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Abstract— In order to effectively control nonlinear and mul-
tivariable models, and to incorporate constraints on system
states, inputs and outputs (bounds, rate of change), a suitable
(sometimes necessary) controller is Model Predictive Control
(MPC). MPC is an optimization-based control scheme that
requires abundant matrix operations for the calculation of
the optimal control moves. In this work we propose a mixed
software and hardware embedded MPC implementation. Using
a codesign step and based on profiling results, we decompose
the optimization algorithm into two parts: one that fits into
a host processor and one that fits into a custom made unit,
that performs the computationally demanding arithmetic oper-
ations. The profiling results and information on the co-processor
design are provided.

I. INTRODUCTION

Model Predictive Control (MPC) is broadly used in the

chemical process industries, due to its ability to handle

constraints and its applicability to multivariable nonlinear

systems. It can be argued that today it is the single most

commonly implemented advanced control algorithm, beyond

PI/PID. MPC remains an open and growing area of research

in systems and control. Nevertheless, because of the compu-

tational requirements of the optimizations associated with

MPC, it can be applied to systems with slow dynamics.

Furthermore, existing implementations of MPC typically

perform numerical calculations using workstations in 64-

bit floating-point arithmetic, which is too expensive, power

demanding, and large in size, thus unsuitable for many

application areas.
Recently, there has been considerable interest in expanding

the applicability of MPC to other domains of engineering.

In particular, attempts have been made to apply MPC to

dynamical systems with fast response times and which were

traditionally considered unsuitable for MPC implementation.

A growing number of research groups is working on the

subject during the last few years [1], [2]. Our group has

examined alternative pathways for the implementation of

MPC on-a-chip which are summarized in the following

paragraphs.
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We have examined a general purpose processor implemen-

tation [3], [4]. We used a single board computer phyCORE-

MPC555 that packs the power of Motorola’s embedded 32-

bit MPC555 microcontroller within a miniature footprint.

The MPC555 is a high-speed 32-bit Central Processing Unit

(CPU) that contains a 64-bit floating point unit designed to

accelerate advanced algorithms. In order to implement the

optimization required by MPC on this target, we used a com-

bination of software tools: CodeWarrior Integrated Develop-

ment Environment (IDE), MATLAB, Real-Time Workshop,

and SIMULINK. By combining the MATLAB/SIMULINK

environment with the Code-Warrior Development Studio, we

were able to run Processor-In-the-Loop (PIL) simulations

and analyze the performance using profiling techniques.

For an application-specific instruction processor imple-

mentation [5], [6], [7], [8] we proposed the following design

framework. By emulating the microcontroller arithmetic op-

erations, we reduce the precision of the microprocessor to

the minimum, while maintaining stable control performance

for a particular control application. This reduction is ac-

complished by a series of parametric tests using different

word sizes and utilizing computational tools to simulate

the controlled model. Taking advantage of the low preci-

sion, a Logarithmic Number System (LNS) based micro-

processor architecture was used that provides energy and

computational cost savings. This reduced-precision ASIP can

achieve sampling speeds as low as 32msec for relatively

large problems. Additionally, to quantify the advantage of

reducing the precision, estimations for both 64-bit FP and

16-bit LNS circuits showed that for an arithmetic unit that

computes addition, subtraction, multiplication and division,

the size required is about 17 times larger for 64-bit FP.

In this paper we provide a mixed software-hardware

embedded controller, extending the ideas presented in [9]. A

codesign step is used prior to the actual implementation that

decomposes the algorithm into two parts. One that fits into

the host processor and one that fits into the custom made

unit that performs all the (repetitive and computationally

demanding) arithmetic operations. Thus the bulk of the MPC

matrix calculations are performed in hardware and the rest in

a general purpose microprocessor. The microprocessor acts

as a master onto the co-processor by sending commands

and data and receiving the results back, whenever necessary.

Additionally, this architecture allows the microprocessor to

perform other tasks while the co-processor is busy executing

commands, and at the same time it improves the overall per-

formance of the system. As will be described in the following

sections, we selected the 16-bit Extensible Instruction Set
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Controller (EISC) from ADCUS, Inc. as the microprocessor.

For prototyping purposes, we use the ML401 board of

Xilinx, that hosts a Virtex-IV Field Programmable Gate

Array (FPGA). Both the microprocessor and coprocessor are

synthesized and downloaded into the FPGA [10].

The paper is organized as follows: Section II provides a

brief overview of MPC and the optimization algorithm used.

Section III describes the rotating antenna case study, while

Section IV contains the codesign analysis and the profiling

results. In Section V, the proposed coprocessor architecture

and related results are provided. The paper is summarized

and concluded in Section VI.

II. MODEL PREDICTIVE CONTROL

Controllers belonging to the MPC [11] family are gen-

erally characterized by the following steps: Initially the

future outputs are calculated at each sample interval over

a predetermined horizon N , the prediction horizon, using a

process model. These outputs y(t+k|t) for k = 1...N depend

up to the time t on the past inputs and on the future signals

u(t + k|t), k = 0...N − 1 which are those to be sent to the

system. The next step is to calculate the set of future control

moves by optimizing a determined criterion, in order to keep

the process as close as possible to a predefined reference

trajectory. This criterion is usually a quadratic function of

the difference between the predicted output signal and the

reference trajectory. In some cases, in order to minimize the

control effort the control moves u(t + k|t) are included in

the objective function:

JP (k) =
P∑

k=0

{[y(t + k|t) − yref ]2 + Ru(t + k|t)2} (1)

|u(t + k|t)| ≤ b , k ≥ 0 (2)

where y(t+k|t) are the predicted outputs, yref is the desired

set reference output, u(t+k|t) the control sequence and R is

the weighting on the control moves, a design parameter. This

system is subject to input constraints given by the vector b.

Finally, the first control move u(t|t) is sent to the system

while the rest are rejected. At the next sampling instant the

output y(t + 1) of the system is used in the optimization

using feedback and the procedure is repeated so that we get

an updated control sequence. The block diagram of MPC is

depicted in Fig. 1.

Model Predictive 
        Control

yref

 System
uinitial u(t|t) y(t)

Fig. 1. System block diagram.

A. Optimization

The minimization of equation (1) subject to (2) that results

in the optimal control moves u(t+k|t) can be accomplished

using several algorithms [12]. We use Newton’s algorithm

to solve the problem by incorporating the constraints in the

cost function using barrier functions:

di(u) = μi(aT
i u − bi)2 (3)

resulting in an unconstrained problem. The unconstrained

problem can be solved numerically approximating J by a

quadratic function around u, obtaining the gradient ∇JP and

Hessian H , and iterating:

u(k+1) = u(k) − H−1(u(k)) · ∇JP (u(k)) (4)

III. CASE STUDY: ANTENNA ROTATION

The case study examined has been adapted from [13]. It

is a state-space problem that describes the dynamics of a

rotating antenna at the origin of the plane (driven by an

electric motor). The control objective is to use the input

voltage to the motor (u V) to rotate the antenna so that

it always meets a predefined set-point (i.e. points towards

a moving object in the plane). We assume that the angular

positions of the antenna and the moving object (θ and θr

rad respectively) and the angular velocity of the antenna (θ̇
rad/sec) are measurable. The motion of the antenna can be

described by the following discrete-time equations obtained

from their continuous-time counterparts by discretization

using a sampling time of 0.1 s and Euler’s first-order

approximation for the derivative:

x(k + 1) =
[

1 0.1
0 1 − 0.1a(k)

]
x(k) +

[
0

0.0787

]
u(k)

y(k) =
[

1 0
]
x(k)

The parameter a(k) is proportional to the coefficient of

viscous friction in the rotating parts of the antenna and for

the simulations we assume that a(k) = 1.

The main complexity of MPC arises from the underlying

optimization algorithm, and the size of the matrices involved.

Therefore these can be made arbitrarily large by increasing

the control and prediction horizons, allowing us to test

the performance of the controller in different computational

complexity levels. The MPC behavior was tested for different

cases, having the set-point at 2 and the controlled variables

constrained between −2 < u < 2 V. The output and the

actuation for prediction horizon 20 and control horizons of

3,4,8 and 12 are illustrated in Fig. 2.

IV. CODESIGN

Hardware/Software (HW/SW) codesign refers to the si-

multaneous consideration of hardware and software within

the design process [14], [15]. Codesign is becoming an

increasingly more important research field primarily because

of the advantages that it offers in terms of performance and

flexibility of the resulting design.
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Fig. 2. Output and actuation for prediction horizon of 20 and control
horizons of 3,4,8 and 12.

A general codesign flow is depicted in Fig. 3. The analysis

starts with the system specification. The next step is the

hardware and software partitioning phase. In this work we

partition the algorithm to basic operational blocks, and an-

alyze their behavior/performance using profiling techniques.

Depending on the profiling results we assign these oper-

ational blocks to hardware or software. After partitioning

the algorithm, the interface parts (communication and syn-

chronization) between the hardware and software have to be

designed. The interface will include all the communication

mechanisms that permit the exchange of data between the

processor that contains the software and the custom made

hardware unit. Given the specifications on the hardware and

software, the next step is the synthesis and compilation. A

co-simulation step is then be used, where the custom unit

is emulated together with the software. Finally during a

verification process we ensure that the design is correct and

complete [16], and that the design implements its specifica-

tion accurately (e.g. performance constraints are met, cost of

the design is acceptable).

A. Operational blocks of the optimization algorithm

The optimization algorithm consists of five functions

which can be considered as five basic operational blocks.

These functions are: the initializations prior to the optimiza-

tions, the calculation of the Gradient vector and the Hessian

matrix, the Gauss-Jordan matrix inversion, and finally the

optimal move calculation using Newton’s iteration. For the

particular case of using a state space model for the MPC

formulation the outputs Y can be explicitly replaced in the

cost function J by:

Y = A′X + B′U (5)

where the prime denotes the adjusted A and B matrices [11],

with a size depending on the control and prediction horizons.

The Gradient and the Hessian used for the Newton’s iteration

System Specification

HW/SW Partitioning

HW SWInterface

HW Specs SW Specs

HW Synthesis SW Compilation

Co-simulation

Verification

Fig. 3. Codesign Diagram.

(Eq. 4) are then given by the following formulas respectively:

∇J = 2B′T B′U+2B′T A′x−2B′T Yref+2RIU+B∇J (6)

where:

B∇J = μ

⎡⎢⎢⎣
− 1

(b+u1)2
+ 1

(b−u1)2

− 1
(b+u2)2

+ 1
(b−u2)2

...
− 1

(b+um)2 + 1
(b−um)2

⎤⎥⎥⎦
The Hessian matrix is given by:

H = 2B′T B′ + 2RI + μBH (7)

where BH contains elements of the gradient of B∇J placed

diagonally in a square matrix appropriately sized.

B. Profiling results

In order to partition the algorithm into hardware and

software we examine the behavior of the operational blocks

using a profiler. A profiler analyzes the amount of time

a program spends performing these tasks and thus detects

potential bottlenecks (time consuming routines that data

passes through) and routines that are inordinately slow.

In Fig. 4 we present the profiling results of the five op-

erational blocks, for a prediction horizon of 10 and variable

control horizons. A direct observation is that the combined

computational time for the calculation of the Gradient and the

Hessian is approximately 70−80% of the total optimization

time. The next most expensive function is the matrix inver-

sion which can take up to 30% of the total time, for large

control horizons. Furthermore, we observe that for small

control horizons the Gradient function uses almost half of the

total optimization time and double the time of the Hessian

function. Finally, we observe that by increasing the control

horizon size, the matrix inversion becomes more expensive,

and the computational time required by the Gradient and

Hessian functions converge. The explanation is that with

increasing control horizon the BH becomes much more

expensive than B∇J . In Fig. 5 we present the profiling results
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Fig. 4. Profiling results for prediction horizon 10 and variable control
horizon.

of the five operational blocks, for a prediction horizon of 20

and variable control horizons. The results are in accordance

with the previous profiling results (Fig. 4). One additional

observation is the influence of the size of the prediction

horizon on the computational complexity of the Gradient

function (for small control horizons). In Fig. 6 we present

0

10

20

30

40

50

60

70

80

ch:2 ph:20 ch:4 ph:20 ch:6 ph:20 ch:8 ph:20 ch:10 ph:20 ch:12 ph:20 ch:14 ph:20

Gradient

Initialization

Newton
GJ

Hessian

%

Fig. 5. Profiling results for prediction horizon 20 and variable control
horizon.

the cumulative time spent for the profiling, for a prediction

horizon of 20 and variable control horizons. Note that we

run the optimization for a fixed number of 3000 iterations.

This is unnecessarily large for the calculation of the optimal

control moves, but allows for accurate profiling results. In

Fig. 7 we present the profiling results for control horizon 6,

prediction horizon 10 and variable number of optimizations.
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Fig. 6. Cumulative time spend for the profiling, for a prediction horizon
of 20 and variable control horizons.

As expected the number of iterations in the optimization does

not influence the distribution of the computational time of the

five basic operational blocks.
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Fig. 7. Profiling results for control horizon 6, prediction horizon 10 and
variable number of optimizations.

V. CO-PROCESSOR DESIGN

This higher level analysis of the MPC optimization code

reveals that the repetitive matrix operations of the Gradient

and Hessian, are responsible for the major part of the

processing. Therefore these specific matrix operations have

to be implemented efficiently, while the rest of the operations

(initializations, Newton’s iteration) can be performed using

a general purpose microprocessor.
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The solution to this problem can be given using a lim-

ited precision host microcontroller together with a matrix

processor that acts as a hardware accelerator for the matrix

operations. The selected microprocessor that acts as the

host for our design is the 16-bit Extensible Instruction Set

Computer (EISC) from ADCUS [17] and for prototyping

we use the FPGA Virtex-IV XC4VLS25 device of Xilinx.

The system is interfaced with MATLAB, running on a

workstation, in order to allow PIL simulations for testing

and debugging purposes. Both the ADCUS microprocessor

and the matrix co-processor are described in Verilog and

the whole design is synthesized with the ISE 7.1 design

environment of Xilinx.

A. Communication

The matrix coprocessor acts as a peripheral device of

the microprocessor by having dedicated part of the address

space, which is limited to two memory locations since the

microprocessor needs to send commands and data, and read

back the available data and the status of the coprocessor.

Additionally, four more signals are used: Chip-Select (CS)

to signal the coprocessor’s selection, Read (RD) to signal

reading, Write (WR) to signal writing, and Data-of-Status

(DS) to distinguish between data and status. This configura-

tion is illustrated in Fig.8.

16-bit
General

Processor

  Matrix

Coprocessor

Output (16 bits)

WR

RD

CS

DS

Input (16 bits)

Fig. 8. The general architecture of the microprocessor-coprocessor system.

B. Datapath

The matrix processor consists of one-hot controller and

associated datapath generated by a tool called VITO [18],

[19]. One-hot encoding, in which there is one register to

each state in the finite-state machine, is suitable when

combinational logic is more expensive than registers; usually

the case in FPGA devices. The coprocessor datapath includes

two matrix registers, A and C, each of which contains an

r× c matrix where r, c ≤ 2m, and the constant m is the size

of the index in bits used to address the matrices. Initially,

the host sends r, c to the matrix coprocessor, which then

defines the size of the matrices needed to process the MPC

model for a particular control application. A and C both are

16 × 22m bit memories. A is a dual-port memory, where

one of its ports is attached to a pipelined LNS ALU of

the kind described in [20]. In the current prototype, there

is only one such ALU, but the highly independent nature

of common matrix computation may allow up to 2m such

ALUs to be used effectively in future versions. The address

calculation for Ai,j or Ck,j simply involves concatenation

of the row and column indices. Such indices are valid in the

range 0 ≤ i, j, k < 2m.

In addition to the matrix registers, A and C, the processor

has a main memory, m[ ], used to store the several matrices

needed by MPC. When the host requests the matrix processor

to perform a command (e.g. matrix multiply), the host also

sends addr, which indicates the base address of the other

operand in memory, referred to as B. Unlike A and C,

which have unused rows and columns, B is stored with

conventional row-major order; an r × c matrix takes r · c
rather than 22m words. The preferred mode of operation is

to keep all the matrices required inside the matrix processor.

In the event m[ ] is inadequate for a particularly large MPC

problem, commands are provided to transfer r · c words at

the maximum rate supported by the host interface.

Table I illustrates some of the operations supported by the

matrix processor; “host” indicates a data transfer to/from the

host, i and j are indices provided by the host; Ai and Ci

are rows chosen by the host; i is an internal register; b and

B are vectors and matrices, respectively; (stored in m[ ] at

the base address specified by the host); BT is a transpose,

I is the identity matrix; 0 is the zero matrix; p is an index

register that indicates the pivot row (as needed by matrix

inversion methods, e.g. Gauss-Jordan); x is an LNS scalar

value.
The coprocessor’s instruction set simplifies considerably

the software development for the MPC algorithm. For ex-
ample, a matrix multiplication between two matrices A,B,
in the C programming language, would be:

for (i = 0; i < M; i++)
for (j = 0; j< M; j++){
A[i][j]=0.0;
for (k = 0; k < P; k++)
A[i][j] += B[k][i]*C[k][j];

}

The same operation is reduced to the following two com-
mands:

CoProcessor=COMMAND_MUL_C;
CoProcessor=Memory_location;

where the coprocessor receives the instruction to perform a

multiplication between the matrix register C and the matrix

B, with base address Memory location. While the copro-

cessor is busy executing this command, the microprocessor

can execute alternative tasks.

After the synthesis, the microprocessor and the coproces-

sor occupy 2943 and 1908 slices of the FPGA respectively,

and the whole systems works at 25MHz. As a case study

we used the antenna control problem described in Section

III. For a control horizon of 3 and a prediction horizon

of 10 the optimization problem is solved within 0.89ms.

The same control problem solved by using Motorola’s 32-bit

MPC555 processor, running at 40MHz and incorporating a

double precision FP unit, requires 15ms for the same control

and prediction horizons [3]. Analytical synthesis and timing

results of the proposed architecture are presented in [10] for

two different case studies, the antenna rotation and a glucose

regulation problem.
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Mnem. O(n) Oper. Mnem. O(n2) Oper. Mnem. O(1) Oper.

STOREVA b ← Ai, i < n INPC C ← host PUTN n ← host
b ← Ap, i = n OUTA host ← A PUTA Ai,j ← host

STOREVC b ← Ci, i < n OUTC host ← C PUTC Ci,j ← host
b ← Cp, i = n LOADA A ← B PUTP p ← host

LOADVA Ai ← b, i < n LOADC C ← B PUTX x ← host

Ap ← b, i = n LOADCT C ← BT GETA host ← Ai,j

LOADVC Ci ← b, i < n STOREC B ← C GETC host ← Ci,j

Cp ← b, i = n ADD A ← A + B GETP host ← p
ADDXVA Ai ← Ai + x · b, i < n MULV Ai ← Cb GETX host ← x

Ap ← Ap + x · b, i = n STOREAZ B ← A
ADDXVC Ci ← Ci + x · b, i < n A ← 0

Cp ← Cp + x · b, i = n STOREAI B ← A
PIVOT x ← max(|Ci,j |, ..., |Cn−1,j |) A ← I Mnem. O(n3) Oper.

p ← i such that Ci,j = x MUL A ← CB

TABLE I

MATRIX PROCESSOR OPERATIONS LISTED BY SINGLE-ALU DELAY.

VI. CONCLUSIONS

In this work we have provided research results of the

implementation of a FPGA coprocessor for real-time MPC

applications. There is a spectrum of possible implementa-

tions for embedded MPC ranging from software to complete

hardware. While a pure software approach can be more

direct, a hardware-software codesign approach leading to

an FPGA implementation can be an efficient solution when

performance, reduced memory, and low-power consumption

are sought.

The advantages of MPC such as the ability to handle

constraints, the applicability to nonlinear processes and to

multivariable problems, make this control method a nec-

essary choice for many control problems. For example,

there are numerous potential applications for biomedical

control including: control of physiological processes, glucose

control, drug infusion control, cardiac pacemakers and defib-

rillators, blood flow and pressure control, and neurological

implants. On the other hand, several small-scale industrial

application areas that have fast dynamics will benefit from

a real-time implementation of MPC. These areas include

MEMS, automotive/aerospace control, power electronics,

and microchemical systems.
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