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ABSTRACT In eukaryotes, the core promoter serves as a platform for the assem-
bly of transcription preinitiation complex (PIC) that includes TFIIA, TFIIB,
TFIID, TFIIE, TFIIF, TFIIH, and RNA polymerase II (pol II), which func-
tion collectively to specify the transcription start site. PIC formation usually
begins with TFIID binding to the TATA box, initiator, and/or downstream
promoter element (DPE) found in most core promoters, followed by the en-
try of other general transcription factors (GTFs) and pol II through either a
sequential assembly or a preassembled pol II holoenzyme pathway. Formation
of this promoter-bound complex is sufficient for a basal level of transcription.
However, for activator-dependent (or regulated) transcription, general cofactors
are often required to transmit regulatory signals between gene-specific activa-
tors and the general transcription machinery. Three classes of general cofactors,
including TBP-associated factors (TAFs), Mediator, and upstream stimulatory
activity (USA)-derived positive cofactors (PC1/PARP-1, PC2, PC3/DNA topoi-
somerase I, and PC4) and negative cofactor 1 (NC1/HMGB1), normally func-
tion independently or in combination to fine-tune the promoter activity in a
gene-specific or cell-type-specific manner. In addition, other cofactors, such as
TAF1, BTAF1, and negative cofactor 2 (NC2), can also modulate TBP or TFIID
binding to the core promoter. In general, these cofactors are capable of repress-
ing basal transcription when activators are absent and stimulating transcription
in the presence of activators. Here we review the roles of these cofactors and
GTFs, as well as TBP-related factors (TRFs), TAF-containing complexes (TFTC,
SAGA, SLIK/SALSA, STAGA, and PRC1) and TAF variants, in pol II-mediated
transcription, with emphasis on the events occurring after the chromatin has
been remodeled but prior to the formation of the first phosphodiester bond.
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INTRODUCTION
Discovery of Eukaryotic RNA Polymerase I,II,III, and IV

The view that genetic information flows from DNA to RNA to protein,
known as the Central Dogma (Crick, 1958), has been expanded due to the
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discovery of additional pathways to perpetuate genetic
information, i.e., from RNA to DNA (Baltimore, 1970;
Temin and Mizutani, 1970) and to conformational
changes induced by proteinaceous infectious agents
(Prusiner et al., 1982). The production of RNA, termed
transcription, is a highly coordinated process mediated
by RNA polymerase, whose enzymatic activity was
first discovered by Weiss and Gladstone in 1959
from rat liver nuclei. This enzyme could synthesize
RNA in a DNA-dependent manner, as evidenced
by the observation that, upon addition of DNase,
incorporation of [α-32P]CTP into RNA was drastically
reduced (Weiss and Gladstone, 1959). A similar
RNA-synthesizing activity was later identified from
Escherichia coli (Hurwitz et al., 1960; Stevens, 1960;
Chamberlin and Berg, 1962), thereby establishing a
universal role of RNA polymerases in transcribing
DNA in both eukaryotes and prokaryotes. To date,
four different RNA polymerases have been identified
in higher eukaryotes. In contrast, only one RNA
polymerase is found in prokaryotes and archaea.

Three eukaryotic RNA polymerases (I, II, and III,
or named A, B, and C, respectively) were first iden-
tified by Roeder and Rutter, based on the chromato-
graphic fractionation of sea urchin embryo nuclei on
a DEAE-Sephadex column. RNA polymerase I came
off the column first at the lowest salt concentration,
whereas RNA polymerase III eluted at the highest salt
concentration (Roeder and Rutter, 1969). Although the
existence of three eukaryotic RNA polymerases was
established in 1969, their functions remained elusive
until Chambon’s and Roeder’s groups found that the
specific activity of each RNA polymerase could be
resolved based upon their differential sensitivities to
α-amanitin (Gniazdowski et al., 1970; Kedinger et al.,
1970; Weinmann and Roeder, 1974; Weinmann et al.,
1974), a drug isolated from the death cap fungus,
Amanita phalloides, that inhibits 50% activity of RNA
polymerase II at low concentrations (0.02 µg/mL) and
that of RNA polymerase III at high concentrations
(20 µg/mL; Weinmann et al., 1974). Using α-amanitin
sensitivity assay with endogenous RNA polymerases
present in isolated nuclei, Roeder and Rutter (1970) dis-
covered that RNA polymerase I is primarily involved
in transcribing 18S and 28S ribosomal RNAs, while
RNA polymerase II transcribes mRNAs, and RNA poly-
merase III is responsible for synthesis of cellular 5S
rRNA, tRNAs, and adenovirus VA RNAs. These results
were consistent with the finding that RNA polymerase I

is localized within nucleoli, the sites for rRNA synthe-
sis, whereas RNA polymerase II and III are normally
present in the nucleoplasm (Roeder and Rutter, 1970;
Zylber and Penman, 1971; Weil and Blatti, 1976).

The fourth RNA polymerase, recently identified in
plants to facilitate the production of small interfering
RNA (siRNA) involved in RNA-directed DNA methy-
lation and transcriptional silencing and formation of
heterochromatin, is also present in the nucleus and
is resistant to α-amanitin (Herr et al., 2005; Kanno
et al., 2005; Onodera et al., 2005). Although this plant-
specific RNA polymerase IV appears to be nonessential
for viability, it exhibits unique properties not shared
by other nuclear RNA polymerases. Interestingly, an
α-amanitin-resistant single-polypeptide nuclear RNA
polymerase (spRNAP-IV), structurally unrelated to the
multisubunit plant RNA polymerase IV, has been ad-
ditionally found in human HeLa cells (Kravchenko
et al., 2005). This spRNAP-IV enzyme, encoded by an
alternative transcript derived from the mitochondrial
RNA polymerase gene (POLRMT) that also encodes
the single-polypeptide mitochondrial RNA polymerase
(mtRNAP), lacks the N-terminal 262-amino acids en-
compassing the mitochondrial targeting sequence but
contains the same C-terminal 968 amino acid cat-
alytic region of mtRNAP. While spRNAP-IV appears to
be structurally distinct from α-amanitin-sensitive RNA
polymerase II, it represents a second RNA polymerase
able to transcribe a subset of mRNA-encoding genes
that do not contain the core promoter elements and
regulatory sequences commonly found in RNA poly-
merase II-transcribed genes.

Clearly, the findings that each of these eukaryotic
RNA polymerases has unique biochemical properties,
as exhibited by their distinct chromatographic elution
profile, nuclear localization, and differential sensitivity
to α-amanitin, and that RNA polymerase I has 14 sub-
units, while RNA polymerase II and III possess 12 and
17 subunits, respectively, suggest that these three clas-
sical eukaryotic RNA polymerases and the newly iden-
tified plant RNA polymerase IV and human spRNAP-
IV are unlikely to play a functionally redundant role
in the cell. However, these enzymes do share a com-
mon property in transcribing a diverse set of DNA se-
quences, although they lack sequence-specific recogni-
tion ability to correctly specify the transcription start
site unique to each gene. For site-specific initiation, ad-
ditional proteins are necessary to form an initiation-
competent RNA polymerase complex. Here, we review
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FIGURE 1 Purification scheme for partially purified general transcription factors. Fractionation of HeLa nuclear extract (Panel A) and
nuclear pellet (Panel B) by column chromatography and the molar concentrations of KCl used for elutions are indicated in the flow chart,
except for the Phenyl Superose column where the molar concentrations of ammonium sulfate are shown. A thick horizontal (Panel A)
or vertical (Panel B) line indicates that step elutions are used for protein fractionation, whereas a slant line represents a linear gradient
used for fractionation. The purification scheme for pol II, starting from sonication of the nuclear pellet, followed by ammonium sulfate
(AS) precipitation is shown in Panel B. (Figures are adapted from Flores et al., 1992 and from Ge et al., 1996)

the functional properties of general transcription
factors and general cofactors that help RNA polymerase
II engage in the transcriptional process in a site-specific
and gene-specific manner, with emphasis on the steps
regulating preinitiation complex assembly that is often
the focal point for gene regulation.

The General Transcription Machinery
Biochemical evidence of accessory factors necessary

for site-specific initiation by RNA polymerase II (here-
after referred to as pol II) became evident when purified
pol II, supplemented with crude subcellular fractions,
was able to accurately transcribe the native adenovirus
DNA template in vitro (Weil et al., 1979). Further purifi-
cation of these subcellular fractions over a Whatman
P11 phosphocellulose ion exchange column yielded
four enzymatically active fractions (A, B, C and D),
which corresponded to the nuclear proteins sequen-
tially eluted by 0.1, 0.3, 0.5 (or 0.6), and 0.85 (or 1.0) M
KCl-containing buffer. Components within fractions A,

C, and D were necessary for accurate initiation of tran-
scription by pol II (Matsui et al., 1980; Samuels et al.,
1982). The protein factors present in the A and D frac-
tions required for pol II-mediated transcription were
named TFIIA and TFIID, respectively (Figure 1A). The
C fraction was subsequently fractionated into accessory
factors TFIIB, TFIIE, TFIIF, and TFIIH (Sawadogo and
Roeder, 1985a; Reinberg and Roeder, 1987; Flores et al.,
1989; Flores et al., 1992; Ge et al., 1996). These acces-
sory factors (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and
TFIIH) were collectively defined as general transcrip-
tion factors (GTFs) using the following nomenclature:
TF represents Transcription Factor, the Roman numeral
II indicates pol II-driven transcription, and the “letter”
generally corresponds to which chromatographic frac-
tion the specific GTF was isolated from (Figure 1A).
Nuclear pellets, the residual chromosomal fraction fol-
lowing extraction of soluble nuclear components (i.e.,
nuclear extract) at 0.42 M KCl-containing buffer, were
frequently used for pol II purification as outlined
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TABLE 1 Components of the human general transcription machinery

Factor Protein composition Function

TFIIA p35 (α), p19 (β), and p12 (γ) Antirepressor; stabilizes TBP-TATA complex; coactivator

TFIIB p33 Start site selection; stabilize TBP-TATA complex; pol II/TFIIF recruitment

TFIID TBP + TAFs (TAF1-TAF14) Core promoter-binding factor
Coactivator
Protein kinase
Ubiquitin-activating/conjugating activity
Histone acetyltransferase

TFIIE p56 (α) and p34 (β) Recruits TFIIH
Facilitates formation of an initiation-compentent pol II
Involved in promoter clearance

TFIIF RAP30 and RAP74 Binds pol II and facilitates pol II recruitment to the promoter
Recruits TFIIE and TFIIH
Functions with TFIIB and pol II in start site selection
Facilitates pol II promoter escape
Enhances the efficiency of pol II elongation

TFIIH P89/XPB, p80/XPD, p62, p52, ATPase activity for transcription initiation and promoter clearance
p44, p40/CDK7, p38/Cyclin H, Helicase activity for promoter opening
p34, p32/MAT1, and p8/TFB5 Transcription-coupled nucleotide excision repair

Kinase activity for phosphorylating pol II CTD
E3 ubiquitin ligase activity

pol ll RPB1-RPB12 Transcription initiation, elongation, termination
Recruitment of mRNA capping enzymes
Transcription-coupled recruitment of splicing and 3′ end processing factors
CTD phosphorylation, glycosylation, and ubiquitination

(Figure 1B). Accessory factors necessary for site-specific
initiation by pol II were similarly purified by different
groups from HeLa cells (Gerard et al., 1991), rat liver
(Conaway et al., 1991), S. cerevisiae (Sayre et al., 1992),
and Drosophila (Parker and Topol, 1984; Heberlein et al.,
1985; Price et al., 1987). The protein composition and
functional properties of each GTF and pol II are briefly
summarized in Table 1 and will be further elaborated
in the later sections.

Core Promoter Elements
Studies on eukaryotic promoters have thus far iden-

tified seven core promoter elements (Figure 2), which
are characteristic DNA sequences required for pro-
moter function and for proper assembly and orienta-
tion of the transcription preinitiation complex (PIC).
The TATA box is an A/T-rich sequence located approx-
imately 25 to 30 nucleotides upstream of the transcrip-
tion start site (+1) in humans. It contains a consensus
sequence, TATA(A/T)A(A/T)(A/G), whose recognition
by the TATA-binding protein (TBP) or the TBP subunit

present in the human TFIID complex, nucleates PIC
formation (reviewed by Smale and Kadonaga, 2003). A
second core promoter element, the initiator (Inr), con-
tains a pyrimidine-rich sequence, PyPyA+1N(T/A)PyPy,
surrounding the transcription start site. The Inr is
capable of directing accurate transcription initiation ei-
ther alone or in conjunction with a TATA box or other
core promoter elements. The TAF1/TAF2 components
of TFIID have been implicated in Inr recognition, as
the Inr sequence was preferentially selected for binding
by the immobilized human TAF1 and Drosophila TAF2
dimeric complex in random DNA-binding site selection
assays (Chalkley and Verrijzer, 1999). The downstream
promoter element (DPE) with a consensus sequence,
(A/G)G(A/T)CGTG, represents the third core promoter
element, which is located 28 to 34 nucleotides down-
stream of the transcription start site in many Drosophila
TATA-less promoters (Burke and Kadonaga, 1996, 1997;
Kutach and Kadonaga, 2000), but is situated between
+29 and +35 in the human TATA-less TAF7 promoter
(Zhou and Chiang, 2001, 2002). The finding that both
Drosophila TAF6 and TAF9 can be cross-linked to the
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FIGURE 2 Recognition of core promoter elements by TFIID and TFIIB. The upper figure depicts the interactions between TFIID and
TFIIB with the seven core promoter elements discussed in this review. The table in the lower panel lists the consensus sequence and
positions for each of these core promoter elements. n.a., not available.

DPE (Burke and Kadonaga, 1997) and the human TAF6
and TAF9 dimeric complex exhibits DPE-binding speci-
ficity in electrophoretic mobility shift assays (Shao
et al., 2005) indicates that TFIID is the primary
GTF recognizing the DPE. Interestingly, negative co-
factor 2 (NC2 or Dr1-Drap1), initially characterized
as a TBP-inhibitory factor when assayed with a TATA-
containing promoter (Meisterernst and Roeder, 1991;
Inostroza et al., 1992; Goppelt et al., 1996; Mermelstein
et al., 1996), has also been shown to facilitate transcrip-
tion from DPE-driven Drosophila promoters (Willy et al.,
2000). It seems that TFIID and NC2, two of the DPE-
targeting factors, may work synergistically through the
DPE, although their functional relationship remains to
be elucidated.

In additional to the DPE, two other core promoter
elements, MTE (motif ten element; Ohler et al., 2002;
Lim et al., 2004) and DCE (downstream core element;
Lee et al., 2005b), are also situated downstream of the
transcription start site. The MTE with a consensus

sequence C(G/C)A(A/G)C(G/C)(G/C)AACG(G/C)
found between +18 to +29 normally functions in
conjunction with the Inr to enhance pol II-mediated
transcription. It can also functionally substitute for
the loss of the TATA box and/or DPE as well as work
synergistically with the TATA box and DPE, in an
Inr-dependent manner, to strengthen the promoter
activity (Lim et al., 2004). However, the protein factors
that act through the MTE have not yet been defined.

In contrast to the sequence continuity seen with
other core promoter elements, the DCE contains three
discontinuous subelements: SI, SII, and SIII, with a core
sequence of CTTC, CTGT, and AGC, respectively,
spanning from +6 to +34 (Lee et al., 2005b; see
Figure 2). The presence of DCE and DPE seems to
be mutually exclusive, as indicated by the sequence
analysis of human promoter databases (Lee et al.,
2005b). Interestingly, the TAF1 component of TFIID
is able to contact each subelement as revealed by the
crosslinking study, suggesting that TFIID indeed plays a
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fundamental role in establishing downstream promoter
contacts first observed by DNase I footprinting studies
(Sawadogo and Roeder, 1985a; Nakajima et al., 1988;
Zhou et al., 1992; Chiang et al., 1993; Purnell et al., 1994).

The sixth and seventh core promoter elements are
recognized by a different GTF, TFIIB, through pro-
moter contacts with DNA sequences flanking the TATA
box, normally following TBP-induced DNA bending.
The upstream TFIIB-recognition element (BREu) with
a consensus sequence, (G/C)(G/C)(G/A)CGCC, is
contacted by the helix-turn-helix (HTH) DNA-binding
motif of TFIIB (Lagrange et al., 1998). This TFIIB-BREu

interaction can occur independently of TBP and helps
orient the directionality of the PIC (Lagrange et al.,
1998; Tsai and Sigler, 2000). In contrast, TFIIB
binding to the downstream TFIIB-recognition element
(BREd) with a consensus (G/A)T(T/G/A)(T/G)(G/T)
(T/G)(T/G) via its recognition loop that includes the
evolutionarily conserved G153 and R154 residues
appears to be TBP-dependent (Deng and Roberts,
2005). Although initially defined in TATA-containing
promoters, both BREu and BREd can also be found
in many TATA-less promoters based on bioinformatics
analysis (Deng and Roberts, 2005; Gershenzon and
Ioshikhes, 2005), suggesting that TFIIB is likely to
enhance TFIID binding to the core promoter region
by providing additional contact points.

The identification of these seven core promoter ele-
ments provides a molecular architecture underlying the
diversity of eukaryotic promoters. With available com-
putational tools, the abundance of each core promoter
element can be calculated in a genome-wide basis. A
previous analysis of the Drosophila promoter database
reveals that 57% of the Drosophila promoters do not
contain a TATA box, whereas the DPE is found in ap-
proximately 40% of the Drosophila promoters (Kutach
and Kadonaga, 2000). A similar inspection of 1031 hu-
man genes with putative transcription start sites indi-
cates that TATA+Inr+, TATA+Inr−, TATA−Inr+, and
TATA−Inr− genes constitute 28%, 4%, 56%, and 12%,
respectively, of the screened human genes (Suzuki et al.,
2001). This analysis suggests that 1/3 of human genes
contain a functional TATA box, whereas the major-
ity (∼68%) of human promoters are in fact TATA-
less. Following a more comprehensive promoter analy-
sis of EPD (eukaryotic promoter database) and DBTSS
(database of human transcriptional start sites), it is
found that less than 22% of the human genes contain
a TATA box, and among these TATA-containing pro-

moters, ∼62% have an Inr, ∼24% include a DPE, and
∼12% hold a BREu (Gershenzon and Ioshikhes, 2005).
The same study also indicates that more than 78% of the
human genes are TATA-less, and among these TATA-
deficient promoters, ∼45% possess an Inr, ∼25% have
a DPE, and ∼28% harbor a BREu. While these bioin-
formatics analyses provide an overview of the relative
abundance of each core promoter element present in
a given species, the functional role of these core pro-
moter elements in dictating the promoter strength, the
efficiency of PIC assembly, and as targeting regions for
enhancer activity remain to be investigated. From the
functional studies, it seems that the promoters of hu-
man housekeeping genes, oncogenes, growth factors,
and transcription factors often lack a TATA box (Zhang,
1998; Zhou and Chiang, 2001). Moreover, differential
utilization of alternative promoters that use a distinct
combination of core promoter elements also plays a
critical role in regulating gene expression in a spatial,
temporal or lineage-specific manner (Hansen and Tjian,
1995; Ren and Maniatis, 1998). It is interesting to note
that DPE and TATA motifs not only specify the ini-
tiation site for transcription, but also act as regulatory
elements for enhancer function (Butler and Kadonaga,
2001; Smale and Kadonaga, 2003). Undoubtedly, the
dissection of transcription complex assembly pathways
occurring on the core promoter region that serves as a
converging point for regulatory events is of vital impor-
tance for our understanding of the transcription mech-
anism unique to each gene.

The Sequential Assembly Pathway
The pathways leading to productive PIC assembly

at the promoter region has been intensively studied for
over a decade. In earlier studies, in vitro transcription
experiments performed with chromatographic fractions
derived from HeLa cells suggested that an initiation-
competent PIC could be assembled in a stepwise
manner and was stable, prior to the addition of ribonu-
cleoside triphosphates (NTPs), and refractory to chal-
lenges by competitor DNA (Fire et al., 1984), Sarkosyl
(Hawley and Roeder, 1985), and poly(dI-dC:dI-dC)
(Samuels and Sharp, 1986). There appeared to be
multiple steps leading to formation of a stable
promoter-bound complex, since transcription signals
varied depending on the order that pol II, individual
fractions, template and challenge DNA were added
into the reactions. In later studies, it was found that
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FIGURE 3 Pathways for preinitiation complex assembly. Preinitiation complex (PIC) formation may occur by stepwise recruitment of
the general transcription machinery (Panel A, the sequential assembly pathway) or by recruitment of preassembled pol II holoenzyme and
TFIID complexes as depicted in the two-component pathway (Panel B). The eukaryotic two-component pathway resembles the prokaryotic
RNA polymerase holoenzyme system where a dissociable σ factor directs the entry of the bacterial RNA polymerase core enzyme α2ββ

′.

preincubation of partially purified TFIID with the ade-
novirus major late promoter template, before inclusion
of the remaining transcription components, resulted
in a PIC that was resistant to template challenge by
a second adenovirus major late promoter-containing
DNA (Van Dyke et al., 1989). The hierarchical nature
of GTF assembly at the promoter region was further
defined by Buratowski and colleagues (1989) using
native gel electrophoresis and DNase I footprinting
to establish the order of entry and relative position of
GTFs at the adenovirus major late promoter, thus sug-
gesting an order-of-addition model for PIC formation.
Specifically, TFIID first recognizes the TATA box,
followed in a stepwise manner by the entry of TFIIA,
TFIIB, pol II and TFIIE (note: TFIIF and TFIIH had
yet to be identified). Once all of the GTFs, including
TFIIF and TFIIH, were identified and purified to near
homogeneity, this stepwise GTF assembly pathway
was updated as: TFIID first binds to the promoter

region, followed by the entry of TFIIA and TFIIB that
help stabilize promoter-bound TFIID, and then the
recruitment of pol II/TFIIF. After formation of a stable
TFIID-TFIIA-TFIIB-pol II/TFIIF-promoter complex,
TFIIE is then recruited, with the subsequent entry of
TFIIH. This stepwise manner of PIC assembly became
known as the sequential assembly pathway (Figure 3A).

The Pol II Holoenzyme Pathway
An alternative pathway for PIC formation was

uncovered when several laboratories discovered that
pol II could be purified as a preassembled holoenzyme
complex containing pol II and SRBs (suppressors of
RNA polymerase B mutations; Kim et al., 1994; Koleske
and Young, 1994), with or without a subset of GTFs;
and other proteins involved in chromatin remodel-
ing, DNA repair, and mRNA processing (Ossipow
et al., 1995; Cairns et al., 1996b; Chao et al., 1996;
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Maldonado et al., 1996; Wilson et al., 1996; Yuryev
et al., 1996; McCracken et al., 1997; Nakajima et al.,
1997; Cho et al., 1998; Wu and Chiang, 1998; Wu et al.,
1999; Liu et al., 2001b). Although the composition of
pol II holoenzyme complexes isolated from different
laboratories appeared to vary according to the methods
of purification and the sources of materials, the human
pol II holoenzyme complex isolated in our laboratory
contains pol II, TFIIB, TFIIE, TFIIF, TFIIH, GCN5
histone acetyltransferase, SWI/SNF chromatin remod-
eling factor, and SRBs, but is devoid of TFIID and
TFIIA (Wu and Chiang, 1998; Wu et al., 1999; see
Figure 3B). The identification of a TFIID-deficient pol
II holoenzyme complex suggests that TFIID, as a core
promoter-binding factor, may facilitate the entry of
pol II holoenzyme to the promoter region, a scenario
analogous to the prokaryotic RNA polymerase system
where a dissociable σ factor recruits core RNA poly-
merase (α2ββ ′) to the promoter region for PIC assembly
(Figure 3B). However, whether eukaryotic pol II indeed
exists as a holoenzyme complex in the cell or is recruited
in a stepwise manner as a separate entity, along with
individual GTFs, to the promoter region remains to be
elucidated. It is likely that both assembly pathways exist
in vivo, and, depending on specific signaling molecules
involved and the promoter context, either pathway
may be employed in responding to environmental cues.
Indeed, evidence supporting both models has been
reported for different regulatory systems (Orphanides
et al., 1996; Hampsey, 1998; Parvin and Young, 1998;
Lee and Young, 2000; Lemon and Tjian, 2000).

TFIID
TFIID is one of the first GTF that binds to the core

promoter and nucleates PIC assembly through either
the sequential assembly pathway or the two-component
pol II holoenzyme pathway. It is a multiprotein
complex comprising TBP and approximately 13
TBP-associated factors (TAFs), with molecular weights
ranging from 250 kDa to 15 kDa (Table 2). That TBP
and some TAF components of TFIID bind distinct
core promoter elements (see Figure 2) classifies TFIID
as a core promoter-binding factor. The TBP subunit of
human TFIID contacts the TATA box allowing TFIID
to recognize TATA-containing promoters, and the
interaction between TAF-Inr, TAF-DPE, and TAF-DCE
also confer TFIID the ability to recognize TATA-less
promoters. It should be noted that although TFIID

was initially defined as a TATA-binding factor by in
vitro DNA-binding assays, yeast and human TFIID
seem to act primarily through TATA-less promoters in
vivo (Basehoar et al., 2004; Kim et al., 2005a).

Identification of TATA-Binding
Activity

As described earlier, TFIID was originally iden-
tified as a chromatographic fraction necessary to
support site-specific transcription by pol II in vitro
(Matsui et al., 1980; Samuels et al., 1982). This TFIID
chromatographic fraction was relatively crude, and
many laboratories sought to isolate the key compo-
nent(s) in TFIID. Interestingly, TFIID was shown to
play a key role in binding the TATA box, initially from
Drosophila (Parker and Topol, 1984), then mammals
(Sawadogo and Roeder, 1985b) and yeast (Buratowski
et al., 1988; Cavallini et al., 1988). Once TFIID bound
to the TATA box, it was believed to serve as a scaffold
upon which the PIC could assemble (Fire et al., 1984;
Workman and Roeder, 1987; Hai et al., 1988; Horikoshi
et al., 1988; Moncollin et al., 1992). Eventually a sin-
gle polypeptide possessing TATA box-binding activity
(later termed TBP) was purified (Buratowski et al., 1988;
Cavallini et al., 1988; Horikoshi et al., 1989a) and cloned
from yeast (Cavallini et al., 1989; Hahn et al., 1989;
Horikoshi et al., 1989b; Schmidt et al., 1989; Hoffmann
et al., 1990a), Drosophila (Hoey et al., 1990; Muhich et al.,
1990), and humans (Kao et al., 1990; Peterson et al.,
1990; Hoffmann et al., 1990b). The immediate question
that followed was whether this single polypeptide TBP is
the functional equivalent of TFIID. In an elegant exper-
iment assaying for transcriptional activation dependent
on the transcriptional activator Sp1 (specificity protein
1), it was shown that Sp1 could stimulate transcription
from TATA-containing promoters only in the presence
of partially purified TFIID, but not with recombinant
Drosophila or yeast TBP (Pugh and Tjian, 1990). Further-
more, glycerol gradient sedimentation and immunopre-
cipitation analyses of partially purified TFIID, which
supported activator-dependent transcription, indicated
that TFIID was a multiprotein complex with a native
size of ∼ 750 kDa, rather than a single polypeptide of
38 kDa (Dynlacht et al., 1991; Pugh and Tjian, 1991;
Timmers and Sharp, 1991). Thus, it was proposed
that additional proteins (i.e., cofactors) were required
to work in conjunction with TBP to potentiate tran-
scriptional activation by Sp1. It was subsequently
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TABLE 2 Nomenclature of TAFs involved in RNA polymerase II-mediated transcription

C. elegans
New
name H. sapiens D. melanogaster S. cerevisiae S. pombe New name Previous name

TAF1 TAFII250 TAFII230 Taf145/130 TAFII111 taf-1 taf-1
TAF2 TAFII150 TAFII150 Taf150 T38673∗ taf-2 taf-2
TAF3† TAFII140 TAFII155 Taf47 taf-3 C11G6.1∗

TAF4† TAFII130/135 TAFII110 Taf48 T50183∗ taf-4 taf-5
TAF4b† TAFII105
TAF5 TAFII100 TAFII80 Taf90 TAFII72 taf-5 taf-4
TAF5b TAFII73
TAF5L PAF65α Cannonball
TAF6† TAFII80 TAFII60 Taf60 CAA20756∗ taf-6.1 taf-3.1
TAF6L PAF65α AAF52013∗ taf-6.2 taf-3.2
TAF7 TAFII55 AAF54162∗ Taf67 TAFII62/PTR6 taf-7.1 taf-8.1
TAF7L TAF2Q taf-7.2 taf-8.2
TAF8† BAB71460∗ Prodos Taf65 T40895∗ taf-8 ZK1320.12∗

TAF9† TAFII32/31 TAFII40 Taf17 S62536∗ taf-9 taf-10
TAF9L TAFII31L
TAF10† TAFII30 TAFII24 Taf25 T39928∗ taf-10 taf-11
TAF10b TAFII16
TAF11† TAFII28 TAFII30α Taf40 CAA93543∗ taf-11.1 taf-7.1
TAF11L taf-11.2 taf-7.2
TAF12† TAFII20/15 TAFII30α Taf61/68 T37702∗ taf-12 taf-9
TAF13† TAFII18 AAF53875∗ Taf19 CAA19300∗ taf-13 taf-6
TAF14 Taf30/ANC1#

TAF15 TAFII68#

BTAF1 TAFII170 Hel89B Mot1 T40642∗ btaf-1 F15D4.1∗

The TAF nomenclature for C. elegans is indicated on the right two columns, shaded in grey. (Adapted from Tora, 2002).
†TAFs with histone fold domains.
∗Accession numbers for TAFs not yet published or biochemically characterized.
#Non-conserved TAFs yet to be found in other species.

determined that TFIID is a multiprotein complex com-
posed of TBP and TAFs (Dynlacht et al., 1991; Tanese
et al., 1991). Isolation of TFIID was later facilitated by
immunoaffinity purification with antibodies directed
against TBP or an epitope tag linked to the TBP-coding
sequence (Dynlacht et al., 1991; Zhou et al., 1992;
Chiang et al., 1993; Poon and Weil, 1993; Reese et al.,
1994; Sanders et al., 2002a; Auty et al., 2004). This ap-
proach has greatly simplified the purification scheme
for TFIID and further facilitated the identification and
cloning of TAFs.

In humans, at least 14 TAFs have been identified
(Burley and Roeder, 1996; Hahn, 1998; Albright and
Tjian, 2000; Green, 2000; Tora, 2002), most of which
are highly conserved in S. cerevisiae, S. pombe, C. elegans,
and D. melanogaster (Burley and Roeder, 1996; Albright
and Tjian, 2000). Since individual TAFs were originally
named by virtue of their apparent molecular weights,
which often differ among species, a common name for

most of the conserved TAFs was proposed (Tora, 2002).
This unified nomenclature facilitates cross-species com-
parisons of TAFs, designated as TAF1 to TAF15 for
TFIID and a unique TBP-associated factor found in
B-TFIID as BTAF1 (see Table 2). The general view
regarding the role of TFIID is that it functions as:
(1) a core promoter-binding factor for both TATA-
containing and TATA-less promoters, (2) a coactivator
in mediating interactions between activators and the
general transcription machinery to enhance PIC assem-
bly, and (3) an enzyme to post-translationally modify
chromatin and protein factors involved in transcrip-
tional control.

TBP Recognition of the TATA Box
TATA recognition by the free form of TBP or the

TBP subunit of TFIID initiates PIC assembly on TATA-
containing promoters. The TATA box, with an 8-bp
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consensus sequence TATA(A/T)A(A/T)(A/G), is recog-
nized by the C-terminal region of TBP, which is phylo-
genetically conserved and is made up of ∼180 amino
acids (Hernandez, 1993; Nikolov and Burley, 1994; Bur-
ley and Roeder, 1996). The crystal structures of yeast
TBP in complex with the TATA box of the yeast CYC1
promoter (Kim et al., 1993b) as well as Arabidopsis TBP
(Kim et al., 1993a) and human TBP (Nikolov et al., 1996)
bound to the TATA sequence of the adenovirus ma-
jor late promoter, all indicate that the DNA is severely
bent upon TBP binding. In the bound and unbound
state, TBP resembles a molecular “saddle” with a pair of
“stirrups” flanking the DNA-binding surface that helps
bend the DNA. This saddle-shaped TBP molecule is
composed of four α-helices and ten β-strands (Nikolov
et al., 1992), which are organized into a bipartite DNA-
binding surface. Each half consists of five antiparallel
β-strands located on the concave underside of TBP that
straddles the DNA and one α-helix forming the side
stirrup. The other α-helix situated on the convex up-
perside interacts with transcription factors (Kim et al.,
1993a; Kim et al., 1993b; Nikolov et al., 1996). This
concave surface of TBP, with two pairs of phenylala-
nine residues (Phe284/Phe301 and Phe193/Phe210 in
humans) situated at its outermost edges, binds the TATA
box in the minor groove of the DNA double helix and
induces sharp kinks (more than 80◦) into the DNA
via intercalation of Phe284/Phe301 at the 5′ end and
Phe193/Phe210 at the 3′ end of the TATA box (Juo
et al., 1996; Nikolov et al., 1996). Moreover, amino acid
residues 190 to 194 and 281 to 285 of human TBP,
which make up the two side stirrups, accentuate the
DNA bend (Juo et al., 1996; Nikolov et al., 1996). These
structural studies, revealing a widened minor groove,
and a compressed major groove, are consistent with
TBP-TATA electrophoretic mobility shift assays using
permuted DNA fragments (Horikoshi et al., 1992).

The N-terminal region of human TBP is highly diver-
gent among species and appears dispensable for TFIID
complex assembly (Zhou et al., 1993). Human TBP pos-
sesses a contiguous but variable stretch of glutamine
residues (starting at residue 58), ranging in length from
29 to 42 between individual alleles, followed by three
imperfect Pro-Met-Thr (PMT) repeats located around
amino acids 142 to 150 preceding the C-terminal core
region of TBP. Expansion of the polyglutamine tract
beyond 42 residues is frequently linked to human neu-
rodegenerative diseases, such as spinocerebellar ataxia
SCA17 (Nakamura et al., 2001). Although not directly

involved in activator-dependent transcription by pol II
(Zhou et al., 1993), this N-terminal region of human
TBP is necessary for the recruitment of small nuclear
RNA-activating protein complex (SNAPc) to the U6
promoter transcribed by RNA polymerase III (pol III).
The N-terminal region also inhibits TATA binding by
the C-terminal region of TBP on both pol III- (Mittal
and Hernandez, 1997) and pol II-dependent promoters
(Zhao and Herr, 2002). Since TBP binding to the TATA
box is suggested to be a two-step process involving an
initial binding of TBP to the TATA box without bend-
ing the DNA and followed by a slow transition into
a more stable bent TATA-TBP complex, it is interest-
ing to find that deletion of the glutamine-rich domain
and PMT repeats in the N-terminal inhibitory region
promotes formation of the stable bent TBP-DNA com-
plex. Moreover, it seems that TFIIB’s ability to enhance
TBP binding to the TATA box is likely due to induced
stabilization of the bent TATA-TBP complex following
TFIIB binding to the solvent-exposed surface on the
convex side of the TBP core (Zhao and Herr, 2002).

Regulation of TBP Promoter Binding
Activity by Homodimerization

Although TBP’s specificity for DNA binding is
∼103 weaker than most major groove-binding proteins
(Coleman and Pugh, 1995), TBP does exhibit nonspe-
cific DNA-binding activity, sometimes leading to for-
mation of nonproductive transcription complexes on
scattered AT-rich sequences. To prevent spurious tran-
scription events initiating at nonpromoter sequence el-
ements, TBP may form a homodimer that is inactive
in DNA binding (Figure 4A). In addition, association
with TAFs may reduce nonspecific DNA-binding ac-
tivity of TBP and concurrently increase TFIID speci-
ficity at TATA-containing and particularly TATA-less
promoters. Formation of TBP homodimers was ini-
tially observed in the crystal structures of the C-terminal
core of Arabidopsis TBP (Nikolov et al., 1992; Nikolov
and Burley, 1994), yeast TBP (Chasman et al., 1993),
and human TBP (Nikolov et al., 1996), in the ab-
sence of DNA, and further confirmed by biochem-
ical analysis of full-length or the C-terminal core of
TBP using gel filtration/glycerol gradient fractionation
(Kato et al., 1994), photon correlation spectroscopy
(Nikolov et al., 1996) and chemical cross-linking studies
(Icard-Liepkalns, 1993; Coleman et al., 1995; Jackson-
Fisher et al., 1999). Dimerization of TBP is mediated
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FIGURE 4 Negative regulation of TBP-TATA complex formation. Multiple mechanisms are employed by transcription regulatory proteins
to prevent TBP-TATA complex formation.

through extensive contacts between the concave sur-
faces of each TBP monomer, thereby masking the DNA-
binding domain also located in the concave region.
Clearly only the monomeric form of TBP can bind to
the DNA, as evidenced by the structural analysis of
the TBP-TATA complex (Kim et al., 1993a; Kim et al.,
1993b; Nikolov et al., 1996). In yeast, these contacts
are located in the deepest part of the concave sur-
face, including amino acid residues N69, V71, V122,
T124, N159, V161, V213, and T215, since substitu-
tions of these amino acids individually with a bulky
charged arginine amino acid result in destabilization
of TBP dimers (Kou et al., 2003) and, as shown with

the V161R mutant, also significantly reduce the half-
life of TBP in vivo (Jackson-Fisher et al., 1999). The
ability of TBP to form dimers also leads to the for-
mation of TFIID homodimers, which can be detected
by size exclusion column chromatography and by
chemical cross-linking (Taggart and Pugh, 1996).

Although dimerization of the TBP core is clearly ob-
served in vitro, dimerization of the full-length TBP is
not always detectable under different conditions. By
examining self-association of yeast TBP over a wide
range of salt (60 mM to 1M KCl), protein concentra-
tions (2.6 µM to 31 µM), and temperature (4◦C to
37◦C), Daugherty and colleagues (1999, 2000) found by
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analytic ultracentrifugation that only monomeric rather
than dimeric TBP is in equilibrium with tetrameric and
octameric forms. Also by sedimentation equilibrium
studies, Campbell and coworkers (2000) observed that
at micromolar protein concentrations (6 µM to 60 µM)
only monomeric yeast TBP was detected when 10%
glycerol that prevents TBP aggregation was included
in the buffer. Moreover, by using chemical crosslink-
ing and gel filtration with 2.6 µM of TBP, Vanathi and
colleagues (2003) noted that the monomeric form of
TBP was favored over the dimeric form when 3 mM of
Mg2+ was added in 100 mM to 500 mM KCl-containing
buffer. Clearly, TBP self-association is a dynamic event
influenced by ions, salt, buffer, and protein concentra-
tions, wherein the N-terminal region of TBP somehow
modulates these transitions.

Inhibition of TBP Promoter Binding
Activity by TAF1

The DNA-binding activity of TBP is likewise sub-
ject to negative regulation by TAF1, the largest subunit
of TFIID (Kokubo et al., 1993). At the N-terminus of
Drosophila TAF1 are two separate regions able to con-
tact TBP: amino acid residues 11 to 77 (TAND1, for
TAF N-terminal domain 1) interacting with the con-
cave underside of TBP to block TATA recognition (Liu
et al., 1998; see Figure 4A) and amino acid residues
82 to 156 (TAND2) binding to the convex surface of
TBP to compete with TFIIA that would otherwise fa-
cilitate TBP-TATA complex formation (Kokubo et al.,
1998; see Figure 4B). Interestingly, the solution struc-
ture of Drosophila TAND1 bound with yeast TBP shows
a remarkable resemblance to the structure of the TBP-
TATA complex (Liu et al., 1998), as TAND1 exhibits an
arch-shaped surface contacting the concave underside
of TBP through both hydrophobic and electrostatic in-
teractions. The negatively charged side chains of TAF1
(Asp29, Glu31, Glu51, Glu70, and Asp73) interact with
the conserved lysine and arginine residues of TBP that
also contact the phosphate backbone of the TATA se-
quence. Competition for the same binding surface un-
derlies the mechanism for TAF1-mediated inhibition
of TBP binding to the TATA box (Kokubo et al., 1998),
which may also account for reduced TATA-binding and
transcription activity of TFIID, in comparison with
TBP, in vivo and in vitro (Ozer et al., 1998b; Wu and
Chiang, 1998; Wu et al., 1998). Likewise, TAND2-
mediated inhibition of TFIIA binding to TBP is due

to competition between TAF1 and TFIIA for the same
conserved positive charge residues on the convex sur-
face of TBP (Kokubo et al., 1998; see Figure 4B). This
TAF1-mediated effect on TBP-TFIIA and TBP-TATA in-
teractions appear to be functionally conserved, as the
same observation is also seen with experiments per-
formed with homologous yeast and human proteins
(Kokubo et al., 1998; Ozer et al., 1998b; Banik et al.,
2001).

Regulation of TBP-Promoter Complex
Formation by BTAF1

Other than interacting with TAFs as part of TFIID,
TBP also forms a distinct complex involved in pol
II-mediated transcription. This “TFIID-like” complex,
found in the P11 0.3 M KCl (or “B”) fraction, is named
B-TFIID, which is composed of TBP and a unique TBP-
associated factor called BTAF1 (Timmers et al., 1992).
This BTAF1 protein was formerly named TAFII170
and TAF-172 in humans (Timmers et al., 1992; van
der Knapp et al., 1997; Chicca et al., 1998), Mot1 in
yeast (Poon et al., 1994), and 89B helicase in Drosophila
(Goldman-Levi et al., 1996). As observed with TAF1,
human BTAF1 binds the concave and convex surfaces
of TBP likely in a reversible manner (Pereira et al.,
2001). The TBP concave-binding region, located at the
N-terminal amino acid residues 290 to 381 of BTAF1,
not only hinders TBP-DNA complex formation, but
also blocks TAF1 interaction with the concave under-
side of TBP (Pereira et al., 2001; see Figure 4A). While
the N-terminus of BTAF1 interacts with TBP, the C-
terminus possesses enzymatic activity allowing BTAF1
to induce the dissociation of TBP-TATA complexes in
an ATP-dependent manner (Chicca et al., 1998; see
Figure 4C). This ATPase domain, with a conserved sig-
nature DEGH box within the Walker A motif that
classifies BTAF1 as a member of the DNA-dependent
SWI2/SNF2 ATPase family (Pereira et al., 2003), how-
ever, is not necessary for BTAF1 binding to TBP (Auble
et al., 1997; Gumbs et al., 2003). Thus, it is appar-
ent that both the N-terminal TBP interaction domain
and the C-terminal ATPase domain of BTAF1 are
needed to remove TBP from the TATA box. This DNA-
translocating activity also allows BTAF1 to clear TBP
from nonpromoter AT-rich sequences, thereby enhanc-
ing the frequency of TBP binding to functional TATA
elements. The redistribution of TBP to correct pro-
moter regions may partially account for the coactivating
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function of BTAF1 in stimulating both basal and
activator-dependent transcription (Collart, 1996; Li
et al., 1999; Muldrow et al., 1999; Andrau et al., 2002;
Dasgupta et al., 2002; Geisberg et al., 2002). Concur-
rently, BTAF1 may compete with other TBP-interacting
factors, such as NC2 (see below) and TFIIA, along TBP’s
convex surface (Geisberg et al., 2002; Klejman et al.,
2005) to further modulate promoter activity. An addi-
tional control mechanism lies in the observation that, in
yeast, Mot1-TBP seems to exist as a transcriptionally in-
active promoter-bound complex under normal growth
conditions and is later activated by associating with
other GTFs and pol II following environmental stress
(Geisberg and Struhl, 2004). The dual role of BTAF1 in
gene activation and repression is in agreement with the
genome-wide transcriptional profiling data indicating
that ∼10% and ∼5% of yeast genes are, respectively,
more than two-fold upregulated and downregulated by
BTAF1 (Dasgupta et al., 2002; Geisberg et al., 2002).

Although BTAF1 recruitment to TATA-containing
promoters seems to be TBP-dependent (Geisberg and
Struhl, 2004), BTAF1 can also stimulate transcription
in a TBP-independent manner by facilitating chromatin
remodeling via the use of its ATPase activity (Topalidou
et al., 2004). This coactivating activity of BTAF1 may
account for the requirement of BTAF1 for transcrip-
tion from some yeast TATA-less promoters (Collart,
1996). Nonetheless, whether TBP is somehow involved
in BTAF1 recruitment to promoter regions lacking a
canonical TATA box is yet to be resolved. A recent
finding that BTAF1 is capable of recruiting TBP con-
cave surface mutants defective in TATA binding to pro-
moter fragments containing either wild-type or mu-
tated TATA sequences (Klejman et al., 2005) further
suggests that BTAF1 may alter the DNA-binding speci-
ficity of TBP, allowing TBP to associate with TATA-
less promoters. This intriguing possibility remains to be
explored.

NC2 Regulation of TBP-TATA
Complex Formation

A third TBP-interacting factor able to regulate TBP
binding to the promoter region is negative cofactor 2
(NC2), which is conserved in eukaryotes and is essential
for yeast viability (Inostroza et al., 1992; Goppelt and
Meisterernst, 1996; Gadbois et al., 1997). Human NC2
consists of NC2α (Drap1; 22 kDa) and NC2β (Dr1; 20
kDa) that interact with each other through histone fold

motifs, resembling the dimerization domain found in
histones H2A and H2B (Goppelt et al., 1996; Kamada
et al., 2001b). Both NC2α and NC2β subunits are
required for stable NC2-TBP-TATA complex formation
in electrophoretic mobility shift assays and also for
NC2 to repress transcription from TATA-containing
promoters in reconstituted cell-free transcription
assays (Goppelt et al., 1996). The structural analysis of
NC2-TBP-TATA ternary complex, revealed by X-ray
crystallography at 2.6

�

A resolution, shows that the
N-terminal regions of both NC2 subunits bind DNA
on the underside of the preformed TBP-TATA complex
and the C-terminus of NC2β additionally contacts
the convex surface of TBP, hence giving NC2 the ap-
pearance of a molecular “clamp” that grips both upper
and lower surfaces of the TBP-TATA complex (Kamada
et al., 2001b; see Figure 4D). As further demonstrated by
electrophoretic mobility shift assays using NC2α mu-
tants with an adenovirus major late TATA-containing
promoter fragment, the C-terminus of NC2α indeed
contributes to TBP-NC2-DNA complex formation
(Gilfillan et al., 2005). Obviously, this molecular clamp
is able to block PIC assembly by inhibiting TFIIA and
TFIIB binding to the upper side of TBP, an observation
consistent with electrophoretic mobility shift assays
and in vitro transcription experiments performed with
recombinant proteins (Inostroza et al., 1992; Kim et al.,
1995; Goppelt et al., 1996). Indeed, some transcription
factors, such as hypoxia-inducible factor 1α (HIF-1α),
are able to inhibit transcription by inducing NC2
activity that, in turn, blocks PIC assembly (Denko
et al., 2003).

In addition to the repressive activity normally seen
with TATA-containing promoters (Meisterernst and
Roeder, 1991; Inostroza et al., 1992), NC2 can also
function as a coactivator in stimulating transcription
from some TATA-less promoters (Lemaire et al., 2000;
Willy et al., 2000). The dual role of NC2 in transcrip-
tion allows it to regulate expression of ∼17% of yeast
genes, among which nearly half is either upregulated
or downregulated (Geisberg et al., 2001). Perhaps one
of the underlying mechanisms for NC2 coactivator
function is that NC2 works in conjunction with TFIID
through the DPE to enhance TATA-less gene transcrip-
tion (Burke and Kadonaga, 1997; Willy et al., 2000).
The observation that NC2 recruitment coresides with
TBP on a number of TATA-containing and TATA-less
human and yeast promoters, as revealed by in vivo chro-
matin immunoprecipitation (ChIP) assays, suggests that
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NC2 may facilitate PIC formation by modulating TBP
accessibility to the promoter region (Geisberg et al.,
2001; Cang and Prelich, 2002; Creton et al., 2002;
Gilfillan et al., 2005). This finding is consistent with
those of in vitro DNA-binding studies showing that
the TATA-binding defects of TBP concave mutants can
be restored by NC2, as also observed with BTAF1, in
electrophoretic mobility shift assays (Klejman et al.,
2005). It is important to note that this NC2-induced
TBP conformational change leading to productive PIC
formation is likely distinct from the inhibitory clamp
that prevents TBP association with TFIIA and TFIIB.
As alluded to earlier in the discussion of BTAF1, NC2
likely competes with BTAF1 for the overlapping region
on the convex surface of TBP, as illustrated by ChIP and
in vitro DNA-binding assays showing that NC2-TBP
and BTAF1-TBP complexes cannot be detected simul-
taneously on the same promoter (Geisberg et al., 2002;
Klejman et al., 2005). Alternatively, NC2 may positively
regulate transcription by targeting events downstream
of the initiation step (e.g., elongation), since NC2 as-
sociation with the hyperphosphorylated form of pol
II seems necessary for Gal4-VP16-mediated activation
from the TATA-containing HIV-1 promoter (Castaño
et al., 2000). However, the exact mechanism underlying
the coactivating function of NC2 during the transcrip-
tion process remains to be elucidated.

In addition to forming a heterodimeric NC2 com-
plex, NC2α and NC2β are also individually involved
in the control of specific gene transcription. It seems
that free forms of NC2α and NC2β are mainly found in
exponentially growing yeast cells, whereas stable NC2α

and NC2β complex is only detected after glucose deple-
tion (Creton et al., 2002). Interestingly, NC2α appears to
co-reside with TBP at transcriptionally active promot-
ers and NC2β is mainly associated with TBP-bound
promoters at transcriptionally repressed genes (Creton
et al., 2002). This is not surprising considering that NC2‚
binding to the upper surface of TBP blocks TFIIB as-
sociation and the available NC2α structure shows only
binding to the underside of the TBP-TATA complex
presumably without affecting PIC assembly (Kamada
et al., 2001b). Unexpectedly, the free entity of human
NC2α, but not NC2β‚ or the NC2 complex, can in-
teract with BTAF1 and in turn stimulates BTAF1 asso-
ciation with TBP on the DNA, as detected by in vitro
DNA-binding assays (Klejman et al., 2004). This find-
ing suggests that NC2α and BTAF1 may bind at the
same time to the underside and the upper region of the

TBP-TATA complex, respectively. The functional role
of this unusual quaternary complex, however, has not
yet been addressed. Obviously, the presence of multi-
ple forms of NC2-TBP complexes and the observations
that NC2 can bind nonspecifically to DNA and is sus-
ceptible to post-translational modification by casein ki-
nase II (CK2; Goppelt et al., 1996; Creton et al., 2002)
provide an additional level of complexity for regulating
promoter recognition by TBP and TFIID.

Positive Regulators that Promote
TBP-TATA Complex Formation

For TBP to nucleate the assembly of a functional
PIC, it must overcome molecular impediments that
prevent productive TBP-TATA complex formation.
Some of the impediments, as mentioned in the previ-
ous sections, include dimerization of TBP, inhibition
of TBP binding to the TATA box exerted by TAF1
and BTAF1, and prevention of TFIIA and TFIIB
association with the TBP-TATA complex by NC2 (see
Figure 4A–D), as well as by nucleosomes assembled on
the promoter region (Figure 4E). Alleviation of these
inhibitory activities can be achieved by transcriptional
regulators, which may function at the promoter
recognition step by enhancing TBP binding to the
TATA box, antagonizing repressor binding for the
overlapping surfaces on TBP, stabilizing the bent
TATA-TBP complex, or by modifying the chromatin
structure surrounding the promoter region.

In general, TFIIA and TFIIB enhance TBP binding to
the TATA box and further stabilize the TBP-promoter
complex via distinct mechanisms (Figure 5A). TFIIA
increases the likelihood of precise promoter recogni-
tion by TBP via promoting the dissociation of TBP
dimers and thus facilitating the loading of monomeric
TBP onto the TATA box (Coleman et al., 1999; see
Figure 5B). TFIIA also competes with the inhibitory do-
main of TAF1 for overlapping binding regions on TBP,
hence alleviating TAF1-mediated inhibition of TATA
recognition (Kokuba et al., 1998). Furthermore, incor-
poration of TFIIA into the TBP-TATA complex renders
the ternary complex resistant to BTAF1-mediated dis-
sociation of the TBP-TATA complex (Auble and Hahn,
1993). Similarly, TFIIB can enhance TBP binding to
the TATA box (Imbalzano et al., 1994b) and also sta-
bilize the bent TBP-TATA complex (Zhao and Herr,
2002), thereby reducing the dissociation rate of TBP
from the promoter region (Wolner and Gralla, 2001).
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FIGURE 5 Positive regulation of TBP DNA-binding activity. (A ) TBP binding to the TATA box can be stabilized by TFIIA and TFIIB. (B )
Inhibition of TBP binding to the TATA box can be alleviated by TFIIA-induced dissociation of TBP dimers. (C ) TFIIB binding to BRE may
provide additional contact points for further stabilization of TBP-TATA complex formation. (D ) Chromatin-modifying enzymes that are
recruited by activators may facilitate TBP loading onto the TATA box.

Besides protein-protein interaction observed between
TFIIB and TBP, additional DNA contacts provided by
TFIIB-BREu and TFIIB-BREd likely contribute to this
stabilizing effect (Figure 5C). Clearly, TFIIA and TFIIB
help form a stable TBP-TATA complex, yet both pro-
tein factors may not efficiently enhance TBP binding
to the TATA box when the promoter is in a nucleosome
configuration.

Considering that approximately 146 base pairs of
DNA are wrapped around each core histone octamer
in vivo, the promoter region may be incorporated into
a nucleosome, rendering the TATA box inaccessible
for TBP binding thus suppressing basal transcription
(Imbalzano et al., 1994a; see Figure 4E). Undoubt-
edly, additional protein factors are needed to alleviate
transcriptional repression from nucleosome-embedded
promoters. In this regard, chromatin-modifying en-
zymes play a key role in enhancing TBP access to its
recognition sequence by altering chromatin structure
surrounding the TATA box (Martinez-Campa et al.,
2004; see Figure 5D). Chromatin modifiers may recon-
figure nucleosome structure by covalently modifying

histones to reduce protein-DNA interactions (Fischle
et al., 2003) or by using the energy of ATP hydroly-
sis to alter histone-DNA contacts in a process known
as chromatin remodeling (Narlikar et al., 2002). Since
the interactions between the TATA box and nucleoso-
mal core histones are regulated by acetylation of ly-
sine residues at the N-terminal tails of core histones,
acetylation of nucleosomal core histones at the pro-
moter region creates a less compact chromatin structure,
allowing TBP to bind the TATA box (Sewack et al.,
2001). SWI/SNF is an example of an ATP-dependent
chromatin remodeler that enhances TBP access to the
TATA box situated in a nucleosome (Imbalzano et al.,
1994a). The action of SWI/SNF following the acety-
lation of histones by GCN5 histone acetyltransferase
is seen in vivo as well, as exemplified by SWI/SNF-
facilitated TBP binding to the β-interferon promoter
(Agalioti et al., 2000). Interestingly, loading of TBP onto
both TATA-containing and TATA-less promoters can be
further enhanced by TBP association with other cellu-
lar proteins to form multiprotein complexes, such as
TFIID and SAGA (see discussion of TAF-containing

The General Transcription Machinery and General Cofactors 119



complexes), both of which contain acetyltransferase
activity.

TAF Recognition of Distinct Core
Promoter Elements

The association of TBP with the TAF components of
TFIID not only helps TBP to overcome chromatin bar-
riers (Wu et al., 1999), but also significantly broadens the
scope of promoter recognition by this important core
promoter-binding factor. Previous DNase I footprinting
assays revealed that TFIID generates an extended pro-
tection over the TATA box on the adenovirus major late
promoter when compared to that of TBP (Zhou et al.,
1992; Chiang et al., 1993), indicating that TAFs may pro-
vide additional contacts with core promoter sequences
(Oelgeschläger et al., 1996; Verrijzer and Tjian, 1996). As
described earlier in the discussion of core promoter ele-
ments, TFIID may contact the Inr via TAF1/TAF2, the
DPE via TAF6/TAF9, and the DCE via TAF1, high-
lighting the importance of TFIID in core promoter
recognition (see Figure 2). These additional TFIID-
DNA contacts are particularly important at promoters
lacking TATA sequences, as TAFs are required for tran-
scription from TATA-less promoters (Pugh and Tjian,
1991; Martinez et al., 1994; Orphanides et al., 1996;
Smale, 1997; Huisinga and Pugh, 2004). Recent findings
that human TAF6 and TAF9 display sequence prefer-
ence for the DPE present in the human interferon reg-
ulatory factor-1 promoter (Shao et al., 2005) and that
TAF1 can be crosslinked to individual DCE subele-
ments (Lee et al., 2005b), distinct from the previously
identified upstream DNA contacts by TAF4, TAF5,
TAF7 and an undefined 30 kDa TAF (Oelgeschläger
et al., 1996), in the adenovirus major late promoter fur-
ther sustain the view that TFIID is a bona fide core
promoter-binding factor. The extensive promoter con-
tacts established by TFIID may provide additional sta-
bility for TFIID to act as a commitment factor. In-
deed, as revealed by ChIP assays performed in HeLa
cells, TFIID remains bound to active gene promot-
ers during mitosis (Christova and Oelgeschläger, 2002),
even though TFIID is likely inactivated due to mitosis-
specific phosphorylation of some TFIID components
(Segil et al., 1996). Thus, TFIID may function as a
promoter-marking factor for transcriptional memory in
order to distinguish active from inactive genes as cells
proceed through the cell cycle.

Histone-Like TAFs in TFIID
Many of the TAFs present within TFIID contain his-

tone fold domains that contribute to the recognition of
core promoter elements and to the integrity of TFIID
complexes. Among many histone fold-containing TAFs
identified thus far (i.e., TAF3, TAF4, TAF4b, TAF6,
and TAF8-13), four of them (TAF6, TAF9, TAF12, and
TAF4/TAF4b) share sequence similarity to core histones
H4, H3, H2B, and H2A, respectively (Gangloff et al.,
2001). A histone fold motif, consisting of a long α he-
lix (α2) flanked on each side by a random coil loop (L1
or L2) and a short α helix (α1 or α3), is organized in
the following order: α1-L1-α2-L2-α3 (Hoffmann et al.,
1996; Xie et al., 1996; Birck et al., 1998). This mo-
tif present in histone-like TAFs suggests that a TAF9-
TAF6 heterotetramer and two of the TAF4b-TAF12 het-
erodimer may form a histone octamer-like structure
(Selleck et al., 2001), similar to H3-H4 tetramers and
H2A-H2B dimers found in a nucleosome (Luger et al.,
1997). Indeed, initial crystal structures of Drosophila
TAF9-TAF6 complexes revealed a heterotetramer, re-
sembling the H3-H4 heterotetrameric core of the hi-
stone octamer. This finding indicates that TFIID may
contain a histone octamer-like substructure (Xie et al.,
1996). Further supporting evidence for a histone-like oc-
tamer was demonstrated when it was found that yeast
TAF9-TAF6-TAF12-TAF4 may reconstitute an octamer
in vitro (Selleck et al., 2001). The immediate question
that follows is whether the histone-like octamer of TAFs
is able to contact DPE in the context of a nucleosome-
like structure. In a study investigating protein-protein
interactions among human TAF9, TAF6, TAF4b, and
TAF12, which contain sequences related to histones
H3, H4, H2A, and H2B, respectively, it was found
that these TAFs indeed form an octamer-like complex,
which enhances both sequence-specific and nonspe-
cific DNA-binding activities of TAF9-TAF6 and TAF4b-
TAF12 pairs, respectively (Shao et al., 2005).

In contrast to the interaction studies, which suggest
that TFIID may contain a histone-like octamer, low-
resolution electron microscopy (EM) studies of human
and yeast TFIID complexes do not unveil an octamer-
like structure within TFIID (Andel et al., 1999; Brand
et al., 1999a; Leurent et al., 2002, 2004). These EM
studies revealed TFIID to be a trilobed (termed lobes A,
B, and C), horseshoe-shaped structure with TBP sitting
in the central cavity, while TFIIA and TFIIB bound
to opposite lobes of the horseshoe-shaped structure
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(Andel et al., 1999; Brand et al., 1999a; Leurent et al.,
2002). Each of the globular domains found in the
TFIID EM structure is almost equivalent in size to the
histone octamer, but none are large enough to accom-
modate all histone motif-containing TAFs (Brand et al.,
1999a). Therefore, a histone octamer-like structure
containing all the TAFs with histone fold motifs may
not exist in TFIID. However, the possibility that fewer
TAFs may form a nucleosome-like structure remains
to be explored. On the other hand, the histone folds
in TAFs are likely to be important for protein-protein
interactions for maintaining the structural integrity
of TFIID, as pairwise interactions observed between
histone-like TAFs can indeed be detected in yeast
TFIID (Leurent et al., 2002). From TAF localization
studies of yeast TFIID revealed by immuno-EM, it
appears that TAF5 plays a central role in connecting the
three lobes of TFIID, with each lobe harboring a subset
of histone-like TAFs (Leurent et al., 2004). Consistent
with the functional studies showing that TAND1
blocks TBP binding to the TATA box (Liu et al., 1998)
and TAF7 inhibits the histone acetyltransferase activity
of TAF1 (Gegonne et al., 2001), it was found that the
N-terminal domain of TAF1 is spanned over TBP in
the central lobe, whereas the histone acetyltransferase
domain of TAF1 is colocalized with TAF7 in the same
side lobe (Leurent et al., 2004). The characterization of
TFIID structures undoubtedly will further shed light
on the molecular mechanism of TFIID function in PIC
assembly.

Enzymatic Activities of TFIID
The presence of TAF1 in TFIID not only modulates

DNA binding by TBP, but also confers on TFIID mul-
tiple enzymatic activities to post-translationally modify
histones and transcription factors, thus allowing TFIID
to serve as a core promoter-binding factor in the con-
text of chromatin and as a coactivator mediating acti-
vator response. Human, Drosophila and yeast TAF1, a
TFIID-specific subunit, is known to function as a hi-
stone acetyltransferase (HAT) in acetylating histones
H3 and H4 in vitro (Mizzen et al., 1996). Drosophila
TAF1 has also been shown to act as a kinase in phos-
phorylating histone H2B (Maile et al., 2004) and as
a histone-specific ubiquitin-activating/conjugating en-
zyme in mediating monoubiquitination of linker hi-
stone H1 (Pham and Sauer, 2000) both in vitro and
in vivo. These histone-modifying activities indicate that

TFIID may be specifically needed for transcription
from nucleosome-embedded promoters. Indeed, only
TFIID, rather than TBP, can work in conjunction with
a TFIID-deficient pol II holoenzyme complex to facil-
itate activator-dependent transcription from an in vitro-
reconstituted chromatin template, suggesting a unique
involvement of TAFs in chromatin transcription (Wu
et al., 1999). The importance of the acetyltransferase
activity of TAF1 for gene transcription has also been
demonstrated for MHC class I genes, where suppres-
sion of TAF1 enzymatic activity by TAF7, which is
a TAF1-interacting protein able to contact multiple
transcriptional activators (Chiang and Roeder, 1995;
Lavigne et al., 1999), leads to inhibition of transcrip-
tion (Gegonne et al., 2001). The involvement of TAF1
HAT activity in gene transcription, however, appears
to be promoter-specific, as hypoacetylation of H3 due
to TAF1 inactivation in the ts13 hamster cell line was
only observed at the cyclin D1 promoter, but not the
c-fos promoter (Hilton et al., 2005). Similar to some
HATs, higher eukaryotic TAF1 contains two tandem
bromodomains recognizing acetylated lysine 14 (K14)
of histone H3 as well as acetylated K5, K8, K12, and
K16 of histone H4 (Jacobson et al., 2000; Kanno et al.,
2004). This bromodomain-mediated interaction might
enhance TFIID binding to acetylated nucleosomes at
promoters previously modified by activator-recruited
HATs. The structure of the human TAF1 double bro-
modomain spanning amino acid residues 1359 to 1638,
resolved by X-ray crystallography at 2.1

�

A resolution,
reveals that two acetylated lysine residues of histone
H4, separated by 7 or 8 amino acids (i.e., K5/K12
or K8/K16), are preferentially recognized by the dou-
ble bromodomain, where the Nε-acetyllysine-binding
pocket is situated within the amino acid residues of the
two loops connecting the four antiparallel α-helices that
constitute the core of each bromodomain (Jacobson
et al., 2000).

Other than acting on histone substrates, TAF1, either
as a free entity or part of TFIID, can also covalently
modify other general transcription factors and cofac-
tors, as demonstrated by acetylation on TFIIEβ (Imhof
et al., 1997), phosphorylation on RAP74 (Dikstein et al.,
1996), serine 33 of histone H2B (Maile et al., 2004),
PC4 (Kershnar et al., 1998; Malik et al., 1998), and the
β subunit of TFIIA (Solow et al., 2001), and presum-
ably ubiquitination on TAF5 and itself as well (Auty
et al., 2004). Interestingly, TAF1-mediated phosphory-
lation of histone H2B correlates with gene activation
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(Maile et al., 2004). Thus, the ability of TAF1 to modify
distinct histones by acetylation, phosphorylation, or
ubiquitination may account for TFIID involvement in
chromatin transcription (Wu et al., 1999).

TFIID as a Coactivator
Characterization of TAFs revealed that many tran-

scriptional activators interact directly with specific TAFs
(reviewed by Burley and Roeder, 1996; Verrijzer and
Tjian, 1996). For example, the activation domain of Sp1
was found to interact with Drosophila TAF4 (Hoey et al.,
1993), whereas the DNA-binding domain of Sp1 was
shown to contact human TAF7 (Chiang and Roeder,
1995). The finding that distinct domains in an activator
are capable of contacting different TAFs suggests that
TFIID may modulate activator function through mul-
tiple domain interactions (Chiang and Roeder, 1995),
presumably by enhancing activator binding to the tar-
get site and further stabilizing TFIID-promoter con-
tacts. That human TAF7 is able to interact with differ-
ent transcriptional activators, including Sp1, YY1, USF,
CTF, adenovirus E1A, and HIV-1 Tat proteins through
its N-terminal domain, and with TAF1 via its central
region indicates that TAF7 indeed acts as a coactiva-
tor bridging the activator and the general transcription
machinery (Chiang and Roeder, 1995). Additional con-
tacts between TAF7 and other TFIID components, such
as TAF5, TAF11, TAF12, and TAF13, have also been
demonstrated in human TFIID (Lavigne et al., 1996)
and have been verified by immuno-EM structural anal-
ysis performed with yeast TFIID (Leurent et al., 2004).
These activator-TAF and TAF-TAF interactions imply
that activators may function by recruiting TFIID to the
promoter in order to nucleate PIC formation (Burley
and Roeder, 1996; Verrijzer and Tjian, 1996; Albright
and Tjian 2000; Näär et al., 2001). Consistent with its
role as a coactivator, only purified TFIID, but not TBP,
supports activator-mediated transcription in partially
purified cell-free transcription systems (Dynlacht et al.,
1991; Chiang et al., 1993). Thus the in vitro biochemical
concept that TFIID was a universal coactivator required
for all gene transcription was formed.

When the role of TAFs was later examined in yeast,
it was found that transcription from selective genes
in vivo could occur in the absence of TAFs (Moqtaderi
et al., 1996; Walker et al., 1996). Additional evidence
supporting the view that TAFs may not be universally

required for gene function in vivo came from studies
performed with hamster ts13 cells harboring an amino
acid substitution G690D (Hayashida et al., 1994; human
equivalent G716D) in TAF1 (Wang and Tjian, 1994;
Suzuki-Yagawa et al., 1997) and with chicken DT40
TAF9-conditional knockout cells (Chen and Manley,
2000). Indeed, two distinct classes of yeast genes (TAF-
dependent and TAF-independent) have been identified
based on their differential requirement for TFIID TAFs
(Kuras et al., 2000; Li et al., 2000). Although TAF1 was
originally reported to play a limited role in transcription
for only a subset (∼16%) of yeast genes (Holstege et al.,
1998), more refined genome-wide gene profiling studies
have indicated a broader involvement of TAF1 for tran-
scription from the majority (∼90%) of yeast and human
genes whose promoters are predominantly TATA-less
(Huisinga and Pugh, 2004; Kim et al., 2005a) and pri-
marily for housekeeping, such as the ribosomal protein-
encoding gene promoters (Mencia et al., 2002). This is
in agreement with a similar requirement of TAF9 for
the majority (∼67%) of yeast gene transcription (Apone
et al., 1998; Holstege et al., 1998; Michel et al., 1998;
Moqtaderi et al., 1998). It should be noted that histone
fold-containing TAF9 is present not only in TFIID, but
also in several other TAF-containing complexes, includ-
ing TFTC, SAGA, SLIK, and STAGA (see discussion
of TAF-containing complexes). Therefore, inactivation
of TAF9 may affect the function of multiple protein
complexes.

The finding that TAFs may not be essential in vivo for
every gene function has also been verified in vitro by cell-
free transcription studies using highly purified and well-
defined transcription systems. In these studies, TBP,
in the absence of TAFs but in conjunction with other
GTFs, pol II and general cofactor PC4, is able to direct
activated transcription from TATA-containing promot-
ers in an activator-specific manner with nucleosome-
free DNA templates (Oelgeschläger et al., 1998; Wu and
Chiang, 1998; Wu et al., 1998, 1999; Fondell et al., 1999).
TBP, free from TAFs of TFIID, is indeed found in yeast
(Kuras et al., 2000; Li et al., 2000) and can be biochemi-
cally separated from TAFs during in vitro fractionation
of yeast TFIID (Sanders et al., 2002a). Although TFIID
is the predominant form found in mammalian cells,
the free form of TBP may transiently exist under some
stressed conditions (Wu et al., 1998) and may further as-
sociate with other cellular proteins to form distinct TBP
complexes. Clearly, activator-regulated steps of tran-
scription complex assembly are likely to be different,
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depending on whether TBP or TFIID is used as the
TATA-binding factor.

TAF-Dependent Activation
In TATA-less promoters where TAFs are needed

for promoter recognition, it is plausible that the
interactions between activators and TAFs are involved
in the recruitment of TFIID to the Inr, DCE, and DPE
promoter elements characterized in higher eukaryotes,
hence modulating the level of transcription. Indeed,
specific DPE has been shown to be essential for
the function of some transcriptional activators in
Drosophila embryos (Butler and Kadonaga, 2001),
likely reflecting unique contacts between gene-specific
activators and distinct components of TFIID that
allosterically modulate TAF6-TAF9 recognition of
the DPE. In addition, specific TFIID contacts with
additional promoter sequences can be induced by the
presence of activators, as illustrated by ATF-induced
extension of TFIID footprinting to the downstream
region of the adenovirus E4 promoter (Horikoshi
et al., 1988). Obviously, activators may facilitate TFIID
binding to the core promoter region, which is often
the rate-limiting step for the assembly of a functional
transcription complex in both TATA-containing and
TATA-less promoters, as documented by many DNA-
binding and transcription studies (see Wu and Chiang,
2001a, and references therein). Normally, TFIID binds
less efficiently to the TATA box compared to that
of TBP, due to TAF1-mediated inhibition of TBP-
promoter contacts. Interestingly, TAFs also contact
several GTFs, including TFIIA (Yokomori et al., 1993),
TFIIB (Goodrich et al., 1993), TFIIE (Hisatake et al.,
1995), the RAP74 subunit of TFIIF (Ruppert and Tjian,
1995), and both the RPB1 and RPB2 subunits of pol II
(Wu and Chiang, 2001a). These TAF-mediated protein-
protein interactions facilitate the entry of the remaining
GTFs and pol II through either the sequential assembly
pathway or the preassembled pol II holoenzyme
pathway, thereby shifting the rate-limiting step for
PIC assembly from the entry of downstream factors to
promoter recognition by TFIID (Figure 6, top).

TAF-Independent Activation
The concept that TAFs are not absolutely required

for pol II-dependent transcription has been supported
by both yeast genetic analysis (Apone et al., 1996;
Moqtaderi et al., 1996; Walker et al., 1996) and biochem-

ical reconstitution studies (Oelgeschläger et al., 1998;
Wu and Chiang, 1998; Wu et al., 1998; Fondell et al.,
1999). A dispensable role of TAFs for selective gene
transcription is also consistent with earlier microarray
analyses indicating that only a subset of yeast genes,
ranging from 8% to 20%, are affected by functional in-
activation of TAF1, TAF5, TAF6, TAF10, and TAF12,
individually (Green, 2000). For those genes that do not
rely on TAFs, TBP appears to serve as the TATA-binding
factor for TATA-containing gene transcription. Since
TAF1-imposed inhibition of TATA binding is no longer
observed with TBP, the rate-limiting step for PIC for-
mation regulated by transcriptional activators may shift
from promoter recognition to the entry of downstream
factors, especially the pol II recruitment step (Figure 6,
bottom). However, other regulatory steps occurring prior
to TBP binding to the TATA box—such as histone mod-
ification, chromatin remodeling, TBP dimer dissocia-
tion, and activator modulation—are likely to take place
on different promoter context. This mechanism under-
lying TAF-independent activation at the step of pol
II recruitment is supported by order-of-addition tran-
scription experiments and factor recruitment assays per-
formed with individually purified general transcription
factors, PC4 cofactor, pol II and activator, mimicking
the assembly of transcription complexes via the sequen-
tial assembly pathway (Wu and Chiang, 2001a).

TBP, besides forming different classes of TAF com-
plexes such as selectivity factor 1 (SL1) and TFIIIB used
as core promoter-binding factors for RNA polymerase
I and III, respectively, can also interact with BTAF1,
NC2, or itself to downregulate the formation of TBP-
TATA complexes. Moreover, TBP is able to associate
with the γ and unprocessed αβ subunits of TFIIA to
form the TAC (TBP-TFIIA-containing) complex, which
is detectable in P19 embryonal carcinoma cells but not
in differentiated cells (Mitsiou and Stunnenberg, 2000).
Intriguingly, exogenous expression of p300 in monkey
kidney COS-7 cells induces TAC formation from en-
dogenous TBP and TFIIA components, correlating with
the observation that acetylated TFIIAαβ is preferen-
tially found in the TAC complex (Mitsiou and Stun-
nenberg, 2003). Obviously, the mechanism by which
TAC regulates transcription and the identity of TAC-
regulated promoters remain to be uncovered.

It is important to note that, in the absence of TAFs,
TBP can also function in vitro with other general co-
factors, such as PC4 (Wu and Chiang, 1998; Wu et al.,
1998), Mediator (Wu et al., 2003), and the coactivating
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FIGURE 6 TAF-dependent (i.e., TFIID-mediated) vs. TAF-independent (i.e., TBP-mediated) activation. Promoter recognition by TFIID is
usually the rate-limiting step (thick arrow; upper panel ) facilitated by transcriptional activators. In contrast, when TBP is used as the
TATA-binding factor, pol II entry often becomes the rate-limiting step (thick arrow; lower panel ) facilitated by activators. For simplicity, a
preassembled pol II holoenzyme complex is depicted. (Adapted from Wu and Chiang, 2001a)

activity of TFIIA and TFIIH (Wu et al., 1998), during the
activation process. These general cofactors are capable
of functionally replacing TAFs in conveying regulatory
signals between activators and the general transcription
machinery, although the precise mechanisms have not
yet been elucidated.

VARIANTS OF TBP AND TAFs
Some components of TFIID, including TBP and

TAFs, have gene paralogs (i.e., related proteins encoded
by different genes belonging to the same family) of-
ten expressed in a tissue- and development-specific

manner. These TBP-related factors (TRFs) and TAF
variants likewise play an important role in pol II-
dependent transcription. In addition, multiple forms
of TAF-containing complexes exhibiting HAT activity
involved in chromatin dynamics have been identified.
These protein factors will be discussed briefly here.

TBP-Related Factors
All multicellular organisms contain at least two genes

coding for TBP family members that share sequence
homology at their C-terminal 180 amino acid core
DNA-binding domains. While the first gene encodes
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TBP itself, considered a universal TATA-binding tran-
scription factor present in all eukaryotes and archaea,
the second gene encodes TBP-related factor 2 (TRF2),
also called TBP-related protein (TRP), TBP-like factor
(TLF) or TBP-like protein (TLP). Although TRF2 shares
∼60% sequence homology and 41% identity within
the C-terminal core with that of TBP, it recognizes a
sequence element distinct from the TATA box due to
changes in some conserved amino acids, including sub-
stitutions of three out of four phenylalanine residues
that kink the TATA box (Dantonel et al., 1999; Berk,
2000; Hochheimer and Tjian, 2003). However, amino
acid residues important for interactions with TFIIA and
TFIIB are mostly unaltered, allowing TRF2 to asso-
ciate with TFIIA and TFIIB (Maldonado, 1999; Moore
et al., 1999; Rabenstein et al., 1999; Teichmann et al.,
1999) and thus assembling into a functional PIC able to
transcribe some TATA-less promoters via an undefined
TRF2-binding element (Ohbayashi et al., 2003; Chong
et al., 2005). This property of TRF2 also enables it to
function as a repressor, preventing PIC formation initi-
ated by TBP or TFIID on TATA-containing promoters
(Moore et al., 1999; Teichmann et al., 1999; Chong et al.,
2005), likely due to competition for limiting amounts
of TFIIA and TFIIB. Not surprisingly, inactivation of
TRF2 in C. elegans (Dantonel et al., 2000; Kaltenbach
et al., 2000) and Xenopus laevis (Veenstra et al., 2000) by
RNA interference fails to support embryogenesis, indi-
cating that TRF2 is essential for normal cell develop-
ment as expected from its dual role in pol II-dependent
transcription. In contrast to embryonic lethality seen
with C. elegans and X. laevis, TRF2-null mice are per-
fectly viable and only exhibit defects in spermiogenesis,
suggesting that the biological role of TRF2 is species-
specific (Martianov et al., 2001; Zhang et al., 2001).

Other than TRF2, three species-specific TRFs (TRF1,
TRF3, and TRF4) have also been identified. TRF1
(Crowley et al., 1993), so far only identified in neuronal
and germ cells of Drosophila (reviewed in Berk, 2000;
Hochheimer and Tjian, 2003), exhibits 63% amino
acid sequence identity to TBP at its C-terminal DNA-
binding core which maintains most of the conserved
residues important for interactions with the TATA box,
TFIIA and TFIIB (Rabenstein et al., 1999). It is thus ex-
pected that TRF1 binds TFIIA and TFIIB and can par-
tially substitute for TBP in directing pol II-dependent
transcription from some TATA-containing promoters
in vitro (Hansen et al., 1997). Interestingly, a TRF1 tar-
get gene, Tudor, whose expression is driven by two

tandem promoters containing a TRF1-responsive up-
stream promoter and a TBP/TFIID-responsive down-
stream promoter, has been identified in Drosophila cells.
A TC-rich sequence, located between −22 and −33
relative to the transcription start site of this upstream
TRF1-responsive Tudor promoter preferentially nucle-
ates TRF1-mediated PIC assembly and transcription.
In vivo, promoter selectivity by TRF1 is likely enhanced
by some transcriptional activators or by its association
with neuron-specific TRF1-associated factors (nTAFs)
to form a multiprotein complex, which is distinct from
TFIID (Holmes and Tjian, 2000). That TRF1 does not
interact with TFIID-specific TAFs provides a rationale
why TRF1 and TBP are not interchangeable at respec-
tive TRF1-responsive upstream and TBP-responsive
downstream Tudor promoters (Holmes and Tjian, 2000).
While TRF1 clearly plays an important role in pol II-
mediated transcription, the majority of cellular TRF1
is in fact associated with the TFIIB-related factor BRF,
which is a component of TFIIIB involved in pol III-
dependent transcription (Takada et al., 2000). Similar to
the pol II system, only addition of the TRF1-BRF com-
plex, but not TBP-BRF, could restore pol III-dependent
transcription of the tRNA, 5S RNA and U6 RNA genes
in TRF1-depeleted extracts (Takada et al., 2000).

TRF3, which shows 93% amino acid sequence iden-
tity to TBP at the C-terminal core region and has the
same sequence as TBP at all of the conserved residues
involved in TATA binding and interactions with TFIIA
and TFIIB, is unique to vertebrates, ranging from fish
to humans, but is not present in urochordate Ciona
intestinalis and lower eukaryotes, such as Drosophila and
C . elegans (Persengiev et al., 2003). Unlike TRF1 and
TRF2, which are expressed only in selective tissues,
TRF3 is ubiquitously expressed in every cell type ex-
amined, similar to that of TBP, and is present as a pro-
tein complex with a molecular size of approximately
200 kDa. Since TAF1 does not cofractionate with the
TRF3 complex, it is likely that polypeptides constitut-
ing the TRF3 complex are different from TAFs defined
in TFIID and nTAFs associated with TRF1. The tran-
scriptional properties of TRF3 and its regulated genes
remain to be characterized.

TRF4, the only TBP-related protein found in the
genomes of the unicellular human parasite Trypanosoma
brucei (Tb) and several Tb-related family members where
DNA sequences corresponding to bona fide TBP can-
not be identified, displays only 31% amino acid se-
quence identity to Drosophila TBP at the C-terminal
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core domain (Ruan et al., 2004). Since amino acid
residues critical for TFIIA and TFIIB interactions, but
not the phenylalanine residues involved in TATA recog-
nition, are still conserved in TRF4, it is likely that
TRF4 may interact with TFIIA but fails to bind the
TATA sequence. Indeed, a six-subunit complex con-
taining the ∼30 kDa TRF4 protein, three small nuclear
RNA-activating complex (SNAPc) subunits (identified
as TbSNAP50, TbSNAP2, TbSNAP3), the 25 kDa Tb
ortholog (TbTFIIA-2) of the small TFIIA subunit γ ,
and a 75 kDa protein exhibiting weak sequence ho-
mology to the unprocessed αβ subunits of TFIIA has
been isolated. This TRF4 complex is able to recognize
the upstream sequence element (USE) of the TATA-less
spliced leader (SL) RNA gene and drives transcription
of the SL RNA that is critical for mRNA maturation in
Trypanosomatid parasites (Schimanski et al., 2005). The
finding that TRF4 is universally required for transcrip-
tion by all three nuclear RNA polymerases suggests that
TRF4 may functionally replace the classically defined
TBP in these human parasites. However, it is yet to be
resolved how transcription can proceed in these organ-
isms lacking the genes coding for the other GTFs, such
as TFIIB, TFIIF, and TFIIE.

In contrast to the functionally characterized TRFs
present in eukaryotes and in Trypanosomatid parasites
described above, very little is known about TBP-related
family proteins in archaea despite the fact that multiple
genes potentially encoding TBPs are found in several
sequenced archaeal genomes. It was reported that the
archaeon Halobacterium species NRC-1 has six predicted
genes (Ng et al., 2000b) that code for TBP family pro-
teins (TBPa, TBPb, TPBc, TBPd, TBPe, and TBPf). Ex-
cept TBPa, the other five members all have two direct
repeats forming a saddle-like structure with two side stir-
rups, as found in the C-terminal region of their eukary-
otic counterparts (Baliga et al., 2000). TBPa has only one
direct repeat and is thus unlikely to bind the TATA box
as a monomer. Similar findings of multiple TBP family
genes have also been described in other archaea, includ-
ing Methanosarcina acetivorans (Galagan et al., 2002) and
Haloferax volcanii (Thompson et al., 1999). The identifi-
cation of a TBP gene family in archaea, similar to the
discovery of multiple σ factors in bacteria (Borukhov
and Nudler, 2003; Gruber and Gross, 2003), raises an
interesting possibility that a combination of multiple
TBPs and TFBs (the archaeal counterpart of TFIIB) is
employed with its single RNA polymerase to generate
diverse transcription complexes for recognizing differ-

ent archaeal gene promoters. This is certainly an open
area waiting to be explored.

TAF-Containing Complexes
Similar to TBP that forms SL1, TFIID, TFIIIB,

and TAC complexes, some TAF components in TFIID
are also present in distinct complexes such as TBP-
free TAFII-containing complex (TFTC), TFTC-related
PCAF/GCN5 complexes, Spt-Ada-Gcn5 acetyltrans-
ferase (SAGA), SAGA-like complex (SLIK; also named
“SALSA” for SAGA altered, Spt8 absent), Spt3-TAF9-
GCN5L (i.e., the long form of GCN5) acetylase
(STAGA), and polycomb repressive complex 1 (PRC1).
These TBP-lacking TAF-containing complexes are in-
volved in diverse aspects of pol II-dependent transcrip-
tion. Except PRC1 whose role is mainly involved in
gene silencing, the other TAF-containing complexes are
mostly implicated in activator-dependent transcription
likely due to the HAT activity inherent to each complex.

TFTC, originally identified in HeLa cells us-
ing a monoclonal antibody against human TAF10
(Wieczorek et al., 1998), contains TAF2, TAF5, TAF5L,
TAF6L, TAF7, and some histone fold-containing
TAFs, including TAF4, TAF6, TAF9, TAF10, and
TAF12. In addition, TFTC has TRRAP (transformation-
transactivation domain-associated protein), SAP130
(spliceosome-associated protein 130), GCN5L HAT
enzyme, Ada3 adaptor protein, and histone fold-
containing Spt3 (Cavusoglu et al., 2003), TAF9L (also
called TAF9b; Frontini et al., 2005), and ataxin-7 (Helm-
linger et al., 2004). The three-dimensional structures of
TFTC and TFIID, both resolved at 35

�

A resolution by
electron microscopy and single-particle image analysis,
resemble a macromolecular clamp consisting of five
globular domains (for TFTC) or three lobes (for TFIID)
organized around a solvent-accessible groove that may
accommodate a DNA duplex (Andel et al., 1999; Brand
et al., 1999a). This configuration suggests that TFTC
may adapt a DNA-binding conformation similar to that
exhibited by TFIID. Indeed, TFTC is able to support
basal and Gal4-VP16-mediated transcription in vitro
from TATA-containing adenovirus major late and rabbit
β-globin promoters and also basal transcription from
the TATA-less transcription enhancer factor-1 (TEF-1)
promoter, presumably via TAF recognition of the core
promoter and interaction with other components of the
general transcription machinery (Wieczorek et al., 1998).
The coactivator function of TFTC is in part mediated
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by direct protein-protein contacts between activators
and multiple subunits of TFTC, including TAF5, TAF6,
TAF10, SAP130, Spt3, GCN5L, TRRAP, and ataxin-7
(Hardy et al., 2002; Yanagisawa et al., 2002; Helmlinger
et al., 2004; Palhan et al., 2005). The TRRAP compo-
nent of TFTC seems to act as a direct target for several
liganded nuclear hormone receptors, including ERα,
ERβ, VDR, and PPARγ (Yanagisawa et al., 2002), as ob-
served in the SAGA complex (see below). This activator-
TFTC interaction may also facilitate p300-mediated
transcription from a Gal4-VP16-dependent chromatin
template (Hardy et al., 2002), probably resulting from
preferential acetylation of nucleosomal core histone
H3 by the GCN5L component of the TFTC complex
(Brand et al., 1999b). Besides the HAT component, the
presence of many histone fold-containing proteins, in-
cluding Spt3, TAF4, TAF6, TAF9, TAF10, and TAF12,
further contributes to the integrity of the TFTC com-
plex. Recently, ataxin-7, the human homolog of yeast
Sgf73 that is an integral component of yeast SAGA and
SLIK complexes (see below), has also been shown to
be essential for the structural integrity of TFTC and its
related STAGA complex (Helmlinger et al., 2004). Both
wild-type and mutant ataxin-7, which contains polyg-
lutamine expansion at its N-terminus and is linked to
spinocerebellar ataxia type 7 (SCA7) neurodegenerative
disorder, can be incorporated into TFTC and STAGA
complexes whose structural components are largely un-
altered (Helmlinger et al., 2004; McMahon et al., 2005;
Palhan et al., 2005). Presumably, incorporation of either
form of ataxin-7 will alter the functional properties of
these HAT complexes (see below).

Similar to TFTC, the yeast SAGA also lacks TBP
but contains some common subunits, such as Tra1
(the yeast homolog of human TRRAP), adaptor
protein Ada3, GCN5 (short form), TAF5, and histone
fold-containing proteins Spt3, TAF6, TAF9, TAF10,
and TAF12. The unique components present in SAGA,
but not yet documented in TFTC, include Ada1,
Ada2, Spt7, Spt8, Spt20 (also called Ada5), Chd1 (for
chromo-ATPase/helicase-DNA binding domain 1),
Ubp8 (for ubiquitin-specific processing protease 8),
Sgf11 (for SAGA-associated factor 11 kDa), Sgf29,
and Sgf73 (Grant et al., 1998; Sanders et al., 2002b;
Henry et al., 2003; Daniel et al., 2004; Powell et al.,
2004; Ingvarsdottir et al., 2005; Lee et al., 2005c;
McMahon et al., 2005; Pray-Grant et al., 2005). Five
major functions attributed to SAGA include: activator
interaction, contacting TBP, recognition of methylated

histone H3, HAT activity, and deubiquitinating activ-
ity. These SAGA components are organized into five
distinct domains with an overall shape analogous to
the structure of human TFTC, as resolved by electron
microscopy at 31 Å resolution (Wu et al., 2004). The
largest subunit of SAGA, Tra1, is located in the outer-
most globular domain able to contact transcriptional
activators, as evidenced by the fluorescence resonance
energy transfer (FRET) technique measuring direct in
vivo association between yeast Gal4 acidic activator
and Tra1 (Bhaumik et al., 2004). This protein-protein
interaction was also demonstrated by in vitro crosslink-
ing experiments, in which the Tra1 subunit of SAGA
was shown to serve as a direct target for both Gal4
and GCN4 transcriptional activator (Fishburn et al.,
2005; Reeves and Hahn, 2005). The illustration of Tra1
as a “true” target for transcriptional activators in S.
cerevisiae is also consistent with the finding that human
TRRAP, which shows 27.3% amino acid identity and
58.9% similarity with its yeast homolog, also inter-
acts with c-Myc and E2F-1 oncoproteins implicated
in mammalian transformation and transactivation
(McMahon et al., 1998). The c-Myc-recruited TRRAP
apparently associates with GCN5 HAT activity that is
important for c-Myc-induced cellular transformation
(McMahon et al., 2000). However, whether recruitment
of TRRAP and GCN5 occurs in the context of human
SAGA-like complexes, such as TFTC, PCAF and
GCN5 complexes (Ogryzko et al., 1998), remains to be
investigated. Interestingly, approximately 10% of yeast
genes, which are mostly driven by TATA-containing
promoters and which are stress-induced, appear to be
SAGA-dependent (Lee et al., 2000; Huisinga and Pugh,
2004). These TFIID-independent yeast promoters are
recognized by the free form of TBP that works in
conjunction with SAGA at the targeted promoters
via direct interaction between TBP and the Spt3 and
Spt8 subunits of SAGA (Belotserkovskaya et al., 2000;
Larschan and Winston, 2001; Bhaumik and Green,
2002; Warfield et al., 2004). The recruitment of SAGA
by transcriptional activators likely enhances TBP
binding to the promoter region, as found in the yeast
PHO5 promoter (Barbaric et al., 2003), or increases
factor accessibility by GCN5-mediated acetylation
of nucleosomal core histones at the promoter region
(Grant et al., 1997), thus leading to gene activation.
Moreover, it was recently found that the 19S regulatory
subcomplex of the 26S proteasome is able to enhance
activator-dependent recruitment of the yeast SAGA

The General Transcription Machinery and General Cofactors 127



complex, apparently in an ATPase-dependent manner,
by stimulating SAGA’s nonspecific DNA-binding and
HAT activities (Lee et al., 2005a). These effects may
further contribute to the coactivating function of the
SAGA complex. Interestingly, SAGA can also nega-
tively regulate basal transcription, in the absence of
activator, by either inhibiting TBP binding to the HIS3
and TRP3 TATA boxes (Belotserkovskaya et al., 2000)
or by competing with TFIIA for TBP binding on the
HIS4 promoter (Warfield et al., 2004). This inhibitory
effect of SAGA on TBP binding to the HIS3 and TRP3
genes is also mediated by the Spt3 and Spt8 subunits of
SAGA. Clearly, SAGA plays a dual role in transcription
as typically exemplified by a general cofactor. Other
than serving as a bridging factor for interactions
between activators and TBP or HAT substrates, some
components of the SAGA complex, such as Spt7, Spt20,
Ada1, TAF5, TAF10, TAF12, and Sgf73 are necessary
for the structural integrity of SAGA, as mutations in
these subunits result in disruption of the holo complex
(Grant et al., 1998; Sterner et al., 1999; Durso et al.,
2001; Kirschner et al., 2002; McMahon et al., 2005). In
addition, Sgf73 is important for regulating GCN5 HAT
activity in SAGA, as substitution of wild-type yeast pro-
tein with a polyglutamine-expanded pathogenic human
Sgf73 mutant impairs GCN5-mediated acetylation of
nucleosomal histones likely by reducing interactions
between Ada2, Ada3, Spt3 and TAF12 with the core
complex without altering the incorporation of GCN5
and other subunits (McMahon et al., 2005). The Ubp8
and Sgf11 subunits of SAGA seem to function together
as nonessential structural components to remove the
monoubiquitin moiety from lysine 123 of histone H2B
(Henry et al., 2003; Daniel et al., 2004; Ingvarsdottir
et al., 2005; Lee et al., 2005c), since deletion of either
the UBP8 or SGF11 gene in yeast results in similar
effects on a common subset of SAGA-regulated genes
(Powell et al., 2004; Ingvarsdottir, 2005) and increased
ubiquitination on histone H2B both in vivo and in vitro
(Ingvarsdottir, 2005; Lee et al., 2005c). At the chro-
matin level, the recent identification of Chd1 as a
component of SAGA further provides a functional link
between histone methylation and acetylation, given
that Chd1 binding to methylated lysine 4 in histone
H3 apparently enhances GCN5-mediated acetylation
on chromatin (Pray-Grant et al., 2005).

SLIK, with protein composition similar to that
of SAGA, contains a SLIK-specific subunit Rtg2
(retrograde 2) and a C-terminal truncated Spt7 pro-

tein, but lacks Spt8 (Pray-Grant et al., 2002; Sterner
et al., 2002). The remaining polypeptides common to
both SAGA and SLIK complexes include GCN5, Ada1,
Ada2, Ada3, TAF5, histone fold-containing TAF6,
TAF9, TAF10 and TAF12, as well as Tra1, Spt3, Spt20,
Chd1, Ubp8, Sgf11, Sgf29, and Sgf73 (Pray-Grant et al.,
2002; Daniel et al., 2004; McMahon et al., 2005; Pray-
Grant et al., 2005). It should be noted that TAF5 ap-
pears to be a major scaffold protein connecting dif-
ferent structural domains in both SAGA and TFIID
complexes (Leurent et al., 2004; Wu et al., 2004) and
likely SLIK as well. In addition, TAF5 can be post–
translationally modified by ubiquitination (Auty et al.,
2004) and sumoylation (Boyer-Guittaut et al., 2005),
suggesting a critical role of this subunit in regulating
the function of TFIID, SAGA, SLIK and other TAF5-
containing complexes. With many common subunits
as found in SAGA, it is not surprising that SLIK can
interact with activators and TBP, and can regulate chro-
matin transcription by binding methylated histone H3,
acetylating histones, and deubiquitinating histone H2B
(Pray-Grant et al., 2002; Henry et al., 2003; Daniel et al.,
2004; Jazwinski, 2005). As seen with SAGA, the 19S reg-
ulatory subcomplex also enhances the affinity of SLIK
for activator-bound DNA (Lee et al., 2005c). However,
there are some functional differences between SLIK
and SAGA, due to a slight variation in their protein
composition. In yeast, deletion of the Rtg2 gene re-
sults in the disruption of SLIK but not SAGA, indicat-
ing that Rtg2 is indeed a SLIK-specific subunit (Pray-
Grant et al., 2002). Moreover, that Rtg2, rather than
Spt8, is involved in CIT2 gene activation that regulates
biosynthetic and metabolic responses in mitochondria
(Chelstowska and Butow, 1995) suggests that the pres-
ence of Rtg2 enables SLIK to regulate a subset of genes
distinct from that of SAGA. This is consistent with the
observation that SLIK does not repress HIS3 basal tran-
scription, presumably due to the absence of Spt8 caused
by truncation of the Spt7 C-terminal region needed for
Spt8 recruitment (Belotserkovskaya et al., 2000; Sterner
et al., 2002; Wu and Winston, 2002).

STAGA, a human counterpart of yeast SAGA ini-
tially isolated from HeLa nuclear extracts using poly-
clonal antibodies against human TAF9 (Martinez et al.,
1998), contains many homolog found in yeast SAGA,
including TRRAP, Ada1, Ada2, Ada3, Spt3, Spt7, and
histone fold-containing TAF9, TAF10, and TAF12.
While additional components of STAGA, TAF5L,
TAF6L, SAP130, ataxin-7 and GCN5L are also present
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in TFTC, the identities of the other subunits (such
as STAF36, STAF42, STAF46, STAF55, STAF60, and
STAF65γ ) remain to be characterized (Martinez et al.,
2001; Helmlinger et al., 2004; Palhan et al., 2005).
Pertinent to this, whether many of the STAGA com-
ponents are commonly found in the related human
PCAF/GCN5 complexes (Ogryzko et al., 1998) remains
to be examined. The conservation of histone fold-
containing Spt3, TAF9, TAF10 and TAF12 in both
SAGA and STAGA suggests that these subunits are
likewise important for the structural integrity of these
distinct HAT complexes. As seen with yeast SAGA,
the existence of TRRAP, GCN5L, Ada1, Ada2, Ada3,
and ataxin-7 in STAGA likely accounts for the coac-
tivating activity of STAGA in supporting Gal4-VP16-
mediated activation from a Gal4-driven chromatin tem-
plate (Martinez et al., 2001) and cone-rod homeobox
(CRX)-stimulated transcription from the CRX-targeted
rhodopsin promoter (Palhan et al., 2005). Clearly, Ada
proteins and ataxin-7 facilitate the access of GCN5L
to the activator-occupied chromatin template, allowing
acetylation of nucleosomal core histones (Balasubrama-
nian et al., 2002; Palhan et al., 2005). That adaptor pro-
teins are additionally required for activator-facilitated
chromatin targeting of GCN5 is further supported by
the observation that recombinant GCN5 protein is
unable to potentiate activator-dependent transcription
from preassembled chromatin templates (Thomas and
Chiang, 2005). From our understanding of the yeast
SAGA complex, it is likely that the Spt3 component
of STAGA may contact TBP to facilitate transcription
from STAGA-dependent promoters.

Unlike HAT-containing TFTC, SAGA, SLIK and
STAGA complexes involved in gene activation, the
TAF-containing Drosophila PRC1 complex is implicated
in repression of homeotic genes that govern body seg-
mentation and the developmental process. This com-
plex, initially isolated from Drosophila embryos using
a monoclonal antibody against epitope-tagged poly-
homeotic (PH) or posterior sex comb (PSC) protein
(Shao et al., 1999), contains approximately 30 subunits,
including TAF1, TAF4, TAF5, TAF6, TAF9, TAF11,
PH, PSC, PC (polycomb), RING1, Zeste, HSC4,
SMRTER, Mi-2, Sin3A, Rpd3, p55, Sbf1, DRE4/Spt16,
p90, HSC3, Modulo, Reptin, DNA topoisomerase II,
p110, tubulin, actin, Ribosome RS2, and Ribosome
RL10 (Saurin et al., 2001). Although this holo com-
plex has histone deacetylase (HDAC) Rpd3, chromatin
remodeling ATPase Mi-2, and other corepressor com-

ponents (SMRTER, Sin3A, and p55) likely contribut-
ing to repression of transcription and inhibition of
chromatin remodeling, it is surprising to see that a
PRC1 core complex (PCC) containing only PH, PSC,
PC, and RING1 is sufficient for transcriptional silenc-
ing (King et al., 2002) and for blocking SWI/SNF-
mediated mobilization of a nucleosomal array (Francis
et al., 2001). This finding, plus the fact that a sequence-
specific transcription factor Zeste is present in PRC1,
suggests that PRC1 may use different mechanisms to
target PRC1-regulated gene transcription, irrespective
of the presence or absence of a Zeste-binding element
(Mulholland et al., 2003). Given that the identified hu-
man PRC1 complex containing only homologs of the
Drosophila core complex (PC, PH, PSC, and RING1) is
able to inhibit SWI/SNF-mediated chromatin remodel-
ing (Levine et al., 2002) and that the other characterized
Drosophila PRC2 (Ng et al., 2000a; Tie et al., 2001) and
human PRC2 (Cao et al., 2002; Kuzmichev et al., 2002),
PRC3 (Kuzmichev et al., 2004), and PRC4 (Kuzmichev
et al., 2005) complexes do not seem to contain TAFs, the
functional roles of TAFs and the other subunits consti-
tuting PRC1 await further investigation.

TAF Variants
Some components of TFIID are present in a substoi-

chiometric ratio relative to the other TAFs. These TAFs,
such as TAF4b, TAF5L, and TAF7L, are often found in a
tissue-specific manner and likely confers TFIID unique
properties functioning in a specialized environment.
TAF4b, a paralog of TAF4 initially identified in TFIID
purified from B cells and later found expressed at low
levels in every cell types but specifically enriched in the
testes and ovary, appears to function in a gonad-specific
manner, as knockout of this TAF variant severely affects
ovarian development in female mice (Freiman et al.,
2001) and also spermatogenesis in male mice (Falender
et al., 2005). Likewise, TAF5L and TAF7L, paralogs of
TAF5 and TAF7, respectively, are implicated in male ga-
metogenesis (Hiller et al., 2001; Pointud et al., 2003).
The presence of these tissue-specific TAF variants likely
enables TFIID to work in conjunction with germ cell-
specific transcription factors, cofactors, or other com-
ponents of the general transcription machinery, such as
TFIIAαβ-like factor (Upadhyaya et al., 1999; Ozer et al.,
2000). Related to this, a unique TFIID subunit, TAF8,
is induced during adipocyte differentiation (Guermah
et al., 2003). Other than the tissue-specific expression
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pattern observed with these TAF variants, functional in-
activation of TAF1 (Hisatake et al., 1993; Ruppert et al.,
1993), which is present in TFIID and PRC1, and of
TAF10 (Metzger et al., 1999), found in TFTC, STAGA,
and SAGA-like complexes, causes cell cycle arrest, in-
dicating a general role of selective mammalian TAFs in
modulating cell growth. Undoubtedly, the presence of
TAF variants further expands the general properties of
TFIID to specialized needs in differentiated tissues.

TFIIA
Protein Composition

Human TFIIA is composed of α,β, and γ subunits
with molecular weights of 35 kDa, 19 kDa, and 12 kDa,
respectively. These three subunits are encoded by two
genes: TFIIAαβ and TFIIAγ in higher eukaryotes, and
TOA1 and TOA2 in yeast. Human TFIIAαβ encodes a
55-kDa precursor protein that is highly conserved with
TOA1 in yeast within the N-terminal 54 amino acids
and the C-terminal 76 amino acids, but is less conserved
in the central part of TFIIA which has been shown to
be dispensable for function (Ranish et al., 1992; Kang
et al., 1995). The smallest subunit of TFIIA, TFIIAγ ,
is homologous to yeast TOA2 (Ozer et al., 1994; Sun
et al., 1994). In higher eukaryotes, TFIIAαβ is prote-
olytically cleaved into TFIIAα and TFIIAβ subunits
(DeJong and Roeder, 1993; Ma et al., 1993; Yokomori
et al., 1993). Originally it was thought that the three in-
dependent subunits (α, β, and γ ) constitute TFIIA ac-
tivity, since only the cleavage products were detected
in cell extracts in association with one another. Re-
cently, intact TFIIAαβ protein was detected in asso-
ciation with TFIIAγ along with TBP in P19 embry-
onal carcinoma cells (Mitsiou and Stunnenberg, 2000,
2003), and likely in human parasites as a more divergent
form such as the TRF4/SNAPc/TFIIA complex identi-
fied in Trypanosoma brucei (Schimanski et al., 2005). The
site for proteolytic cleavage within human TFIIAαβ

was determined by Edman degradation; TFIIAβ was
found to start at Asp278 (Høiby et al., 2004). Further-
more, cleaved TFIIAα and TFIIAβ were more effi-
ciently degraded than the unprocessed precursor via the
ubiquitin-proteasome pathway, suggesting that cleavage
and degradation of TFIIA control the level of TFIIA
within the cell to perhaps adapt more rapidly to the
transcriptional needs in responding to environmental
changes (Høiby et al., 2004). Similar to TAF4b, a cell
type-specific TFIIAαβ-like factor (ALF) has been iden-

tified in human testis (Upadhyaya et al., 1999; Ozer et al.,
2000) and is shown to work in conjunction with TFIIAγ

to stabilize TBP binding to the promoter (Upadhyaya
et al., 2002). Further experiments indicate that ALF is
also found in immature oocytes of the frog Xenopus lae-
vis, in which ALF replaces TFIIA during oogenesis (Han
et al., 2003).

TFIIA as an Antirepressor, Not a GTF

The role of TFIIA as a GTF has been controversial. As
with TFIID, TFIIA was initially identified as a phospho-
cellulose column fraction necessary for pol II-mediated
transcription in vitro (Matsui et al., 1980). Early in vitro
experiments showed that TFIIA was essential for tran-
scription (Reinberg et al., 1987), while later in vitro stud-
ies demonstrated that TFIIA was largely dispensable for
basal level transcription (Van Dyke et al., 1988; Wu et al.,
1998). It has also been suggested that TFIIA stimulates
both basal and activated transcription in vitro two-to
tenfold, but generally only when TFIID, instead of TBP,
is used as the promoter-binding factor (Orphanides
et al., 1996; Hampsey, 1998; Warfield et al., 2004).
In our laboratory, we found TFIIA was not required
for either basal or activator-dependent transcription
in a highly purified transcription system reconstituted
with recombinant TFIIB, TFIIE, TFIIF, PC4 coactiva-
tor, and epitope-tagged multiprotein complexes (pol II,
TFIID, and TFIIH), irrespective of whether TFIID or
recombinant TBP was used in the assay (Wu et al., 1998).
Nevertheless, TFIIA indeed became essential for tran-
scription in a reconstituted system containing partially
purified fractions obtained according to the purification
scheme outlined in Figure 1. Collectively, these studies
suggest that TFIIA mainly functions as an antirepressor
to overcome inhibitors present in crude fractions, likely
by increasing the affinity of TBP or TFIID for DNA
(Buratowski et al., 1989; Lee et al., 1992; Imbalzano et al.,
1994b; Kang et al., 1995), thus enhancing PIC assembly.
TFIIA stabilizes TBP-TATA box interactions through
direct contacts with both TBP (on the surface of TBP
opposite to the TFIIB-binding side) and the DNA se-
quence immediately upstream of the TATA box (Geiger
et al., 1996; Lagrange et al., 1996; Oelgeschläger et al.,
1996; Tan et al., 1996). Binding of TFIIA to TBP dimers
has also been shown to induce TBP monomer forma-
tion and accelerate the kinetics of TBP binding to DNA
(Coleman et al., 1999). TFIIA can counteract the repres-
sive effects of negative cofactors, such as NC2 (Xie et al.,
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2000), HMGB1 (Ge and Roeder, 1994b), and DNA
Topoisomerase I (Merino et al., 1993), as well as the in-
hibitory activity of TAF1 and BTAF1 on TBP binding to
DNA (Auble and Hahn, 1993; Kokubo et al., 1998). In-
terestingly, TAF1 interaction with TFIIA may modulate
TFIIA activity, since it has been shown that TAF1 phos-
phorylates human TFIIAβ on serine residues important
for TBP binding and transcription activity (Solow et al.,
2001). Additionally, experiments have shown that the
TFIIA-TBP-DNA complex may also be regulated by the
transcriptional coactivator p300 through acetylation of
TFIIA (Mitsiou and Stunnenberg, 2003).

TFIIA as a Coactivator
In addition to the antirepressing activity, TFIIA can

also act as a coactivator to stimulate overall transcrip-
tion by directly contacting activators, general cofactors,
and components of the general transcription machin-
ery. Many studies have demonstrated that TFIIA in-
teracts with activators, such as Gal4-VP16 (Kobayashi
et al., 1995; Dion and Coulombe, 2003), Zta (Ozer et al.,
1994; Kobayashi et al., 1995), and HTLV-1 Tax (Clemens
et al., 1996), or with transcriptional cofactors such as
PC4 (Ge and Roeder, 1994a) and HMG2 (Shykind et al.,
1995). TFIIA has also been shown to interact with com-
ponents of TFIID, including TBP (Maldonado et al.,
1990; Ranish and Hahn, 1991; Usuda et al., 1991; Cortes
et al., 1992; Lee et al., 1992; Yokomori et al., 1993; Sun
et al., 1994), TAF1 (Solow et al., 2001), TAF4 (Yokomori
et al., 1993), TAF11 (Kraemer et al., 2001; Robinson
et al., 2005), and other GTFs, such as TFIIEα, TFIIEβ,
and RAP74 (Langelier et al., 2001). The observed in-
teraction between TFIIA and TBP-related proteins, in-
cluding TRF1 (Hansen et al., 1997), TRF2 (Moore et al.,
1999; Rabenstein et al., 1999; Teichmann et al., 1999),
and TRF4 (Schimanski et al., 2005), further suggests that
TFIIA plays a more general role in facilitating PIC as-
sembly mediated by different core promoter-binding
factors. In one proposed model of TFIIA function, in-
teraction of TFIIA with both activators and TFIID may
stimulate and stabilize TFIID binding to DNA as part of
an activator-TFIID-TFIIA-DNA complex, thereby en-
hancing a rate-limiting step for promoter recognition
(Wang et al., 1992; Lieberman and Berk, 1994; Chi et al.,
1995; Kobayashi et al., 1995; Ranish et al., 1999; Dion
and Coulombe, 2003). Moreover, TFIIA may upregu-
late PIC formation at a step post TFIID binding to
the DNA by stimulating the functions of both TFIIE

and TFIIF (Langelier et al., 2001). In TAF-independent
transcriptional activation experiments using a highly
purified transcription system, TFIIA could potentiate
TBP-mediated activation, suggesting that TFIIA may
function as a coactivator especially in the absence of
TAFs (Wu et al., 1998). Several studies using immun-
odepletion of TFIIA subunits in vitro and mutational
studies abolishing TFIIA-TBP interactions in yeast have
indicated that, similar to TAFs, TFIIA is important for
transcription only from a subset of genes and does not
seem to be universally required for all gene transcrip-
tion (Kang et al., 1995; Ozer et al., 1998a; Liu et al., 1999;
Stargell et al., 2000).

TFIIB
TFIIB Stabilizes TFIID Promoter

Binding
Once TFIID or TBP is bound to the promoter in the

absence or presence of TFIIA, TFIIB is the next GTF to
enter the PIC assembly pathway. Binding of TFIIB to
promoter-bound TBP results in a more stable ternary
complex composed of TBP-TFIIB-DNA (Orphanides
et al., 1996). Besides stabilizing TFIID/TBP binding to
the promoter region, TFIIB plays an important role in
recruiting pol II/TFIIF to the ternary complex and in
specifying the transcription start site (Orphanides et al.,
1996; Hampsey, 1998; Hahn, 2004). In humans, TFIIB
has 316 amino acid residues and exists as a single 33-kDa
polypeptide (Ha et al., 1991; Malik et al., 1991), which
shares sequence homology with a 38-kDa Drosophila
TFIIB protein and also with a 38-kDa yeast protein en-
coded by the SUA7 gene (Pinto et al., 1992; Wampler
and Kadonaga, 1992; Yamashita et al., 1992). TFIIB is
evolutionarily conserved among various species, and ex-
hibits amino acid and structural conservation with ar-
chaeal TFB (transcription factor B) and eukaryotic pol
III accessory factor BRF (TFIIB-related factor) at both
the N-terminal pol II/TFIIF-interacting zinc-ribbon do-
main and the C-terminal DNA-binding domain con-
taining two imperfect direct repeats (Orphanides et al.,
1996; Hampsey, 1998, Bell and Jackson, 2001; Hahn,
2004; see Figure 7A). These two functional domains in
TFIIB were originally identified through protease diges-
tion, as the N-terminus is rapidly degraded leaving be-
hind a protease-resistant C-terminal “core” that retains
the two imperfect direct repeats of TFIIB (Barberis et al.,
1993; Malik et al., 1993).
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FIGURE 7 Structural domains and interacting regions on TFIIB, TFIIF, and TFIIE. Schematic representation of the structural domains is
depicted for TFIIB (A ), TFIIF (B ), and TFIIE (C ). Solid lines below each protein correspond to the amino acid residues within TFIIB, TFIIF,
and TFIIE regions that are shown to interact with other GTFs and pol II or contact DNA. Unless specified, the boundaries of amino acid
residues for the solid lines are the same as indicated for the structural domains. It should be noted that, although not shown, RAP30 in
panel B also interacts with TFIIEβ, whereas TFIIEα and TFIIEβ in panel C contact TFIIAγ and TFIIAαβ, respectively, through undefined
regions.
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TFIIB-TBP-Promoter Structure
The C-terminal core of TFIIB comprises nearly

two-thirds of the protein (amino acids 106 to 316)
and contains two imperfect repeats each consisting of
5 α-helices, termed BH1, BH2, BH3, BH4, and BH5
in the first repeat (amino acids 124 to 200) and BH1′,
BH2′, BH3′, BH4′, and BH5′ in the second repeat
(amino acids 218 to 294; Bagby et al., 1995; Tsai and
Sigler, 2000). The C-terminal core of TFIIB, as revealed
in the structure of a TATA-TBP-TFIIB ternary complex
(Nikolov et al., 1995; Tsai and Sigler, 2000), bound
beneath and to one face of the TATA-TBP complex,
consistent with hydroxyl-radical footprinting (Lee
and Hahn, 1995) and photocrosslinking experiments
(Coulombe et al., 1994; Lagrange et al., 1996). Structural
evidence also exists for TFIIB competing with NC2
for overlapping binding surface on TBP (Kamada et al.,
2001b; see previous NC2 section). The conserved
C-terminus of TFIIB interacts with both TBP and
DNA, making DNA contacts with sequences flanking
the TATA box, in particular the major groove upstream
and the minor groove downstream of the TATA box
(Nikolov et al., 1995; Tsai and Sigler, 2000). Experi-
ments also indicate that TFIIB alone without TBP can
make sequence-specific DNA contacts with the BREu

(Lagrange et al., 1998; see also the Core Promoter
Elements section) via a nonconserved helix-turn-helix
(HTH) motif, which is a trihelical bundle composed
of BH3′, BH4′ and BH5′ in the second direct repeat,
and further stabilizes the ternary TFIIB-TBP-promoter
complex (Evans et al., 2001; Wolner and Gralla, 2001).
Recent studies also show that TFIIB can contact the
BREd sequence, situated downstream of the adenovirus
E4 TATA box, via a separate DNA-binding domain
located at a recognition loop linking BH2 and BH3
in the first direct repeat of TFIIB, apparently in a
TBP-dependent manner (Fairley et al., 2002; Deng and
Roberts, 2005). These TFIIB-DNA interactions can be
modulated by transcriptional activators, such as Gal4-
VP16, which work in part by disrupting intramolecular
interactions between N- and C-terminal domains of
TFIIB (Hawkes et al., 2000), thereby exposing the
DNA recognition loop of TFIIB for BREd recognition.
Concurrently, this activator-induced conformational
change may weaken interactions between the HTH
DNA-binding domain of TFIIB and the BREu (Evans
et al., 2001). Although the role of activator in disrupting
TFIIB-BREu interactions seems contradictory with the

previously proposed role of the BREu in stabilizing
the TFIIB-TBP-DNA ternary complex, it appears that
the BREu may play an inhibitory role in PIC formation
or during the transition from the initiation to the
elongation stage. Clearly, activators may stimulate
transcription by regulating multiple steps. The precise
mechanism by which activators, TFIIB, and BRE inter-
actions affect PIC assembly, initiation, and promoter
clearance remains to be investigated.

TFIIB N-Terminal Domain
The TFIIB amino terminus contains a zinc ribbon

motif (amino acids 14 to 42 in humans) with a Cys-
X2-His-X15-Cys-X2-Cys sequence forming a protease-
resistant ZnC3H1 structure comprising of three antipar-
allel β strands important for the structural integrity of
TFIIB (Chen et al., 2000; Ghosh et al., 2004). This zinc
ribbon motif interacts with the RPB1 and RPB2 sub-
units of pol II at the dock domain near the RNA exit
channel (Chen and Hahn, 2003; Bushnell et al., 2004)
and also with the RAP30 subunit of TFIIF (Ha et al.,
1993; Fang and Burton, 1996; see Figure 7A). These
interactions facilitate the recruitment of pol II/TFIIF
to the TFIID-bound promoter region (Buratowski and
Zhou, 1993; Ha et al., 1993; Malik et al., 1993; Yamashita
et al., 1993; Fang and Burton, 1996; Bangur et al., 1997).
Immediately adjacent to the N-terminal zinc ribbon
motif is a highly conserved region called the charged
cluster domain (CCD) or the B-finger, spanning amino
acids 44 to 75 of human TFIIB (Bushnell et al., 2004; see
Figure 7A). It is believed that the B-finger domain acts
as a molecular switch to regulate the conformational
change of TFIIB, thereby modulating TFIIB function
in promoter recognition, start site selection, and tran-
scriptional activation (Pinto et al., 1994; Pardee et al.,
1998; Hawkes and Roberts, 1999; Wu and Hampsey,
1999; Hawkes et al., 2000; Faitar et al., 2001; Elsby and
Roberts, 2004).

B-Finger-Induced Conformational
Changes

As mentioned previously, TFIIB undergoes a confor-
mational change when it interacts with DNA or activa-
tors, and the B-finger plays a vital role in this conforma-
tional change (Hawkes et al., 2000; Fairley et al., 2002;
Elsby and Roberts, 2004). The activator Gal4-VP16 has
been shown to disrupt the intramolecular interaction
between the B-finger and the second repeat of the
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C-terminal domain (Elsby and Roberts, 2004). Evidence
with corresponding mutations in the B-finger, which
favors N- and C-terminal intramolecular interactions,
also shows defects in activator-mediated recruitment
and in transcriptional activation in vivo and in vitro
(Hawkes et al., 2000; Glossop et al., 2004; Elsby and
Roberts, 2004). These B-finger mutations, however, are
competent in PIC assembly, indicating that mutations
in the B-finger do not affect TFIIB interactions with
TBP/DNA and pol II/TFIIF, mediated individually by
the C-terminal core and the zinc ribbon motif. Related
studies in yeast TFIIB also suggest that conformational
changes in TFIIB regulate the stability of the TFIIB-
TBP-promoter ternary complex (Bangur et al., 1999).

Role of the B-Finger in Start Site
Selection

The involvement of yeast TFIIB (Sua7) in start site
selection has been observed on CYC1, ADH1, and
many other genes (Pinto et al., 1992; Berroteran et al.,
1994; Pardee et al., 1998). Besides its role in mediating
activator-dependent transcription, the B-finger also has
a critical role in directing accurate initiation of transcrip-
tion. The functions of the B-finger in transcriptional ac-
tivation and start site selection are located on different
amino acid residues (Hawkes and Roberts, 1999). Simi-
lar to the activation-defective B-finger mutants, distinct
mutations in the B-finger with aberrant transcriptional
start site selection also do not show defects in PIC as-
sembly (Hawkes and Roberts, 1999; Fairley et al., 2002).
It has been proposed that these distinct B-finger mu-
tations, which cannot undergo proper conformational
changes, alter TFIIB’s interaction with the pol II cat-
alytic center, thus shifting the transcription start site.
Recent photo crosslinking experiments have shown that
TFIIB helps position the path of promoter DNA across
the central cleft of pol II (Chen and Hahn, 2003, 2004).
Supporting crystallographic data has also indicated that
the B-finger of TFIIB forms a finger-like structure pro-
jecting into the active center of pol II (Bushnell et al.,
2004), at a location close to the RAP74 subunit of TFIIF
(Chen and Hahn, 2004). This configuration enables
TFIIB to work in conjunction with pol II/TFIIF for
start site selection. Although mutations in the B-finger
may not be directly involved in PIC formation, confor-
mational changes in TFIIB does play an essential role
in transcriptional activation, promoter recognition, and
also start site selection.

Role of TFIIB Post PIC Assembly
In addition to its role in facilitating promoter recog-

nition by TBP/TFIID and in recruiting pol II/TFIIF,
TFIIB also modulates transcription at a step after PIC
assembly. From the structural analysis of the pol II-
TFIIB complex, it is obvious that the B-finger of TFIIB,
situated in the RNA exit channel, is likely to block
the extension of newly synthesized RNA transcripts
(Bushnell et al., 2004). Consistent with this prediction,
transcript elongation by newly-initiated pol II com-
plexes that retain TFIIB is strongly inhibited beginning
at +7. This block is reduced when human TFIIB bear-
ing a mutation in the B-finger (R66L) is substituted for
wild-type TFIIB (Pal et al., 2005). This finding is con-
sistent with yeast studies showing that mutations in a
B-finger residue (E62G and E62K) exhibit a post PIC
assembly transcriptional defect (Cho and Buratowski,
1999; Ranish et al., 1999).

TFIIF
Discovery of TFIIF

TFIIF was not initially identified when nuclear pro-
teins were fractionated by P11 ion-exchange chromatog-
raphy simply into four (A, B, C, and D) fractions
(Matsui et al., 1980). The discovery of TFIIF was made
possible only after further purification of the C frac-
tion and following the identification of TFIIE (Flores
et al., 1988). Human TFIIF was found to be composed
of previously identified RNA polymerase II-associated
proteins 30 (RAP30) and 74 (RAP74) isolated from calf
thymus extracts as well as from human and mouse cell
lines (Sopta et al., 1985; Flores et al., 1988). Further char-
acterization of TFIIF by size exclusion column chro-
matography suggested that TFIIF is a heterotetramer
comprising two subunits each of RAP30 and RAP74
(Flores et al., 1990). The cDNAs for RAP30 and RAP74
had been cloned from humans (Aso et al., 1992; Finkel-
stein et al., 1992), Drosophila (Kephart et al., 1993; Frank
et al., 1995; Gong et al., 1995), and yeast (Henry et al.,
1994). The yeast TFIIF contains three subunits (Henry
et al., 1992; Henry et al., 1994): Tfg1 (105 kDa) and Tfg2
(54 kDa) are essential for yeast viability and are coun-
terparts of human RAP74 and RAP30, respectively; the
third subunit, Tfg3 (30 kDa), is non-essential and is
identical to yeast TAF14/ANC1, which is also present
in yeast TFIID and SWI/SNF chromatin remodeling
complexes (Cairns et al., 1996a). Since Tfg3 exists in
multiple complexes and is able to interact directly with
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TFIIB and TBP (Kimura and Ishihama, 2004), it is prob-
able that Tfg3 may serve as an intermediary factor to
facilitate interactions between SWI/SNF and compo-
nents of the general transcription machinery.

Structure and Functional Domains
of TFIIF

Human RAP30 (249 amino acids, calculated 26 kDa,
apparent mass by SDS-PAGE ∼30 kDa) shares two
regions of sequence homology with bacterial σ factors
(Figure 7B): a central domain (σ homology I, residues
107 to 170) that interacts with pol II, and a C-terminal
domain (σ homology II, residues 162 to 249) possess-
ing cryptic DNA-binding activity (Sopta et al., 1989;
McCracken and Greenblatt, 1991; Garrett et al., 1992;
Tan et al., 1994). RAP30 also contains an N-terminal
RAP74-interacting domain spanning amino acids 1 to
98 and a TFIIB-interacting region located within amino
acids 27 to 152 (Fang and Burton, 1996). Interestingly,
human TFIIF prebound to E. coli RNA polymerase core
enzyme (α2ββ ′) can be displaced by bacterial σ 70 fac-
tor presumably via the same region in σ 70 that shares
homology with RAP30 (McCracken and Greenblatt,
1991). The RPB5 subunit of human pol II has been
shown to interact with the central domain of RAP30
spanning amino acids 107 to 170 in vivo and in vitro (Wei
et al., 2001). The solution structure of the C-terminal 86
amino acid residues (164 to 249) of RAP30, revealed by
multinuclear NMR spectroscopy, shows that the DNA-
binding domain of RAP30 belongs to the eukaryotic
“winged” HTH family of DNA-binding domains, simi-
lar to that found in histone H5 and the hepatocyte nu-
clear transcription factor HNF-3γ (Groft et al., 1998).
This “winged” HTH motif encompasses amino acid
residues 175 to 243 of RAP30 (see Figure 7B). Within
this region is an α-helix (H1, amino acids 179 to 193)
followed by a short strand (S1, residues 196 to 197) of
antiparallel sheet leading to the HTH motif, which is
composed of an α-helix (H2, amino acids 199 to 205),
turn (amino acids 206 to 209), and another α-helix (H3,
amino acids 210 to 219). Following the HTH are two
antiparallel β-sheets (S2, amino acids 222 to 225; and
S3, 231 to 234) that are connected by a short loop of 5
amino acids (residues 226 to 230), forming the “wing”
of RAP30 (Groft et al., 1998). The DNA contacts in
the winged HTH domain has been mapped to spe-
cific amino acid residues in helices H1 (Arg177, Ala178,
Lys180-His182) and H2 (Asn198-Lys200), turn (Lys207,

Gln208), helix H3 (Val210, Val211, Glu215, Lys218),
and the wing (Lys226, His229, Asn231). It should be
noted that RAP30 also interacts with TFIIEβ, although
the interaction domain on RAP30 has not yet been de-
scribed (Okamoto et al., 1998).

The larger subunit of TFIIF, RAP74 (517 amino
acids, calculated 58 kDa, apparent mass by SDS-PAGE
∼74 kDa), has three functional domains able to inter-
act with RAP30, the TAF1 subunit of TFIID, TFIIAαβ,
TFIIB, pol II, and a protein phosphatase FCP1 (Ruppert
and Tjian, 1995; Fang and Burton, 1996; Archambault
et al., 1998; Okamoto et al., 1998; Langelier et al., 2001;
Abbott et al., 2005a; see Figure 7B). The RAP30-
interacting region is mapped to the N-terminal glob-
ular domain of RAP74 spanning amino acids 1 to 172
(Fang and Burton, 1996). The structure of the RAP30-
RAP74 heterodimer from respective protein-protein in-
teraction domains (RAP74, amino acids 2 to 172; and
RAP30, residues 2 to 119), resolved at 1.7

�

A by X-ray
crystallography, reveals a triple-barrel β-structure com-
prising 16 parallel and antiparallel β-strands and some
less localized loops and α-helices (Gaiser et al., 2000).
The N-terminal domain of RAP74 that encompasses
amino acids 1 to 139 interacts with TAF1 (Ruppert and
Tjian, 1995), which can phosphorylate RAP74 through
either the N-terminal or the C-terminal kinase domain
of TAF1 (Dikstein et al., 1996). This TAF1-mediated in-
teraction and phosphorylation of RAP74 can also be
detected in the TFIID complex (Rossignol et al., 1999;
Wu and Chiang, 2001a). The TFIIAαβ-interacting re-
gions on RAP74 have been mapped to two indepen-
dent domains spanning amino acids 76 to 136 and 410
to 444 (Langelier et al., 2001). Clearly, complex forma-
tion mediated by the N-terminal domain of RAP74 with
RAP30, TFIIAαβ, and TAF1/TFIID is likely important
for TFIIF involvement in PIC assembly, initiation and
elongation (Lei et al., 1998; Langelier et al., 2001; Funk
et al., 2002).

The central region of RAP74 spanning amino acids
179 to 357 is enriched in Glu and Asp acidic amino acid
residues (Aso et al., 1992; Finkelstein et al., 1992). This re-
gion, significantly lacking hydrophobic residues, is hy-
pothesized to be externally exposed and unstructured
within the PIC (Yong et al., 1998) and can be phosphory-
lated by TAF1 and CK2 (Yonaha et al., 1997; Rossignol
et al., 1999). In addition, it was reported that RAP74 has
serine/threonine kinase activity capable of autophos-
phorylating itself at serine 385 and threonine 389,
which may down-regulate pol II elongation in “run-off”
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transcription assays (Rossignol et al., 1999). The signif-
icance of these phosphorylation events in the context
of transcriptional complexes has not been deciphered.

Similar to RAP30, RAP74 also contains a cryptic
DNA-binding domain belonging to the winged HTH
family, in which the structure spanning the C-terminal
69 amino acid residues of RAP74 (amino acids 449
to 517) has been resolved by X-ray crystallography at
1.02

�

A resolution (Kamada et al., 2001a). Within this
C-terminal region of RAP74, there is an α-helix (H1,
amino acids 456 to 465) and a short β-strand (S1, amino
acids 467 to 469) leading to the HTH motif, which is
composed of a second α-helix (H2, amino acids 470 to
475), a long loop (amino acids 476 to 485), and a third
α-helix (H3, amino acids 486 to 500). This HTH motif
is followed by two antiparallel β-sheets (S2, amino acids
503 to 507, and S3, residues 510 to 514) connected by
a short turn (amino acids 508 to 509) that forms the
“wing,” similar to the winged HTH structure described
earlier for RAP30. In analogy with the winged HTH do-
main of RAP30 that exhibits nonspecific DNA-binding
activity with preference for double-stranded DNA se-
quences located between the TATA box and the Inr (Tan
et al., 1994; Forget et al., 2004), the winged HTH domain
of RAP74 likely contributes to the DNA-binding activ-
ity of RAP74 in the PIC (Robert et al., 1998; Forget
et al., 2004). Indeed, the presence of the winged HTH
domain significantly extends the promoter contacts by
the N-terminal region of RAP74 further upstream of
the TATA box and downstream of the Inr (Forget et al.,
1997; Robert et al., 1998).

Besides binding DNA, the C-terminal region of
RAP74 spanning amino acids 358 to 517 can also inter-
act with TFIIB, TFIIAαβ, pol II, and FCP1 (Figure 7B).
The interaction with TFIIB has been mapped to amino
acids 358 to 517 of RAP74, which competes with TFIIB
for overlapping binding surfaces at the N-terminal re-
gion of RAP30 (Fang and Burton, 1996). The pol II- and
FCP1-interacting regions have been located at amino
acids 363 to 444 and 436 to 517 of RAP74, respectively
(Fang and Burton, 1996; Archambault et al., 1998;
Abbott et al., 2005a), suggesting that pol II and FCP1
may bind simultaneously to non-overlapping surfaces
at the C-terminal domain of RAP74 (see Figure 7B).
The interaction between RAP74 and FCP1, which
removes phosphorylation on serine 2 at the carboxy-
terminal domain (CTD) of the pol II RPB1 subunit to
regenerate a hypophosphorylated form of pol II com-
petent for initiation or reinitiation (Cho et al., 2001), is

necessary and sufficient for FCP1 phosphatase activity
in vitro (Archambault et al., 1997, 1998) and may account
for the requirement of the C-terminal region of RAP74
for multiple rounds of transcription (Lei et al., 1998).
Undoubtedly, the FCP1 phosphatase activity is likely
modulated by some RAP74- and FCP1-interacting pro-
teins. Indeed, TFIIB can inhibit FCP1 activity by dis-
placing RAP74 from FCP1 via competition with RAP74
for the same binding surface on FCP1 (Chambers
et al., 1995; Kobor et al., 2000; Nguyen et al., 2003). In
contrast, the FCP1 phosphatase activity is enhanced by
CK2-mediated phosphorylation of FCP1 that in turn
enhances the interaction between FCP1 and RAP74
(Palancade et al., 2002; Abbott et al., 2005b). Other than
these heteromeric protein-protein interactions, RAP74
also shows homomeric interactions with itself, through
either the C-terminal region (amino acids 407 to 517)
or a linker region (amino acids 172 to 205) situated
between the N-terminal RAP30-interacting domain
and the central acidic domain (Robert et al., 1998; see
Figure 7B). As with other GTFs, TFIIF may be recruited
to the promoter through interaction with some tran-
scriptional activators, such as serum response factor
(SRF; Joliot et al., 1995), c-Jun/c-Fos (Martin et al., 1996),
and androgen receptor (AR; McEwan and Gustafsson,
1997; Reid et al., 2002). The interaction with SRF has
been mapped to the central acidic domain of RAP74
(Joliot et al., 1995), whereas the interaction with AR has
been mapped to the N-terminal 136 amino acids and
C-terminal 155 residues of RAP74 (Reid et al., 2002).
These findings indicate that each domain of RAP74 can
serve as a target for transcriptional activators, thereby
facilitating TFIIF recruitment to the transcriptional
complex.

Multiple Roles of TFIIF
TFIIF plays multiple roles during PIC assembly.

First, TFIIF tightly associates with pol II (Sopta et al.,
1985; Price et al., 1989). The RAP74 subunit of yeast
TFIIF has been shown to contact the dissociable
RPB4/RPB7 subunits of yeast pol II, based on struc-
tural comparison between pol II-TFIIF and pol II by
cryo-electron microscopy (Chung et al., 2003), and
to interact with the RPB9 subunit of yeast pol II
(Ziegler et al., 2003; Ghazy et al., 2004). This stable
TFIIF-associated pol II complex accounts for ∼50%
of pol II isolated from Saccharomyces cerevisiae nuclear
extracts and is active in supporting multiple rounds of
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transcription (Rani et al., 2004). Human RAP30 has also
been shown to interact with the RPB5 subunit of human
pol II (Wei et al., 2001). The interaction between TFIIF
and pol II facilitates the recruitment of pol II to the
promoter-bound TFIID-TFIIB complex (Flores et al.,
1991). Second, TFIIF serves as a stability factor to en-
hance the affinity of pol II for the TBP-TFIIB-promoter
complex by providing additional protein-DNA contact
surfaces and likely by inducing changes in DNA topol-
ogy which causes the promoter to wrap around pol II
(Robert et al., 1998). This TFIIF-induced conforma-
tional change creates a stable TBP-TFIIB-pol II-TFIIF-
promoter DNA complex that may confer resistance
to inhibition by transcriptional repressors that target
PIC assembly to negatively regulate gene transcription
(Hou et al., 2000). In the study of human papillo-
mavirus (HPV) E2-mediated transcriptional repression,
we found that E2 could still inhibit HPV transcription
when added to a preformed TFIID (or TBP)-TFIIB-pol
II-promoter DNA complex; however, E2 failed to in-
hibit transcription once a TFIID (or TBP)-TFIIB-pol
II-TFIIF-DNA complex was formed, presumably a sur-
face targeted by E2 for repression was masked by TFIIF-
induced DNA wrapping on this intermediate PIC (Hou
et al., 2000). Third, TFIIF is necessary for subsequent re-
cruitment of TFIIE and TFIIH (Orphanides et al., 1996)
likely via direct interactions with TFIIE (Maxon et al.,
1994). Fourth, TFIIF, together with pol II and TFIIB,
plays a role in transcription start site selection (Fairley
et al., 2002; Ghazy et al., 2004), due to the close proxim-
ity of TFIIB and TFIIF near the active center of pol II
(Bushnell et al., 2004; Cramer, 2004; Hahn, 2004; Freire-
Picos et al., 2005). Fifth, TFIIF has been implicated in
facilitating pol II promoter escape (Yan et al., 1999). Fol-
lowing this transition, TFIIF further enhances the effi-
ciency of pol II elongation (Price et al., 1989; Shilatifard
et al., 2003), likely by promoting forward NTP-driven
translocation at the active center of pol II (Zhang et al.,
2005). When pol II pauses during RNA synthesis, TFIIF
is able to work in conjunction with TFIIS, a transcrip-
tion elongation factor that stimulates pol II cleavage
activity on nascent RNA, to overcome this elongation
block (Zhang and Burton, 2004). Lastly, TFIIF increases
the specificity and efficiency of pol II transcription, sim-
ilar to bacterial σ factors, by preventing spurious initia-
tion through inhibiting and/or reversing the binding of
pol II to non-promoter DNA sequences (Orphanides
et al., 1996; Hampsey, 1998). It is clear that TFIIF has
multiple roles in the pol II transcription process.

CORE POL II
Subunit Composition

Pol II is the key catalytic enzyme in the PIC responsi-
ble for transcription of protein-coding genes in eukary-
otes. Yeast and human pol II both contain 12 subunits,
designated RPB1 to RPB12 by decreasing order of their
molecular mass (Young, 1991). In general, the 12 sub-
units of pol II are highly conserved in sequence, ar-
chitecture, and function. Indeed, 7 subunits of human
pol II can either partially (RPB4, RPB7, and RPB9) or
completely (RPB6, RPB8, RPB10, and RPB12) substi-
tute for the function of their yeast counterparts in com-
plementation assays (McKune et al., 1995; Khazak et al.,
1998). Of the 12 pol II subunits, 5 (RPB5, RPB6, RPB8,
RPB10, and RPB12) are commonly shared among pol
I, pol II and pol III (Woychik et al., 1990; Carles et al.,
1991; Young, 1991; Hampsey, 1998), whereas 4 sub-
units (RPB1, RPB2, RPB3, and RPB11) have sequence-
homologous counterparts in pol I and pol III. Only
RPB4, RPB7, RPB9 and the CTD of RPB1 are unique
to pol II. In addition, RPB1, RPB2, RPB3, and RPB6
share similar primary sequences with bacterial RNA
polymerase subunits β ′, β,α and ω, respectively (Tan
et al., 2000; Minakhin et al., 2001; Mitsuzawa and
Ishihama, 2004). A prokaryotic α-like sequence also
exists in RPB11 (Woychik et al., 1993; Ulmasov et al.,
1996). The primary sequence similarity between RPB1
and β ′ as well as between RPB2 and β also corresponds
to functional similarity: RPB1 and β ′ are involved in
DNA binding, while RPB2 and β bind nucleotide sub-
strates (Hampsey, 1998). Analogous to their bacterial
counterparts, RPB1 and RPB2 are responsible for most
of the catalytic activity of polymerase and are essential
for phosphodiester bond formation (Hampsey, 1998;
Lee and Young, 2000).

Structure of Pol II
Recently, there has been a wealth of structural in-

formation on prokaryotic and eukaryotic RNA poly-
merases provided by photocrosslinking, X-ray crystal-
lography, NMR, and cryo-electron microscopy. The
structures of a yeast pol II 10-subunit enzyme minus
RPB4 and RPB7 in the absence of DNA (Cramer et al.,
2000, 2001) and of a complete 12-subunit pol II have re-
cently been resolved by X-ray crystallography (Armache
et al., 2003, 2005; Bushnell and Kornberg, 2003). RBP4
and RBP7 were not included in the original crystals
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since the heterodimeric RPB4/RPB7 module is found
in substoichiometric amounts in pol II and may dis-
sociate from the “core” 10 subunits. Furthermore, the
RPB4/RPB7 heterodimer, although required for PIC
formation and initiation of transcription, is dispensable
for RNA chain elongation (reviewed by Hampsey, 1998;
Lee and Young, 2000; Cramer, 2004; Hahn, 2004). The
structure of the 12-subunit pol II complex pinpoints the
location of RPB4/RPB7 close to the RNA exit channel
and also suggests a role of this heterodimer in transcrip-
tional initiation (Armache et al., 2003, 2005; Bushnell
and Kornberg, 2003). The CTD (amino acids 1535 to
1733 in yeast), representing an unstructured extension
from the catalytic core of pol II, is flexibly linked to a re-
gion adjacent to the RNA exit channel via an 80-residue
linker and provides a platform for interacting with many
proteins involved in 5′ capping, mRNA splicing, termi-
nation and 3′-end processing (Meinhart et al., 2005).
Comparison of the structures between the 10-subunit
free core enzyme and a transcribing elongation com-
plex containing the same core enzyme in complex with
9 base pairs of an RNA-DNA hybrid within a partially
unwound DNA duplex has revealed detailed informa-
tion regarding subunit-subunit and protein-nucleic acid
contacts both within and outside the catalytic center of
the enzyme (Cramer et al., 2001; Gnatt et al., 2001). Fur-
thermore, contact residues between pol II and distinct
domains of TFIIB, based on the structural information,
have been defined by photocrosslinking experiments
(Chen and Hahn, 2003, 2004). The structures of pol
II complexed with part of the zinc ribbon motif and
the B-finger of TFIIB (Bushnell et al., 2004), with elon-
gation factor IIS (Kettenberger et al., 2003), and with
IIS in the presence of NTPs and a transcription bubble-
mimicking DNA-RNA hybrid (Kettenberger et al., 2004)
have also been elucidated by X-ray crystallography.
Low-resolution cryo-electron microscopy has resolved
structures for a pol II-Mediator complex (Davis et al.,
2002) and for pol II interaction with TFIIF (Chung et al.,
2003). The implications of these structural studies have
been the focus of many recent reviews (Woychik and
Hampsey, 2002; Asturias, 2004; Cramer, 2004; Hahn,
2004; Boeger et al., 2005).

CTD Phosphorylation
An essential feature of all pol II complexes involved

in transcription and mRNA processing resides in the
CTD of RPB1, the largest subunit of pol II. The CTD

contains a tandem repeat of a heptapeptide: Tyr-Ser-
Pro-Thr-Ser-Pro-Ser (YSPTSPS), which repeats 52 times
in humans, 42 times in Drosophila, and 26 to 29 times
in yeast, depending upon the species (Dahmus, 1995;
Hampsey, 1998; Lee and Young, 2000). The CTD is dis-
ordered in pol II structures and tends to be degraded
by proteases. Depending on the phosphorylation state
and the presence or absence of the CTD, three forms
of human pol II (IIO, IIA, and IIB; Figure 8) can be
easily isolated and distinguished (Kershnar et al., 1998).
The IIA form of pol II contains a hypo- or unphospho-
rylated CTD normally implicated in PIC assembly and
transcription initiation (Lu et al., 1991; Serizawa et al.,
1993). The IIO form of pol II, involved in transcript
elongation and termination, has a highly phosphory-
lated CTD with phosphorylation occurring primarily
at serine residues 2 and 5 that are subject to a cycle
of phosphorylation and dephosphorylation through-
out the transcriptional process. The IIB form of pol II,
representing a proteolytic derivative, does not have the
CTD but remains transcriptionally active for at least
the adenovirus major late promoter (Kim and Dahmus,
1989; Buratowski and Sharp, 1990; Kang and Dahmus,
1993; Kershnar et al., 1998), the human rep-3b TATA-
less promoter (Buermeyer et al., 1992) and some TATA-
containing cellular promoters derived from human hi-
stone H2B (Buermeyer et al., 1995) and Drosophila
HSP70 and actin 5C genes (Zehring and Greenleaf,
1990).

Several protein kinases implicated in CTD phos-
phorylation have been identified in humans, includ-
ing cyclin-dependent kinase 7 (CDK7) associated with
TFIIH (Feaver et al., 1991b), CDK8 found in gen-
eral cofactor Mediator, and CDK9 present in posi-
tive transcription elongation factor b (P-TEFb). The
activities of these CTD kinases are regulated by their
associated cyclins that form CDK7-cyclin H, CDK8-
cyclin C, and CDK9-cyclin T pairs. Similar CTD
kinases have been identified in yeast and include
Cdk7/Kin28, Cdk8/Srb10, the CTD kinase 1 (CTDK-
I), and Sgv1/Bur1 (Prelich, 2002). Both Bur1 and the
catalytic subunit of CTDK-I, Ctk1, show sequence ho-
mology to mammalian CDK9. Phosphorylation of ser-
ine 5 by Cdk7/Kin28 following PIC assembly leads to
initiation of transcription (Serizawa et al., 1993) and
later recruitment of mRNA-capping enzyme guany-
lyltransferase (Cho et al., 1997; Komarnitsky et al.,
2000; Rodriguez et al., 2000; Schroeder et al., 2000;
Pei et al., 2001). Phosphorylation of serine 2 by other

138 M. C. Thomas and C.-M. Chiang



FIGURE 8 Purification of human RNA polymerase II complexes. Four different forms of RNA polymerase II (pol II) are purified from
a stable cell line (hRPB9-3) conditionally expressing FLAG epitope-tagged human RPB9 (Wu and Chiang, 2001b). Pol II holoenzyme is
normally purified from the cytoplasmic S100 or nuclear extract fraction. Similarly, the IIA (i.e., containing hypo- or unphosphorylated CTD)
form of core pol II comprised of RPB1 to RPB12 subunits can also be isolated from the same S100 or nuclear extract fraction, but under
high salt wash conditions (Kershnar et al., 1998). The IIO (i.e., containing hyper-phosphorylated CTD) and the IIB (i.e., CTD-truncated)
forms of pol II can be additionally purified from the nuclear pellet. The tail represents the CTD (carboxy-terminal domain) found in the
RPB1 subunit of pol II.

CTD kinases, such as CTDK-I or P-TEFb (Cho et al.,
2001; Zhou et al., 2000; Shim et al., 2002), results in
transcription-coupled recruitment of 3′-end processing
factors (Komarnitsky et al., 2000; Ahn et al., 2004).
Two other CTD kinases, Cdk8/Srb10 (Hengartner et al.,
1998) and c-Abl (Baskaran et al., 1993), have also been
implicated in phosphorylation of serine 2 and tyrosine
1, respectively, although the functional effects remain
to be defined.

Protein phosphatases that remove the phosphate
group on serine 2 or serine 5 have likewise been iden-
tified. Yeast Ssu72 (Krishnamurthy et al., 2004), plant
Arabidopsis thaliana CTD phosphatase-like proteins
AtCPL1 and AtCPL2 (Koiwa et al., 2004), and human
small CTD phosphatase 1 (SCP1) protein (Yeo et al.,
2003) are able to dephosphorylate serine 5 in vitro,
whereas TFIIF-associated CTD phosphatase 1 (FCP1)
isolated from yeast (Archambault et al., 1997; Kimura
et al., 2002) and humans (Archambault et al., 1998; Cho
et al., 1999) is mainly implicated in serine 2 dephospho-
rylation (Cho et al., 2001; Meinhart et al., 2005). FCP1
interacts with TFIIB (Chambers et al., 1995; Kobor

et al., 2000), the RPB4 subunit of pol II (Kimura et al.,
2002), and the RAP74 component of TFIIF (Chambers
et al., 1995; Kobor et al., 2000). It has been shown that
TFIIF can stimulate FCP1 phosphatase activity and
may thus accelerate reinitiation of transcription by
enhancing the conversion of pol II from the elongating
IIO form back to the initiating IIA form (Chambers
et al., 1995; see TFIIF section). Although TFIIB is
able to inhibit TFIIF-stimulated FCP1 phosphatase
activity, the functional role of this inhibition is
still unclear (Chambers et al., 1995). Undoubtedly,
the counteracting activity between Ctk1-FCP1 and
TFIIH-Ssu72 on CTD phosphorylation must play an
important role in initiation, elongation, termination,
and transcription-coupled mRNA processing.

CTD Glycosylation
In addition to phosphorylation, the CTD can also

be modified by glycosylation via covalent linkage of a
monosaccharide, N-acetylglucosamine (GlcNAc), onto
the side chain hydroxyl group of serine or threonine
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residues in the heptapeptide repeat (Kelly et al., 1993).
The β-O-linked N-acetylglucosamine (O-GlcNAc) is
transferred predominantly to the fourth position (usu-
ally a threonine in the consensus YSPTSPS repeat, but
occasionally a serine in nonconsensus sequences) of
the heptapeptide repeat (Kelly et al., 1993) by an O-
GlcNAc transferase (OGT), with the reverse deglyco-
sylation reaction carried out by an O-GlcNAc-specific
β-N-acetylglucosaminidase (O-GlcNAcase; Iyer et al.,
2003 and references therein). The glycosylated Ser/Thr
residues can be found in the heptapeptide sequence
spread throughout the entire CTD domain (Kelly et al.,
1993). Glycosylation is only found in the IIA form of
pol II and appears to be mutually exclusive with phos-
phorylation on the CTD (Comer and Hart, 2001; Iyer
et al., 2003). It is likely that glycosylation on Thr/Ser ster-
ically blocks kinase accessibility to the CTD and thus
regulates pol II activity during the early stage of the
transcriptional process. Alternatively, the extent of gly-
cosylation may alter CTD conformation, thereby mod-
ulating protein dynamic interaction on the CTD scaf-
fold. The exact functional role of CTD glycosylation
remains to be elucidated.

Pol II Ubiquitination
Ubiquitination is the third posttranslational modi-

fication that has been characterized on pol II. Yet, this
important subject has not been extensively covered
thus far in any reviews. In general, ubiquitination
on pol II occurs at a low level under normal growth
condition and can be readily detected when cells are
under stress, particularly in response to specific DNA-
damaging agents, or when pol II encounters elongation
blocks during the transcriptional process independent
of DNA damage. Treating cells with UV irradiation
or the chemotherapeutic drug, cisplatin, induces DNA
damage and causes pol II arrest at sites of DNA lesions
(Bregman et al., 1996). Under this circumstance, arrested
pol II becomes polyubiquitinated, and the proteins in-
volved in the nucleotide excision repair (NER) pathway
are recruited to the damage sites. This transcription-
coupled repair (TCR) process correlates with pol II
ubiquitination and appears to require transcription-
repair coupling factors Cockayne syndrome A and B
(CSA and CSB), which are involved in the TCR path-
way facilitating removal of DNA lesions preferentially
from the transcribed strand of an active gene. Indeed,
ubiquitination on the RPB1 subunit of pol II was de-

tected within 15 minutes in UV-irradiated or cisplatin-
treated human HeLa cells and persisted for ∼8 to
12 hours; in contrast, RPB1 was not ubiquitinated
in CSA- or CSB-deficient human fibroblasts derived
from patients with Cockayne syndrome who exhibited
defects in the TCR pathway (Bregman et al., 1996). This
finding suggests that CSA and CSB are essential for
pol II ubiquitination in response to UV irradiation and
cisplatin treatment. However, when TCR was induced
by hydrogen peroxide (H2O2), which is a different
DNA-damaging agent that triggers the base excision
repair (BER) pathway rather than the NER, CSA and
CSB were not required for pol II ubiquitination (Inukai
et al., 2004), indicating that ubiquitination of pol II
can occur via the TCR pathway following treatment
of cells with different types of DNA-damaging agents
that activate either the NER or the BER pathway.

In yeast, Rad26, which is a homolog of human CSB
and a member of the SWI2/SNF2 family of DNA-
dependent ATPase, is implicated in TCR and appears
to assist pol II in overcoming the elongation block,
likely by enhancing an open (i.e., remodeled) chromatin
structure at sites of DNA lesions, thereby allowing TCR
and resumption of pol II elongation (Lee et al., 2002b;
Woudstra et al., 2002; Bucheli and Sweder, 2004). How-
ever, when damage is beyond repair, Rad26 then re-
cruits Def1 (degradation factor 1), which in turn inter-
acts with pol II and enhances ubiquitination and subse-
quent degradation of pol II (Woudstra et al., 2002; Reid
and Svejstrup, 2004). In general, DNA damage-induced
RPB1 ubiquitination results in pol II degradation by the
26S proteasome (Beaudenon et al., 1999; Inukai et al.,
2004), a view consistent with in vivo ChIP assays show-
ing that the 26S proteasome can be recruited to stalled
pol II at sites of UV-induced DNA damage (Gillette
et al., 2004). It should be noted that the association of
pol II with only the 19S regulatory subcomplex, but not
the 20S catalytic core, of the 26S proteasome appears to
enhance pol II elongation during regular transcription,
apparently in a nonproteolytic fashion (Ferdous et al.,
2001). Clearly, the association of the 19S subcomplex
with pol II likely provides a platform for subsequent as-
sembly with the 20S core to form the 26S proteasome
leading to pol II degradation, when ubiquitination of
pol II occurs at the unrepaired damage sites.

Three enzymes involved in the thioester cascade for
pol II ubiquitination have been identified in yeast:
E1 ubiquitin-activating enzyme Uba1, E2 ubiquitin-
conjugating enzyme Ubc5 (or Ubc4), and E3 ubiquitin
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ligase Rsp5 (Somesh et al., 2005). Rsp5 (reversion of Spt
phenotype; an extragenic suppressor of mutations in
the Spt3 gene) is the only E3 ubiquitin ligase in yeast
known to ubiquitinate pol II through interaction with
the CTD of RPB1 (Huibregtse et al., 1997; Beaudenon
et al., 1999; Lommel et al., 2000). This interaction is
mediated through recognition of the PXY motif (X can
be any amino acid) present in contiguous heptapeptide
repeats (YSPTSPSYSPTSPS) of the CTD by the sec-
ond or third WW domain of Rsp5 (Wang et al., 1999;
Chang et al., 2000). The WW domain is a conserved
38 to 40 amino acid module containing two conserved
tryptophan (W) residues folded into a three-stranded
antiparallel β-sheet with a hydrophobic binding pocket
for PXY recognition (Macias et al., 2002). Although the
CTD is essential for interaction with Rsp5, ubiquitina-
tion of yeast pol II occurs outside the CTD at lysine
695 of RPB1 (Somesh et al., 2005) and also in the RPB7
subunit (Kus et al., 2005). It appears that multiple com-
ponents of pol II can serve as targets for ubiquitina-
tion, leading to pol II degradation induced by different
DNA-damaging agents.

In mammalian cells, multiple E3 ubiquitin lig-
ases, including human receptor potentiation factor 1
(hRPF1), von Hippel-Lindau tumor suppressor protein
(pVHL) complex, breast cancer gene 1-encoded protein
(BRCA1), and the CSA complex, have been implicated
in pol II ubiquitination. The WW domain-containing
hRPF1 protein, also named hNEDD4 (human neural
precursor cell-expressed and developmentally down-
regulated), is the human homolog of yeast Rsp5 (Imhof
and McDonnell, 1996; Gajewska et al., 2003) and is
able to interact with PXY-containing proteins, such as
the p45 subunit of NF-E2 transcription factor (Gavva
et al., 1997) and the CTD domain of RPB1 (Beaudenon
et al., 1999). While the catalytic HECT (homologs to the
E6-AP carboxyl terminus) domain of Rsp5, and likely
hRPF1, is essential for pol II ubiquitination, this ubiq-
uitin ligase activity is dispensable for the coactivator
function of hRPF1 in stimulating hormone-dependent
activation by human glucocorticoid receptor (hGR) and
by progesterone receptor isoform B (hPR-B; Imhof and
McDonnell, 1996). It is interesting to note that co-
transfection of Spt3, which is found in yeast SAGA
and SLIK, as well as human TFTC and STAGA com-
plexes (see discussion of TAF-containing complexes),
with either Rsp5 or hRPF1, synergistically activate tran-
scription (Imhof and McDonnell, 1996), suggesting that
these two E3 ubiquitin ligases may function through

TAF-containing complexes to regulate target gene tran-
scription. The finding that Rsp5 is also present in some
yeast TFIID preparations and that TAF1 and TAF5 can
be ubiquitinated (Auty et al., 2004) further indicates that
ubiquitination on TAF-containing complexes may play
an important role in fine-tuning the activity of these
coactivator complexes. This intriguing possibility is yet
to be explored.

The pVHL tumor suppressor protein associates with
Elongin B, Elongin C, Cullin 2 (Cul2), and RING-box
protein Rbx-1 (also called ROC1 for Regulator of
Cullins, SAG1 for Sensitive to Apoptosis Gene, Hrt1
for High-level expression reduces transposition by the
Retrotransposon Ty3; Kamura et al., 1999; Ohta et al.,
1999; Skowyra et al., 1999; Seol et al., 1999; Tan et al.,
1999) to form an E3 ubiquitin ligase complex involved
in the ubiquitination of RPB1 (Kuznetsova et al., 2003)
and RPB7 (Na et al., 2003). In general, a cullin-based E3
ubiquitin ligase contains a substrate recognition pro-
tein, adaptors, and an E2-binding module formed by a
cullin family member and a RING (Really Interesting
New Gene; Saurin et al., 1996) protein possessing
two Zn2+-binding fingers. This class of RING finger-
containing E3 ligases, unlike the HECT E3 ligase family
proteins such as Rsp5 and hRPF1, does not form a co-
valent thioester bond with ubiquitin and mainly serves
as a scaffold bridging the E2 enzyme and the substrate
(Pickart, 2004). Together, Cul2 and Rbx1 form a module
that interacts with different E2 ubiquitin-conjugating
enzymes, including UbcH5a, UbcH5b, and UbcH5c
(Jensen et al., 1995; Iwai et al., 1999). UbcH5c and its
yeast homologs (i.e., Ubc5/Ubc4) have been shown
to work in conjunction with the HECT family E3
ubiquitin ligase Rsp5 and the E1 enzyme Uba1 to
ubiquitinate pol II RPB1 (Somesh et al., 2005), suggest-
ing that the UbcH5 family has the capacity to function
with both HECT and RING finger E3 ubiquitin ligases.
Elongin B and Elongin C, which are also present in the
Elongin complex involved in pol II elongation control
(Shilatifard et al., 2003), are the adaptors forming a
subcomplex that bridges the Cul2/Rbx1 module with
the substrate recognition unit pVHL (Petroski and
Deshaies, 2005). The pVHL protein with 213 amino
acid residues has two distinct domains: an N-terminal
domain rich in β sheet spanning amino acids 63 to
154 that mainly interact with substrates destined for
ubiquitination, and an α-domain comprising of three
α-helices spanning amino acids 155 to 192 that contact
Elongin C (Stebbins et al., 1999). The N-terminal
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region (amino acids 54 to 113) of pVHL, including
part of the β-domain, binds RPB7, correlating with
the finding that naturally occurring pVHL mutations
(P86H and Y98H) within the β-domain display both
reduced interaction and ubiquitination of RPB7 (Na
et al., 2003). Since RPB7 in complex with RPB4
may form a dissociable module with the 10-subunit
pol II core, it remains to be investigated whether
ubiquitination and degradation of RPB7 occurs mainly
as a free module or in the context of pol II. In contrast,
the ability of pVHL to bind human RPB1 requires a
hyperphosphorylated CTD and a hydroxylated proline
(P1465) in the L(XX)LAP motif (where X represents any
amino acid; Huang et al., 2002) residing in the linker
region (Kuznetsova et al., 2003). The requirement of
an oxidized P1465 for pVHL binding is reminiscent
of that seen with P564 of HIF-1α in oxygenated cells
(during normaxia), in which recognition of the hydrox-
ylated proline (mediated by prolyl-4-hydroxylase) by
the hydrophobic pocket located at the β-domain of
pVHL (Hon et al., 2002; Min et al., 2002) eventually
leads to the ubiquitination and degradation of HIF-1α

(Jaakkola et al., 2001; Ivan et al., 2001). It is important to
note that pVHL-mediated degradation of RPB1, which
occurs in a proline hydroxylation-dependent manner
in response to UV-induced DNA damage, is distinct
from that used for degradation of RPB7, which lacks
the L(XX)LAP motif and is thus likely to be degraded
through a proline hydroxylation-independent and
DNA damage-independent pathway.

BRCA1 is the third mammalian E3 ubiquitin ligase
implicated in RPB1 ubiquitination and pol II degrada-
tion upon UV-induced DNA damage (Kleiman et al.,
2005; Starita et al., 2005). Human BRCA1 has 1863
amino acid residues and belongs to the RING finger
E3 ubiquitin ligase family. The E2-binding region of
BRCA1 lies in the RING motif that encompasses
N-terminal amino acid residues 23-76 of BRCA1
(Brzovic et al., 2001; Ruffner et al., 2001). This motif,
flanked on each side by an α-helix, contains two
Zn2+-binding sites (Cys24, Cys27, Cys44 and Cys47
for the first finger, and Cys39, His41, Cys61 and Cys64
for the second finger) organized in the following
manner (Brzovic et al., 2001): the first Zn2+-binding
loop (residues 23 to 34, a C2C2 type finger) is followed
by two short antiparallel β-strands (residues 35 to 37
and 42 to 44) and a central α-helix (residues 46 to 53),
which leads to the second Zn2+-binding loop (residues
54 to 73, a C3H1 type finger) and a third short β-strand

(residues 74 to 76). Part of this RING domain, includ-
ing two Zn2+-binding loops and the central α-helix,
forms a surface cleft binding UbcH5c (Brzovic et al.,
2001; Brzovic et al., 2003), while the C-terminal region
of BRCA1 (residues 1560 to 1863) interacts with the
RPB2, RPB12, and hyperphosphorylated RPB1 sub-
units of pol II (Schlegel et al., 2000; Krum et al., 2003).
The identification of cancer-predisposing mutations
in human BRCA1 at C24R, C39Y, C61G, and C64Y
within this RING finger domain further indicates the
importance of these cysteine residues in maintaining an
active conformation of BRCA1 (Ruffner et al., 2001).
Interestingly, human BRCA1-associated RING domain
1 (BARD1), with 777 amino acid residues, also contains
a RING finger domain at its N-terminus (residues 49
to 100) exhibiting a similar feature as that of BRCA1
but lacking the central α-helix. Thus, the RING
domain of BARD1 cannot form a surface cleft, as
seen with BRCA1, for binding UbcH5c (Brzovic et al.,
2003). However, BARD1, in complex with BRCA1,
can stimulate BRCA1 function as an E3 ubiquitin
ligase (Xia et al., 2003). Dimerization of BRCA1 and
BARD1 is mediated by hydrophobic contacts made
between the N-terminal α-helices preceding the RING
domain of each protein (Meza et al., 1999; Morris
et al., 2002; Brzovic et al., 2003). Together, BRCA1
and BARD1 form an active E3 ubiquitin ligase able to
work in conjunction with the E2 ubiquitin-conjugating
enzyme UbcH5c to promote substrate ubiquitination
(Hashizume et al., 2001; Brzovic et al., 2003) and likely
pol II degradation. Indeed, it has been shown that
hyperphosphorylated RPB1 is more susceptible to UV-
induced ubiquitination and degradation by cotrans-
fecting BRCA1 and BARD1 expression plasmids into
HEK-293T cells (Starita et al., 2005), in agreement with
the observation that RPB1 stability was increased by
knocking down both endogenous BRCA1 and BARD1
in UV-irradiated HeLa cells (Klieman et al., 2005). These
experiments further stress the physiological importance
of BRCA1 and BARD1 in regulating pol II turnover in
human cells responding to UV-induced DNA damage.

Another mammalian E3 ubiquitin ligase able to
regulate pol II ubiquitination and degradation is
the CSA complex. In addition to functioning as a
transcription-repair coupling factor in the UV- or
cisplatin-induced TCR pathway, CSA usually associates
with other cellular proteins under normal growth condi-
tion. This CSA complex, first isolated from nuclear ex-
tracts of FLAG/HA-tagged CSA-expressing HeLa cells
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(Groisman et al., 2003), consists of Rbx1, Cullin 4A
(Cul4A), damaged DNA-binding protein 1 (DDB1),
and a dissociable module comprising all the 8 subunits
of COP9 signalosome (CSN). DDB1 is known to bind
DNA lesions and facilitates the recruitment of NER
components to the damage sites (Wakasugi et al., 2002),
whereas Rbx1 and Cul4A likely form the E2 ubiquitin-
conjugating enzyme-binding module. The CSN
components negatively regulate the ubiquitin ligase ac-
tivity of CSA-Rbx1-Cul4A, as the ubiquitin ligase ac-
tivity of the CSA complex could only be detected af-
ter dissociation of the CSN module (Groisman et al.,
2003). During purification, it was also found that a sub-
stoichiometric amount of hyperphosphorylated RPB1
is present in the CSA complex following UV-induced
DNA damage without altering the level of hypophos-
phorylated RPB1 already associated with the CSA com-
plex prior to irradiation. Interestingly, while the CSN
module is not detected in the chromatin-bound CSA
complex under normal condition, it becomes associated
with the CSA complex after UV irradiation, exhibiting
the same kinetics as hyperphosphorylated RPB1 for as-
sociation and dissociation with the CSA complex. It
is likely that the association of CSN with CSA-Rbx1-
Cul4A-DDB1 upon UV irradiation may temporarily
inhibit pol II ubiquitination, giving TCR components
time to repair DNA lesions. If damage cannot be ef-
ficiently repaired, hyperphosphorylated pol II is then
ubiquitinated and degraded, following the dissociation
of the CSN module. This strategy ensures pol II can be
readily available to resume transcription after TCR, un-
less it is otherwise destined for degradation when dam-
age is beyond repair. Whether CSN indeed acts as a
molecular switch modulating ubiquitin ligase activity
of the CSA complex on stalled pol II remains to be
defined.

Ubiquitination of pol II is a prerequisite for
proteasome-mediated degradation. In general, degra-
dation by the 26S proteasome requires recognition of
substrate-linked polyubiquitin chains formed between
the extreme C-terminal Gly76 of a ubiquitin molecule
with internal Lys48 (major site) or Lys29 (minor site)
of a preceding ubiquitin, although nonproteolytic link-
age through the other 5 lysine (K) residues, such as K6,
K11, K27, K33, and K63, may also occur (Weissman,
2001). At present, little is known regarding the func-
tion of K11-, K27-, and K33-linked polyubiquitination,
whereas polyubiquitin-linked K63 chains often leads
to nonproteolytic pathways such as endocytosis (Galan

and Haguenauer-Tsapis, 1997), error-free postreplicative
DNA repair (Spence et al., 1995; Hofmann and Pickart,
1999; Hoege et al., 2002), activation of the IκB kinase
in the NFκB pathway (Deng et al., 2000; Wang et al.,
2001), and enhancement of ribosome translational ef-
ficiency (Spence et al., 2000). Among the E3 ubiqui-
tin ligases known to ubiquitinate pol II, each ligase
is able to assemble a distinct pattern of polyubiqui-
tin chains unique to individual substrates. For exam-
ples, Rsp5 shows preference for assembling K48-linked
polyubiquitin chains on WW domain-binding protein
2 (WBP2; Kee et al., 2005) and K63-linked polyubiq-
uitin chains on the yeast plasma membrane protein
uracil permease (Galan and Haguenauer-Tsapis, 1997);
the pVHL complex promotes K48-linked polyubiquiti-
nation leading to HIF-1α degradation (Ohh et al., 2000);
BRCA1/BARD1 enhances K6-linked polyubiquitina-
tion on nucleophosmin (Sato et al., 2004) as well as
autoubiquitination on BRCA1 through K6, K29, K48,
or K63 linkage (Chen et al., 2002; Wu-Baer et al., 2003;
Xia et al., 2003; Nishikawa et al., 2004). Although the
specific lysines in polyubiquitinated pol II by these E3
ligases have not yet been characterized, it is likely that
some of these modifications may play a degradation-
independent role to coordinate pol II activity in TCR
or DNA damage-independent pathways. Indeed, it
has been found that transcriptional arrest induced by
α-amanitin, which blocks nucleoside triphosphates in-
corporation into the nascent transcript, promotes pol
II polyubiquitination at K6, K48, and K63 of ubiqui-
tin, in the absence of DNA damage (Lee and Sharp,
2004; Jung and Lippard, 2005). It will be of interest
to investigate how these different E3 ubiquitin ligases
regulate both degradation-dependent and degradation-
independent activities of pol II via promoting different
lysine-linked polyubiquitination.

Unlike glycosylation that is inhibited by CTD phos-
phorylation, ubiquitination of pol II seems to depend
on prior phosphorylation of the CTD, as evidenced
by the observation that polyubiquitination of pol II
in mammalian cells correlates with enhanced CTD
phosphorylation upon DNA damage induced by UV
or cisplatin that triggers the NER pathway (Bregman
et al., 1996) or by H2O2 that induces the BER path-
way (Inukai et al., 2004). That hyperphosphorylated
pol II provides a signal for polyubiquitination is fur-
ther supported by the finding that pol II ubiquitina-
tion was suppressed when a CTD kinase inhibitor H8,
which blocks phosphorylation on serine 5 by Cdk7 and
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phosphorylation on serine 2 by Cdk9, was included
in the ubiquitination reactions with phosphorylation
on serine 2 by HeLa nuclear extracts (Mitsui and
Sharp, 1999). Indeed, ubiquitination of pol II in
vitro and in UV-irradiated mammalian cells by
both pVHL and BRCA1/BARD1 RING finger-
containing E3 ubiquitin ligase complexes was de-
tected only when serine 5 of the CTD was phos-
phorylated (Kuznetsova et al., 2003; Starita et al.,
2005), consistent with the result showing UV-induced
association of hyperphosphorylated RPB1 with the
CSA complex (Groisman et al., 2003). Nevertheless, ex-
periments performed in vitro with yeast Rsp5 and hu-
man RPF1, both belonging to the HECT E3 ubiquitin
ligase family, indicates a phosphorylation-independent
interaction and ubiquitination of RPB1 (Huibregtse
et al., 1997; Beaudenon et al., 1999), correlating with
in vivo studies demonstrating that under UV-induced
DNA damage in yeast, serine 5 dephosphorylation by
CTD phosphatase Ssu72 makes pol II prone to polyu-
biquitination and degradation, whereas phosphoryla-
tion on serine 5 by Kin28 confers protection to pol
II from ubiquitination (Somesh et al., 2005). While
the requirement for CTD phosphorylation appears to
vary depending on the species (yeast versus mammalian
cells) and the type of E3 ubiquitin ligases involved, the
CTD undoubtedly plays a central role in coordinat-
ing the signaling events induced by different DNA-
damaging agents. It is important to note that the
particular lysine residues linking polyubiquitin chain
formation and the nature of DNA damage-independent
transcriptional pausing induced by α-amanitin or dur-
ing elongation also determine the functional outcome
of a stalled pol II complex. To be or not to be degraded
will surely be an important issue warranting further in-
vestigation for years to come.

TFIIE
Structures and Functional Domains
After formation of a TFIID-TFIIB-pol II/TFIIF-

promoter complex, the next step in the sequential PIC
assembly pathway is the recruitment of TFIIE and
TFIIH. TFIIE consists of two subunits, α and β, which
form an α2β2 heterotetramer (Ohkuma et al., 1991;
Sumimoto et al., 1991; Peterson et al., 1991). In hu-
mans, TFIIEα is the larger subunit consisting of 439
amino acids with a molecular weight of 56 kDa, while
TFIIEβ is 291 amino acids with an approximate molec-

ular weight of 34 kDa. The N-terminal half of TFIIEα

is necessary for interactions with TFIIEβ and pol II
via nonoverlapping regions (Figure 7C), for basal tran-
scription, for stimulating TFIIH-mediated CTD phos-
phorylation, and for the transition from initiation to
elongation. The C-terminal region, which appears to
be nonessential in yeast, is involved in TFIIH inter-
action likely to facilitate TFIIH entry into the PIC
(Ohkuma et al., 1995; Kuldell and Buratowski, 1997;
Okuda et al., 2004). From amino acid sequence analysis,
TFIIEα contains multiple structural features (Ohkuma
et al., 1995; see Figure 7C), including a bacterial σ fac-
tor homology region (residues 13 to 49), a leucine re-
peat (residues 38 to 66), a zinc-finger motif (residues
121 to 157), an HTH motif (residues 159 to 182), two
alanine-rich sequences (residues 221 to 240 and 335
to 349), and a C-terminal region rich in aspartic acids
and glutamic acids (residues 378 to 393). The NMR
structure of the zinc-finger motif present in a protease-
resistant core between amino acids 113 and 174 of
human TFIIEα is comprised of one α-helix and five
β-strands, which is distinct from conventional zinc fin-
ger structures (Okuda et al., 2004). This unusual zinc-
finger motif, with a central α-helix (H1) preceded by an
antiparallel β-sheet (S1 and S2) and followed by three
β-strands (S3–S5), is organized in the following order:
β-strand (S1, residues 126 to 129), turn (t1, residues 130
to 133), β-strand (S2, residues 134 to 136), α-helix (H1,
residues 138 to 144), β-strand (S3, residues 145 to 146),
loop (residues 147 to 150), β-strand (S4, residues 151
to 154), turn (t2, residues 155 to 158), and a fifth β-
strand (S5, residues 159 to 164). Binding of the Zn2+

ion is coordinated by Cys129, Cys132, Cys154, and
Cys157, located adjacent to and within the two turns
of this structure. This C2C2 zinc-finger is not involved
in binding the small subunit of TFIIE, given that mu-
tations introduced into this zinc-finger motif does not
impair TFIIEα binding to TFIIEβ based on in vitro
GST pull-down assays (Okuda et al., 2004). However,
the zinc-finger motif of TFIIEα can enhance TBP bind-
ing to adenovirus major late and E4 TATA boxes, as ev-
idenced by DNase I footprinting assays in which only
wild-type TFIIEα, but not the C154A mutant, increases
TATA recognition by TBP (Yokomori et al., 1998). The
structural information for the HTH motif of TFIIEα

is derived from its archaeal homolog. The TFE protein
from archaeal bacteria with 178 amino acids shows se-
quence homology to the N-terminal half of TFIIEα

(Bell et al., 2001), but lacks the C-terminal domain
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present in TFIIEα found in S. cerevisiae, C. elegans, D.
melanogaster, X. laevis, and H. sapiens (Ohkuma et al.,
1995; Kuldell and Buratowski, 1997). The winged HTH
structure of TFE, resolved by x-ray crystallography at 2.8
�

A (Meinhart et al., 2003), is composed of three α-helices
and three β-strands in the following order: α1-β1-α2-
α3-β2-β3. Similar to the winged HTH motif seen with
RAP74 and RAP30, the “wing” of TFE is formed by
a loop connecting the antiparallel β2 and β3 strands.
However, the TFE wing does not appear to exhibit any
DNA-binding activity, as otherwise observed with most
proteins possessing this structural motif.

Similar to TFIIEα, human TFIIEβ also contains sev-
eral functional domains (Okamoto et al., 1998; Okuda
et al., 2000): an N-terminal serine-rich region (amino
acids 26 to 71) able to enhance TFIIH-mediated phos-
phorylation of the CTD, a central core domain (residues
66 to 146) exhibiting a winged HTH structure (residues
75 to 139) capable of binding double-stranded DNA,
a leucine repeat (residues 145 to 163) with unknown
function, a σ3 region (residues 163 to 193) having se-
quence homology with the bacterial σ factor subdo-
main 3, and a C-terminal domain containing two basic
regions in which the first one (residues 197 to 238 ) is a
basic helix-loop-helix motif contacting TFIIEα and the
Drosophila Krüppel transcription factor and the second
one (residues 258 to 291) has a basic helix-loop sequence
interacting with single-stranded DNA, pol II, TFIIB, the
RAP30 subunit of TFIIF and Krüppel (see Figure 7C).
The multiple protein-protein and protein-DNA interac-
tions observed with the C-terminal domain of TFIIEβ

may account for its involvement in the transition
from transcription initiation to elongation by pol II
(Watanabe et al., 2003). Since the N-terminal half of
TFIIEα is also implicated in promoter clearance, it will
be of interest to define whether the TFIIEα N-terminal
region and the TFIIEβ C-terminal region function in-
dependently or cooperatively in aiding pol II transi-
tion from initiation to elongation. With respect to the
structural analysis, the winged HTH motif in the cen-
tral core domain (amino acids 66 to 146) of human
TFIIEβ, revealed by NMR, is comprised of three α-
helices and an antiparallel β-sheet (Okuda et al., 2000):
H1 (residues 75 to 90), S1 (residue 97), H2 (residues
99 to 105), H3 (residues 113 to 120), turn (residues
121 to 125), β-strand (S2, residues 130 to 133), loop
(residues 134 to 135), and a third β-strand (S3, residues
136 to 139), similar to other winged HTH motifs with
double-stranded DNA-binding activity. The region be-

tween residues 79 and 111 has sequence homology with
the pol II-binding domain of RAP30, although interac-
tion between this region of TFIIEβ and pol II has yet to
be demonstrated. It should also be noted that TFIIEα

and TFIIEβ could interact with TFIIAγ and TFIIAαβ,
respectively (Yokomori et al., 1998; Langelier et al., 2001;
Yamamoto et al., 2001). Without doubt, the respective
interaction domains need to be further defined.

TFIIE Function
As seen with other GTFs, TFIIE may be recruited

to the promoter through direct interaction with gene-
specific transcriptional activators, such as the Krüppel
zinc finger protein (Sauer et al., 1995) and the Antenna-
pedia and Abdominal-B homeodomain proteins (Zhu
and Kuziora, 1996). Once recruited, TFIIE interacts di-
rectly with both subunits of TFIIF, TFIIB, pol II, pro-
moter DNA, and helps recruit TFIIH (Flores et al., 1989;
Maxon et al., 1994; Okamoto et al., 1998; Yokomori
et al., 1998; Watanabe et al., 2003; Forget et al., 2004).
TFIIE binds to pol II near its active center and to the
promoter DNA approximately 10 base pairs upstream
from the transcription initiation site, where promoter
melting begins (Douziech et al., 2000; Kim et al., 2000;
Forget et al., 2004). TFIIE can stimulate the ATPase,
CTD kinase, and DNA helicase activities of TFIIH and
thus facilitates the formation of an initiation-competent
pol II complex (Ohkuma and Roeder, 1994; Serizawa
et al., 1994; Ohkuma et al., 1995; Lee and Young, 2000).
TFIIE and TFIIH are also essential for promoter melt-
ing and the transition from initiation to elongation
(Holstege et al., 1996). Consistent with TFIIE’s role in
promoter melting is its ability to bind single-stranded
DNA (Kuldell and Buratowski, 1997). Interestingly, the
requirement of TFIIE and TFIIH for gene transcription
also depends on DNA topology and the promoter se-
quence (Parvin and Sharp, 1993; Goodrich and Tjian,
1994; Wu et al., 1998), in agreement with the observa-
tion that TFIIE and TFIIH are not necessary for tran-
scription from premelted promoter templates (Pan and
Greenblatt, 1994, Holstege et al., 1996).

TFIIH
Protein Composition

TFIIH is primarily recruited to the promoter region
through association with TFIIE. Historically, TFIIH
(also called BTF2; Gerard et al., 1991) is a multiprotein
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complex consisting of nine subunits: p89/XPB (gene
defective in xeroderma pigmentosum patients com-
plementation group B), p80/XPD (gene defective in
xeroderma pigmentosum patients complementation
group D), p62, p52, p44, p40/CDK7, p38/Cyclin H,
p34, and p32/MAT1. TFIIH was initially purified
from rat liver (Conaway and Conaway, 1989), HeLa
cells (Gerard et al., 1991; Flores et al., 1992), and
yeast (Feaver et al., 1991a) by conventional column
chromatography, and later by a single-step im-
munoaffinity purification method (Kershnar et al.,
1998; LeRoy et al., 1998; Winkler et al., 1998). It
has three enzymatic activities required for tran-
scription: DNA-dependent ATPase (Conaway and
Conaway, 1989; Feaver et al., 1991b; Roy et al.,
1994), ATP-dependent helicase (Schaeffer et al., 1993;
Serizawa et al., 1993; Drapkin et al., 1994), and
CTD kinase (Feaver et al., 1991b; Lu et al., 1992;
Serizawa et al., 1992). In addition to the enzymatic
activities essential for transcription, some components
of TFIIH (e.g., p89/XPB and p80/XPD) are involved in
NER DNA damage response. Functionally, TFIIH can
be separated into two subcomplexes: a cyclin-activating
kinase complex (CAK) and a core complex. The CAK
complex, responsible for phosphorylating pol II CTD,
is consisted of CDK7, Cyclin H, and MAT1. The core
complex contains XPB helicase, p62, p52, p44, and p34.
CAK and core TFIIH are linked by the XPD helicase,
which is essential for DNA repair activity of TFIIH but
serves more or less a structural rather than an enzymatic
role in transcription (Rossingnol et al., 1997; Coin et al.,
1999). Mutations in either XPB or XPD lead to several
human diseases, including xeroderma pigmentosum
(XP), trichothiodystrophy (TTD), and Cockayne
syndrome (CS) (Lee and Young, 2000; Lehmann, 2001;
Zurita and Merino, 2003). Recent studies have iden-
tified a tenth subunit of TFIIH, TFB5, in both yeast
(Ranish et al., 2004) and humans (Giglia-Mari et al.,
2004). This small subunit (∼8 kDa) has been implicated
in the DNA repair function of TFIIH, as UV-irradiated
yeast strains deficient in TFB5 exhibit a lower survival
rate when compared with irradiated strains harboring
wild-type TFB5 (Ranish et al., 2004). Similarly, human
TFB5 is involved in NER DNA damage response, given
that cells derived from TTD patients with group A
disorder are unable to repair UV-induced DNA lesions
(Giglia-Mari et al., 2004). This deficiency correlates with
specific mutations in the gene coding for TFB5 and is
likely caused by an increased degradation of TFIIH due

to a lack of the TFB5 stabilizing subunit (Giglia-Mari
et al., 2004; Coin et al., 2006). From in vitro-reconstituted
experiments, human TFB5 has recently been shown to
stimulate the XPB ATPase activity of TFIIH and further
enhance the opening of damaged DNA facilitated by
the XPB and XPD subunits of TFIIH (Coin et al., 2006).
It should be mentioned that many yeast core TFIIH
components are also implicated in DNA damage
response, as mutations in yeast genes encoding TFB1
(human p62; Matsui et al., 1995; Wang et al., 1995),
TFB2 (human p52; Feaver et al., 1997), Ssl1 (human
p44; Wang et al., 1995), and TFB4 (human p34; Feaver
et al., 1999) also exhibit defects in responding to UV
irradiation.

DNA-Dependent ATPase Activity
The ATPase activity of TFIIH is required for tran-

scription initiation and promoter clearance. Although
an initial report indicated that TFIIH and ATP hydrol-
ysis are only required for pol II promoter clearance, but
not for transcription initiation and formation of the first
phosphodiester bond in CpA dinucleotide-primed re-
actions (Goodrich and Tjian, 1994), subsequent studies
found that TFIIH ATPase activity is indeed necessary
for stable promoter opening and for first phospho-
diester bond formation when natural nucleotide
substrates were added with an excess amount of other
GTFs, such as TFIIB, TFIIE, and RAP74 (that possess
nonspecific DNA-binding activity), to initiate the tran-
scription reactions (Holstege et al., 1996, 1997; Kumar
et al., 1998). In general, without TFIIH, pol II tends
to stall on the promoter-proximal region, leading to
abortive transcription products; the addition of TFIIH
in the presence of ATP significantly reduces the amount
of the promoter-stalled pol II complex, indicating a di-
rect involvement of TFIIH in promoter clearance (Dvir
et al., 1997; Kugel and Goodrich, 1998; Kumar et al.,
1998).

ATP-Dependent Helicase Activity
TFIIH contains two helicases, XPB and XPD which

unwind the DNA in a 3′ → 5′ and 5′ → 3′ direc-
tion, respectively, making TFIIH a bidirectional DNA
helicase (Schaeffer et al., 1994). While XPB 3′ → 5′ he-
licase activity is critical for both DNA repair and tran-
scription, the XPD 5′ → 3′ helicase activity is only re-
quired for DNA repair (Zurita and Merino, 2003). The
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XPB helicase activity is essential for promoter clearance,
which typically occurs within formation of the first
20 nucleotides and defines the transition from initia-
tion and elongation. Once promoter clearance has oc-
curred, TFIIH is no longer needed (Goodrich and Tjian,
1994). Consistent with this view, the requirement for
TFIIH in transcription may be bypassed via the use
of either negatively supercoiled or premelted templates
(Parvin and Sharp, 1993; Pan and Greenblatt, 1994;
Parvin et al., 1994; Tantin and Carey, 1994), suggest-
ing a role of TFIIH also in open complex formation.
Nevertheless, it is unclear which activity (helicase or
ATPase) of TFIIH is involved in open complex for-
mation. Earlier reports suggested that the XPB helicase
activity is needed for promoter opening, as a helicase-
impaired human XPB protein (K346R) with a muta-
tion in the ATP-binding domain and a temperature-
sensitive yeast strain expressing a helicase-defective mu-
tant of Rad25 (a yeast homolog of human XPB) both
exhibited defects, respectively, in melting a number of
promoters in vitro and in vivo (Guzmán and Lis, 1999;
Tirode et al., 1999). With better defined XPB mutants
(Q647A and T478A in the helicase motif) that selec-
tively inactivate helicase activity without impairing its
ATPase activity, it was later found that while Q647A
and T478A are defective in promoter clearance, they are
fully functional in promoter opening (Lin et al., 2005).
This result is consistent with site-specific protein-DNA
photocrosslinking experiments showing that XPB, in
the context of a complete PIC, was not detected at
the promoter region undergoing melting (i.e., transcrip-
tion bubble), which extends initially from −9 to +2
(Holstege et al., 1997), in the adenovirus major late
promoter with or without ATP, but rather was found
at DNA sequences (+3 to + 25) downstream of the
transcription bubble through contacts made exclusively
with double-stranded DNA (Kim et al., 2000). Thus, it
is clear that the ATPase activity is involved in promoter
opening and the helicase activity is crucial for promoter
clearance. It is interesting to note that promoter clear-
ance constitutes a regulatory step for some transcrip-
tional regulators. The FUSE (Far Upstream Element)-
binding protein (FBP) and FBP-interacting repressor
(FIR), both playing an important role in modulating
cell growth and differentiation in humans via regulat-
ing c-Myc gene transcription, can respectively stimulate
or inhibit the helicase activity of XPB and thereby reg-
ulate transcription at the promoter clearance step (Liu
et al., 2000; Liu et al., 2001a).

TFIIH and Nucleotide Excision Repair
NER is a process where damaged DNA is removed

and replaced by newly synthesized DNA based on se-
quence information from the intact template strand.
The finding that p89/XPB is identical to ERCC3, a
DNA excision repair protein that is mutated in XP pa-
tients, led to the hypothesis that transcription might be
coupled to DNA repair (Schaeffer et al., 1993). Consis-
tent with a dual role of TFIIH in transcription and DNA
repair is the observation that transcriptionally active
genes are preferentially repaired (Bohr et al., 1985; Mel-
lon and Hanawalt, 1989). For NER, the combined heli-
case activities of XPB/ERCC3 and XPD/ERCC2 seem
to be required. Experiments have shown that microin-
jection of TFIIH into human XPD- or XPB-mutant cells
led to complementation of the repair-deficient pheno-
type (van Vuuren et al., 1994). Similarly, yeast cells with
mutations in the XPD homolog (Rad3) were rescued
by the addition of TFIIH but not by XPD alone, sug-
gesting that the NER pathway requires a functional
TFIIH (Wang et al., 1994). Subsequent studies have
shown that multiple components in TFIIH are required
for DNA repair, including XPB, XPD, p62, p52, and
p44 (Drapkin et al., 1994; Humbert et al., 1994; Schaef-
fer et al., 1994; Wang et al., 1995; Jawhari et al., 2002).
The XPB and XPD helicase functions are required for
transcription-coupled NER, as defects in helicase activ-
ity are linked to human diseases including XP, TTD,
and CS. Recent studies have unraveled the mechanism
by which the XPB helicase subunit of TFIIH functions
in NER and transcription. Experiments showing phos-
phorylation of the serine 751 residue of XPB leads to
inhibition of NER activity, but does not prevent TFIIH
from unwinding DNA (Coin et al., 2004). Instead, phos-
phorylation of XPB serine 751 prevents the 5′ incision
triggered by the ERCC1-XPF endonuclease (Coin et al.,
2004), providing convincing evidence that a separate
but essential role of TFIIH is involved in both tran-
scription and DNA repair.

Ubiquitin Ligase Activity
While XPB and XPD are directly involved in DNA

repair, the yeast homolog of human p44 (Ssl1) in the
TFIIH core complex has been implicated in DNA
damage response likely by modulating the expression
of proteins involved in the NER and BER pathways. A
ubiquitin ligase activity of Ssl1 has recently been un-
covered due to the presence of a RING finger domain
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at its C-terminal region spanning residues 403 to 454,
whose corresponding domain is present in human p44
(Takagi et al., 2005). The NMR structure of the p44
RING finger domain (residues 321 to 395) shows
two zinc-binding sites coordinated by eight cysteine
residues (C345, C348, C360, C363, C368, C371, C382,
and C385; Kellenberger et al., 2005). These conserved
cysteine residues are also found in the RING finger
domain of Ssl1 and are critical for its E3 ubiquitin
ligase activity, since mutations in the first two cysteine
residues (C403A and C406A) abolished Ssl1 enzymatic
activity in an in vitro polyubiquitination assays per-
formed in the presence of E1 and E2 (Ubc4) enzymes
and further reduced the yeast survival rate following
UV irradiation or methyl methanesulfonate (MMS)
treatment (Takagi et al., 2005). The Ssl1 ubiquitin ligase
activity can be enhanced by the inclusion of another
RING finger-containing protein Tfb4 (the yeast coun-
terpart of human MAT1), similar to BARD1-stimulated
BRCA1 E3 ubiquitin ligase activity described earlier
(see Pol II Ubiquitination section), or by the presence
of other core TFIIH subunits, reminiscent of Rbx1
in the pVHL complex. However, whether TFIIH can
polyubiquitinate pol II, in UV-irradiated cells at the
sites of DNA lesions, or other protein components
involved in transcription and DNA repair pathways
remains to be explored.

TFIIH and CTD Phosphorylation
CDK7 is the kinase responsible for phosphorylating

the serine 5 residue of the pol II CTD, whose activ-
ity is regulated by cyclin H, MAT1, TFIIE, Mediator
(Svejstrup et al., 1996), XPD (Keriel et al., 2002), and U1
small nuclear RNA (snRNA; O’Gorman et al., 2005).
The CDK7-cyclin H-MAT1 CAK complex in the con-
text of TFIIH has higher activity in phosphorylating the
CTD compared with the free form of CAK (Yankulov
and Bentley, 1997). Phosphorylation of serine 5 leads
to the recruitment of 5′ capping enzyme (Cho et al.,
1997; Komarnitsky et al., 2000; Rodriguez et al., 2000;
Schroeder et al., 2000; Pei et al., 2001) and is impli-
cated in promoter clearance. That CTD phosphoryla-
tion regulates the transition from transcription initia-
tion to elongation is supported by observations that
pol II enters PIC assembly as the hypophosphorylated
IIA form and escapes the promoter as the hyperphos-
phorylated IIO form (Hampsey, 1998). Besides phos-
phorylating CTD, TFIIH has been shown to phospho-
rylate transcriptional activators, such as p53 (Lu et al.,

1997), retinoic acid receptor α (Rochette-Egly et al.,
1997), retinoic acid receptor γ (Bastien et al., 2000),
Ets-1 (Drané et al., 2004), estrogen receptor α (Chen
et al., 2000), and general cofactor PC4 (Kershnar et al.,
1998). The CTD kinase activity of TFIIH can also be
stimulated via interaction with transcriptional activa-
tors (Jones, 1997).

TFIIH-Activator Interactions
Many activators have been shown to interact with

TFIIH including Gal4-VP16, E2F1, Rb, p53, ERα,
RARα, RARγ , and androgen receptor (reviewed by
Zurita and Merino, 2003). Consistent with TFIIH’s abil-
ity to interact with multiple activators is the finding that
TFIIH can function as a coactivator in a reconstituted
cell-free transcription system (Wu et al., 1998). Perhaps
activators work by enhancing the recruitment of TFIIH
for PIC assembly or stimulating the enzymatic activities
of TFIIH (Liu et al., 2001a; Zurita and Merino, 2003).
Conversely, TFIIH may covalently modify amino acid
residues critical for activator function. For example,
TFIIH has been shown to stimulate the transcriptional
activity of the N-terminal activation domain (AF-1) of
nuclear receptors RARα1 and RARγ via phosphoryla-
tion of specific serine residues in AF-1 (Rochette-Egly
et al., 1997; Bastien et al., 2000). The kinase activity of
TFIIH, which resides at its CDK7 subunit, appears to
be regulated by XPD, as mutations in the XPD sub-
unit impairs TFIIH’s ability to phosphorylate RARα

(Keriel et al., 2002). Accordingly, XPD within the TFIIH
complex can indirectly regulate nuclear receptor phos-
phorylation and transactivation activity and thus may
account for its involvement in the transcriptional pro-
cess besides its well-documented role in DNA repair.
The cyclin H subunit of TFIIH is another target of the
kinase module prone to regulation by other regulatory
molecules. The U1 snRNA, involved in recognition of
the 5′ splice donor site, is able to stimulate TFIIH CTD
kinase activity via interaction with cyclin H (O’Gorman
et al., 2005), and also enhance first phosphodiester bond
formation as well as transcription reinitiation (Kwek
et al., 2002). The finding that U1 snRNA can stimu-
late CDK7 kinase activity (O’Gorman et al., 2005) and
7SK snRNA is inhibitory for CDK9 kinase activity
(Nguyen et al., 2001; Yang et al., 2001) further impli-
cates an important role of noncoding RNAs in modu-
lating the transcriptional events through CTD kinases.
Undoubtedly, this will be an interesting area for future
studies.
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FIGURE 9 General cofactors serve as molecular bridges in activator-dependent transcription. General cofactors (TAFs, Mediator, and
USA) are required for transducing signals between gene-specific activators and components of the general transcription machinery. An
activator normally contains a DNA-binding domain (DBD) contacting specific DNA sequences and an activation domain (AD) interacting
with general cofactors or with components of the general transcription machinery. It should be noted that TAFs normally function as an
integral part of TFIID, not as a free entity in mammalian cells as drawn here.

GENERAL COFACTORS
Three classes of general cofactors are typically in-

volved in gene activation to faciliate the communi-
cation between gene-specific transcription factors and
components of the general transcription machinery
(Figure 9). These general cofactors include TAFs found
in TFIID, Mediator frequently associated with the
CTD, and upstream stimulatory activity (USA)-derived
positive cofactors (PC1, PC2, PC3 and PC4) and
negative cofactor 1 (NC1). Similar to TAFs, some
forms of Mediator and USA-derived components
are capable of repressing basal transcription when
activators are absent, and stimulating transcrip-
tion in the presence of activators. Although other
general cofactors implicated in transcription from
higher-order chromatin structures, such as histone-
modifying enzymes and chromatin-remodeling com-
plexes, also exist, we will focus our discussion here
on Mediator and USA-derived components origi-
nally defined in activator-regulated transcription us-
ing both genetic systems and nucleosome-free DNA
templates.

MEDIATOR COMPLEXES
In addition to TFIID, Mediator represents the sec-

ond class of general cofactors that transmit the regu-
latory signals from gene-specific transcription factors
to the general transcription machinery (Björklund and
Gustafsson, 2005; Kornberg, 2005). Mediator was first
identified in yeast and found to consist of approxi-
mately 20 polypeptides (Kim et al., 1994), of which
11 are essential for yeast viability (Rgr1, Rox3, Srb4,
Srb6, Srb7, Med4, Med6, Med7, Med8, Med10/Nut2,
and Med11) (Myers and Kornberg, 2000). While nine
of the Mediator components were originally defined
by genetic screens as proteins interacting with the CTD
of pol II (i.e., Srb2 and Srb4-11 for different dominant
suppressors of RNA polymerase B; Nonet and Young,
1989; Thompson et al., 1993), later biochemical pu-
rification of Mediator complexes from various species
has identified additional conserved as well as species-
specific subunits, for which a unified nomenclature has
been proposed (Table 3; Bourbon et al., 2004; Björklund
and Gustafsson, 2005; Blazek et al., 2005; Conaway et al.,
2005; Kim and Lis, 2005; Malik and Roeder, 2005).
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TABLE 3 Mammalian and yeast Mediator complexes

New
name S. cerevisiae

TRAP/SMCC
(Large)

ARC/DRIP
(Large)

CRSP
(Small)

PC2
(Small)

Mediator-P.5
(Large)

Mediator-P.85
(Small)

MED1 Med1 TRAP220 ARC/DRIP205 CRSP200 TRAP220 Med220 Med220
MED2 Med2
MED3 Med3/Pgd1/Hrs1
MED4 Med4 TRAP36 ARC/DRIP36 TRAP36 Med36 Med36
MED5 Nut1
MED6 Med6 hMed6 ARC/DRIP33 hMed6 Med33 Med33
MED7 Med7 hMed7 ARC/DRIP34 CRSP33 hMed7 Med34 Med34
MED8 Med8 ARC32 Med31 Med31
MED9 Med9/Cse2
MED10 Med10/Nut2 hNut2 hMed10 hNut2
MED11 Med11
MED12 Srb8 TRAP230 ARC/DRIP240 Med230
MED13 Srb9/Ssn2 TRAP240 ARC/DRIP250 Med240
MED14 Rgr1 TRAP170 ARC/DRIP150 CRSP150 TRAP170 Med150 Med150
MED15 Gal11 ARC105 PCQAP Med105 Med105
MED16 Sin4 TRAP95 DRIP92 TRAP95 Med95 Med95
MED17 Srb4 TRAP80 ARC/DRIP77 CRSP77 TRAP80 Med78 Med78
MED18 Srb5
MED19 Rox3
MED20 Srb2 hTRFP hTRFP
MED21 Srb7 hSrb7 hSrb7 hSrb7
MED22 Srb6
MED23 TRAP150β ARC/DRIP130 CRSP130 TRAP150β
MED24 TRAP100 ARC/DRIP100 CRSP100 TRAP100 Med100 Med100
MED25 ARC92
MED26 CRSP70 Med70
MED27 TRAP37 CRSP34 TRAP37
MED30 TRAP25
MED31 hSoh1 hSoh1
CDK8 Srb10/Ume5/Ssn3 hSrb10 CDK8 CDK8
CycC Srb11/Ume3/Ssn8 hSrb11 CycC CycC

The identified protein composition of human Mediator-P.5 and Mediator-P.85 complexes (grey shaded areas) is described in Wu et al. (2003). Table
adapted from Bourbon et al. (2004).

Isolation of Mediator Complexes

Human Mediator, first purified from HeLa cells as a
protein complex that associates with the thyroid hor-
mone receptor α (TRα) in a ligand-dependent man-
ner, was able to potentiate TRα-mediated transcription
in vitro (Fondell et al., 1996). This TRα-associated pro-
tein complex (TRAP) contains many protein subunits
subsequently found also present in other coactivator
complexes, such as SRB/MED-containing cofactor
complex (SMCC; Ito et al., 1999), vitamin D receptor-
interacting protein complex (DRIP; Rachez et al., 1998),
activator-recruited complex (ARC; Näär et al., 1999),
positive factor 2 (PC2; Malik et al., 2000), cofactor re-

quired for Sp1 activation (CRSP; Ryu et al., 1999), and
negative regulator of activated transcription (NAT; Sun
et al., 1998). In humans, at least two forms of Medi-
ator complexes, Mediator-P.5 and Mediator-P.85 iso-
lated individually at 0.5 M and 0.85 M KCl fractions
of the P11 phosphocellulose ion-exchange column,
have been identified and demonstrated to enhance
activator-dependent and basal transcription, respec-
tively, in a highly purified transcription system re-
constituted with recombinant GTFs and FLAG-tagged
multiprotein complexes (Wu et al., 2003). Mediator-
P.5 represents a class of larger Mediator complexes,
including TRAP/SMCC and ARC/DRIP, which
contain a dissociable MED12-MED13-CDK8-CycC
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module not found in the smaller Mediator com-
plexes, such as Mediator-P.85, CRSP and PC2 (see
Table 3). In contrast, the smaller Mediator com-
plex has a unique polypeptide, MED26/CRSP70, nor-
mally absent in the larger complex. The rest of Me-
diator components seem to be commonly shared
between large and small Mediator complexes, although
the identities of some subunits remain to be charac-
terized. The structures of yeast and murine Mediator
as well as human TRAP, ARC and CRSP complexes
have been resolved by electron microscopy at 30 to 40
�

A (Asturias et al., 1999; Dotson et al., 2000; Taatjes et al.,
2002). Comparison of these structures reveals a similar-
ity in the overall organization of Mediator complexes.
In general, three visible domains (named “head,” “mid-
dle,” and “tail” in yeast Mediator) that may adapt to
distinct conformations when in complex with activa-
tors or the CTD are distinguishable (Blazek et al., 2005;
Chadick and Asturias, 2005; Conaway et al., 2005).

Head Module
The head module of Mediator, consisting of MED6,

MED8, MED11, MED17, MED18, MED19, MED20,
and MED22, forms the base of a roughly triangle-
shaped Mediator complex. This triangular complex
undergoes a drastic conformational change upon asso-
ciation with pol II, resulting in an arc-shaped structure
in which the head module at the leading edge serves as
a major docking site for pol II. This structural informa-
tion is consistent with yeast genetic screens showing
direct interaction between pol II and MED17/Srb4,
MED18/Srb5, MED20/Srb2 and MED22/Srb6,
respectively (Thompson et al., 1993). Moreover,
MED17 and MED18 also interact with transcriptional
activators p53 and Gal4-VP16, respectively (Ito et al.,
1999; Lee et al., 1999), suggesting that activator-induced
conformational changes (Taatjes et al., 2002) may further
enhance head module-mediated recruitment of pol II.

Middle and Tail Modules
The middle module of Mediator contains MED1,

MED4, MED5, MED7, MED9, MED10, MED21,
and MED31, whereas the tail module includes MED2,
MED3, MED14, MED15, and MED16 (Boube et al.,
2002; Guglielmi et al., 2004). From the structures of
yeast Mediator, it is obvious that, besides head module-
pol II interaction, additional contacts are made between

the Rpb1, Rpb3, Rpb6, and Rpb11 subunits of pol II
with regions of Mediator extending from the head mod-
ule to the intersection between middle and tail modules
(Davis et al., 2002). These extensive contacts may help
Mediator unfold from its compact triangular shape, in
which the middle and tail modules are not clearly vis-
ible in the absence of pol II, to a more extended con-
formation when bound to pol II. Despite the extended
contacts, the DNA-binding cleft and interaction sur-
faces for other components of the general transcription
machinery are still accessible on pol II (Davis et al.,
2002). Since MED1 in the middle module can interact
with multiple nuclear receptors (Yuan et al., 1998) and
MED14 and MED15 in the tail module can associate
with Gal4-VP16 (Lee et al., 1999; Park et al., 2000), it
is likely that conformational changes induced upon ac-
tivator binding to the middle and, especially the tail,
modules further contribute to activator-facilitated re-
cruitment of pol II by Mediator (Taatjest et al., 2002).

MED12-MED13-CDK8-CycC Module
A dissociable module, which contains MED12/Srb8,

MED13/Srb9, CDK8/Srb10 and CycC/Srb11 nor-
mally found in the large, but not small, Mediator com-
plex (Borggrefe et al., 2002; Samuelsen et al., 2003),
seems to contact mainly the middle module, via CDK8
interaction with MED1 and MED4 (Kang et al., 2001),
and also the head module, through MED13 interac-
tion with MED17 (Guglielmi et al., 2004). This CDK8
module, which could be isolated as a free entity, is
able to phosphorylate serines 2 and 5 of the pol II
CTD (Borggrefe et al., 2002). That transcription could
be inhibited by CDK8-mediated phosphorylation of
the CTD occurring prior to PIC assembly (Hengartner
et al., 1998) or through phosphorylation on serines 5 and
304 of the cyclin H subunit of TFIIH by recombinant
CDK8-CycC pair or by the NAT complex (Akoulitchev
et al., 2000) suggests that the CDK8 module may func-
tion as a repression module in the context of Mediator.
This view is supported by biochemical evidence show-
ing that the large form of ARC (ARC-L) is transcrip-
tionally inactive (Taatjes et al., 2002) and the coactivat-
ing activity of Mediator-P.5 was slightly enhanced when
CDK8-CycC was immunodepleted from the large Me-
diator complex (Wu et al., 2003). Clearly, removal of
CDK8 in yeast by nutrient depriviation (Holstege et al.,
1998) or in mouse P19 embryonic carcinoma cells fol-
lowing all-trans retinoic acid (tRA) treatment (Pavri et al.,
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2005) enhances transcription from a subset of cellular
genes normally suppressed by CDK8. In the latter case,
it was further demonstrated that dissociation of CDK8
following tRA treatment converts Mediator from a tran-
scriptionally suppressed state to an activated complex at
the tRA-targeted RARβ2 gene promoter, indicating that
CDK8 indeed functions in the context of a repression
module in vivo.

Functional Properties of Mediator
In addition to the inhibitory activity conferred by

the CDK8 repression module, Mediator is an authentic
coactivator able to stimulate both basal (Mittler et al.,
2001; Wu et al., 2003) and activator-dependent tran-
scription (Kim et al., 1994). This stimulating activity of
Mediator clearly relies on its ability to serve as a bridg-
ing molecule in transducing activation signals typically
from activator-tail module to head module-pol II. Al-
though Mediator can be isolated via its direct interac-
tions with activators or with the CTD, direct biochemi-
cal evidence demonstrating that Mediator indeed func-
tions by enhancing activator-facilitated entry of pol II
to the PIC has only become possible after all the general
transcription factors, cofactors and pol II are available
in purified forms devoid of any contaminating activities
(Wu et al., 2003). From this in vitro-reconstituted tran-
scription system, we learn that the large form of Media-
tor complexes, such as Mediator-P.5, has intrinsic coac-
tivating activity able to stimulate activator-dependent
transcription, whereas the small form of Mediator
complexes, such as Mediator-P.85, only enhances basal
transcription. Interestingly, the coactivator function of
Mediator can occur in the absence of TFIID TAFs, sug-
gesting that Mediator and TAFs may play some redun-
dant roles in the transcriptional process. Indeed, it has
been shown that TAFs can also enhance pol II entry
to the PIC in the presence of transcriptional activa-
tors (Wu and Chiang, 2001a). Besides targeting pol II,
Mediator has the ability to enhance TBP binding to
the TATA box. This TATA-enhancing activity may help
stabilize the promoter-bound scaffold complex, which
contains TFIIA, TFIID, TFIIE, TFIIH and Mediator
(Yudkovsky et al., 2000), to facilitate reinitiation of tran-
scription from the same promoter.

As found in TFIID, Mediator also exhibits multi-
ple enzymatic activities. The kinase activity of Medi-
ator, inherent to the CDK8 subunit, can phosphory-
late the CTD of pol II (Hengartner et al., 1998; Sun

et al., 1998; Borggrefe et al., 2002), the cyclin H sub-
unit of TFIIH (Akoulitchev et al., 2000), and general
cofactor PC4 (Gu et al., 1999). In addition, yeast Medi-
ator has been reported to exhibit HAT activity, residing
in the MED5/Nut1 subunit, that preferentially acety-
lates histones H3 and H4 in the context of both free
core histones and chromatin (Lorch et al., 2000). How-
ever, no HAT activity has been reported in Mediator
complexes purified from other species to date. Inter-
estingly, human MED8 can associate with Elongin B,
Elongin C, Cullin 2, and Rbx1 to form an E3 ubiquitin
ligase complex able to assemble polyubiquitin chains
in vitro in conjunction with Uba1 and UbcH5a (Brower
et al., 2002), similar to the pVHL complex described ear-
lier that is capable of polyubiquitinating pol II (see Pol
II Ubiquitination section). This finding suggests that
MED8 may serve as a substrate recognition compo-
nent in this MED8-containing ubiquitin ligase com-
plex and functionally links the ubiquitin machinery to
Mediator. It would be interesting to identify the natu-
ral substrates ubiquitinated by this MED8-containing
ubiquitin ligase complex. Collectively, these enzymatic
activities may contribute to Mediator functions in the
transcriptional process, including a possible stimula-
tion of TFIIH kinase activity on the CTD (Kim et al.,
1994). Many of these intriguing questions remain to be
addressed.

USA-DERIVED COFACTORS
The third class of general cofactors, USA, was initially

defined as a crude fraction derived from the P11 0.85 M
KCl fraction of HeLa nuclear extracts able to stimulate
activator-dependent transcription (Meisterernst et al.,
1991). Upon further fractionation of the USA fraction
(Figure 10), several positive cofactors (PC1, PC2, PC3
and PC4) and a negative cofactor (NC1) were identified
(Kaiser and Meisterernst, 1996). With ongoing research
in the study of USA-derived cofactors, it is remarkable
to see that each cofactor has a dual role to function as
a coactivator in potentiating activator-dependent tran-
scription and also as a repressor in inhibiting basal tran-
scription when the activator is absent.

PC1
PC1 is a nuclear protein that is the functional

equivalent of poly(ADP-ribose) polymerase-1 (PARP-1;
Meisterernst et al., 1997), an enzyme which is well stud-
ied for its role in DNA repair by binding to damaged
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FIGURE 10 Purification scheme for USA, NC2, TFIID, and B-TFIID. Fractionation of HeLa nuclear extract and the molar concentrations
of KCl used for column chromatography are indicated.

DNA and in nucleic acid metabolism by covalently
modifying proteins involved in these pathways and also
for its involvement in the maintenance of chromatin
structure (Lindahl et al., 1995; D’Amours et al., 1999).
These properties of PARP-1 explain why TFIIC (i.e.,
PARP-1) only becomes necessary for site-specific initia-
tion of transcription by pol II when nicked DNA tem-
plates were used for in vitro transcription assays, presum-
ably due to suppression of nonspecific initiation from
damaged DNA by TFIIC binding to the nicks (Slattery
et al., 1983).

Mammalian PARP-1, with a molecular size of ap-
proximately 114 kDa, catalyzes the transfer of ADP-
ribose units from the donor nicotinamide adenine
dinucleotide (NAD+) to acceptor proteins, in a pro-
cess known as poly(ADP-ribosyl)ation (Lindahl et al.,
1995; D’Amours et al., 1999; Kraus and Lis, 2003;
Kim et al., 2005b). Not only does PARP-1 modify tar-
get proteins mediating DNA damage response, nu-
cleic acid metabolism and chromatin dynamics, it also
modifies transcription components, such as PC3 (i.e.,
DNA topoisomerase I), high mobility group protein 1
(HMG1), histones (H1, H2A, H2B, H3, H4 and H5),
TBP, pol II, TFIIF (RAP30 and RAP74), p53, YY1,
Sp1, and several protein components (TLE1, TopoIIβ,
Rad50, nucleolin, and nucleophosmin) in the TLE1
corepressor complex (Rawling and Alvarez-Gonzalez,
1997; Oei et al., 1998; D’Amours et al., 1999; Ju et al.,
2004). Moreover, ADP-ribose units can be transferred to
PARP-1 itself. Auto(ADP-ribosyl)ation of PARP-1 is me-
diated through its central domain containing multiple

glutamic acid residues, which serve as acceptor sites for
poly(ADP-ribosyl)ation. This central domain links the
N-terminal zinc-finger DNA-binding domain to the C-
terminal NAD+-binding catalytic domain (D’Amours
et al., 1999; Kraus and Lis, 2003). When disrupted, as
observed during apoptosis where PARP-1 is cleaved by
caspase death enzymes to release a 24-kDa N-terminal
DNA-binding fragment and an 89-kDa C-terminal cat-
alytic fragment, PARP-1 typically loses its enzymatic
activity. For years, PARP-1 cleavage has been used as a
diagnostic marker for programmed cell death.

Unlike the well documented roles of PARP-1 in DNA
repair and apoptosis, the transcriptional role of PARP-
1 has not been extensively studied (Kim et al., 2005b).
Obviously, the coactivator function of PARP-1 is me-
diated by its direct contact with distinct transcriptional
activators, including the human T-cell leukemia virus
type 1 Tax protein (Anderson et al., 2000), human pa-
pillomavirus type 18 E2 (Lee et al., 2002a), B-Myb
(Cervellera and Sala, 2000), E2F-1 (Simbulan-Rosenthal
et al., 2003), AP2 (Kannan et al., 1999), TEF-1 (Butler
and Ordahl, 1999), RARα (Pavri et al., 2005), TRα

(Pavri et al., 2005), and NFκB (Hassa et al., 2003), and
also with other transcriptional cofactors, such as p300,
HDAC1-3, and components (Cdk8 and MED14) of
Mediator (Hassa et al., 2005; Pavri et al., 2005). Since
the C-terminal domain of PARP-1 is necessary for TEF-
1- and NFκB-dependent transcription (Butler and Or-
dahl, 1999; Hassa et al., 2003), but appears dispensable
for Gal4-AH-mediated activation (Meisterernst et al.,
1997), it seems that the catalytic activity of PARP-1 is
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differentially required for gene activation, depending
on the specific activators and promoters examined. Not
surprisingly, the coactivator function of PARP-1 is fur-
ther modulated by posttranslational modifications, as
phosphorylation of PARP-1 by CaMKII and acetyla-
tion of PARP-1 by p300 lead to HES1- and NFκB-
mediated gene activation, respectively (Ju et al., 2004;
Hassa et al., 2005). Using a cell-free transcription sys-
tem performed with a Gal4-driven DNA template, it
was shown that PARP-1 could stimulate PIC formation
at a step post TFIID binding to the promoter region
(Meisterernst et al., 1997). However, the exact step reg-
ulated by PARP-1 during PIC assembly has not been
elucidated.

Other than the coactivator function, PARP-1 also
possesses repressing activity able to inhibit transcrip-
tion through different mechanisms. First, PARP-1 can
be incorporated into chromatin via its N-terminal
DNA-binding domain to promote formation of a
highly condensed chromatin structure, thereby inhibit-
ing activator-dependent transcription (Kim et al., 2004).
Second, PARP-1 can be incorporated into a corepres-
sor complex containing many protein components
susceptible to modification by PARP-1, thus regulating
the integrity of the corepressor complex on the target
gene (Ju et al., 2004). Third, PARP-1 is capable of
inhibiting ligand-dependent transcription by TRα in
transient reporter gene assays in a catalytic domain-
dependent manner (Miyamoto et al., 1999), suggesting
that poly(ADP-ribosyl)ation of critical transcription
components is likely involved in PARP-1-mediated
transcriptional repression. This is consistent with the
observation that poly(ADP-ribosyl)ation of sequence-
specific DNA-binding proteins, such as p53, YY1, Sp1
and TBP, prevents binding to their cognate sequences
(Malanga et al., 1998; Oei et al., 1998; Mendoza-Alvarez
and Alvarez-Gonzalez, 2001). In the case of p53, the
sites for poly(ADP-ribosyl)ation have been mapped
to the DNA-binding and oligomerization domains of
p53 (Malanga et al., 1998). Interestingly, the enzymatic
activity of PARP-1 is also critical for derepression to
occur on some silenced loci, as seen by the association
of PARP-1 and poly(ADP-ribosyl)ated proteins with
decondensed chromatin structure at transcriptionally
induced Drosophila polytene chromosome puffs (Tulin
and Spradling, 2003). Clearly, PARP-1 can function
as a molecular switch to convert a silenced gene into
a transcriptionally active state, by first dissociating a
corepressor complex via poly(ADP-ribosyl)ation (Ju

et al., 2004) or by removing a CDK8 repression module
from the larger Mediator complex (Pavri et al., 2005),
and then enhancing activator-facilitated recruitment of
chromatin-modifying enzymes, such as CBP or p300
HAT or ATP-dependent chromatin remodelers, to the
targeted promoters.

PC2
PC2 (also termed USA100; Meisterernst et al., 1991),

originally isolated from HeLa nuclear extracts as a pro-
tein complex with a molecular size around 500 kDa
(Kretzschmar et al., 1994), corresponds to the smaller
form of human Mediator complexes described earlier
in the Mediator section. This protein complex can en-
hance transcription mediated by Gal4-AH and HNF4
in an in vitro-reconstituted transcription system with
DNA templates (Malik et al., 2000). The coactivator
function of PC2 seems to require the presence of other
general cofactors, since PC2 alone only weakly stimu-
lates activator-dependent transcription and in conjunc-
tion with TAFs, PC3 and PC4, a synergistic activation
of Gal4-VP16-mediated transcription recapitulating the
stimulatory activity of the USA fraction is detected
(Malik et al., 2000). Likewise, PC2 is able to function
together with PC3 and PC4 to regulate transcription
mediated by TRα (Fondell et al., 1999), NFκB, Sp1
(Guermah et al., 1998), and the B-cell-specific Oct-1-
OCA-B transcription complex (Luo et al., 1998).

PC3
PC3, functionally equivalent to DNA topoisomerase

I (Topo I; Kretzschmar et al., 1993; Merino et al., 1993),
consists of 765 amino acids with a molecular size around
91 kDa (Leppard and Champoux, 2005). This protein
is well known for its role in relaxing DNA by tran-
siently introducing nicks, allowing strand passage and
religation (Wang, 2002). Topo I has an unstructured N-
terminal region containing nuclear targeting signals and
surfaces for interaction with various transcription fac-
tors, such as p53 (Gobert et al., 1999). This N-terminal
region, although important for nuclear localization and
protein-protein interaction, is dispensable for relaxing
DNA in vitro (Stewart et al., 1996). The enzymatic ac-
tivity of Topo I is regulated posttranslationally by CK2-
and protein kinase C-mediated phosphorylation, lead-
ing to increased relaxation activity and in responding to
mitogenic stimuli (Wang, 1996). When Topo I encoun-
ters damaged DNA, it is stalled and must be removed
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from the lesions in order to prevent formation of ir-
reversible single- or double-strand breaks that impair
genomic integrity (Leppard and Champoux, 2005). In
this regard, PARP-1 can target Topo I for poly(ADP-
ribosyl)ation and facilitate Topo I to remove itself from
cleaved DNA and close the resulting gap (Malanga and
Althaus, 2004).

Aside from its role in modulating DNA topology,
Topo I can function as a transcriptional coactivator
by contacting directly with activators, such as Gal4-
AH (Kretzschmar et al., 1993), AP2 (Kannan et al.,
1999), p53 (Gobert et al., 1999), and c-Jun (Mialon
et al., 2005), and also with components of the general
transcription machinery, such as TBP (Merino et al.,
1993), in order to stimulate transcription. The coac-
tivator function of Topo I is in part due to its abil-
ity to enhance TFIID-TFIIA-promoter complex for-
mation (Shykind et al., 1997). In the absence of ac-
tivator, Topo I functions as a repressor in inhibiting
basal transcription. Although the transcription activity
of Topo I is separated from its DNA relaxation activ-
ity (Merino et al., 1993; Kretzschmar et al., 1993), the
precise mechanism by which Topo I regulates transcrip-
tion remains to be elucidated. This is an area currently
underexplored.

PC4
PC4 is a protein consisting of 127 amino acids with

an N-terminal regulatory domain spanning amino acids
1 to 62 and a C-terminal single-stranded DNA-binding
and dimerization domain located between amino acids
63 and 127 (Ge and Roeder, 1994a; Kretzschmar
et al., 1994; Brandsen et al., 1997). The N-terminal
region, important for PC4 interaction with distinct
activation domains (Ge and Roeder, 1994a) and bind-
ing to double-stranded DNA in a non-sequence-specific
manner (Kaiser et al., 1995), contains two serine-
enriched acidic (SEAC) domains located respectively
at amino acids 9 to 22 and 50 to 61, separated by a
lysine-rich region lying between amino acids 23 to 41
(Kaiser et al., 1995). Both SEAC domains are suscep-
tible to phosphorylation by several protein kinases, in
particular CK2, which lead to inactivation of the coac-
tivator function of PC4 likely by preventing PC4 in-
teraction with TBP-bound TFIIA on the promoter re-
gion (Ge et al., 1994; Kretzschmar et al., 1994) and with
transcriptional activators, such as the HIV Tat protein
(Holloway et al., 2000). The lysine-rich region, proposed

to bind nonspecific double-stranded DNA (Kaiser et al.,
1995), may serve as acetylation sites for p300-enhanced
PC4 binding to double-stranded DNA, consistent with
the observation that CK2-mediated phosphorylation
on the SEAC domains inhibits p300-dependent acetyla-
tion on PC4 (Kumar et al., 2001). The C-terminal region,
in which the structure has been resolved by X-ray crys-
tallography at 1.74

�

A resolution (Brandsen et al., 1997),
forms a dimer with each monomer composed of four
antiparallel β-strands followed by a kinked α-helix and
is able to bind with high affinity (Kd ∼0.07 nM) two sin-
gle strands of DNA running in opposite directions, as
found in internally melted DNA duplexes. In the full-
length protein, this single-stranded DNA-binding re-
gion is normally masked by intramolecular interaction
with the N-terminal region and only becomes exposed
after conformational changes induced, for instance, by
CK2-mediated phosphorylation of the SEAC domains
(Kaiser et al., 1995). Phosphorylation-induced confor-
mational changes lead to inactivation of PC4 coactiva-
tor activity and further inhibition of transcription me-
diated by the single-stranded DNA-binding activity of
PC4 (Werten et al., 1998).

The inhibitory activity of PC4 allows it to function
as a repressor in suppressing basal transcription when
activators are absent (Malik et al., 1998; Werten et al.,
1998; Wu and Chiang, 1998). This inhibition usually
occurs prior to PIC assembly in the absence of TAFs
(Wu and Chiang, 1998) and can be alleviated by adding
increasing amounts of TFIID, TFIIH and pol II holoen-
zyme in the transcription reaction, correlating with the
ability of these multiprotein complexes to phospho-
rylate PC4 (Kershnar et al., 1998; Malik et al., 1998).
However, since inactivation of the ATP-binding site of
XPB/ERCC3 helicase, but not XPD/ERCC2 helicase
or CDK7 kinase, impairs the ability of recombinant
TFIIH to overcome PC4-mediated repression (Fukuda
et al., 2003), it remains unclear the precise mechanism
used by components of the general transcription ma-
chinery to antagonize PC4 repressing activity.

The coactivator function of PC4 was evidenced by its
ability to substitute for a crude USA fraction in mediat-
ing activator-dependent transcription in a cell-free tran-
scription system reconstituted with recombinant GTFs
(TFIIB, TBP, TFIIE, and TFIIF) and epitope-tagged
multiprotein complexes (TFIID, TFIIH, and pol II; Wu
et al., 1998). In this system, where TAFs and Media-
tor are not essential for activator-dependent transcrip-
tion, PC4 is the only general cofactor indispensable
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for transcriptional activation mediated by Gal4-VP16
(Wu et al., 1998), and human papillomavirus E2 (Wu
and Chiang, 2001a; Hou et al., 2002; Wu et al., 2003).
Not surprisingly, PC4 can interact with both transcrip-
tional activators, such as Gal4-VP16 (Ge and Roeder,
1994a), BRCA1 (Haile and Parvin, 1999), AP2 (Kannan
and Tainsky, 1999), HIV Tat (Holloway et al., 2000),
human papillomavirus E2 (Wu and Chiang, 2001a)
and p53 (Banerjee et al., 2004), and components of
the general transcription machinery, such as TFIIA (Ge
and Roeder, 1994a), TFIIH (Fukuda et al., 2004), and
pol II (Malik et al., 1998), thereby serving as a bridg-
ing molecule to facilitate activator-dependent transcrip-
tion likely through enhancement of PIC assembly on
the promoter region. In addition, PC4 may promote
sequence-specific DNA-binding activity of some acti-
vators, such as p53 (Banjeree et al., 2004), stimulate pro-
moter escape in a TFIIA- and TAF-dependent manner
(Fukuda et al., 2004), or enhance pol II elongation by
modulating TFIIH kinase and FCP1 phosphatase ac-
tivity on CTD phosphorylation (Calvo and Manley,
2005). Clearly, PC4 can work in conjunction with other
general cofactors, such as TAFs (Wu and Chiang, 1998;
Wu et al., 1998) and Mediator (Fondell et al., 1999; Ma-
lik et al., 2000; Wu et al., 2003), to synergistically me-
diate activator-dependent transcription. Whether phos-
phorylation of PC4, which accounts for 95% of total
PC4 in the cell (Ge et al., 1994), by TFIID, TFIIH,
pol II holoenzyme (Kershnar et al., 1998) and Medi-
ator (Gu et al., 1999), plays a role in different steps
of the transcriptional process remains to be further
defined.

Besides being a transcriptional coactivator, PC4 has
also been implicated in other cellular processes, such
as DNA repair and DNA replication. In the aspect of
DNA repair, PC4 can prevent mutagenesis arising from
oxidative DNA damage caused by the interaction of
reactive oxygen species (ROS) with DNA, depending
upon its single-stranded DNA-binding activity (Wang
et al., 2004). The involvement of PC4 in DNA replica-
tion appears to be more complicated, as PC4 can inter-
act with replication protein A (RPA) on single-stranded
DNA and facilitate T-antigen-mediated unwinding of
DNA containing SV40 origin of replication, while it
also inhibits RNA primer synthesis and DNA poly-
merase δ-catalyzed DNA chain elongation (Pan et al.,
1996). The biological significance of these in vitro reac-
tions performed in the presence of PC4 requires further
investigations.

NC1

NC1, also known as HMG1 or HMGB1 with a
molecular size around 25 kDa, is a member of the
highly conserved chromatin-associated proteins that
bend DNA and bind preferentially to distorted DNA
structures (Bustin, 2001; Thomas and Travers, 2001).
HMGB1 is structurally divided into three domains:
two homologous DNA-binding HMG-box domains A
and B each containing approximately 80 amino acids,
and a C-terminal tail containing a stretch of 30 acidic
residues. Boxes A and B each forms an “L”-shaped
structure with three α-helices constituting a minor-
groove DNA-binding domain that preferentially binds
distorted DNA, such as four-way junctions, cisplatin-
modified DNA and bulged DNA, and induces DNA
bending without sequence specificity (Thomas, 2001;
Thomas and Travers, 2001). Both domains A and B
contain an additional basic extension of amino acid
residues that enhance the DNA-binding affinity of the
HMG box. The C-terminal acidic tail modulates the
DNA-binding activity of HMGB1 and seems to be in-
hibitory toward HMG box binding to DNA.

The transcriptional role of HMGB1 is similar to
other USA-derived cofactors in that it normally func-
tions as a repressor in the absence of an activator, but
acts as a coactivator in activator-dependent transcrip-
tion. The repressing activity of HMGB1 appears to
work by promoting the formation of a stable HMGB1-
TBP-promoter complex that prevents TFIIB entry
(Ge and Roeder, 1994b), as the presence of HMGB1
increases the affinity of TBP for the TATA box by 20-
fold (Das and Scovell, 2001). The interaction domains
were mapped to the HMG box A of HMGB1 (Sutrias-
Grau et al., 1999) and the glutamine-rich region of TBP
(Das and Scovell, 2001). TFIIA, as an antirepressor (see
TFIIA section), can displace HMGB1 from the ternary
complex and overcome HMGB1-mediated inhibition
of PIC formation, thereby restoring transcription ac-
tivity (Ge and Roeder, 1994b). The coactivator func-
tion of HMGB1 is attributed to its direct interaction
with transcriptional activators, such as p53, steroid hor-
mone receptors, Oct-1, HOX and Rel proteins (Thomas
and Travers, 2001; Agresti and Bianchi, 2003), and
with components of the general transcription machin-
ery, including TBP (Ge and Roeder, 1994b) and TAF10
(Verrier et al., 1997). Undoubtedly, the architectural role
of HMGB1 in bending DNA will further contribute
to its coactivator function typically by enhancing
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sequence-specific recognition by these DNA-binding
proteins.

CONCLUDING REMARKS
The finding of multiple core promoter elements

(BREu, TATA, BREd, Inr, MTE, DPE and DCE)
and core promoter-binding activity exhibited by
TFIIB, TBP family members (TBP and TRF1-4)
and distinct TAF complexes (TFIID, TFTC and
SAGA/STAGA/SLIK) further exemplifies the diversity
and specificity of core promoter recognition inherent
in the eukaryotic genome. The recent discovery of RNA
polymerase IV and spRNAP-IV implicated in transcrip-
tional silencing and mRNA transcription, respectively,
also broadens our view of pol II-mediated transcrip-
tion processes beyond the traditional sets of RNA poly-
merases and their accessory factors. From the structural
and functional analyses of GTFs, pol II, general cofac-
tors, and the built-up transcription complexes, we have
come across many unexpected properties of these tran-
scription components. One of the most intriguing fea-
tures is the uncovering of cryptic DNA-binding activity
found in many of these proteins. In the case of TFIIB,
activator-induced conformational changes unmask the
recognition loop in the first direct repeat of TFIIB for
BREd binding and concurrently reduce the affinity of
its HTH DNA-binding domain, located in the second
direct repeat, for contacting BREu. From the studies of
TATA-containing and TATA-less promoters, TBP and
some TAFs (TAF1, TAF2, and histone fold-containing
TAF6 and TAF9) make sequence-specific contacts with
the Inr, DPE, and DCE elements. However, the specific
TAF(s) acting through the MTE has yet to be identified.
Additional contacts made between GTFs and the pro-
moter have also been observed presumably following
TFIIF-induced DNA wrapping around a partially as-
sembled TBP-TFIIB-pol II/TFIIF complex, due to cryp-
tic DNA-binding activity exhibited by the winged HTH
motifs present in RAP30 and RAP74. It is likely that the
TAF components of TFIID will play a significant role in
stabilizing this complex, if TFIID is substituted for TBP,
and that the winged HTH motif of TFIIEβ will further
stabilize the final PIC by providing extra DNA con-
tacts. Undoubtedly, the efficiency and the functional
property of the assembled PIC will be modulated by
the presence of general cofactors, such as PC1, Topo
I, PC4, and HMGB1, whose intrinsic DNA-binding
activity may help reconfigure the topology and archi-

tecture of the promoter and, moreover, the recognition
of damaged DNA templates.

The recent elucidation of pol II structures further
provides mechanistic insight into the functional role
of GTFs during PIC assembly. Besides the protein-
DNA contacts contributed by sequence-specific recog-
nition and cryptic DNA-binding activity as outlined
above, the interactions amongst GTFs and with pol II
also play an important role in stabilizing TBP/TFIID-
promoter complex, alleviating repressing activity ex-
erted by TAF1, BTAF1, and NC2, facilitating pol II
entry, and forming a proper conformation for start site
selection and later transition for pol II from initiation to
elongation. The protein-protein contacts between the
N-terminal zinc ribbon domain of TFIIB with TFIIF
and pol II help recruit pol II/TFIIF to the promoter.
Once assembled, TFIIF and the B-finger of TFIIB, situ-
ated by the catalytic center of pol II, facilitate start site
selection. TFIIF and pol II then aid in the subsequent
entry of TFIIE and TFIIH into the partially assembled
PIC complex. The positioning of TFIIE at the active
center of pol II allows TFIIE to stimulate TFIIH ATPase
and DNA helicase activities, which facilitate promoter
melting and promoter clearance. TFIIE also enhances
the kinase activity of TFIIH, allowing TFIIH to phos-
phorylate serine 5 of the unstructured CTD, thereby
marking the transition of pol II from initiation to elon-
gation. Further elucidation of the structural mechanism
for PIC assembly can be found in several recent reviews.
Clearly, future structural studies with the inclusion of
additional transcriptional components, such as TAFs,
TFIIE, and TFIIH, into the TBP-TFIIA-TFIIB-pol II-
TFIIF structure, and also with the permeation of small
molecule inhibitors, such as DRB and α-amanitin, will
provide a more complete understanding of PIC assem-
bly and function.

Another intriguing feature that regulates promoter
activity and the functional property of the PIC lies
in the ability of these transcriptional components to
be posttranslationally modified by, e.g., phosphory-
lation, acetylation, glycosylation, ubiquitination, and
poly(ADP-ribosyl)ation. In fact, many of these modify-
ing activities are inherent to the transcriptional compo-
nents themselves. TFIID, for example, possesses mul-
tiple enzymatic activities capable of phosphorylating
H2B, TFIIAβ, RAP74, and PC4, acetylating H3, H4,
and TFIIEβ, and ubiquitinating H1 and presumably
TAF5 and TAF1 as well. TFIIH, besides its DNA he-
licase activity, can phosphorylate CTD, PC4 and a
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number of transcriptional activators, and may also
exhibit E3 ubiquitin ligase activity. Likewise, Media-
tor displays kinase, HAT, and likely E3 ubiquitin lig-
ase activity, whereas PARP-1 can introduce poly(ADP-
ribosyl)ation onto TBP, TFIIF, pol II, and other general
cofactors and transcriptional activators. In many cases,
however, the functional consequences of these modifi-
cations and critical substrates remain to be investigated.
Related to this issue, many components of the general
transcription machinery and general cofactors can be
modified by exogenous enzymatic activities. An impor-
tant but underexplored example is pol II ubiquitination,
where pol II becomes polyubiquitinated in response to
DNA-damaging agents or upon transcriptional arrest
by different E3 ubiquitin ligases (Rsp5, hRPF1, pVHL-
Elongin B/C-Cullin 2-Rbx1, BRCA1/BARD1, and the
CSA complex) through polyubiquitin chain linkage via
different lysine residues in the ubiquitin molecule. It
would thus be interesting to see whether a transcription-
ally stalled pol II complex can be polyubiquitinated by
TFIIH and Mediator. This is certainly an exciting area
for future exploration.

In conclusion, the assembly of an initiation-
competent pol II complex is subject to multiple lev-
els of regulation by a diverse set of protein factors and
cofactors. There is no doubt that transcriptional activa-
tors have a significant impact in dictating the functional
property of the PIC, regardless of which pathway (se-
quential assembly vs. pol II holoenzyme) is used for
PIC assembly. The fact that the core promoter itself
can be recognized by TBP, TRFs, TFIID and other
TAF-containing complexes already lends flexibility for
interaction with distinct transcriptional regulators as
well as general cofactors which typically possess dual
activities in repressing basal transcription and enhanc-
ing activator-dependent transcription in response to
environmental cues. While tissue-specific TAFs and
TRFs play an important role in regulating transcription
during development, it remains a mystery what roles
positive cofactors and Mediator play during embryonic
development. Without doubt, the presence of TAF vari-
ants and multiple pathways for regulating PIC assem-
bly provide an additional way to fine-tune the transcrip-
tional events. Moreover, the alternative usage of general
cofactors, such as TAFs, Mediator, and various USA-
derived cofactors, and their functional redundancy and
transcriptional synergy on both TATA-containing and
TATA-less promoters provide an additional level of
complexity in modulating eukaryotic gene transcrip-

tion. Clearly, posttranslational modifications of activa-
tors through phosphorylation, acetylation, ubiquitina-
tion, and poly(ADP-ribosyl)ation by components of the
general transcription machinery and general cofactors,
such as TFIID, TFIIH, and Mediator, as well as by other
cellular proteins functioning in response to extracellu-
lar signaling events will further regulate the functional
property of the transcription complexes assembled on
target genes. For sure, exciting stories will continuously
be unraveled for years to come.
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