variable to 0 is very restrictive: It forces the corresponding
parents to be equal. However, there is still flexibility in the
actual values of those parents.

Unless otherwise stated, the data driven cuts described
in Section 4 that are used in the tests were only those
derived from two-by-two patterns in the genotype matrix.
We added transitivity constraints when they were violated
by the solution to the LP relaxation.

We also created a branch-and-cut prototype implemen-
tation of the HybridIP, using CPLEX 8.1.1 to solve the LP
relaxations. In the HybridIP, we first branched on the
selection variables wi;�. Then, if we had still not found an
integer solution, we branched on the difference variables di;j
and d0i;j. This branching rule was used because assigning a
selection variables wi;� to 1 completely assigns the haplo-
type vectors for the explaining pair for genotype gi. We also
had assumed that our partially expanded set of haplotypes
is likely to contain many of the correct ones.

The HybridIP used the same cuts as the PolyIP, although
generally fewer cuts were added while solving the
HybridIP.

We implemented a prototype of Gusfield’s RTIP for-
mulation [1] to compare the effectiveness of our IPs with
his. This implementation used the same simple branch-and-
cut framework, although without generating any cuts.

All tests were run on a 1.5GHz Intel Pentium 4 with 1GB
RAM running Debian Linux. Our prototype implementa-
tions are available by request. Unless otherwise stated, the
tests were run with a two hour time limit.

As a preprocessing step, we eliminate duplicate copies of
genotypes from the input, assuming they will all be phased
identically. This reduction obviously does not change the
value of the optimal solution. It is worth noting that
allowing the duplicate haplotypes will often increase the
gap in between the optimal solution to the IP and its
relaxation since this will weaken the effectiveness of (7) in
the LP relaxation of the PolyIP. This reduction was
performed for all prototype implementations and all tests.

We also implemented an optional preprocessing step
that eliminated duplicate columns and complimentary
columns. Again, this is an obvious reduction that can be
applied to reduce the problem size and not change the
value of the optimal solution.

6.2 Simulated Data Sets

We present experimental results using two different
simulated methods of data generation. We created parent
haplotypes using Hudson’s program ms [23], which
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simulates neutral evolution and recombination. We then
paired the resultant haplotypes randomly to produce
offspring populations. The distinction in the two simulated
method comes in how the random pairing is performed. In
one case, we randomly pair sampling uniformly from the
set of distinct haplotypes. In the second case, we sample
uniformly from the collection of haplotypes generated by
the coalescent process. In this collection, haplotypes may
not be unique, so some haplotypes are sampled with higher
frequency than others.

We chose to randomly pair uniformly from the set of
unique haplotypes since we believed this would lead to
more difficult problem instances. This is because the
probability of generating a completely homozygous popu-
lation member is reduced. Also, the number of duplicate
population members should be reduced. With respect to the
RTIP formulation, this does generate more difficult in-
stances as the IP instances are larger. However, it also has
the effect of reducing the presence of rare haplotypes,
which we discovered may make for slightly easier instances
of the PolyIP and HybridIP. We discuss these issues in
further detail below.

For each of the simulated data generation methods, we
generated two classes of data sets. First, we ran experiments
on inputs of sizes comparable to those used by Gusfield [1].
The data consist of collections of n ¼ 50 offspring with
haplotypes of length either m ¼ 10 or 30. The second class
of inputs are designed to be problem instances that should
be too large to formulate in the exponential formulation. In
these cases, we use collections of 30 offspring with
haplotypes of length 50, 75, and 100. It turned out that
there was always at least one population member with only
zero or one heterozygous sites in all of our experiments.

6.2.1 Problem Results: Distinct Haplotypes

A summary of the findings for the distinct haplotype data
set is in Table 1. For shorter sequences, the HybridIP was
able to solve all the instances. For the length 10 sequences,
all but two instances solved in less than seven seconds,
which is very close to the speed of the RTIP and a great
improvement over the slow times of the PolyIP.

On the length 30 sequences, six instances solved in less
than 30 seconds, and 12 in less than two minutes. The final
three instances all took longer than five minutes, with the
longest requiring just over an hour. By contrast, for the
seven RTIP instances that were of reasonable size from this

data set, all solved in fewer than five seconds, but the other
eight were too large to produce. Eight of the HybridIP
instances solved on the first branch.

On longer sequences, the HybridIP was able to match
and, in the case of 50 and 75, exceed the number of instances
solved by the PolyIP. For sequences of length 50 and 75, the
HybridIP solved at least 60 percent of the instances. For the
length 100 sequences, the HybridIP matched the result of
the PolyIP.

All of the runtimes of the HybridIP were much faster
than for the PolyIP. Many length 50 instances solved in
under five seconds, most within 10 minutes, and all within
two hours. For length 75 sequences, two instances solved in
less than a minute, while others took more than two hours.
Two of the three length 100 instances solved in less than
two minutes; the other took just under an hour.

6.2.2 Nonuniform Haplotype Frequencies

Uniformly sampling among the unique haplotypes to
generate the genotypes is not the standard method of
generating simulated genotype populations. For this reason,
we also evaluated the three different IP formulations on data
with nonuniform haplotype frequencies. In these data sets,
2n haplotypes were generated using Hudson’s program ms

[23], then n genotypes were generated by pairing sampling
from the 2n haplotypes with replacement. Within the 2n
haplotypes, there may be multiple copies of the same
haplotype, giving rise to the nonuniform frequencies. As
before, the sampling is done with replacement, so the same
haplotype may be chosen as a parent of multiple genotypes or
even twice for the same genotype. We again found that every
test set included at least one population member with only
zero or one heterozygous site.

The results for the nonuniform sampling data set are
presented in Table 2. There are significant differences
between these results and those presented in Table 1. On
the nonuniform data, the PolyIP was unable to solve even
all of the length 10 instances and only solved about half of
the length 30 instances. All of the length 30 instances took
longer than 1; 000 seconds. The PolyIP was unable to solve
any of the length 50 or greater problem instances within a
two hour time limit.

We believe this difference is explained by very low
frequency haplotypes. The genotypes resulting from these
haplotypes can often be resolved in many ways without
affecting the value of an optimal solution. Around each of

148 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 3, NO. 2, APRIL-JUNE 2006

TABLE 1
Experimental Comparison of Three IP Formulations

Tests with sequences of length 30 or less had 50 population members, while the tests of length 50 or greater had only 30 population members. For
large instances, the number of IP branches required by the HybridIP ranged widely.



these equivalent optimal solutions, we suspect that there
are many fractional solutions that the branch and bound
algorithm explores, leading to lengthy runtimes.

In contrast, these same genotypes formed from low
frequency haplotypes benefit the RTIP formulation since
they yield fewer expanded haplotypes in the RTIP expansion.
On the nonuniform data set, the RTIP formulation solved all
length 10 and 30 instances and all in one second. This is a
significant improvement over the results on the uniform data
set, where fewer than half of the length 30 instances solved
with the RTIP. A more dramatic improvement is in the longer
sequences, where the RTIP was able to solve over half of the
length 50 instances and two out of the 15 length 75 instances.
Four of the length 50 instances solved in less than one and a
half minutes. One of the length 75 instances was solved in
529 seconds, while the other came in just under the two hour
time limit at 6; 985 seconds.

Similarly to the PolyIP, the HybridIP performance
worsened on the nonuniform data. However, the HybridIP
seems less sensitive to this change than the PolyIP. The
HybridIP solved all of the length 10 and 30 instances. All of
the length 10 instances solved in one second and 10 out of
the 15 length 30 instances solved in less than 15 seconds.
The HybridIP was only able to solve six length 50 instances,
which is slightly worse than the RTIP. However, all six
instances solved in 39 seconds or less. The Hybrid solved
five of the 15 length 75 instances, with two of the instances
solving in less than one minute. The HybridIP was the only
formulation able to solve a length 100 instance. It solved
three length 100 instances, with two of those instances
solved in under two minutes.

In this data set, we cannot see any significant difference
between the number of instances solved between the RTIP
and the HybridIP. However, on the longer sequences, the
runtimes of the HybridIP seem much improved over those
of the RTIP. It is worth noting that the majority of the time
spent in the RTIP is on formulating the instance. A more
clever implementation may be able to overcome some of the
problems due to large problem instances.

6.2.3 Parameters of the HybridIP

The performance of the HybridIP is very sensitive to the
choice of the parameter K, the size of the set He. For some
IPs, selecting a very large K yields a very quick solution,
while, for others, choosing a large K greatly increases the
time required to solve the LP relaxation and increases the
number of branches needed to find the optimal solution. We
performed three tests to evaluate values of K. In each test,

we ran the HybridIP on 15 inputs with a time limit of five

minutes for each instance. Two of the tests evaluated

genotypes of length 30 and one test was on length 50

sequences.
Table 3 shows the results on sequences of length 30 with

uniform haplotype distribution. This test shows a general

trend that expanding more haplotypes causes more

instances to be solved. However, besides the one additional

test case solved for values 48 and 64, there is little variation

among all the nonzero values.
Table 4 evaluates the same parameters on the instances

of length 30 with nonuniform haplotype frequencies. Here,

the value of 48 still solved the most instances, but both the

values of 32 and 64 solved one fewer instance than the value

of 24. In this case, there is no clear trend toward larger being

better.
Finally, in Table 5, we see the results on sequences of

length 50, with uniform haplotype distribution. Here, we

see that, on the longer sequences, the smaller number of

expanded haplotypes seem to be giving much faster

runtimes. The larger values of 48 and 64 had fewer

instances solved in under 10 seconds. The value 64 solved

the most instances in under five minutes.
Overall, there is no clear best choice for the value of the

parameter K. The values tested were all in a very close

range and yet there was a fair amount of variation as to how

the HybridIP performed. We choose to use the value of 24

for evaluating the HybridIP in our other tests. Experiments

with this value of K consistently solved very quickly in our

tests and, in the absence of a clear best value, we choose to

go with the smallest value that performed well in our tests

since each additional expanded haplotype introduces a

reasonably large number of variables.
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TABLE 2
Experimental Comparison of Three IP Formulations

Tests with sequences of length 50 or less had 50 population members, while the tests of length 75 and 100 had only 30 population members.

TABLE 3
The Effect of the Number of Haplotypes Expanded on

the Performance of the HybridIP

This table shows the number of instances of length 30 with uniform
haplotype frequencies solved within in each time interval. Small values
of K show great improvement over settingK to zero, which is equivalent
to the PolyIP.



Initially, it may seem surprising that expanding such a
small number of haplotypes (such as 16 or 24) makes such a
large difference. Still, the haplotypes that are being
expanded are from genotypes with very few heterozygous
sites. This implies that the expanded set is guaranteed to
contain many of the haplotypes found in the optimal
solution. We also benefit when the ui variable is selected
since all the d0 difference variable to the expanded
haplotypes are forced up to one. Overall, this greatly
reduces the number of fractional d0 values and strengthens
(35) in the HybridIP.

6.3 Biological Data Sets

With the completion of the first phase of the HapMap
project [24], there is now a large source of publicly available
genotype data with which to evaluate haplotype inference
programs. We considered inputs from chromosomes 10 and
21, over all four HapMap populations. For each input
length we considered, we selected a continuous collection of
SNPs with the highest minimum pairwise D0 value, a
measure of linkage disequilibrium. This was meant to find
regions of the desired length with small amounts of
recombination.

We tested sequences of lengths 30, 50, and 75, giving a
total of 24 instances. Each instance was reduced to contain a
unique set of genotypes, so the actual number of genotypes
in each sample varies significantly, generally increasing
with sequence length. Of the 24 instances, the PolyIP was
able to solve 15, the HybridIP was also able to solve 15 and
none of the RTIP formulations could be constructed within
the two hour time limit. Five of the nine failing HybridIP
instances were all from the same HapMap population, the
Yoruba in Ibadan, Nigeria [24]. Looking at the instances that
were generated for all four populations, it was clear that
there were a significant number of duplicate columns that
caused the RTIP instance to explode in size.

To attempt to more fairly compare the RTIP and the
other IP formulations, we ran the tests again with duplicate
and complement columns removed, under the assumption
they will be phased in the same manner as the representa-
tive column. Under this column reduction scheme, the RTIP
was able to solve 21 of the 24 instances. The HybridIP was
able to solve 16 of the 24 instances and the PolyIP was able
to solve 17 instances. All of the RTIP instances that failed
were length 75 instances, which agrees with our hypothesis
that the RTIP formulation cannot solve long instances well.

Two of the instances that the RTIP could not solve were
solved by the HybridIP and the PolyIP, even without
column reduction. For all three formulations, the column
reduced instances generally solved very quickly, with the
exception of the length 75 sequences. It is surprising that the
PolyIP performed as well as or better than the HybridIP on
these tests.

Interestingly, on the real genotype instances, six of the
RTIP instances required branching to find the optimal
solution. This branching never occurred on our synthetic
data, where the LP-relaxations always solve to integral
values. One instance required 67 branches.

Without column reduction, the HybridIP and the PolyIP
perform better than the RTIP. With the column reduction,
the RTIP solves significantly more instances than the
HybridIP or the PolyIP. We note that, since adding a single
genotype to the instances could cause the column reduction
to no longer be applicable, it may not be desirable to
depend on tricks like this column reduction.

6.4 Maximal Clique Enumeration

All of the previous tests were run without the maximal
clique enumeration for the data driven cuts described in
Section 4. To evaluate the effect of these cuts, we looked at
the effect of adding the maximal clique enumeration to the
branch-and-cut algorithm for the PolyIP.

Running the PolyIP on the biological data sets without
column reduction led to surprising results. First, the clique
enumerations all took less than one second, so this process
did not affect runtime significantly. However, on almost
every test, adding the maximal clique constraints caused
slower solve times. The tests that were not slower solved
within three seconds. One of the tests that solved within six
minutes without all of the maximal clique constraints did
not manage to solve within the two hour time limit when
the clique constraints were added.

The number of cuts enumerated had a wide range, but
did depend on the lengths of the sequences. The maximum
number of cuts enumerated in a test was 8; 142, in one of the
length 75 biological data tests. It is interesting to note that,
on that test, 7; 401 data driven cuts were violated in the
initial solution of the PolyIP LP relaxation. However, within
the two hour time limit, the second solution to the LP
relaxation was never found.

Looking more closely at the test runs, we observe that
adding the maximal clique constraints generally reduced
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TABLE 4
The Effect of the Number of Haplotypes Expanded on

the Performance of the HybridIP

This table shows the number of instances of length 30 with nonuniform
haplotype frequencies solved within in each time interval.

TABLE 5
The Effect of the Number of Haplotypes Expanded on

the Performance of the HybridIP

This table shows the number of instances of length 50 with uniform
haplotype frequencies solved within in each time interval.



the number of branches required to find the optimal
solution significantly. However, each solution to the LP
relaxation took longer to find and, overall, reduction in
branches did no make up for the increased solve time.

We observe similar degradation to the runtimes for some
sample tests run with the synthetic data. It seems that
adding every violated cut leads to greatly increased work
when solving the LP relaxations. It is likely that a more
advanced branch-and-cut could use these maximal clique
cuts in a more advantageous way.

7 VARIATIONS ON HIPP AND SOME MORE IP CUTS

The HIPP problem can be expanded to accommodate a
number of possible variations. These variations include
different scenarios of error in the input genotypes or allow
representation of known familial relationships among
members of the input population. Or, they may be
appropriate due to instrument limitations. Kalpakis and
Namjoshi [7] presented a number of variations and showed
how their semidefinite programming formulation of HIPP
could be extended to accommodate them. Here, we show
that the HybridIP can easily expand to include these, as
well; we do not offer experimental evidence of the speed of
solution in part because it is challenging to envision the
proper parameters for such experiments.

In addition, we provide one additional type of valid cut
for the PolyIP. Although we can show that there are
instances where using this cut may help close the gap
between the IP and its LP relaxation, we do not believe
these cuts would improve our runtimes without discover-
ing an efficient separation algorithm.

7.1 Various Forms of Error

The input genotype matrixGmay not be accurate. It could be
incomplete, with missing entries. It could have a small
number of mistakes. Or, there might be a small number of
genotypes with many errors. All three of these scenarios can
be adapted to our HybridIP. In the first, where the genotype
matrix is incomplete, assume that genotype site gi½k� is
unknown. We expand the setWi of possible explaining pairs
for gi to include explaining pairs for all possible choices for
gi½k� and we remove (26) of the HybridIP for gi½k�.

In the second scenario, where the input genotypes G are
complete, but there is a boundE on the total number of errors
in all of them, we can adapt by creating deviation variables
ei;k, which are integers between�2 and 2, that account for the
difference between the value of gi½k� in the input and the true
underlying value. Then, we modify (26) to:

y2i�1;k þ y2i;k ¼ gi½k� þ ei;k for each i and k: ð36Þ

To constrain the system so there are no more than E errors
in the genotype matrix, we add integer variables e0i;k that are
1 when ei;k is nonzero and restrict the maximum number of
edited sites. These requirements are enforced by these
constraints:

e0i;k � ei;k=2; for each i and k; ð37Þ

e0i;k � �ei;k=2; for each i and k; ð38Þ

Xn
i¼1

Xm
k¼1

e0i;k � E: ð39Þ

We may now explicitly enumerate a haplotype hj from
He while still not choosing to set wi;� to 1 for any of the
previously enumerated explanations for genotype gi. This
would result in not setting x0j to 1, giving an incorrect
answer to the problem. To avoid this, we must add the
constraint:

x0j � 1� d0i;j; for each i and j: ð40Þ

In the third scenario, where there is a bound E on the
number of genotypes that possess errors, but where the
number of errors in a particular genotype is irrelevant, we
use the ei;k variables as before, but then create variables ei to
identify whether genotype gi was edited; this is done by
requiring that ei is 1 exactly when any of the ei;k are nonzero
in a way analogous to (36); then, we limit the sum of the ei
to be at most E. We must again add (40) to ensure we pay
for all chosen haplotypes.

7.2 Shared Haplotypes

External information we may have may tell us that two
different genotypes share a common haplotype. For
example, we can conclude this if we know that the two
genotypes are parent and child and the genotypes have no
recombinations or mutations. If genotypes gi and gj are
known to share a haplotype, we can add this to the
HybridIP by adding the constraint:

d2i�1;2j�1 þ d2i;2j�1 þ d2i�1;2j þ d2i;2j ¼ 3: ð41Þ

7.3 XOR Genotypes

Barzuza et al. [25] proposed the study of haplotype
inference on a new type of data called XOR-genotypes.
Some experimental methods can only determine if a site is
heterozygous of homozygous, but not which homozygous
allele. In this domain, genotype g can be explained by
haplotypes h1 and h2 if g ¼ h1 þ h2 mod 2.

If all data are of this form, the HybridIP is inappropriate;
any possible haplotype sequence h is a potential explaining
parent for genotype g since the other explaining parent is
then g� hmod 2. Still, the PolyIP is appropriate; we replace
(4) with the constraints:

y2i�1;k þ y2i;k ¼ 1; if gi½k� is heterozygous; ð42Þ

y2i�1;k ¼ y2i;k; if gi½k� is homozygous: ð43Þ

7.4 Perfect Phylogeny

A final variation is to require that the solution satisfy a
perfect phylogeny. This specialization of HIPP, called Min-
PPH, has been shown to be NP-Hard by Bafna et al. [26].
Here, we show how to add new variables and constraints to
the IP to ensure that the solution satisfies a perfect
phylogeny.

The classical characterization of a PPH solution is that
the haplotype matrix passes the four gamete test. That is to
say that there is no 4� 2 submatrix that contains all four
possible binary strings of length 2. One could attempt to
introduce a condition for each 4� 2 submatrix that ensures
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the four gametes do not occur. However, this would
introduce far too many variables.

Bafna et al. [27] proved an alternative characterization of
PPH solutions that we can exploit to reduce the number of
variables required. Following the notation of Bafna et al., we
define two columns k and l to be companion columns if there
exists a genotype gi that is heterozygous in columns k and k,
so gi½k� ¼ gi½l� ¼ 1. For each pair of companion columns k
and l, we introduce a new binary variable Ek;l. If Ek;l ¼ 1,
then we say that columns k and l equate and, for all
genotypes gi such that gi½k� ¼ gi½l� ¼ 1, h2i�1;k ¼ h2i�1;k. If
Ek;l ¼ 0, then we say that columns k and l negate and, for all
genotypes gi such that gi½k� ¼ gi½l� ¼ 1, h2i�1;k ¼ 1� h2i�1;k.

Using the product variables described in Section 4.1, can
model the exclusive-or operator 	, using integer linear
constraints. Using the same method we can add the following
constraints for each pair of companion columns 1 � k < l �
m and each genotype gi such that gi½k� ¼ gi½l� ¼ 1:

Ek;l ¼ h2i�1;k 	 h2i�1;l: ð44Þ

To complete the categorization of Bafna et al. [27], we
need to encode two types of constraints. We start with the
easier of these, which is for triplets of columns. Bafna et al.
showed that, for three columns k1, k2, and k3, such that, for
some genotype gi, gi½k1� ¼ gi½k2� ¼ gi½k3� ¼ 1, if the haplo-
types satisfy a perfect phylogeny, it must be the case that

Ek1;k2
¼ Ek1;k3

	 Ek2;k3
: ð45Þ

Consider two companion columns k and l. Each
genotype that is not heterozygous in both positions has a
unique expansion, relative to those two columns. If that
expansion contains the rows 00 and 11 in these two
columns, then the columns must be equated. Similarly, if
that expansion contains the rows 01 and 10, then the
columns must negate. For all column pairs ðk; lÞ with such a
forcing pattern, the value of Ek;l is known, if the haplotypes
are to satisfy a perfect phylogeny, and we should replace
them by their values in the formulation. Finding the forcing
pairs can be completed in Oðnm2Þ.

We know by the results of Bafna et al. [27] that, if our
solution meets these conditions, it satisfies a perfect
phylogeny. In the worst case, this uses Oðm2Þ indicator
variables, Oðm3Þ product variables for the triplet constraints
(45) and Oðnm2Þ product variables for (44). This also adds
Oðm3 þ nm2Þ constraints to the system. This formulation is
rather large and is unlikely to yield practical runtimes.

7.5 Permutation Constraints

One drawback of the PolyIP is that its feasible region
depends on the order of the genotypes. Under the LP
relaxation, the di;j variables may take fractional values. If
two such variables in the same constraint take value 0:5, the
xi variable can be set to 0. Under a different ordering, it
might be possible that more xi variables are properly
assigned the value 1 under the relaxation.

This order dependency introduces an interesting class of
permutation constraints. In a second instance of the problem
with a different genotype order, the underlying problem
would still be the same, so the optimal objective function
value would be, too. Conceptually, the permutation

constraints combine these two programs such that each
has its own xi variables, but all other variables are shared.
We then add the constraint that the two objective function
values are equal.

Let � be a permutation of f1; . . . ; 2ng. Define new
variables x�1 ; . . . ; x�2n and add constraints analogous to those
defined for the xi variables. Let di;j ¼ dj;i if i > j. Then, for
1 � i � 2n, we have:

x�i � 2� iþ
Xj<i

j¼1

d�ðjÞ;�ðiÞ: ð46Þ

These constraints are equivalent to (7), only with a different
ordering. For integer points, these x�i count the number of
unique haplotypes used, just as before. Therefore, the
additional valid cut can be added:

X2n
i¼1

xi ¼
X2n
i¼1

x�i ; ð47Þ

which forces the number of unique haplotypes for both
orders to be equal.

If the sum constraint (47) is violated, we arbitrarily
increase the needed x variables. This will not change any of
the other types of variables in the formulation. We would
like to have the property that if xi ¼ 1, then, for all j less
than i, di;j ¼ 1, and similarly for x�i . This can be forced by
adding this constraint for all j < i:

x�i � d�ðjÞ;�ðiÞ: ð48Þ

Consider the following genotype matrix:

1 1 1
0 1 1
0 0 1

2
4

3
5:

If we resolve the first ambiguous position in each
genotype, the optimal solution to the LP will be:

h1

h2

h3

h4

h5

h6

0 0:5 0:5
1 0:5 0:5
0 0 0:5
0 1 0:5
0 0 0
0 0 1

2
6666664

3
7777775
;

for which the value of the LP objective function
P2n

i¼1 xi will
be 3:5. However, if we permute the haplotypes to the
following matrix:

h2

h4

h5

h6

h1

h3

1 0:5 0:5
0 1 0:5
0 0 0
0 0 1
0 0:5 0:5
0 0 0:5

2
6666664

3
7777775
;

for which the objective function will take value 4, which is
the optimal value. This example shows that there are some
permutations that are superior to others. If one were to start
with the bad permutation, it would be beneficial to add the
new cut. However, simply using the better ordering in the
first place would have worked as well. During the
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branching process, we believe there will be cases when

adding a permutation constraint could be helpful. We have

not identified an efficient separation algorithm and, since

there are ð2nÞ! possible permutations, these cuts do not

seem of practical use. It is likely the case that the most

benefit would be achieved by picking the strongest

permutation when constructing the IP formulation. Un-

fortunately, we are not aware of any algorithm for

determining the optimal permutation. If the initial permu-

tation is not the strongest, it is useful to be able to add these

new variables and constraints to the system during the

branching process without having to abandon all the work

already done.

8 CONCLUSIONS

Pure parsimony has been shown to be a reasonable

objective function for the haplotype inference problem [1],

[15]. All previously evaluated exact approaches to the HIPP

problem use a formulation that involves either explicitly or

implicitly expanding out possible parents, leading to

exponential problem size.
Instead, we have given two polynomial-sized IP for-

mulations of the HIPP problem. Our first approach is

different from previous IP approaches to this problem in

that we do not expand out all explaining parents. In

addition, we have shown how to strengthen the formulation

using valid cuts derived from properties of the input

genotypes. Our experiments showed that, although our

PolyIP formulation takes longer to solve, we can solve

problems the same size as previous formulations. Our

PolyIP formulation is also capable of solving problem

instances significantly larger than previous formulations.
Our second IP, the HybridIP, is a polynomial-sized

formulation which outperforms both the RTIP formulation

and the PolyIP formulation. The formulation is based on

expanding a small set of possible explaining haplotypes, as

in the RTIP formulation, while also allowing the choice of

haplotypes that have not been expanded. By completely

expanding genotypes with few heterozygous sites, we

know that some of the optimal haplotypes are in the

expanded set. On the vast majority of tests, the HybridIP

was able to solve more instances than the other two

approaches. Although the runtimes were not as short as

the runtimes for RTIP instances that solved, the runtimes

for the HybridIP were significantly quicker then those of the

PolyIP.
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