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Abstract. Design decisions for complex, component-based systems impact multiple
quality of service (QoS) properties. Often, means to improve one quality property
deteriorate another one. In this scenario, selecting a good solution with respect to a
single quality attribute can lead to unacceptable results with respect to the other qual-
ity attributes. A promising way to deal with this problem is to exploit multi-objective
optimization where the objectives represent different quality attributes. The aim of
these techniques is to devise a set of solutions, each of which assures a trade-off be-
tween the conflicting qualities. To automate this task, this paper proposes a combined
use of analytical optimization techniques and evolutionary algorithms to efficiently
identify a significant set of design alternatives, from which an architecture that best
fits the different quality objectives can be selected. The proposed approach can lead
both to a reduction of development costs and to an improvement of the quality of the
final system. We demonstrate the use of this approach on a simple case study.

1 Introduction
One of the today issues in software engineering is to find new effective ways to deal in-
telligently with the increasing complexity of software-intensive computing system. In this
context a crucial role is played by the achievement of quality requirements, such as perfor-
mance and availability.

In recent decades, software architecture (SA) has emerged as an appropriate level for
dealing with software qualities [10, 31] and several efforts have been devoted to the defini-
tion of methods and tools able to evaluate quality at SA level (see, for example, [3, 25, 15,
31]). However, each method usually addresses a single quality attribute (e.g., performance
or availability), while a major challenge in system development is finding the best balance
between different, possibly conflicting quality requirements that a system has to meet and
cost constraints (e.g., maximize performance and availability, while minimizing cost).

For these multi-attribute problems, there is usually no single global solution, and a
promising way to deal with them is to exploit multi-objective optimisation [16, 6] where
the objectives represent different quality attributes. The aim of these techniques is to devise
a set of solutions, called Pareto optimal solutions or Pareto front [16], each of which assures
a trade-off between the conflicting qualities. In other words, while moving from one Pareto



solution to another, there is a certain amount of sacrifice in one objective(s) to achieve a
certain amount of gain in the other(s). This activity is time consuming, thus the software
architect needs an automated method that efficiently explores the architectural design space
with respect to the multiple quality attributes. Previous approaches in this direction use evo-
lutionary algorithms [27], however, the derived optimisation process is time-consuming.

To overcome these drawbacks, this paper proposes a method where different design
alternatives are automatically generated and evaluated for different quality attributes, pro-
viding the software architect with a powerful decision making tool enabling the selection of
the SA that best fits multiple quality objectives. The proposed approach is centered around
a hybrid approach, where an initial SA of the system (fulfilling its functional requirements)
is taken as input. Based on this initial solution, a search problem is formulated by defining
“degrees of freedom”. The identification of a significant set of design alternatives is then
based on a combined use of analytical optimisation techniques and evolutionary algorithms
[6]. This hybrid approach extends the work presented in [27], introducing a step based on
analytical optimisation whose goal is to derive very efficiently an approximated Pareto front
with respect to a simplified search space. The obtained results are used as input candidates
for an evolutionary optimisation of the original search problem. In this way, more accurate
estimates for availability and performance metrics and a larger Pareto optimal solution set
can be obtained. The advantages of this hybrid approach are shown in a case study.

The proposed method can lead both to a reduction of development costs and to an im-
provement of the quality of the final system, because an automated and efficient search is
able to identify more and better design alternatives.

The remainder of the paper is organized as follows. Section 2 introduces the adopted
architectural model and quality prediction techniques. Section 3 describes the optimisation
process. Experimental results are presented in Section 4. Section 5 reviews other literature
proposals. Conclusions are finally drawn in Section 6.

2 Background: Architecture Modelling and Analyses

In this section, we present the architectural model and the existing quality analyses methods
our approach is based on. To quickly convey our contributed concepts to the reader, we
introduce an example system.

Our approach requires a component-based architecture model with performance, avail-
ability, and costs annotations as input. Balsamo et al. [3] and Koziolek [25] have surveyed
many different methods for specifying performance models, and Smith and Williams [31]
have provided a set of guidelines on how to obtain performance models during early de-
velopment stages and on how to refine such models as the implementation progresses. For
reliability, Gokhale [17] provides a survey.

In our approach, we adopt the Palladio Component Model (PCM) [5], but our approach
could be extended to consider other architectural performance and availability models and
analysis methods. The PCM is beneficial for our purposes as it is specifically designed for
component-based systems. Thus, the PCM naturally supports many architectural degrees of
freedom (e.g., substituting components, changing component allocation, etc.). Additionally,
the model-driven capabilities of the PCM allow an easy automated generation of alternative
architecture candidates.

The example system in this paper is the so-called business reporting system (BRS),
which lets users retrieve reports and statistical data about running business processes from



a data base. It is loosely based on a real system [33]. Fig. 1 shows some parts of the PCM
model of the BRS visualised using annotated UML diagrams. It is a 4-tier system consist-
ing of several software components. In an open workload usage scenario, requests arrive
according to a Poisson process with a rate equal to 0.2 req/sec. Users issue three types of
requests, that lead to varying execution paths in the system.

Components are annotated with software cost (Cost) in Ke. The initial system is de-
ployed to four servers annotated by costs (HCost) in Ke, availability (HA) and processing
rate (PR) in GHz. Fig. 1 also shows an excerpt of the behaviour in the lower half of the fig-
ure. The behaviour contains the CPU resource demands (demand in sec on a 2.6GHz CPU,
log normally distributed with coefficient of variation equal to 2) and failure probabilities
(FP) for actions. ExternalCallActions model calls to other components. The com-
ponents are allocated on four different servers. The complete model can be found at [36].
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Fig. 1. Business Reporting System: PCM instance of the case study system

In order to provide SAs with a priori performance and availability guarantees, if the
application include any loops, they are annotated with a discrete probability distribution and
an upper bound for their number of execution exists. In the following, we briefly explain the
analysis methods for the considered quality criteria performance, availability, and costs:

– Performance: For the analytic optimisation, we model the software system by introduc-
ing an M/G/1 queue for each physical server. For the evolutionary optimisation, we use
an automated transformation of PCM models into a discrete-event simulation (Simu-
Com [5]) to derive response times. The performance model is in the class of extended
queueing networks, so that we can analyse models containing resource demands speci-
fied as arbitrary distribution functions. However, the simulation can be time-consuming
to derive stable results.



– Availability: For the analytic optimisation, we consider the well known serial/parallel
formula [2] applied to the PCM model. In particular, the availability is evaluated by
considering the set of components involved, the physical servers supporting the execu-
tion, and the probability of invocations. For the evolutionary optimisation, we use an
automated transformation of PCM models into absorbing discrete time Markov chains
(DTMC) and solve them with the PCM Markov solver [8].

– Costs: We annotate constant costs to each component and each server configuration.
The software architect can choose whether costs values represent procurement costs,
total costs of ownership, or other. If a server specified in the model is not used, i.e.,
no components are allocated to it, its costs do not add to the overall costs. The goal of
this simplistic model is to allow costs to be considered, not to provide a sophisticated
costs estimation technique. For the latter, existing costs estimation techniques such as
COCOMO II [7] could be integrated here to obtain more accurate values.
Although the example in Fig. 1 is not particularly complicated, it is not obvious how to

change the architectural model efficiently to improve the quality properties. For example,
the software architect could increase the processing rate of server S1, which would result
in better performance but higher costs. The software architect could also change the com-
ponent allocation (45 = 1024 possibilities) or incorporate other component specifications
with different QoS attributes.

The design space for this example is huge. Manually checking the possible design al-
ternatives in a trial-and-error approach is laborious and error-prone. The software architect
cannot easily create design alternatives that are even locally optimal for all quality criteria.
Finding global optima is practically impossible because it requires modelling each alterna-
tive. In practice this situation is often mitigated by overprovisioning (i.e., incorporating fast
and expensive hardware resources), leading to unnecessarily high costs.

3 Optimisation Process
To present our hybrid optimisation approach, we first give an overview in Section 3.1. In
Section 3.2, we describe the search problem. Then, we describe in detail the analytical
optimisation (Section 3.3) and the evolutionary optimisation (Section 3.4).

3.1 Overview
Our approach starts considering as input an initial architectural model of the system, named
initial candidate in Fig. 2. In our case, this is a complete PCM model instance as shown in
Fig. 1. The optimisation process starts with the search problem formulation. In this work,
we consider three degree of freedom types: (1) allocation of components, (2) server con-
figuration, and (3) component selection. The result of this step is a set of system-specific
degrees of freedom that describe the search problem.

In the second step, a simplified version of the search problem is optimised using analytic
techniques. The impact of a degree of freedom (or a combination of them) is evaluated by
analytic models, and the Pareto optimal candidates are derived very efficiently by solving
a mixed integer linear programming problem. The result of this step is a set of candidates
that are globally Pareto-optimal with respect to the simplified search space. In the third
step, the results of the analytic optimisation are used as input candidates for an evolutionary
optimisation of the original search problem. Evolutionary optimisation is more time con-
suming, but it can consider the whole search space and obtain more accurate estimates for
availability and performance metrics.



Pareto 

candidates

4. Present 

results

Sec. 2

Prelim. Pareto

candidates

System-specific 

degrees of freedom

1. Search 

problem 

formulation

Sec. 3.2Initial

candidate

System-specific 

degrees of freedom

2. Analytic 

Optimisation

Sec. 3.3

3. Evolutionary 

Optimisation

Sec. 3.4

Data Activity

Fig. 2. Hybrid Optimisation Process Overview

The results of the evolutionary optimisation phase is a set of Pareto-optimal candidates.
The Pareto-optimal candidates are presented to the software architect, who can study the
remaining optimal trade-offs between possibly conflicting objectives.

3.2 Search Problem Formulation
Candidate solutions can be evaluated for optimal trade-offs, i.e. for Pareto-optimality [16].
A candidate architecture is Pareto-optimal, if it is superior to all other candidate in at least
one quality criterion. More formally: Let a be a candidate solution, let DS be the set of
all possible candidates, and let q be a quality criterion with a value set Dq , an evaluation
function fq : DS → Dq so that fq(c) denotes the quality property of a c ∈ DS for the
quality criterion q, and an order ≤q on Dq so that c1 ≤q c2 means that c1 is better than or
equal to c2 with respect to quality criterion q. Then, a candidate solution a is Pareto-optimal
iff ∀b ∈ DS ∃q : fq(a) ≤q fq(b). If a candidate solution is not Pareto-optimal, then it
is Pareto-dominated by at least one other candidate solution in DS that is better or equal
in all quality criteria. The optimisation problem can be formulated as follows for a set of
quality criteria Q = {q1, ..., qm}: minc∈DS [fq1(c), ..., fqm(c)] . In this work, we consider
three quality criteria: q1 = T = mean response time, q2 = A = availability measured as the
probability of success of each request, and q3 = C = cost.

In our approach, the following degrees of freedom can be considered:
Allocation of components to available servers: The mapping of components to servers can

be changed. This is an integral part of most performance-prediction models and has
large effects on the performance of a system. When reallocating components, the num-
ber of servers can change as well. In our example, the Scheduler component could
be allocated to S1, so that S2 could be removed and its cost can be saved. The software
architect can specify the maximum number of servers to be considered.

Server configuration: The available hardware resources (CPU, HDD, ...) can be changed
in a certain range. In this work, we model a discrete set of servers with different CPU
processing rates and costs. Thus, components can be allocated to servers with different
processing rates.

Component selection: If functionally-equivalent components with different non-functio-
nal properties are available, they can be exchanged. Currently, we deem that a com-
ponent B can replace a component A if B provides (i.e., implements) all interfaces
provided by A and if B requires at most the interfaces required by A.

More degrees of freedom that could be considered in an automated approach are described
in [27]. In the search problem formulation step, the initial candidate model is automatically
analysed for instantiations of these degrees of freedom, called system-specific degrees of
freedom. The found set of system-specific degrees of freedom defines the search space. If
desired, the software architect can also manually remove some of them.



3.3 Analytical Optimisation

The analytical optimization step starts by evaluating the quality metrics of each component
i included in the initial candidate by means of M/G/1 and availability formula. Then, a
binary decision variable xj is introduced for each “atomic” design alternative which can be
obtained from the degrees of freedom. xj is equal to 1 if the corresponding design alternative
is implemented in the system, and 0 otherwise. The optimization problem which can be
introduced in this way is combinatoric in nature, since a Pareto optimal solution can be
obtained by selecting a combination of atomic design alternatives.

For example, S1 alternative configurations for the reference system in Fig. 1 can be
modelled introducing the binary variables x1 (CPU downgrade to 2.4 GHz), x2 (CPU up-
grade to 2.8 GHz), x3 (CPU upgrade to 3 GHz). Down/upgrades of servers S2, S3, and S4

can be modelled analogously with variables x4 to x12. Likewise, the alternative components
selection can be modelled by introducing two binary variables x13 and x14 equal to 1 iff the
WebServer is replaced by alternative WebServer2 or WebServer3 implementation.

The limit of the analytical optimisation with respect to the evolutionary search is in
the evaluation of the allocation of components to servers degree of freedom. The analyt-
ical problem formulation cannot remove a server from the system if no components are
allocated to it. The aim of the analytical optimisation is to derive quickly an approximated
Pareto front which will be further refined by the evolutionary search. As it will be discussed
in Section 4, providing approximated Pareto solutions to the evolutionary search allows to
improve the whole analysis process. For the sake of simplicity in the following we assume
that the application under study includes a single initial component and a single end compo-
nent. Furthermore, loops are peeled and transformed into a number of branches with varying
number of repetitions according to the annotated probability distribution [1]. In this way the
application PCM model is transformed into a Directed Acyclic Graph (DAG).

Let us denote with I the set of indexes of the system components and with J the set
of indexes for the atomic design alternatives arising from the degrees of freedom definition.
Let us denote by C̃ the cost of the initial candidate and let δcj be the cost variation of the
initial candidate for implementing the design alternative j.

In the following optimization problem formulation we will consider only the average
response time performance metric, availability optimization can be formalized similarly.
Let us denote with t̃i, the average response time for component i invocation in the initial
candidate and let δtj,i be the variation of the response time (evaluated by means of M/G/1
formula) for component i if the design alternative j is implemented. For example, if S1

CPU frequency is raised to 2.8 GHz (x2 design alternative), then the WebServer service
demands for the two invocations and S1 utilization are initially equal to 4 sec, 2 sec and
0.52 respectively, are reduced by a factor 2.8/2.6 = 1.08. Thus, the initial response times
equal to 8.33 sec, and 4.16 sec become 7.18 sec and 3.59 sec and hence the deltas are equal
to −1.15 sec, and −0.57 sec.

Some of the atomic design alternatives could be in conflict. For example, since only one
server CPU can be changed at one instance, the following constraint has to be introduced
for S1:

x1 + x2 + x3 ≤ 1

Formally, we introduce an exclusive set esk for each combination of atomic design alter-
natives which are in conflict among each other, because they concern the same software
component and/or the same physical server where components are deployed. A parameter



esk,j = 1 is introduced indicating that the atomic design alternative j is in the exclusive set
k, while esk,j = 0 otherwise.

Note that the size of exclusive sets could grow exponentially, since taking into account
all of the atomic choices is also combinatorial in nature. However, since the number of
possibly conflicting atomic design alternatives is usually significantly lower than the number
of degrees of freedom, the analytic problem can be formulated and solved efficiently, as it
will be shown in Section 4.2.

If we denote by ti the execution time of component i according to the selection of atomic
design choices, we have:

ti = t̃i +
∑
j∈J

δtj,ixj , ∀i;
∑
j∈J

esk,jxj ≤ 1, ∀k

Let us denote with πi the probability of execution of component iwhich can be derived from
the sum of the transition probabilities of the paths in the DAG from the initial component to
i. The execution time T of the whole application can then be computed as T =

∑
i∈I

πi · ti,

while the cost C corresponding to a given combination of atomic choices is given by C =
C̃ +

∑
i∈I

∑
j∈J

δcj · xj .

If T and C denote a bound for the application execution and system cost respectively,
than the Pareto-optimal solutions can be obtained by solving iteratively the problems shown
in Fig. 3 according to Algorithm 1.

(P1) minC
subject to:

C = C̃ +
∑
i∈I

∑
j∈J

δcj · xj

ti = t̃i +
∑
j∈J

δtj,ixj , ∀i∑
j∈J

esk,jxj ≤ 1, ∀k
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i∈I

πi · ti ≤ T

(P2) minT
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δtj,ixj , ∀i

T =
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πi · ti∑
j∈J
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C̃ +
∑
i∈I

∑
j∈J

δcj · xj ≤ C

Fig. 3. The Analytic Optimisation Problems for Performance and Cost

Algorithm 1 requires as input the upper T
upper

and lower bound T
lower

response time
for the application under study, which can be computed easily by considering the maximum
and minimum δtj,i for each component i. Then, the Algorithm starts minimizing the system
cost with the goal to provide a response time lower than T

upper
(i.e., solving problem (P1),

see step 4). Let x∗ be the corresponding optimum solution (i.e., the set of atomic design
alternatives to be implemented) and C∗ be the corresponding cost. Then, the first Pareto
solution is obtained by solving (P2) setting C = C∗ (see step 6). Let T ∗ be optimum
response time obtained. Indeed, no other atomic design alternative combination can lead
to a better response time with a lower cost, hence x∗ computed at step 6 is a Pareto global
optimum solution. The process is then iterated by solving (P1) again and setting as constraint
T = T ∗ − ε, where ε > 0 is any sufficiently small constant. IC + x∗ at step 7 denotes the



solution obtained by applying to the initial candidate IC the set of atomic design alternatives
x∗.

input : T
upper

, T
lower

output: Paretos
1 T ← T

upper
;

2 Paretos← ∅;
3 while T lower ≤ T do
4 Solve (P1). Let be x∗ the optimum solution found and C∗ its cost ;
5 C ← C∗;
6 Solve (P2). Let be x∗ the optimum solution found and T ∗ the application

execution time ;
7 Paretos← Paretos

⋃
{IC + x∗};

8 T ← T ∗ − ε
9 end

10 return Paretos;
Algorithm 1: Analytical Pareto-optimality Algorithm

For the availability analysis the analytical problem formulation can be derived similarly.
The main difference is that the delta values have to be derived for independent application
execution paths (i.e., each path from the source to the sink) and the optimization has to be
iterated for each execution path. The set of initial candidates provided to the evolutionary
optimization is obtained as union of the analytical solutions of individual execution paths.
It can be shown that (P1) and (P2) are NP-hard, since they are equivalent to a knapsack
problem. The solution complexity grows exponentially with the number of binary variables.
However, current solvers are very efficient and (P1) and (P2) solutions can be computed
very quickly for realistic design problems of reasonable size.

3.4 Evolutionary Optimisation
If all degrees of freedoms presented in Section 3.2 have to be considered, then the analytical
optimization model becomes a mixed integer non-linear problem and we cannot rely on
efficient solvers as for the linear case to determine software architectures quality trade-offs.
For this type of problems, metaheuristic optimisation techniques have been successfully
applied in software engineering [19]. In this work, we use evolutionary optimisation (see,
e.g. [6, p. 284]), as it has been considered useful for multi-objective problems [12]. Other
metaheuristics could be used as well. More details on this choice can be found in [27].

Fig. 4 shows the main steps of our evolutionary search. The method is described here
exemplary for our current realisation in the PEROPTeryx tool [36] with the NSGA-II evo-
lutionary algorithm [14] as implemented in the Opt4J framework [26] with an extended
reproduction step.

The process starts with an input population derived from the analytical optimisation step.
Individuals are then modified along system-specific degrees of freedom (see Section 3.1).
As the software model contains all required annotations, all steps of the search can be com-
pletely automated. The population size n and the number of iterations i can be configured.
If the input population size |Paretos| is less than n, additional n − |Paretos| random
candidates are generated. The evolutionary search then iterates the following steps:
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a© Reproduction: Based on the currently available candidates in the population, new can-
didate solutions are derived by “mutation” or “cross-over” or they are randomly created.
With mutation, one or several design options are varied. With cross-over, two good can-
didate solutions are merged into one, by taking some of each candidates design option
values for the cross-over. In addition to the original NSGA-II, in order to diversify the
search, duplicate candidates are removed from the population and are replaced by can-
didates randomly generated based on the available design options.

b© Evaluation: Each yet unevaluated candidate is evaluated for each quality attribute of
interest. In our case, performance, availability and/or costs metrics are predicted as
described in Section 2. As a result, each candidate is annotated with the determined
quality properties (i.e. mean response time, availability, and/or cost).

c© Selection: After the reproduction phase, the population has grown. In the selection
phase, the population is again reduced by just keeping the n most promising candidates
based on the NSGA-II selection strategy. After i iterations, the search ends here and
returns the Pareto-optimal candidates found so far.

More details on the evolutionary optimisation (such as the genetic encoding) can be found
in [27]. Over several iterations, the combination of reproduction and selection lets the popu-
lation converge towards the real front of globally Pareto-optimal solutions. The result of the
optimisation is a set of Pareto-optimal candidates with respect to all candidates evaluated
before. If the search also keeps a good diversity of candidates, the result set can be near to
the global optima. However, in general, evolutionary optimisation cannot guarantee globally
Pareto-optimal solutions [27].

4 Experimental Results
This section reports the results of the quality optimisations performed for the BRS system
to demonstrate the applicability and usefulness of our approach and is organised as follows.
Section 4.1 describes the degrees of freedom adopted. Sections 4.2 and 4.3 summarize the
analytical optimisation and evolutionary optimisation. Finally, Section 4.4 presents and dis-
cusses the results of the hybrid approach.

Notice that we do not compare our prediction results from the models with actual mea-
surements from the system implementation. For our validation, we assume that the under-
lying modelling and prediction methods are sound and deliver accurate prediction results as
discussed in other papers [5, 8].



4.1 Search Problem Formulation
We defined two separate search problems: (1) optimise performance and cost, (2) optimise
availability and cost. The following degrees of freedom are considered:

Component allocation: For the evolutionary optimisation of (1), all components can be
freely allocated to up to five servers. For the analytic optimisation of (1) the problem can be
defined considering only one allocation degree of freedom: The Cache component can be
allocated to server S3 or S4. For (2), we do not consider component allocation as a degree
of freedom. With free component allocation, the optimal solution would be to deploy all
components on one server, so that only this server’s availability affects the system. However,
the inevitable performance degradation would not be taken into account.

Component selection: The Webserver can be realised using third party components.
The software architect can choose among three functional equivalent implementations: Web-
server2 with cost 4 and Webserver3 with cost 6. Both have less resource demand
than the initial Webserver. Webserver2 has better availability for the requests of type
“view”, while Webserver3 has better availability for the requests of type “report”.

Server configuration: Four different server configurationsC1 toC4 with varying proces-
sor speed (PR in GHz), hardware availability (probability HA), and cost HCost available.

The exact values considered in the case study can be found at [36]. A performance
and availability optimisation has been omitted for space reasons, but works analogously.
In principle, it is also possible to optimise all three quality criteria at once to determine a
three-dimensional Pareto candidate set.

4.2 Analytic Optimisation
The degrees of freedom are mapped into an optimization problem including 24 binary vari-
ables: x1-x3, x4-x6, x7-x9, and x10-x12 specify physical servers up/downgrades. x13 and
x14 are introduced to model the two WebServer component alternative implementations.
x15 is associated with the allocation of the Cache component to S4. x16-x18 model S1

down/upgrades joint with the WebServer2 implementation. Similarly x19-x21 model S1

down/upgrades joint with the WebServer3 implementation. Finally x22-x24 model the
Cache component allocation on S4 with the joint down/upgrades of servers S3 and S4.
Four exclusive sets have to be introduced which are defined as follows:

– es1: prevents conflicting design alternatives for server S1 down/upgrades and the dif-
ferent implementation of the WebServer component (i.e., includes variables x1-x3,
x13-x14, and x16-x21).

– es2: avoids conflicting design alternatives associated with server S2 down/upgrades
(i.e., includes variables x4-x6).

– es3: enumerates conflicting design alternatives for server S3 down/upgrades and the
different allocations of the Cache component (i.e., includes x7-x9, x15, and x22-x24).

– es4: prevents conflicting design alternatives associated with server S4 down/upgrades
and the different allocations of the Cache component (i.e., includes variables x10-x12,
x15, and x22-x24).

The analytical optimization step is performed by running CPLEX [20], a state of the art
integer linear programming solver based on the branch and cut technique [32]. At each
iteration of Algorithm 1, the solver identifies the global optimum solution of problems (P1)
and (P2). The initial Pareto front can be determined very efficiently in 0.14 sec for the
performance vs. cost analysis and 0.54 sec for the availability vs. cost analysis on a single
core of an Intel Nehalem @2.6 GHz.



4.3 Evolutionary Optimisation
For performance prediction, we use the SimuCom simulation [5]. A stop criterion based
on the confidence of the mean response time T was used in all but one evaluation. The
simulation of candidate stopped when the 90% confidence interval Conf , determined with
the batching algorithm of [9], was within +/-10% of the mean value: Conf ⊂ [0.9T, 1.1T ].
Before calculating the confidence interval, the samples had to pass an independence test
(“run test algorithm” [24]). For availability and cost prediction, we use the PCM Markov
solver [8] and the PCM costs solver, respectively.

For the evolutionary optimisation, our prototype PEROPTeryx tool follows the process
described in Section 3.4. The number or candidates per iteration was set 25% higher than
of optimal candidates found by the previous, analytical step to leave room for more optimal
solutions. Table 1 shows the statistics of the optimisation runs (cand. = candidate(s), it. =
iteration) which have been performed single threaded on on a single core of an Intel Core
2 T7200 CPU @ 2GHz. The stop criterion of the search was a manually chosen maximum
number of iterations. The results had to be inspected to determine whether the search had
converged up to then.

input cand. cand. optimal iter- dura- mean d
Search problem cand. per it. total cand. ations ation d per cand.
Performance and Cost 19 25 151 16 10 46 min 18.3 sec
Availability and Cost 12 15 130 10 15 5 min 2.3 sec
Table 1. Statistics of the Evolutionary Optimisation with Analytic Input

4.4 Results
The results of the performance and cost optimisation for the BRS system are presented to
the software architect as shown in Fig. 5. Based on this set of Pareto-optimal candidates,
software architects can make well-informed trade-off decisions and choose one candidate
based on their quality requirements. One resulting solution with a good trade-off is shown in
Fig. 6. It is superior to the initial candidate both in average response time (T = 4.9sec) and
cost (C = 22). Thus, the hybrid optimisation could successfully improve the BRS system’s
architecture.

More detailed results for the optimisation of performance and cost are shown in Fig. 7.
The series � marks the 19 candidates of the analytic optimisation as evaluated with the
analytic approach. The series � marks the same 19 candidates as evaluated with SimuCom
(thus, every candidate has the same cost, but updated mean response time). We observe that
all analytic result values deviate from the simulation results by 40% on average (25% to 97%
percent) but are always conservative. The deviation is larger for lower costs. Still, the form
of the Pareto-curve is preserved and can serve as a valuable input for the evolutionary search.
The series 4 marks the 9 new optimal candidates found by the evolutionary optimisation.
They dominate 12 of the analytic candidates. The 143 further candidates evaluated by the
evolutionary optimisation are not shown.

Hence, the hybrid approach is superior to the analytic optimisation alone, because the
Pareto-front can be refined and additional Pareto solutions can be found. To assess the ben-
efit of the hybrid approach to an evolutionary optimisation, we compared the results to a
evolutionary optimisation with the same number of iterations from random candidates. The



0

2

4

6

8

10

12

17 19 21 23 25 27 29 31 33 35 37

M
e

an
 R

e
sp

o
n

se
 T

im
e

 T
 in

 s
e

c 
   

Cost C

analytic results evolutionary results initial candidate

example candidate: 
C = 22, T = 4.9 sec

Fig. 5. Performance and cost optimisation: Results and comparison to initial candidate

S4S1 S2

S3

Reporting 

Engine

Cache

Scheduler DatabaseWebserver3

Cost 6 Cost 3 Cost 3

Cost 3

Cost 3

HCost 1

PR 2.4

HCost 1

PR 2.4

HCost 1

PR 2.4

HCost 1

PR 2.4

Fig. 6. Performance and cost optimisation: Example PCM Model for one Pareto-optimal
candidate. Circles mark the changes compared to the initial candidate.

hybrid approach finds a superior Pareto-front (see Fig. 8), because 1) more optimal candi-
dates are found and 2) all Pareto-optimal candidates found by the evolutionary optimisation
from random candidates are dominated by the results of our hybrid approach. Thus, the
evolutionary optimisation from random candidates would require more iterations to find a
Pareto-front of similar quality, which is more time-consuming.

The results for the optimisation of availability and cost are shown in Fig. 9. The series
� marks the 12 optimal solutions found by the analytical optimisation (some overlap each
other), as evaluated with the PCM Markov solver. The series × marks the additional 118
candidates evaluated by the evolutionary optimisation. Three new optimal candidates have
been found. All analytical optimal solutions stay undominated. Again, the hybrid results
is superior to the analytic results alone. The results of a comparison with an evolutionary
optimisation from random candidates can be found at [36]. The evolutionary optimisation
from random candidates only finds an inferior Pareto-front in the same number of iterations.

5 Related Work
Our approach is based on software performance prediction [31, 3, 25], architecture-based
software availability analysis [17], and search-based software engineering [19]. We cate-
gorize closely related approaches into: (i) Scenario based SA analysis, (ii) rule-based ap-
proaches, and (iii) metaheuristic-based approaches.
Scenario based SA analysis approaches: The definition of a SA model can embody not
only the software qualities of the resulting system, but also the trade-offs decisions taken
by designers [4, 11, 35]. The efforts to explore such trade-offs have produced the so-called
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scenario-based architecture analysis methods, such as SAAM and ATAM [22, 23] and others
reviewed in [15]. These methods analyze the SA with respect to multiple quality attributes
exploring also trade-offs concerning software qualities in the design. The outputs of such
analysis include potential risks of the architecture and the verification result of the satis-
faction of quality requirements. These methods provide qualitative results and are mainly
based on the experience and the skill of designers and on the collaboration with different
stakeholders. With respect to these works, our goal is to provide the software architect with
a tool able to analyze the multiple objective problem in a quantitative way by allowing the
automatic generation of several design architectures.
Rule-based approaches: Xu et al. [34] present a semi-automated approach to find config-
uration and design improvement on the model level. Based on a LQN model, performance
problems (e.g., bottlenecks, long paths) are identified in a first step. Then, rules containing
performance knowledge are applied to the detected problems.

McGregor et al. [28] have developed the ArchE framework. ArchE assists the software
architect during the design to create architectures that meet quality requirements. It helps to
create architectural models, collects requirements (in form of scenarios), collects the infor-
mation needed to analyse the quality criteria for the requirements, provides the evaluation
tools for modifiability or performance analysis, and suggests improvements.

Cortellessa et al. [13] propose an approach for automated feedback generation for soft-
ware performance analysis, which aims at systematically evaluating performance prediction
results using step-wise refinement and the detection of performance problem patterns. How-
ever, at this point, the approach is not automated.

Parsons et al. [30] present a framework for detecting performance anti-patterns in Java
EE architectures. The method requires an implementation of a component-based system,
which can be monitored for performance properties. Then, it searches for EJB-specific per-
formance antipatterns in this model.

Kavimandan et al.[21] present an approach to optimise component allocation in the
context of distributed real-time embedded component-based systems. They use heuristic
rules to deploy components together that have a compatible configuration. In total, only
allocation is considered as a degree of freedom, but the authors also mention that their
approach could be combined with other approaches.

All rule-based approaches share a common limitation. The model can only be changed
as defined by the improvement rules. However, especially performance is a complex and
cross-cutting quality criterion. Thus, optimal solutions could lie on search paths not acces-
sible by rules.
Metaheuristic-based approaches: Grunske [18] studies the improvement of two quality
criteria, namely availability and costs, to allow well-informed trade-off decisions. Evolu-
tionary computing is applied to search for good design solutions. However, only redundancy
of components is studied as a degree of freedom to improve availability.

Menascé et al. [29] have developed the SASSY framework for generating service-oriented
architectures based on quality requirements. Based on an initial model of the required ser-
vice types and their communication, SASSY generates an optimal architecture by select-
ing the best services and potentially adding patterns such as replication or load balancing.
As the allocation of components is irrelevant in SASSY’s service architecture, the quality
evaluations are simpler and allocation degrees of freedom cannot be considered. Thus, the
approach is not suitable for component-based architectures in general.



6 Conclusions
In this paper, a hybrid approach for multi-attribute QoS optimisation of component based
software systems has been proposed. The approach is promising. Both for performance vs.
cost and availability vs. cost analyses, the hybrid approach is able to exploit the approxi-
mated analytical Pareto front providing a larger number of solutions with a more accurate
estimate of performance and availability metrics. At the same time, the hybrid approach
is less time-consuming than a evolutionary optimisation starting from random candidates.
Hence, the integration of the analytical and evolutionary approaches is effective.

The proposed approach can lead both to a reduction of development costs and to an
improvement of the quality of the final system, because an automated and efficient search
is able to identify more and better design alternatives, and allows the software architect to
make optimal trade-off decisions.

Future work will extend the analytical problem formulation in order to consider applica-
tions with parallel components execution and/or which can be modelled by means of closed
queueing networks. Furthermore, the evolutionary search will be implemented as a parallel
algorithm and an automated stop criterion will be developed. Ongoing work focuses on the
integration of the analytic technique in the PCM software suite and on the QoS analyses of
real industrial case studies.
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