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ABSTRACT
This paper proposes a novel technique combining data-

driven and model-based techniques to significantly improve the
performance in bearing fault diagnostics. Features that provide
best classification performance for the given data are selected
from a combined set of data driven and model based features.
Some of the common data driven techniques from time, fre-
quency and time-frequency domain are considered. For model
based feature extraction, recently developed cross-sample en-
tropy is used. The ranking and performance of each of these
feature sets are studied, when used independently and when used
together. Mutual information based technique is used for ranking
and selection of the optimal feature set. Using this method, the
contribution to performance and redundancy of each of the data
driven features and model based features can be studied. This
method can be used to design an effective diagnostic system for
bearing fault detection.

INTRODUCTION
Rotating systems are amongst the most common machinery

in the industry and rolling element bearings are the key com-
ponents in many high speed rotating systems. Rolling element
bearings are the load carrying members of a rotating system and
are also one of the prominent sources of nonlinearity. In this

∗Address all correspondence to this author.

current competitive atmosphere it is necessary to maintain the
machines in the proper conditions using condition based diag-
nostics methods. With the present focus in diagnostics shifting
to use model and data to develop better diagnostics. Bearing fault
detection is usually formulated as a classification problem. The
performance of the classification depends on a variety of factors
including the quality of the data, the type of classifier, the feature
extraction techniques etc. In this research we try to improve the
performance of bearing fault detection by improving the quality
of features that are input to the classifier by providing informa-
tion extracted using models.

Feature extraction for bearing fault detection using many
signal processing techniques has been studied extensively and
numerous methods have been developed. Most of the feature
extraction techniques for bearing fault detection are data driven,
which are obtained by applying signal processing algorithms in
time [1], frequency [2] and time-frequency [3–5] domains. An-
other type of feature extraction techniques that make use of a
model are called model based feature extraction techniques [6,7].
In this research we use a measure of entropy to extract model
based features.

An important issue is the use of data driven techniques ver-
sus model based techniques. Data driven techniques are useful in
incorporating the machine specific information. However, they
fail to incorporate the existing knowledge of the system avail-
able from its governing laws and are limited by the available data.
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Model based techniques on the other hand not only parameterize
the system but can also be used to parameterize the defects so
that they can perform well over a range of operating conditions
but are limited by the accuracy of the model. If a right combi-
nation of model based techniques and data driven techniques are
used, the performance might improve.

In order to address these issues, careful feature selection
needs to be performed to develop a good bearing fault detection
algorithm. Further, the ability to rank features based on their per-
formance will also provide useful insights into the system, model
and the techniques. Although there are many studies on feature
selection in general, there are only a few that analyze data driven
features and model based features for identifying bearing defects
quantitatively.

In this study, feature ranking and selection is used as a means
to efficiently combine the information from both data and mod-
els optimally. A mutual information based method for feature
ranking followed by a classifier for feature selection is proposed
to generate a set of features obtained using some of the popular
data driven feature extraction techniques and a model based tech-
nique to identify defects in bearings. Given some sample data,
this feature set has the highest information content as well as the
right set of features for maximum accuracy.

The aim of this study is to understand quantitatively, the in-
teraction of the various features and their effect on classification
performance. Further, we illustrate a methodology that can be
sufficiently generalized with less human expertise and can also
be used to evaluate the performance of newer model based and
data driven feature extraction techniques for bearing fault detec-
tion. Although there are many studies on feature selection there
are only a few that analyze bearing defects quantitatively.

In [8], the authors use decision trees to select features that
provide good performance using a proximal support vector ma-
chine. The authors considered time domain features like skew-
ness, kurtosis etc for bearing fault detection. In [9], Principal
Component Analysis (PCA) was used to develop a set of features
that improved the performance of both supervised and unsuper-
vised learning machines. In this study the features were gener-
ated using time domain features like skewness, kurtosis etc.; fre-
quency domain techniques like amplitude fault frequencies; and
time-frequency domain techniques like wavelet transforms. In
both these studies the outputs of the algorithms were feature sets
that provide the best performance for the given data set but there
was no ordering and comparison of the features. Some other
general computational intelligence based algorithms that can be
used for feature selection are [10,11] and are not the focus of this
paper.

The information theoretic approach [12] that is used in this
research to determine the optimal set of features quantifies the
quality of features as the mutual information content between
features and the state of the bearing (faulty or healthy). Mu-
tual information is a statistical measure that correlates different

random variables [13]. It can be calculated from the probability
distribution between the random variables [14]. Mutual infor-
mation can be used to compare the features with each other and
rank them accordingly. Mutual information based feature selec-
tion has been used in computer security, face recognition and
biomedicine [15, 16]. We are not aware of any prior study that
uses mutual information to select and compare features for bear-
ing fault diagnostics.

The advantage of using this information theoretic approach
is that it is independent of the classifier used. Also, among the
features, some of these might have similar information among
themselves. Hence, using such features together increases the
redundancy, uncertainty and degrades the performance. Infor-
mation theoretic approach addresses this important issue of in-
teraction of features with each other for classification purposes
and provides a set that performs better cumulatively. It also pro-
vides an ordered set of features that can be used to rank features
and increase the efficiency of classification.

Thus, using modeling and mutual information, this paper ad-
dresses three important issues. First, it illustrates a model based
feature extraction technique; second it integrates these model
based features with some of the commonly used data driven fea-
tures to obtain an optimal feature set for bearing fault classifi-
cation; and third it provides guidelines about the effectiveness
of model based features and data driven features over a range of
operating conditions.

The model based features used in the paper are derived
from a bearing defect model using cross-sample entropy. Cross-
sample entropy is an extension of Approximate entropy [17]
which is an estimate of kolmogorov entropy. These techniques
are complexity measures that capture the information creation
in a time series [18]. Cross-sample entropy captures the match
between parts of two signals; greater the similarity in the two
signals, lower the cross-sample entropy. Morphology, approx-
imate entropy based techniques are being used increasingly in
bio-medical signals and for fault detection purposes in machines.

In the medical field these techniques have been efficiently
used to analyze electroencephalogram (EEG) and cardiotoco-
graphic (CTG) signals [19–21]. In the analysis of machines these
measures have been used to diagnose gearboxes [22] and rolling
bearing defects [23–25]. [26] used similar methods to extract en-
velopes for impulsive-type periodic systems. [27] performed de-
tailed study on approximate entropy for detecting degradation in
signals and demonstrated it to detect severity of defects in rolling
element bearings.

The measures used in the studies mentioned are data driven
and are highly dependent on the operating conditions, because
of which it is difficult to generalize these techniques. Cross-
sample entropy overcomes this problem as it is evaluated rela-
tive to a model. The changes in operating conditions can easily
be accommodated by updating the model. Another advantage of
cross-sample entropy over approximate entropy is that it has a
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lesser bias and is more consistent. Detailed information canbe
found in [28].

The data driven features used in this paper are from time
(skewness, kurtosis) [1], frequency (FFT, envelope spectrum)
[2, 5, 29] and time-frequency (discrete wavelet transform) [3–5]
domains. Please note that the data driven features considered
here are not exhaustive. We have chosen these because these are
the most basic techniques that are fundamentally different from
each other. There are clearly other techniques which are vari-
ations and hybrids of these techniques. There are many other
novel signal processing techniques based on nonlinear signal
processing techniques [26,30], demodulation [31–34], empirical
mode decomposition [35–37]. These are not a part of this study;
however, the proposed methodology could certainly be used to
analyze and compare these techniques.

The feature selection methodology is explained in the next
section. The experimental setup and the data used in this study
are discussed in the third section. The various feature extraction
techniques used in this paper are explained in the fourth section
followed by a section on discussion on the results of feature se-
lection using mutual information.

METHODOLOGY
The flowchart of the process is provided in the Fig. 1. The

first step is data collection; vibration data is collected from a sys-
tem with a faulty bearing and a defect-free bearing over a span of
rotating speeds, load and used for training, validation and testing
of the algorithm. The faulty bearing has either a localized small
or large outer race defect. From the data, various data driven
and model based features are extracted. The operating condition
parameters of the model namely speed and load are estimated
based on the collected data and the corresponding models are
used to extract the model based features. Next, a greedy search
algorithm is used to rank the features based on the mutual infor-
mation. Greedy search algorithm is a popular sequential search
technique used in statistical research [13].

Now, the validation set is used to extract an optimal feature
subset for classification using Artificial Neural Network (ANN)
as the classifier. The feature subset selection is performed incre-
mentally using the ordered feature set obtained in the previous
stage. The subset with the best ANN classification performance
is the optimal solution. This optimal feature subset is then used
to test the performance using the test set data. Mutual infor-
mation based ranking and feature selection are explained in the
following sub-sections.

Feature Ranking
As explained earlier the feature ranking is based on mutual

information. Estimation of mutual informationI(x;c) between a
set of features(x) and the classc from a given set of data is ex-
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FIGURE 1. Algorithm for feature selection

plained in Appendix A. The feature selection process using mu-
tual information is an optimization problem which seeks to find a
setSwhich is a subset of setX containing all the features, which
maximizes the information contentI(s;c) between the data and
the health state of the bearing. If the size ofSis equal to size ofX
then the solution to the optimization problem will be an ordered
set of features.

The optimization problem can be solved using the greedy
search technique. In the first step of this technique, setS is ini-
tialized to an empty set and a feature pool set defined asF is
initialized to X. Next, S is populated iteratively with a feature
from the feature pool such that it maximizesI(x;c) at each stage.
The selected feature is then removed from the feature pool. This
process is continued until the feature pool is empty.

The algorithm for ranking can be summarized as follows.

1. From the data, findp(ck) andH(ck), k= 1, 2, 3, ..., NC.
2. SetS= {}, F = X.
3. While F is not an empty set, DO

(a) Seti = 1, Start Loop 1
(b) Append theith element ofF to S, i.e. Si = {S, Fi}.
(c) Set j = 1, Start Loop 2
(d) Using Eqn. 8 findI(x j ,c).
(e) Using Eqn. 6 findI(xi ,x j).
(f) If reached the end ofSi End Loop 2, else increment

j → j +1 and go to Step d.
(g) Estimate mutual information of setSi , I(Si ,c) using

Eqn. 9.
(h) If reached the end of F End Loop 1, else increment
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i → i +1 and go to Step b.
(i) Find the elementx∗i corresponding to Maximum

I(Si ,c).
(j) Appendx∗i to Sand remove it fromF .

4. END WHILE
5. The final setS is the ordered feature set.

Feature Selection
The aim of this stage is to extract an optimal subsetSopt from

the ordered feature setSobtained in the previous stage. The cri-
terion for optimization is to achieve the least classification error
using as few features as possible. The validation data is used to
train an ANN and the classification accuracy is the measure of
the classification. The algorithm for this is as follows.

1. Initialize i = 1 andSi=S(1).
2. Start Loop
3. Train an ANN usingSi and evaluate classification accuracy

ai .
4. If Si = SStop Loop and proceed to step 6, else continue.
5. Incrementi → i +1 andSi → {Si , S(i +1)} and proceed to

step 3.
6. Fromai find i∗ corresponding to acceptable accuracy and

optimal set size.
7. ObtainSopt asSi∗ .

EXPERIMENTAL SETUP
All the experimental data was collected on a ‘Machine Fault

Simulator (MFS)’ [38]. It is a test rig (Fig. 4) with a rotating
shaft on two ball bearings. The shaft and the motor are con-
nected using a flexible coupling to minimize misalignment ef-
fects. The shaft is loaded using a bearing loader and balancing
disks. The different parts of the system can be conveniently as-
sembled and disassembled. The bearings are placed in the bear-
ing casing and can easily be replaced. The bearing parameters
for the system used are given in Table 1. The system was loaded
with a 5 kg mass. The signals from the MFS were collected using
accelerometers placed on the bearing casing; once with a defect-
free bearing, later with a bearing with a small outer race defect
and finally with a bearing with a large outer race defect. Figures
2 and 3 show the bearings with outer race defects. It can be seen
that the width of the defect in the first bearing is smaller than the
width of the defect in the larger bearing. The defect width in the
first case is 30 mil and in the second case is 90 mil.

Data was captured at different operating conditions, namely
rotating speed and load. The load was varied by changing the
unbalance in the system. Rotating speed can be easily measured
and unbalance was estimated using least squares technique. The
rotating speed was 1200, 1800 and 2400 r.p.m. Unbalance was
varied using balancing disks. Three different sets of unbalance

FIGURE 2. Bearing with a small outer race defect

FIGURE 3. Bearing with a large outer race defect
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FIGURE 4. Experimental Setup

were induced. In the first case no external unbalance was used,
next an unbalance was induced by placing a 5.5 gm screw at a
distance of 9 cm. In the third case an external unbalance was
induced by placing a 7 gm screw at a distance of 11 cm. Thus,
there are nine different sets of operating conditions and at each
set hundred independent samples of data were collected at a sam-
pling rate of 32768 Hz. For convenience, data from the system
without a defect is labeled ’DF ’, data from a system with smaller
outer race defect is labeled ‘ORDs’ and data from a system with
larger outer race defect is labeled ‘ORDl’. The corresponding
models are labeledDFm, ORDsm, andORDlm respectively. 50%
of samples at each operating condition were used for training,
25% for validation and 25% for testing. Care is taken that data
in each set is distributed evenly over the entire operating range.
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Parameter Value

Number of Rolling Elements (Nb) 8

Pitch Diameter (Dm) 1.319 in

Rolling Element Diameter (Db) .3125 in

Ball Pass Frequency (ωbp f0) 3.052Ω

Contact Angle 0

TABLE 1. Bearing parameters

FEATURE EXTRACTION
In this section we provide a brief description of the feature

extraction techniques we have used for rolling element bearing
diagnostics. The list of methods discussed here are not exhaus-
tive, but are representative of some of the basic techniques.

Data Driven Techniques
Among the first feature extraction techniques for rolling el-

ement bearing fault detection were the time domain techniques.
Rolling element bearings with faults showed higher peak to peak
vibration compared to a healthy bearing [1,2]. The time domain
features considered in this study are skewness and kurtosis.

Frequency domain methods are among the most used fea-
ture extraction techniques for bearing fault detection. When the
rolling element enters a defect, an impulse acts on the casing.
These impacts excite the structural resonances. The impulse is
exerted at a frequency with which the rolling elements enter the
defect. This frequency can be calculated from the geometry of
the bearing and rotating speed [39], [40], [41]. Frequency do-
main techniques use these excitations to detect the defects in the
bearing. The frequency component associated with a race defect
is called the corresponding race ball pass frequency. The rotation
of the cage also produces some frequency components. The other
frequency components present in a typical bearing signal are the
1X response usually due to rotating unbalance, its harmonics and
sub-harmonics. The presence of harmonics and sub-harmonics
indicates nonlinear behavior in general. Note that a system with
healthy bearing is also nonlinear in nature.

Fast Fourier Transform is the most common method to ex-
tract the frequency components in a signal. The spectrum usually
contains a peak at the defect frequency. However, this is not al-
ways clearly observable because of slip and masking by other
stronger vibrations.

In order to overcome this problem envelope spectrum is
used. The impulse’s excitations are amplitude modulated and
can be recognized as side bands in frequency spectrum and can
be seen as peaks in the Envelope Spectrum [29]. To find the enve-
lope spectrum, the signal is band pass filtered around a frequency

that the maximum signal to noise ratio, then Hilbert transform is
used to find the envelope spectrum. There are many techniques
to find the central frequency and range for the band pass fil-
ter [42–44]. Because of the simplicity and ease of use we use
spectral kurtosis to select this band [45].

Discrete wavelet transforms (DWT) is a method for obtain-
ing the time-frequency information of the signal. These methods
are useful to extract the transients in the signal and are hence pop-
ular for defect detection. More information about the wavelet
transforms can be found in [46]. Some of the recent work on
bearing diagnostics using DWT are [3,4,47–51].

The relationship between these features and the magnitude
of the defect is not straight forward as these features depend non-
linearly on other factors like speed, selection of the frequency
band, load etc. The effectiveness of these features in identifying
the severity of the defect for the current data can only be deter-
mined after feature ranking and selection.

The reconstructed DWT detail signal from a defect-free
bearing and bearings with small and large outer race defects are
shown in Figs. 5, 6 and 7 respectively. For brevity, signals only
between level 1 and level 4 are shown. The defect-free bearing
has the least energy content at all the three levels and the small
outer race defect bearing signal has slightly more energy. The
signal from a bearing with a large outer race defect has higher
energy. In general the signals from bearings with defects are
peaky and have more energy content. For the purpose of bearing
fault detection, the level whose energy is most correlated with
the severity of defect needs to be selected. This task is usually
performed iteratively by verifying the different DWT signals in
the expected frequency range. As will be seen in the next section,
the feature ranking and selection algorithm used in this paper is
a useful tool to choose the most useful signals.

The data driven features that are considered in the paper us-
ing the techniques explained above are listed in Table 3. Please
note that the data driven methods discussed here are not exhaus-
tive, but are representative of some of the basic techniques.

It should be noted that among the methods considered here,
some of the methods perform well under certain conditions while
others perform better at other conditions. For example, FFT fea-
tures would perform well when the effect of slip is minimal and
the defect signals are not masked by other signals, envelope spec-
trum on the other hand performs well when the band with highest
signal to noise level can be efficiently selected. It is often a dif-
ficult task to pick the right set of features; much depends on the
system and conditions such as speed, support properties, material
properties etc., and other operating characteristics of the bearing.

Model Based Features
To extract the model based features the rotor-bearing system

is modeled as a rigid rotor on nonlinear bearings. A rigid rotor
model is well accepted in rotor dynamics literature, it is reason-
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FIGURE 5. DWT (detail) of a defect-free bearing signal
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FIGURE 6. DWT (detail) of a bearing signal with a small outer race
defect

ably valid for up to the first two critical speeds. The bearings are
modeled using Hertzian contact forces and the outer race defects
as pits. The bearing stiffness is implicit in the bearing force. The
rotor-bearing system schematic is shown in Fig. 8.

The rotor-bearing system has four degrees of freedomq =
[V W BΓ]T . V, W are the displacement degrees of freedom in
y andz directions respectively andB, Γ are the corresponding
angular degrees of freedom. The forces acting on the rigid rotor
with mass m, inertiaID and polar moment of inertiaIp are the
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FIGURE 7. DWT (detail) of a bearing signal with a large outer race
defect
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FIGURE 8. The rotor-bearing system

bearing forces (Qb)and the unbalance forces (Qu). Using the La-
grangian equation, the equation of motion for the rotor-bearing
system is given by Eqn. (1).

Mq̈+(C−ΩG)q̇= Qb+Qu. (1)

where M and G are the mass and gyroscopic matrices,Ω is the
rotating speed of the shaft. The unbalance forceQu is depen-
dent on the unbalance parameter ‘e’. The bearing forceQb is
a function of shaft displacement, bearing geometry, rolling el-
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FIGURE 9. Measured bearing vibration signals. (a) Defect free. (b)
Small defect. (c) Large defect

ement positions and the magnitude and position of the defect.
The defects are modeled as pits in the races with some depth and
width. The effect of the defect on the bearing is simulated by
assuming that the rolling element rotates about the edge of the
defect before hitting a point in the defect and then gets out of
the defect rotating about the other edge. Because of this change
in the rolling element motion, the effective deflection and hence
the restoring force on the rotor changes. We do not discuss the
derivation of model in this paper, the details of this model can
be found in [52]. A sample of the data captured from the exper-
imental setup is shown in Fig. 9. In this figure the first subplot
is the vibration signal of defect free system, the second subplot
is the signal from a system with the smaller outer race defect
and the third subplot is the signal from a system with the larger
outer race defect. As is evident from these figures, bearings with
outer race defects have impulses which are excited by the rolling
element entering the defect. Figure 10 shows the bearing signal
near these pulses for each of the defective bearings. The duration,
magnitude and shape of these pulses is dependent on imbalance
and defect magnitude. These changes in the characteristics of
the shape of the signal are used to extract features to identify the
severity of defect.

Consider the simulations generated from the models devel-
oped above shown in Fig. 11. Figure 12 shows the simulations
for one rotation. It can be seen that the simulations and the mea-
surements have a similar pattern which consists of a base signal
modulated with impulses whose shape and duration is dependent
on imbalance, magnitude of defect etc. The change in the shape
is subtle and cannot be identified by observation. Feature extrac-
tion techniques are used to capture the differences not directly
visible to naked eye. For convenience, simulations of a defect
free model, small outer race defect and large outer race defect
are labeledDFm, Sm andLm respectively.
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FIGURE 10. Measured bearing vibration signals for one rotation. (a)
Defect free. (b) Small defect. (c) Large defect
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FIGURE 11. Simulated bearing vibration signals. (a) Defect free. (b)
Small defect. (c) Large defect

Now, cross-sample entropy is used to extract features that
can be used to identify defects using information from both
model and data. Cross-sample entropy is an indicator of non-
linearity in a signal which measures the match between various
parts of signals; greater the similarity in two signals lower the
cross-sample entropy between them. Further, cross-sample en-
tropy calculations need two parameters to be chosen. These are
template lengthm and tolerancer. In this paper cross-sample
entropy is calculated atm= 1, 2 andr = 0.05, 0.1.

Thus for a given signalS, using cross-sample entropy be-
tween the signal and the simulations from the three models (De-
fect free, small defect and large defect), features that compare
the closeness of the data to one of the three expected models are
extracted. Also, since these features are extracted at various tem-
plate lengths and tolerance levels that are twelve model based
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FIGURE 12. Simulated bearing vibration signals. (a) Defect free. (b)
Small defect. (c) Large defect

Features

CrsEn(S, DFm, m, r); m= 1, 2; r = 0.05, 0.1

CrsEn(S, ORDsm, m, r); m= 1, 2; r = 0.05, 0.1

CrsEn(S, ORDlm, m, r); m= 1, 2; r = 0.05, 0.1

TABLE 2. Model based features

features for a given signal; these are listed in Table 2.

FEATURE RANKING, SELECTION AND DISCUSSION
In order to understand the effect of model based features

and data driven features, feature ranking and selection is per-
formed using the algorithm presented in Section 2, with both
model based and data driven features together (all the features
listed in Tables 3 and 2). The performance of the algorithm is
discussed to provide insights into the performance of the features
under the given conditions.

The data from all the different unbalance experiments col-
lected at 1200, 1800 and 2000 r.p.m are used to extract the var-
ious features described in the previous section. In this study we
are interested in the overall performance of algorithm under all
operating conditions, hence feature ranking and selection are per-
formed to obtain best performance with all the data taken to-
gether. When the features are input to the feature ranking algo-
rithm, the ordered feature set is shown in Table 4. The top three
features are data driven features and the next three features are
model based features. It is interesting to note that for a signal,
cross-sample entropy with all the three models are grouped to-
gether, indicating the presence of essential non-redundant infor-
mation. The other model based features are redundant or inferior
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FIGURE 13. Classification Performance

and are present only towards the end of ordered feature set. Also
note that the FFT magnitude at rotating speed occurs lower in the
order. This could be because the cross-sample entropy based fea-
tures have implicit information about the speed and unbalance.

To understand the value of the model based features and the
significance of the ordering, we now analyze the classification
performance and perform feature selection using the algorithm
explained in Section 2. Consider the classification performance
plot for each of the ordered feature sets as shown in Fig. 13. In
this plot the performance of classification at each index is plotted.
Performance is defined as the ability of the ANN to identify the
severity of the defect from the inputs presented to it.

The performance at each index is evaluated by considering
the set of features from the ordered set up to that index. For
example, to evaluate the performance at index 10, the first ten
features listed in Table 4 are used as input to the classifier. The
average accuracy of classification for twenty independent classi-
fication runs using an artificial neural network is used as a mea-
sure of performance. The artificial neural network has one hid-
den layer with ten neurons. Tangential sigmoid is used as the
transfer function for each of the neurons in the hidden layer.

For the purpose of comparison the feature ranking and se-
lection algorithm is used to obtain the ordered feature set using
only data driven features and model based features. From all
the possible feature sets from the three ordered feature sets, the
best possible performance is obtained when both data driven fea-
tures and model based features were used. This performance is
achieved when the first ten features from the ordered feature set
shown in Table 4 are used. Further the performance is signifi-
cantly increased when model based features were used. The best
accuracy using data driven features was 93.4% which improved
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to 99.3% when the optimal feature set suggested by the algorithm
was used.

CONCLUSION
In this paper we address some of the important issues in

identifying outer race defects of different magnitudes in rolling
element bearings. We first used cross-sample entropy to extract
model based features. These model based features are extracted
by comparing the measured signal to simulations of a bearing
model with parameterized defects. Then, to determine the per-
formance of these methods and to further improve it by using
some of the existing data driven features we performed feature
ranking and feature selection using mutual information.

This approach allowed us to study the performance of the
various features together as a set, and to determine an optimal
feature set that consists of information from both data driven fea-
tures and model based features. Thus, using this method we were
able to optimally combine the information available in both data
driven features and model based features.

The performance of this approach was studied on data cap-
tured from a rotating system at various speeds and loads. There
were nine sets of operating conditions and a total of eighteen
data driven features and twelve model based features were used.
When both data driven features and model based features were
used together the performance of the ordered feature set was ex-
cellent. The top ranked features in the ordered feature set con-
sisted of both data driven features and model based features. This
indicates that the model based features interact well data driven
features and contain significant information that is relevant and
not redundant. The performance showcases the importance of
information contained in model when the operating conditions
vary. This variation in conditions is parameterized and is implic-
itly available in model based features.

Thus, in this paper we used cross-sample entropy to ex-
tract model based features which were derived using models that
parameterized defects and operating conditions. These model
based features were combined with some of the common data
driven techniques to significantly improve the classification per-
formance. From all the multitude of combinations of features
that were possible from the features considered, feature rank-
ing using mutual information was performed to efficiently select
the optimal feature set containing both data driven features and
model based features, that provided the best classification perfor-
mance.
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Domain Features

Time domain Skewness, Kurtosis

Frequency domain FFT magnitude atΩ, Ω/2, 2Ω, 3Ω, ωbp f o, 2ωbp f o, 3ωbp f o

Envelope magnitude atωbp f o, 2ωbp f o, 3ωbp f o

Time-frequency domain DWT detail signals’ energy up to level six

TABLE 3. Data driven features by domain

Rank Features Rank Features

1 Envelope Mag. Ball Pass Freq. 2 DWT Energy: Level 4

3 FFT Mag. 3 Rot. Speed 4 crsEn(S,ORDlm, m= 2, r = .1)

5 crsEn(S,DFm, m= 2, r = .1) 6 crsEn(S,ORDsm, m= 2, r = .1)

7 Envelope Mag. 3 Ball Pass Freq.8 DWT Energy: Level 6

9 FFT Mag. 1 Rot. Speed 10 Envelope Mag. 2 Ball Pass Freq.

11 Kurtosis 12 DWT Energy: Level 3

13 FFT Mag. .5 Rot. Speed 14 DWT Energy: Level 1

15 FFT Mag. Ball Pass Freq. 16 crsEn(S,DFm, m= 1, r = .1)

17 FFT Mag. 3 Ball Pass Freq. 18 FFT Mag. 2 Rot. Speed

19 DWT Energy: Level 5 20 FFT Mag. 2 Ball Pass Freq.

21 DWT Energy: Level 2 22 crsEn(S,DFm, m= 1, r = .05)

23 Skewness 24 crsEn(S,DFm, m= 2, r = .05)

25 crsEn(S,ORDsm, m= 1, r = .05) 26 crsEn(S,ORDlm, m= 1, r = .05)

27 crsEn(S,ORDlm, m= 1, r = .1) 29 crsEn(S,ORDlm, m= 2, r = .05)

29 crsEn(S,ORDsm, m= 1, r = .1) 30 crsEn(S,ORDsm, m= 2, r = .05)

TABLE 4. Ordered Combined Features
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A Mutual Information
Let xi be the random variable with pdfp(xi) corresponding

to the ith feature. LetC be any classifier that maps the features
into NC classes andck is the corresponding random variable with
pdf p(ck), k = 1, 2, ..., NC. Note thatck is a discrete random
variable. The entropy and mutual information are the defined as
in Eqs. 2 and 3.

H(xi) = −

∫
p(xi) logp(xi)dx (2)

I(xi ;ck) = −

∫
p(xi ,ck) log

p(xi ,ck)

p(xi)p(ck)
dx (3)

Further, the entropy and mutual information are related by Eq. 4.

I(xi ;ck) = H(ck)−H(ck|xk) (4)
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In order to calculate the mutual information we need to find
p(ck) and p(ck|xi) from the data. It is easy to findp(ck) as it is a
discrete random variable. By Bayesian rule we have

p(ck|xi) =
p(xi |ck)p(ck)

p(xi)
(5)

The pdf of a continuous random variablexcan be calculated from
a given data using a Parzen’s Window.

p(x) =
1
N

N

∑
i=1

φ(x− xi,h) (6)

where, N is the number of samples,h is a parameter that defines
the size of the window,xi are the data points andφ is a finite val-
ued non-negative density function called the window function. In
this work a Gaussian function is used forφ (as is done typically).

Using Eqs. 6 and 7,p(xi |ck) can be calculated.

p(xi |ck) =
1
Nk

Nk

∑
i=1

φ(x− xki ,h) (7)

where,Nk are the number of data points in thekth class andxki are
the data points belonging tokth class. Using Eqs. 5, 6 and 7 mu-
tual information between a feature and a class can be calculated
using Eq. 8.

I(xi ,c) =
NC

∑
k=1

p(ck) logp(ck)−

∫ NC

∑
k=1

p(xi |ck)p(ck) logp(xi |ck) (8)

However, in order to calculate the mutual information be-
tween a set of features,x= [x1 x2 , ..., xn] and a class, we would
need to calculate the joint pdfp(x) of the feature set and the con-
ditional joint pdf p(x|c). Although it is possible to do this, it is
cumbersome and is often inaccurate. A simpler procedure is to
use Eq. 9.

I(x;c) =
1
|S| ∑

xiεS

I(xi ;c)−
1

|S−1|2 ∑
xi ,xj εS

I(xi ;x j)

x= {x : xεS⊂ X} (9)

The first part of the right hand side of Eq. 9 is the mean of the
mutual information of each of the features and class; it is a mea-
sure of relevance of the setS. The second part consists of the

information between the features themselves; it is a measure of
redundancy of the setS. Using this method it is necessary to only
calculate the joint pdf of two features at a time. This method,
when used in a sequential search, has similar performance to the
actual value [12].
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