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Abstract 
This paper describes a CMOS-based time-of-flight 

depth sensor and presents some experimental data 
while addressing various issues arising from its use. 
Our system is a single-chip solution based on a special 
CMOS pixel structure that can extract phase 
information from the received light pulses. The sensor 
chip integrates a 64x64 pixel array with a high-speed 
clock generator and ADC. A unique advantage of the 
chip is that it can be manufactured with an ordinary 
CMOS process. Compared with other types of depth 
sensors reported in the literature, our solution offers 
significant advantages, including superior accuracy, 
high frame rate, cost effectiveness and a drastic 
reduction in processing required to construct the depth 
maps. We explain the factors that determine the 
resolution of our system, discuss various problems that 
a time-of-flight depth sensor might face, and propose 
practical solutions. 
 
1. Introduction 

Computer vision field regularly deals with various 
applications such as tracking, recognition, image 
understanding, etc. One direction of research has been 
towards depth sensing as opposed to using regular 
image intensity cameras, because depth information 
makes the aforementioned applications more feasible 
and robust. This paper presents a novel system for 
depth sensing based on time of flight (TOF) which we 
believe is the foundation for a new electronic 
perception techology, giving eletronic devices of all 
types the ability to perceive and interact with the world 
around them. 

TOF systems have been used in radar and Lidar 
applications for more than thirty years; the reader is 
referred to [11] for a review. The basic principle 
involves sending out a signal and measuring a property 
of the returned signal from a target. The measured 
property is used to determine the time of flight, and the 
distance is obtained via multiplication of the time of 
flight and the velocity of the signal in the application 
medium. 

Our TOF-based depth sensor uses light as its signal, 
and measures the phase shift of a modulation envelope 

of the light source as its property. The distance to 
objects in the scene can be calculated using the 
properties of light and the phase shift. The depth 
sensor is implemented in a single chip using an 
ordinary CMOS process. Its depth resolution is in the 
order of a few millimeters, and does not require any 
computationally complex post-processing. 

Like any practical method, there are issues during 
the operation of such a system. For instance, the noise 
behavior is dependent on the amount of light reflected 
into the sensor. The resolution of the sensor is 
improved as more noise is eliminated. There are 
various techniques to reduce the amount of noise. 
These are well-known techniques in radar sciences, 
and mostly depend on spatial and temporal averaging 
techniques.   

An important issue for TOF sensors is the aliasing 
effect arising from the periodicity of the modulated 
signal whereby the distances to objects differing in 
phase by 360 degrees of phase shift are not 
distinguishable. Using multiple frequencies is a 
common way of dealiasing such data, and is discussed 
in the paper. Other issues covered in the paper include 
improvements to the sensor’s dynamic range and 
methods for eliminating artifacts due to motion and 
ambient light. 

The paper is organized as follows. First, we review 
previous work on other types of depth sensors. Next, 
we describe our depth sensor followed by a theoretical 
analysis of resolution and metrics that affect the 
resolution. Next, we describe various issues in the 
operation of such a system, and we provide practical 
solutions. We then present our experiments and a 
discussion where we compare our sensor to other types 
of depth sensors. 
 
1.1 Previous Work on Depth Sensors 

There are various camera-based techniques in the 
literature to measure range. These include triangulation 
systems such as stereo-vision, (or structured-light), 
depth-from-focus, depth-from-shape, and depth-from-
motion systems.  Each of these systems has advantages 
and disadvantages as described next. 



Triangulation systems measure the distance to 
objects by analyzing the triangles constructed by the 
projection rays of two optical systems. Given a point 
on a visible surface in the world, two optical systems 
determine the angles α1 and α2 formed by the 
projection rays that connect the surface point with the 
centers of projection of the two optical systems (Figure 
1). Together with the baseline, these two angles 
determine the shape of the triangle completely, and 
simple trigonometry yields the distance to the surface 
point. A major disadvantage of triangulation systems is 
the necessary baseline to operate. This induces a 
minimum size limitation on a triangulation system. 

 

Optical System 1

Optical System 2

Surface Point

Projection Ray 1

Projection Ray 2

Baseline

α1

α2  
Figure 1. Triangulation determines depth by solving 

for the height or a side-length of a triangle. 
 
There are two main classes of triangulation systems: 

passive and active. In passive systems, two cameras 
are used (hence the name stereo) [1]. These systems 
require solving the so-called correspondence problem, 
which amounts to determining which pairs of points in 
two images are projections of the same point in the 
world. This is a very complex problem and the solution 
is computationally expensive. In addition, due to the 
geometry of triangulation systems, the resolution drops 
drastically as objects move away from the camera.  

Active systems employ one camera and one 
structured light emitter [2,3]. The structured light 
system may be any form of light with known pattern. 
In order to apply triangulation, the projected light 
pattern needs to be well differentiated from the other 
objects and ambient light falling on the scene. This 
requires that the projected light be high powered and 
well focused. In many cases, it also requires scanning 
the light through the scene, which makes it difficult to 
obtain high frame rates. 

Another direction of research for obtaining depth 
information is through depth-from-X methods. In 
depth from focus methods [4,5], depth is determined 
by varying the focus of the camera. The frame rate 
might be limited since multiple images with different 
camera focus parameters might need to be obtained. 

The depth-from-shape method requires prior 
knowledge of shape. It infers the depth through the 

appearance of shapes in the image. This method is 
weak due to its inherent assumption about the 
knowledge of shapes. Another alternative is to iterate 
through shape and depth by fixing one and solving for 
the other in each iteration. This method, unfortunately, 
gets into ambiguities and singularities if the underlying 
shape is different from the assumed shape. 

The depth-from-motion method calculates depth by 
measuring the motion of objects [6]. Similar to the 
depth-from-shape method, this is a weak assumption, 
and iterative methods often result in singularities.  

 
1.2 Time-of-Flight Depth Sensors 

A typical TOF sensor consists of a modulated light 
source such as a laser or LED, an array of pixels, each 
capable of detecting the phase of the incoming light, 
and an ordinary optical system for focusing the light 
onto the sensor (Figure 2).   The light is given a 
modulation envelope by rapidly turning the light 
source on and off. Distance measurement is achieved 
by measuring the phase of the modulation envelop of 
the transmitted light as received at the pixel array. 
Although square waves are utilized in practice for 
modulation, here we use sinusoidal waves for ease of 
explanation. 

 
Figure 2. Time of flight measurement. 

 

 
Figure 3. A method of phase/amplitude calculation. 
 
Let s(t)=sin(2π fmt) be the transmitted light where fm 

is the modulation frequency. The light reflected from 
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where R is the amplitude of the reflected light, d is the 
distance between the sensor and the target, and c is the 
speed of light, 3x108 m/s. The distance d can be 
calculated from the phase shift as follows: 
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The maximum unambiguous phase delay that can 
be detected using TOF is a full cycle of the modulation 
period, which corresponds to an unambiguous range of 
c/2fm. For example, the maximum unambiguous range 
for fm=50 MHz is 3m. 

The phase and the amplitude of the reflected light 
can be extracted via signal processing techniques such 
as the one given in Figure 3. However, the method of 
Figure 3 requires mixers and low-pass filters, which 
can only be implemented using complicated circuitry. 
In practice, phase detection can be implemented more 
efficiently as described in [7,8,9,10,11]. 

Various TOF sensors have been reported in the 
literature. The system of [7] employs a CCD sensor 
and reportedly achieves 10-cm resolution using a 
modulation frequency of 15Mhz. The camera system 
made by 3DV Systems [8] also uses a CCD camera but 
is coupled with an external shutter. Both of these 
systems are CCD-based, which is a major obstacle to 
building single chip, cost effective, and widely 
available TOF sensors. 

 
2. CMOS Sensor Chip 

We have developed a special sensor that takes 
advantage of device-level charge processing to 
efficiently implement TOF. The sensor has a 64x64 
pixel array and is implemented on a single chip using 
ordinary, low-cost CMOS process. The sensor chip 
also incorporates an ADC and circuitry to generate the 
high-speed modulation signals. The architecture of the 
chip is shown in Figure 4. The sensor achieves frame 
rates of up to 50fps and a depth resolution of a few 
milimeters. 

The key part of the sensor design is the special pixel 
structure. A cross-section of the pixel is shown in 
Figure 5. The differential structure accumulates photo-
generated charges in two collection nodes using two 
modulated gates. The gate modulation signals are 
synchronized with the light source, and hence 
depending on the phase of incoming light, one node 
collects more charges than the other. At the end of 
integration, the voltage difference between the two 
nodes is read out as a measure of the phase of the 
reflected light. Thus, in effect, this pixel 
simultaneously performs the function of mixing and 

low pass filtering. The reader is referred to [9] for 
details on pixel operation. 

 In order to reliably detect and disambiguate the 
phase and amplitude of the reflected light, the light 
pulses are sent out with two different phase shifts. In 
other words, measurements are performed  two times 
in one frame, one with a phase shift of 0 degrees and 
another with 90 degrees for transmitted light. With 
data obtained using 0 and 90 degree phase shifts, we 
can determine the phase delay of light with little or no 
dependence on many factors including object 
reflectivity, absolute amount of reflected light power, 
shutter time, and moderate amounts of ambient light. 
Let V0 and V90 be the pixel values obtained with 0 and 
90-degree phase shifts respectively. Phase calculation 
is done using the inverse tangent function:  

)/arctan( 090 VVphase =  
A linear relationship exists between the phase 

values and actual distance, as shown in Figure 6. The 
sensor is calibrated to accurately characterize the linear 
relationship on a pixel-by-pixel basis. Calibration is 
done by collecting data using a planar target that is 
gradually moved within a full range of the modulation 
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Figure 4. CMOS sensor chip architecture. 
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Figure 5. Cross section of a pixel. 



frequency. The distance and resolution results reported 
in this paper are obtained with a calibrated system. 
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Figure 6. Phase-distance relationship for the depth 

sensor. 
 

3. Analysis of Resolution 
An important attribute of a depth sensor is its depth 

resolution. This section analyzes the factors that affect 
the resolution of our system. For simplicity of the 
analysis, we assume that the pixel output is single-
ended voltage even though it is actually differential. 

Let Plaser be the optical power of the light source, 
and A the total (target) area illuminated. The amount of 
laser light received by the sensor depends on the 
reflectivity of the objects in the direction of the sensor. 
This reflectivity is denoted by r. The total number of 
electrons generated in one pixel at the end of an 
integration (shutter) period of T can be written as 

A
rTqkP

N eoptlaser
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where qe is the quantum efficiency and kopt is a 
constant determined by the properties of the optical 
system including lenses, diffuser, pixel size, etc. The 
electrons collected by the pixel are stored in a storage 
capacitor C, whose voltage at the end of the integration 
period is the signal produced by the pixel as a measure 
of phase delay (distance). Due to the interaction of the 
reflected light with the reference (modulation) signal in 
the pixel as described in Section 1.2, only a fraction p 
of the electrons contribute to this signal. Essentially p 
represents the phase overlap between the reflected 
light and the reference signal. Hence the voltage across 
the storage capacitor at the end of integration is  

CA
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C
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where q is the charge of an electron, 1.6x10-19 C. The 
value of p at a particular pixel depends on the distance 
between this pixel and the target it is imaging. 
Depending on the distance, and hence p, Vsignal changes 

from Vsignal(p=0) to Vsignal(p=1). Since Vsignal(p=0)=0, 
the total voltage swing Vswing is equal to Vsignal (p=1). 

One of the components of noise on Vsignal is the shot 
noise. There are other sources of random or pseudo 
random noise as well. These include ADC quantization 
noise, kT/C reset  noise, thermal noise etc.  In our 
system shot noise is usually the dominant source of 
error and determines the accuracy of depth 
measurements. The error in Vsignal due to shot noise is 
calculated by projecting the uncertainty in the number 
of electrons to the voltage across the storage capacitor. 
In turn this results in an RMS (root mean square) 
voltage error of 
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The voltage resolution of the sensor is calculated by 
Vswing/Vnoise, which depends on p in Vnoise. For 
resolution analysis, we use Vnoise(p=1) since it 
maximizes the magnitude of noise. Thus, from the 
voltage resolution, the depth resolution is determined 
by the number of small divisions that the unambiguous 
range can be reliably divided: 
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The finite resolution implies that the distance value 
measured by each pixel deviates from the correct value 
by an amount whose statistical standard deviation is 
given by the resolution equation. Changing each 
parameter in the resolution equation involves a tradeoff. 
For instance, a high power laser results in better 
resolution, but increases the electrical power 
consumption and the cost of the system. Resolution can 
also be improved by reducing the imaged area, or by 
increasing the target reflectivity r, or by increasing the 
integration time, T. The integration time cannot be 
increased arbitrarily, however; since it determines the 
frame rate for which most applications have a minimum 
requirement. It is also possible to improve resolution 
with qe by using a lower-wavelength laser. However, 
keeping the wavelength in the infrared range is desired 
by most applications. 

Another way of improving resolution is to increase 
the modulation frequency fm; although this reduces the 
unambiguous range, resulting in a higher degree of 
aliasing. See Section 4.2 for a discussion of aliasing. 

In the presence of ambient light the above 
resolution equation needs to be revised since ambient 
light contributes to the (shot) noise, but not to the 
useful signal. Let Pamb be the ambient light power 
present in the target area A. Factoring in Pamb, we find 
that the RMS error in the voltage across the storage 
capacitor becomes 
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Since the useful signal Vsignal remains the same, the 
depth resolution changes to 
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Clearly, to get the best resolution we must minimize 
Pamb. Thus for the sensor to operate in the presence of 
sunlight some techniques have to be developed. This 
issue is further discussed in Section 4.4. 
 
4. Issues 

Below we describe the issues that may affect a TOF 
system such as ours and propose various solutions. 
4.1. Improving Noise Behavior 
The resolution analysis given above is a per-pixel, per- 
frame resolution. The effect of limited resolution is 
seen as a noisy behavior on the depth images, where 
the standard deviation of the noise is equivalent to 
resolution of the system. The noise can be reduced 
using techniques from radar sensing, in particular 
through spatial and temporal averaging.  

The output range of each pixel can be modeled as a 
Gaussian with a mean value of µi and standard 
deviation of σi where µi corresponds to the actual 
range value of pixel i. Assume that the range value is 
constant over a local neighborhood of pixel i, and that 
all pixels have the same noise behavior modeled by a 
Gaussian (µk,σk)=(µ,σ). Let the range value be 
obtained via averaging of a neighborhood (spatial or 
temporal) of pixels around pixel i. According to 
probability theory: 
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In other words, the resolution can be increased by a 
factor of N if the range values are averaged in a 
spatial or temporal neighborhood of N pixels. This, of 
course, assumes that the range values in that 
neighborhood are constant. Unfortunately, this is not 
true in most cases. The effect of averaging is more 
drastic if the averaging is applied on a spatial edge, or 
temporal edge in the form of motion. A filtering 
scheme that takes the edges into account gives more 
reliable results, especially around the edges. To 
accomplish this, one option is to use median filtering, 
where each pixel is assigned the median of the values 
around its local neighborhood. Another option is to 
apply edge detection prior to averaging. We evaluate 

the effects of various averaging schemes, such as 
median filtering and uniform averaging in Section 5. 
4.2. Aliasing Problem 

Due to the limited unambiguous distance range, 
aliasing arises as an issue. Target objects that are 
separated by one full range or integer multiples of the 
full range, are indistinguishable. For example, given a 
50 MHz modulation frequency, whose unambiguous 
range is 3m, an object at 1m and another at 4m from 
the sensor produce the same range value. Lowering the 
modulation frequency to, say, 10 MHz increases the 
unambiguous range to 15m. However, the resolution 
goes down by a factor of 5, as seen from the resolution 
equation of Section 3.  

One method of increasing the unambiguous 
distance range is to take two or more measurements, 
each with a different modulation frequency. Suppose 
two distance measurements are made with two 
frequencies f1 and f2. Let R1 and R2 be the maximum 
unambiguous ranges for these frequencies. With two 
measurements, the effective unambiguous range is 
increased to the LCM (least common multiple) of R1 
and R2. This method is illustrated in Figure 7. Suppose 
that there is an object at 13m from the sensor. If we 
only use one modulation frequency of 25 Mhz, we can 
infer that the object is either at 1m or 7m or 13m or 
19m. If we only use 18.75 Mhz for modulation, we can 
infer that the object is either at 5m or 13m or 21m. 
Combining the two results, we conclude that the object 
must be at 13m. Of course, this object would still be 
confused with another at 37m (13m+24m), but, 
compared to the one-frequency case, the unambiguous 
range is extended significantly. 

  
Figure 7. Ambiguity reduction with two different 
frequencies. 

 
 One strategy in selecting modulation frequencies is 

to maximize the LCM of the corresponding ranges by 
choosing two frequencies close to each other. Another 
strategy is to use a log-based approach where a number 
of measurements are made with frequencies f, 2*f, 4*f, 
8*f and so on. In each successive measurement the 
resolution is doubled while the range is halved. By 
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combining the results, an accurate value of distance 
over a long unambiguous range can be obtained.  
4.3. Motion Artifacts  

As mentioned in Section 2, for higher accuracy, it is 
necessary to have the light signal switch between 
multiple phases within a single frame. However this 
approach may introduce motion artifacts. The effect is 
somewhat equivalent to having motion blur in a picture 
when a long exposure time is used. There is a similar 
motion artifact in our system if there is fast movement 
in the scene. When the object moves fast between the 
phases within a frame, each phase may potentially 
receive light coming from a different distance. 

The motion artifact is observed mostly around the 
edges of a moving object. There are various ways to 
solve this problem. An obvious method is to increase 
the frame rate. Alternatively one can estimate the 
motion in 3D, and then correct the range values around 
the boundaries. Yet another option is to do edge 
detection followed by elimination of motion artifacts 
around the edges. Here, we propose a morphological 
method to solve the problem. 

Let RI be the input segmented foreground range 
image. Since the foreground is closer to the camera, 
the motion artifact is mostly observed in the 
foreground objects. This image is first binarized to 
obtain image B. The boundaries of the image can be 
extracted by an erosion operation. Let BE be the eroded 
image. An eroded image RE is obtained in the 
following manner: 
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Then a dilated image RD is obtained by a gray level 
dilation operation on RE. Finally, the output range 
image RO is constructed in the following manner: 
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The output image RO clears the motion artifacts. This 
method requires that the background be first eliminated 
via depth based segmentation. Then the background 
should be assigned a reference value of 0. 
4.4. Ambient Effect 

Ambient light is considered as unwanted light that 
has the same wavelength as the light source of the 
system. Although ambient light is non-modulated, 
constant light, it has a shot noise component that 
causes errors in the sensor. As a consequence, there 
may be noisy data in the area of the image receiving 
ambient light.  

The ambient noise can be eliminated in various 
ways. In this paper, we propose a signal processing 
technique. We make use of the observation that the 

pixel values have a spatial (and temporal) high-
frequency behavior in a local neighborhood when lit 
by ambient light. We first perform frequency 
transformation in a local neighborhood of every pixel. 
Let F{N[Xi]} be the Fourier transformation where 
N[Xi] is the set of pixel values around pixel i. We can 
then look at energy contained in the high frequency 
bands in F{N[X)]}, and eliminate the pixel if this 
energy is sufficiently large. 

In practice, this technique might be computationally 
too expensive. In order to make it efficient, one can 
use other filters such as: 
   [ ]( )

[ ]( )



≤
>

=
TcrXNfifcrX
TcrXNfif

crY
),(),(
),(0

),(  

where X(r,c) and Y(r,c) are the input (original) and 
output  (new) values at location (r,c) respectively, and 
f(N[X(r,c)]) is a function of the neighborhood of pixel 
X(r,c). In our experiments, we use as f(N[X(r,c)]) the 
ratio of the standard deviation of pixels in the 
neighborhood of (r,c) to their mean value. 
4.5. Saturation versus No Data Trade-off 

This is a known problem for every camera based 
system. For instance, non-reflective objects may 
appear black while reflective objects saturate the 
pixels. In a TOF sensor, a pixel produces useful range 
data only when enough light is received at the pixel. 
On the other hand, the pixel produces a wrong range 
value when it saturates. Therefore, imaging low-
reflectivity objects vs. high-reflectivity objects arises 
as a trade-off. 

There are various techniques to increase the 
dynamic range. In this paper, we propose to use 
multiple exposure settings. In the low exposure setting, 
the high-reflectivity object returns enough light 
without saturating the pixel, and the low-reflectivity 
object does not produce any range value. In the high 
exposure setting, the high-reflectivity object saturates, 
while the low-reflectivity object produces the range 
data. Here we propose to combine the high-reflectivity 
object readings from the low exposure setting with the 
low-reflectivity object readings from the high exposure 
setting. 

 
5. Experiments and Results 
We have captured images of various scenes to test our 
ideas in resolving the issues mentioned in previous 
sections. First, we show some brightness and depth 
(range) images that were captured by our camera in 
Figure 8 and 9. In Figure 8, we image a large card 
board box that was tilted towards the camera. The 
brightness image does not provide enough information 
regarding the geometry of the box, but the range image 
shows the exact geometry. Here we used a colormap 



such that the pixels change color from green to yellow 
and then to red as the objects are further away from the 
camera. We also provide a mesh view of the pixel 
values. In Figure 9, we show another scene where 
three blocks are placed on a platform. Besides the 
range image, the side view of a cloud map is also given 
to show the geometry of the blocks. In this example, 
we placed the blocks at 60cm, 74cm, and 94 cm 
respectively. The average reading on each of these 
blocks were 60.36cm, 74.11cm and 93.90cm 
respectively. The average standard deviation around a 
5x5 neighborhood of each pixel was 0.88cm, 0.94cm, 
and 1.39cm respectively. We provide another example 
in Figure 10 where a person is imaged. We calculated 
the standard deviation around the local neighborhood 
of each pixel in the range image to be 0.54cm. 

Next, we demonstrate the effect of median filtering 
in improving the resolution. A median filter of size 5x5 
was applied to each pixel in the image of Figure 10. 
The resulting images are shown in Figure 11. The 
average standard deviation around all pixels has been 
calculated as 0.24cm. In other words, we observe a 
two-fold improvement in resolution using median 
filtering. We also applied uniform low-pass filtering 
across the image (Figure 11(c)). The average standard 
deviation was calculated as 0.22cm. 

Another method for increasing the resolution is via 
temporal averaging. Figure 12(a) illustrates a face 
mesh captured by our sensor. The mesh is not smooth 
especially around the nose area. To improve the 
resolution, 10 consecutive images were averaged 
(Figure12.b). The details of the face are much clear 
and the resolution is considerably increased.  

Next, we present experiments where we test the 
effect of ambient light and our filters for ambient 
artifact cancellation. In Figure 13, (a) and (b) show the 
brightness and range images of a scene where a small 
rectangular block is in front of a large rectangular 
block. Two incandescent lights of 600 watts each 
illuminate the scene. The small block is lit mostly by 
the light source of the system. The large block, 
however, is lit mostly by the incandescent light. In 
Figures 13(d) and (e) show, respectively, the small and 
large blocks in greater detail. In Figure 12(f) and (g), 
we provide the 2D frequency transformations of the 
two sub-windows. We observe that the frequency 
transformation of the large block has more high 
frequency components as an artifact of the ambient 
light. The ambient cancellation filter produces the 
image given in Figure 13(c). Note that the part of the 
scene lit mostly by the ambient content is eliminated. 

Figure 14 shows a person sitting in front of the 
camera where the scene is lit by the same incandescent 
lights. Figure 14(c) provides the results of the ambient 

cancellation filter. In this example, the person is 
accurately distinguished from the background. 

In Figure 15, we show one frame from a sequence 
where a rectangular block was captured in motion. We 
observe the motion artifact around the edges of the 
block in this example. In order to remove this artifact, 
we apply the morphological operations as described in 
Section 4.3. The result is given in Figure 15(c) where 
the motion artifacts are eliminated.  

Finally, we illustrate the use of multiple exposures 
to increase the dynamic range. For this experiment, we 
created a scene where we placed high reflectivity 
objects close to the camera, and low-reflectivity 
objects away from the camera. We then obtained the 
brightness and range images with various shutter time 
settings. These images are shown in Figure 16. 
Observe that in each case, either the nearby objects 
saturate, or the more distant objects do not produce any 
range data due to lack of light. We combined the range 
measurements from two exposure settings, resulting in 
the images of Figure 17. We also obtained a brightness 
image by logarithmic scaling in between frames. We 
observed that a range image that shows the range 
values of all of the objects in the scene can be 
constructed with this method.  

 
6. Discussion and Comparison to Other 
Types of Depth Sensors 

Our depth sensor calculates distance by measuring 
the time that a light beam takes to travel from an object 
to the sensor. TOF techniques have been employed in 
radar systems for a long time. But our main 
contribution is to realize this technology using light 
(laser/LEDs), and implement it on a single CMOS 
chip. Due to the low cost of manufacturing CMOS 
chips, this technology is now available to a wide 
variety of applications.  

In our experiments to evaluate the performance of 
our system, we observed a standard deviation of less 
than one cm. The resolution may be further improved 
by increasing the light power or by using post 
processing techniques such as median filtering. 
Theoretical analysis shows that depth resolution 
depends mostly on the amount of light reflected back 
into the sensor. There are various parameters affecting 
the amount of reflected light. For instance, if the light 
power, or the light exposure time is increased, the 
amount of the reflected light also increases, which in 
turn improves the resolution. Similarly, if the area 
illuminated by the light source is decreased, the 
amount of light received by each pixel is increased. 
The resolution can also be improved if the modulation 
frequency of the light source is increased.  



Other sources of IR light in the environment, i.e., 
ambient light, may adversely affect the performance of 
the system. But there are various ways to improve the 
performance in these cases. In this paper, we proposed 
a method that applies texture analysis and removes the 
ambient content from the image. 

 TOF sensors have numerous advantages over other 
depth sensors. Triangulation-based methods such as 
stereo require intensive post processing to construct 
depth images. This is not necessary for the TOF 
sensor, and the post processing usually involves a 
simple table-lookup to map the sensor reading to real 
range data. Unlike triangulation systems, our sensor 
does not require a baseline between its optical 
components, or any sensitive alignment.  

While the performance of many depth sensors 
depends heavily on the lighting conditions of the 
scene, our system has its own floodlight and does not 
require any light from the scene. Structured light 
systems usually require a good illumination contrast in 
order to recognize a certain pattern in the image. This 
translates to high power and high-density light sources, 
which are more expensive and potentially not eye safe. 
On the other hand our sensor doesn’t require a high-
power light source as there is no pattern to extract from 
the image. If enough light returns back to a pixel, the 
depth is successfully calculated.  

Our TOF-based sensor has other advantages as 
well. It is texture independent, and constructs depth 
images regardless of the texture in the scene. Within a 
frequency-dependent range, it does not produce any 
ambiguous data. Finally, the sensor can be 
implemented on a standard CMOS chip, making it 
highly cost effective and commercially available in 
large quantities. Such a low-cost 3D sensor opens the 
door for many existing and new applications into the 
world of electronic perception technology where 
electronic devices are given the ability to perceive and 
interact with the world around them in real time. 
 
7. Conclusions 
The newly emerging electronic perception technology  
enables a large variety of present and future 
applications where a system or a robot needs to see and 
understand its environment. In this paper, we presented 
a new TOF-based  camera system that generates depth 
images in real time for use in electronic perception 
applications. Our contribution is that we have 
integrated a complete TOF-based 3D depth sensor on a 
CMOS chip and developed the software methods to 
optimize its peformance. Although there are various 
problems involved in using such a system, we have 
shown that they can be successfully solved,  resulting 

in a robust and efficient system with a depth resolution 
of only a few milimeters. We envision a wide variety 
of applications where our technology can be used to 
enable everyday devices to perceive and interact with 
their surroundings in three dimensions. 
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          (a)                                (b)                                (c) 

Figure 8. (a) Brightness image of a scene. (b) Range 
image (first 1.5 m). (c) Mesh of the range image. 

 
          (a)                                (b)                                (c) 

Figure 9. (a) Brightness image of a scene. (b) Range 
image (first 1.5 m). (c) Point cloud of the scene. 

  
          (a)                                (b)                                (c) 

Figure 10. (a) Brightness image. (b) Range image. (c) 
Mesh of the range image. 

 
           (a)                                (b)                                (c) 

Figure 11. (a) Range image after median filtering. (b)  
Resulting mesh. (c) Range image obtained with uniform low-
pass filtering. 

  
(a) (b) 

Figure 12. (a) A face mesh obtained by our sensor. (b) The 
face mesh obtained by averaging 10 frames. 

 
Figure 13. (a) Brightness image. (b) Range image. (c) Range 
image after ambient cancellation filtering. (d) Close-up of a 
region lit by the light source. (e) Close-up of a region lit by 
ambient light. (f,g) 2D Fourier transformations of (d) and (e). 

   
           (a)                                (b)                                (c) 

Figure 14. (a) Brightness image. (b) Range image. (c) Range 
image after ambient cancellation filtering. 

   
           (a)                                (b)                                (c) 

Figure 15. (a) Brightness image of an object in motion. (b) 
Range image. Observe the motion artifact along the edges. 
(c) Range image after morphological motion filtering. 

   

   
Figure 16. Brightness (top row) and range (bottom row) 
images using various exposure settings. 

  
Figure 17. Brightness (left) and range image (right) 
obtained using two exposure settings. 


