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Abstract—Spectral matching is a computationally efficient
approach to the approximate solution of pairwise matching
problems that are np-hard. In this work we present a probabilistic
interpretation of spectral matching schemes and derive a novel
probabilistic matching scheme that is shown to outperform
previous approaches. We show that spectral matching can be
interpreted as a maximum likelihood estimate of the assignment
probabilities and that the Graduated Assignment algorithm can
be cast as a Maximum a Posteriori estimator. Based on this
analysis we derive a ranking scheme for spectral matchings based
on their reliability, and propose a novel iterative probabilistic
matching algorithm that relaxes some of the implicit assumption
used in prior works. We experimentally show our approaches
to outperforms previous schemes when applied to exhaustive
synthetic tests, as well as the analysis of real image sequences.

I. INTRODUCTION

Graph matching is a known problem in image and data
analysis that relates to a multitude of research topics. Those
include the registration of sets of points in Rd [21], [33], object
recognition [2], shape retrieval [13], symmetry analysis [18],
[6], and channel decoding.
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Fig. 1. The graph matching problem. Given two sets of points S1 = {xi}
and S2 = {yi}, c1,2 indicates that x1 is matched to y2. The unary affinity
Ω1 (c1,2) quantifies the affinity of machining x1 to y2. The pairwise affinity
Ω2 (c3,3, c2,1) quantifies the joint matching of x3 to y3, and x2 to y1. S1

and S2 might be of different sizes.

The graph matching problem is depicted in Fig. 1, where
given a set of points, graph nodes can represent the points,
while the graph edges encode their mutual distances. Hence,
graph matching paves the way for recovering point correspon-
dences. Given two sets of points in Rd, such that S1 = {xi}n1

i=1

and S2 = {yi}n2

i=1, the assignment problem is to recover the
set of assignments

C , {cii′}ni=1 = {xi,yi′}ni=1 , n 6 min (n1, n2) . (1)

It is common to represent the correspondence by an assign-
ment matrix Z ∈ {0, 1}n1×n2 such that zi,i′ = 1 implies
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that xi corresponds to yi′ and its row-wise vectorized replica
z ∈ {0, 1}n1n2 . The matching problem is defined by an unary
affinity matrix A∈ Rn1×n2 such that

ai,i′ = Ω1 (cii′) , (2)

is the affinity of matching xi to yi′ , and Ω1 is an unary affinity
measure.

The optimal assignment is thus given by

z∗ = argmax
z

∑
zk=1

ak = argmax
z

(
zTa

)
, z ∈ {0, 1}n1n2

s.t. Z1 6 1 and ZT1 6 1 (3)

where a ∈ Rn1n2 is a row-wise vectorized replica of A, and
z∗ is a row-wise reshaped replica of Z∗ ∈ {0, 1}n1×n2 .

The constraints in Eq. 3 imply that a point xi ∈ S1 can
only be matched to a single point in S2, or not matched at
all. The same applies to each point yi ∈ S2. Equation 3 can
be optimally solved by the Hungarian algorithm in polynomial
time [25], binary linear programming [26] or approximated by
Dynamic Programming [11].

In pairwise assignments we are given a pairwise affinity
measure Ω2 that scores the joint matching of cii′ and cjj′

Ω2 = Ω2 (cii′ , cjj′) ,

implying that xi is matched to yi′ and xj to yj′ . Pairwise
affinities can encode geometric properties such as local isom-
etry

Ω2 (cii′ , cjj′) = exp

{
− 1

ε2
(
∥xi − xj∥2 − ∥yi′ − yj′∥2

)2}
,

(4)
where ε > 0 is the kernel bandwidth. In contrast, unary
affinities (Eq. 2) encode vertex-to-vertex similarities such as
correlations and differences of local descriptors (SIFT [22],
Shape Context [1]).

The pairwise affinity matrix A∈ Rn1n2×n1n2 is given by

âi,̂j = a(i−1)n2+i′,(j−1)n2+j′ = Ω2 (cii′ , cjj′) , (5)

and its structure is detailed in Appendix A. The optimal as-
signment C∗ is the one maximizing the sum of corresponding
pairwise affinities adhering to the same set of constraints as
in Eq. 3. This yields the following optimization problem

z∗ = argmax
z

(
zTAz

)
, z ∈ {0, 1}n1n2

s.t. Z1 6 1 and ZT1 6 1 (6)

where z and Z are the same indicator vector/matrix pair as in
Eq. 3.
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In some applications, such as shape retrieval [13] and image
matching [5], one can utilize unary similarities (based on SIFT
and Shape Context) to reduce the assignment space of each
vertex in S1 to K ≪ n2 potential assignments in S2. In
practice, in these applications K ≤ 10.

The optimization problem in Eq. 6 is a variant of the
quadratic binary programming (QBP) and is known to be np-
hard. It is a particular instance of a general problem, whose
implications are well beyond point matching. For instance,
graph matching is equivalent to optimizing Markov Random
Fields (MRF) [8], where pairwise matching corresponds to
solving two-dimensional MRFs. It is also at the heart of the
GrabCut supervised image segmentation [30] of Rother et al.,
and Raj and Zabih’s work on discrete image deconvolution
[27]. In these works the MRF was solved by the Min-cut/Max-
Flow scheme of Kolmogorov [3]. In this work we exemplify
the use of graph matching in point matching as it allows to
compare our results to previous works. Yet, both the analysis
and proposed matching scheme are applicable to a wider class
of problems having a more general set of matching constraints
than those in Eq. 6.

Although pairwise matching was found to be instrumental
[2], [18], [15], some applications require high order affinities.
For instance, pairwise matching is susceptible to the scale
differences between the sets of points, and using third-order
affinities one can define scale invariant similarity measures.
A probabilistic triplets matching scheme was suggested by
Zass and Shashua [37], and Chertok et al.[5] presented a high
order spectral matching approach. Most matching schemes
can recover partial matchings, implying that only subsets of
size n < min (n1, n2) of S1 and S2 are matched. This is of
particular interest in applications where the common set is
embedded in clutter.

In this work we present two core contributions:
First, we extend the probabilistic model of spectral match-

ing, suggested by Zass and Shashua [37] to show that the
spectral matching scheme of Leordeanu and Hebert [21] can
be interpreted as a maximum likelihood (ML) estimate of the
assignment probabilities given that the assignments of different
points are statistically independent, and that the affinity matrix
A is an estimate of the joint assignment probability. We then
show that given the same set of assumptions, the Graduated
Assignment algorithm of Gold and Rangarajan [15] can be
cast as a Maximum a Posteriori (MAP) estimate that utilizes
a maximum entropy prior. We also reinterpret and justify
the marginalization operation used by Zass and Shashua [37]
in light of the probabilistic interpretation, and introduce an
assignment ranking scheme. This allows to rank the reliability
of the spectral matchings, and choose the subset of the most
reliable assignments.

In our second contribution we derive a novel graph match-
ing scheme that relaxes the probabilistic assumptions used in
previous works. It iteratively refines the assignment and con-
ditional matching probabilities, and is experimentally shown
to compare favorably with previous state-of-the-art-matching
schemes, as the matching problem becomes difficult due to
outliers and noise.

This paper is organized as follows: Section II discusses

previous results on graph matching, while Section III presents
a probabilistic analysis of spectral matching, Graduated As-
signments and their variants. This paves the way for an
analysis of the normalization and the assignment ranking
schemes. The novel probabilistic matching (PM) is presented
in Section IV, and is experimentally verified in Section V
by applying it to synthetic as well as real data. Concluding
remarks and future extensions are discussed in Section VI.

II. RELATED WORK

A myriad of algorithms were proposed for matching graphs
and sets of point in Rd, and a comprehensive survey was
conducted by Conte et al.[7]. One of the earliest algorithms
for point matching is due to Scott and Longuet-Higgins [31]
that solve the one-to-one matching by minimizing the sum of
squared distances between matched points in both sets. They
introduce a spectral formulation by computing a Gaussian-
weighted affinity matrix aij = exp

(
−∥xi − yj∥2 /ε2

)
. A

is replaced by P = UV , where U and V are matrices
whose columns are the left and right singular vectors of A.
The Largest entries of P indicate strongly coupled points.
This scheme implicitly assumes that A is an empirical ap-
proximation of the assignment matrix Â, for which we have
Â1=ÂT1=1. It was observed by Cour et al.[9] that this
spectral decomposition acts as a projection operator onto the
space of assignment matrices.

Due to the equivalence between the graph matching problem
(as defined in Eq. 6) and a particular class of QBPs with
corresponding sets of constraints that is known to be NP-
hard, it follows that this computational problem is NP-hard
[14]. Thus, it is commonly solved using relaxation based
approaches, where some of the constraints in Eq. 6 are dropped
to derive low computational complexity approximations.

Leordeanu and Hebert [21] presented an efficient and robust
solution to Eq. 6 by way of spectral relaxation

w∗ = argmax
w

wTAw

wTw
, w ∈ Rn1n2 . (7)

Equation 7 is solved by computing the leading eigenvalue
and corresponding eigenvector of A. In point matching it is
common to compute the affinity using a Gaussian kernel as
in Eq. 4, guaranteeing that A is symmetric and nonnegative.
Thus, by the Peron-Frobenius theorem we have that the leading
eigenvalue and eigenvector w∗ of A are known to exist and w∗

is nonnegative. Given the continuous solution w∗, Leordeanu
et al.[21] suggest to discretize w∗ by a greedy approach and
derive the indicator vector z∗. The assignment constraints in
Eq. 6 are ignored in the spectral relaxation step (Eq. 7) and
induced during the discretization step.

The Graduated Assignment (GA) algorithm of Gold and
Rangarajan [15] solves the graph matching problem by relax-
ing the constraint z∗ ∈ {0, 1}n1n2 in Eq. 6 to w ∈ Rn1n2 , the
derivative of the relaxed QBP is computed and an iterative
update scheme is derived. The relaxation in this scheme
boils down to a power iteration and thus precedes [21]. The
GA utilizes the softassign operator that is parameterized by
a continuation parameter, annealed after each iteration. It
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minimizes an objective function comprising of the quadratic
term (as in Eq. 6) and an entropy barrier function

w∗ = argmax
w

(
wTAw− 1

β

∑
i

wi logwi

)
,

s.t . W1 = 1 and WT1 = 1, w ∈ Rn1n2 , β > 0 (8)

The softassign operator allows to approximate the solution of
discrete assignment problems using continuous operators, and
was first presented by Mjolsness [24] in the context of neural
networks denoted as ‘assignment networks’. The softassign
was also applied by Rangarajan et al. to graph isomorphism
estimation [28], and to the joint estimation of assignments and
parametric motion [16] .

The convergence of the GA was studied by Rangarajan
et al.[29], via discrete time Lyapunov functions. Yuille and
Rangarajan [36] introduced the concave-convex optimization
procedure (CCCP) that is a general approach to iteratively
minimizing objective functions consisting of a sum of a
concave and convex functions. The CCCP is guaranteed to
monotonically decrease the objective function, and can be used
to derive the GA by applying it to Eq. 8.

Similar to the GA algorithm, van Wyk and van Wyk
[34] based their iterative algorithm on the first derivative of
the objective function. They suggest a novel approach for
projecting an approximation of the current matching matrix
onto the convex space of the matching constraints. In addition,
their algorithm does not require an annealing parameter as the
GA.

Cour et al.[9] proposed two extensions to Leordeanu’s work.
First, they introduce affine constraints into the spectral de-
composition, that encode the one-to-one matching constraints.
Their second contribution is to apply bistochastic normaliza-
tion to the Edge Similarity Matrix, which is a an equivalent
representation of the pairwise affinity matrix.

A synergy of structural graph matching and the estimation
of parametric motion models (affine, projective) was proposed
by Cross and Hancock [10], and applied to the matching of
2D point-sets. Each point set was represented by a graph,
and the point (node) correspondence was represented by a
bipartite graph. The assignment probabilities are modeled via a
mixture model, based on a Gaussian noise model with respect
to the correspondence and motion parameters. This model is
estimated using an Estimation Maximization (EM) scheme.

Lug and Hancock [23] presented an EM-based inexact graph
matching scheme that only utilizes the edge (connectivity)
structure of the graphs. Their probabilistic formulation casts
the graph to be matched as observed data and the set of
correspondences as the hidden variables. A mixture model is
computed with respect to the node correspondences, and the
correspondence errors are modeled via a Bernoulli distribution.
The spectral approach of Scott and Longuet-Higgins [31] is
used in the maximization step of the EM algorithm.

Graph embedding approaches to graph matching are based
on embedding the graphs to be matched in a Euclidean space,
where the graph nodes are represented by the embedding
coordinates. The premise is that such embeddings can be made
invariant to rigid transformations of the nodes’ locations. A

spectral graph embedding scheme based on Kernel PCA was
proposed by Wang and Hancock [35], that derived a one-to-
one point matching scheme for points related by rigid motion.
This approach is then extended to handle articulated motion
by introducing label propagation into the iterative matching
process.

The work of Zass and Shashua [37] is of particular interest
as it introduces a probabilistic framework for hypergraph
matching. They show that given that different assignments are
statistically independent, high order matching problems can be
represented by a matrix constructed by Kronecker products.
They also offer two computational contributions. First, they
show that high order affinity tensors can be marginalized
into a one-dimensional probability vectors. In their second
contribution, the probability vector is refined by projecting it
into the space of assignment vectors by minimizing a Bregman
measure.

A spectral approach to high order graph matching was
proposed by Duchenne et al.[12]. The high order matching
is formulated as a tensor eigendecomposition problem, and
is applied to point matching using an appropriate affinity
measure. It is experimentally shown to outperform previous
schemes.

III. PROBABILISTIC INTERPRETATION OF SPECTRAL
MATCHING

In this section we present a probabilistic interpretation of
spectral matching schemes. As for notations, we follow the
notations depicted in Fig. 1 and detailed in Appendix A. Let
P (cii′) be the assignment probability of the i′th match, in
which xi ∈ S1 is assigned to yi′ ∈ S2. P (cii′ , cjj′) is the
pairwise assignment probability, such that xi ∈ S1 matches
yi′ ∈ S2 and xj ∈ S1 matches yj′ ∈ S2, We denote p the
vector of assignment probabilities as in Eq. 24.

We aim to relate these probabilities to the graph assignment
problem. For that we utilize the probabilistic formulation of
high order graph matching proposed by Zass and Shashua [37].
Their work introduces the following working assumptions

Assumption 1: The pairwise affinity matrix A is an empir-
ical estimate of the pairwise assignment probability

Ω2 (cii′ , cjj′) = P (cii′ , cjj′) . (9)

As we used a Gaussian kernel to compute A, we have that
Ω2 (cii′ , cjj′) ∈ [0, 1], where Ω2 (cii′ , cjj′) ≈ 0 corresponds to
invalid matches (P (cii′ , cjj′) ≈ 0), while Ω2 (cii′ , cjj′) ≈ 1
corresponds to jointly valid matches (P (cii′ , cjj′) ≈ 1).

Assumption 2: The assignments of different points xi ∈ S1

are statistically independent. Thus, we have that

P (cii′ , cjj′) = P (cii′)P (cjj′) , (10)

Substituting Eq. 9 in Eq. 10

Ω2 (cii′ , cjj′) = P (cii′)P (cjj′) , (11)

and by Rewriting Eq. 11 in matrix notation, we get that

A = ppT . (12)

Hence, the assignment probability p can be estimated by
computing the rank-one-approximation (ROA) of the affinity



4

matrix A. According to the Eckart-Young Theorem [20] the
eigendecomposition of A is its optimal ROA in terms of the
Frobenius norm

p∗=argmin
p

∥∥A− ppT
∥∥
L2

. (13)

Thus, the eigendecomposition is a proxy for computing the
ROA of the affinity matrix [17], without having to relate it
to spectral relaxation, or discrete optimization. It is common
to compute the affinity using a Gaussian kernel as in Eq. 4,
insuring that A is symmetric and nonnegative. Thus, by the
Perron-Frobenius theorem we have that the leading eigenvector
of A is known to exist and is nonnegative.

In general, assumptions 1 and 2 might be false, and are
thus working assumptions. Yet, they are implicitly used in the
spectral matching (SM) approach of Leordeanu and Hebert
[21], and the Graduated Assignment (GA) algorithm [15] of
Gold and Rangarajan.

It was shown by Chertok et al.[5] that the discretization of
the probability p can be formulated as a Maximum Likelihood
(ML) estimate, where we maximize the overall probability of
the chosen assignments, under the matching constraints

z∗ = argmax
z

(
zTp

)
= argmax

z

∑
k s.t. zk=1

pk, z ∈ {0, 1}n1n2

s.t. Z∗1 6 1 and (Z∗)
T
1 6 1, (14)

where z ∈ {0, 1}n1n2 and Z ∈ {0, 1}n1×n2 are the assignment
vector and matrix, respectively.

In general, Eq. 14 can be solved by binary linear pro-
gramming [26], but in most assignment problems, one can
use the greedy approach of Leordeanu [21] or the Hungarian
algorithm [25]. It follows that the spectral matching scheme
of Leordeanu and Hebert [21], comprises of two steps: the
spectral decomposition in Eq. 13 provides an estimate of the
assignment probabilities, while the discretizations in Eq. 14 is
a ML estimate of the hard (binary) assignments.

We now provide a probabilistic interpretation of the GA
algorithm [15]. The GA scheme iterates the following steps:

qt = Normalize(pt) (15a)
rt = exp (βtqt) (15b)

pt+1 = Art (15c)
βt+1 = βt∆β (∆β > 1) (15d)

where A is the affinity matrix and βt > 0 is an annealing
parameter.

The first term in Eq. 8 identifies with the quadratic term
of the SM algorithm, yielding an estimate of the assignment
probability, while the second is an entropy maximization term
that acts as a prior. Thus, Eq. 15c identifies with the power
iteration [17] used in the SM algorithm. By applying the
CCCP to the functional in Eq. 8, it follows that Eqs. 15b-
15d constitute an entropy maximization scheme, while the
coefficient βt controls the trade-off between the quadratic term
(likelihood) and the prior. These two terms are contradictory,
since the optimal assignment p∗ has a low entropy due to its
sparsity. In contrast, the maximal entropy prior is maximized
by a uniform vector p. The entropy term allow the GA to avoid

poor local maxima, and as βt increases exponentially over the
iterations, the trade-off between the ML and the entropy terms
evolves in favor of the ML solution.

Another observation relates to the work of Zass and Shashua
[37] that proposed to marginalize affinity matrices and tensors
to estimate the assignment probability P (cii′). This can be
justified by utilizing Assumption 1

P (cii′) =
∑
cjj′

P (cii′ , cjj′) . (16)

Although computationally appealing, as it does not require to
compute an eigendecomposition, the marginalization is only
equivalent to spectral matching in the outlier-free case, as it
sum all of the elements in the affinity matrix. When outliers
exist, Eq. 16 does not hold, and the marginalization does not
allow the adaptive weighting used by the SM and GA schemes.
This hampers the performance in the presence of outliers and
will be experimentally demonstrated in Section V.

A. Probability functions normalizations

The computation of the soft assignment vector pt ∈ Rn1n2

at iteration t, or equivalently, the corresponding soft assign-
ment matrix Pt ∈ Rn1×n2 , requires their normalization.
Typically in a Power Iteration, pt is normalized to a unit
L2 in each iteration [17], while in the GA scheme Pt is
bistochastically normalized using the Sinkhorn algorithm [32].
Following our probabilistic analysis, the normalization can
be interpreted as a projection of Pt on to the space of
probability functions. Hence, row-normalizing Pt is equivalent
to setting

∑
i′

P (cii′) = 1. This implies that each point in S1 is

assumed to be matched, and column-normalization relates to
the points in S2 mutatis mutandis. Bistochastic normalization
corresponds to the assumption of one-to-one mapping. Hence,
the choice of the normalization scheme implicitly induces
assignment constraints. For instance, in some problems, we
match an outlier-free model/graph (WLOG assume it is S1)
to an acquired set of points S2 that contains outliers. In
such a setup, row-normalization will be more appropriate than
column or bistochastic normalization. Applying the incorrect
normalization might degrade the matching accuracy, as ideally
for an outlier we expect to have

∑
i′

P (cii′) ≈ 0.

From an algebraic point of view, each of the normalization
operations (rows, columns and bistochastic) can be considered
a projection operator onto a closed and convex set, as first
noted by Hummel and Zucker [19]. Hence, introducing them
into the different iterative schemes (SM, GA, PM), does not
hamper the convergence properties.

The pairwise assignment probability P (cii′ , cjj′) can also
be normalized in different ways, inducing different matching
constraints. Thus, in an assignment problem where each point
in S1 is known to correspond to a point in S2, but S2 might
contain outlier points, one would use

P̂ (cii′ , cjj′) = P (cii′ , cjj′) /
∑
i′,j′

P (cii′ , cjj′) ,
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thus inducing the constraint
∑

i′,j′ P̂ (cii′ , cjj′) = 1. When
the assignment is known to be one-to-one, we impose the con-
straint that

∑
i′,j′ P̂ (cii′ , cjj′) = 1 and

∑
i,,j P̂ (cii′ , cjj′) = 1

by applying the Sinkhorn algorithm [32] to P (cii′ , cjj′).
In general, given an assignment problem where both S1 and

S2 might contain outliers, we found it best not to normalize
P (cii′ , cjj′), as for an outlier point xi ∈ S1 we should have∑

i,j P̂ (cii′ , cjj′) ≈ 0, and applying any normalization, as dis-
cussed above, might induce erroneous assignment constraint
on the outlier points, and bias the solution.

B. Assignment ranking

The probabilistic framework also provides an approach
for ranking the reliability of the SM assignments. Given n1

assignments computed via the SM, we aim to rank their
reliability. This allows to choose the “best” (most reliable)
n̂ ≪ n1 assignments, as in some applications, only n̂ ≪ n1

are required. For instance, Chertok et al.[6] used n̂ ≪ n1 point
matches to initialize a RANSAC based parametric motion
estimation, to incorporate the prior knowledge that symmetric
objects are related by rotations and reflections. Given the
original matching problem, the RANSAC scheme might di-
verge due to the significant number of outliers. But, given the
n̂ ≪ n1 best SM matches, the number of outliers is reduced.

Our ranking approach is based on the probabilistic interpre-
tation of the assignment vector p. Given the hard assignment
z∗ computed via any of the discretization schemes, we con-
sider the corresponding entries in the soft assignment vector p.
Following our probabilistic analysis, these are the assignment
probabilities P (cii′), and can be used to rank the assignments

P
(
ci1i′1

)
≥ P

(
ci2i′2

)
≥ ... ≥ P

(
cin1 i

′
n1

)
, (17)

as an assignment with a higher probability P (cii′) is a more
reliable one. We exemplify the validity of this approach in
Section V.

IV. PROBABILISTIC GRAPH MATCHING

In this section we introduce the proposed probabilistic graph
matching scheme (PM). The core of our approach is based on
the observation that we can use the solution of the spectral
matching (SM) algorithm [21] to refine the estimate of the
affinity matrix A, and then solve a new assignment problem
based on the refined matrix A. Namely, we can attenuate the
affinities corresponding to matches with small matching prob-
abilities and thus prune the affinity matrix A. In the same vein,
we aim to adaptively increase the entries in A corresponding
to assignments with high matching probabilities. Specifically,
Given the estimated assignment probabilities P (cii′) ≈ 0,
corresponding to an unlikely assignment cii′ , we attenuate the
entries P (cii′ , cjj′), j = 1..n1. Conversely, given an estimated
high assignment probability P (cii′) ≈ 1, we aim to increase
the corresponding entries of A.

The crux of our approach is to drive an iterative formulation
where each iteration comprises from two steps: the first esti-
mates the assignment probabilities P (cii′) given the current
estimate of the affinity matrix A, and the second, utilizes

P (cii′) to refine A, as previously discussed. The first step
corresponds to applying the SM schemes, while the refinement
of A should be carefully chosen to allow analytic interpretation
and provable convergence.

Hence, we propose to minimize the objective function

[P ∗ (cii′) , P
∗ (cii′ |cjj′)] =

arg min
P (cii′)
P (cii′ |cjj′)

∑
ii′

∑
jj′

P (cii′ |cjj′)P (cjj′)

− P (cii′)

2

s.t. P (cii′) is a probability. (18)

where P (cii′ |cjj′) is the conditional assignment probability,
that is the probability of the assignment cii′ , given that the
assignment cjj′ is valid. The assignment probability P (cjj′) is
an eigenvector of P (cii′ |cjj′), corresponding to an eigenvalue
of 1∑

jj′

P (cii′ |cjj′)P (cjj′) =
∑
jj′

P (cii′ , cjj′) = P (cii′) . (19)

Thus, for a fixed P (cii′ |cjj′), the proposed formulation boils
down to the regular SM scheme, and can be solved via the
Power Iteration. Yet, in our scheme we aim to update both
P (cii′ |cjj′) and P (cjj′).

The pairwise probability P (cii′ , cjj′) is not used, as it can
not be easily updated: having a high assignment probability
P (cii′) ≈ 1, does not imply that P (cii′ , cjj′) ≈ 1, as we
might have that P (cjj′) ≈ 0. In contrast, P (cii′ |cjj′) is
asymmetric, and given that P (cii′) ≈ 1, we can increase
P (cii′ |cjj′) regardless of P (cjj′).

Denote by Pt (cii′ |cjj′) and Pt

(
c
jj′

)
,the estimate of

P (cii′ |cjj′) and P (cii′) in iteration t, respectively. We pro-
pose to solve Eq. 18 by iterating the following two steps:

At iteration t we first fix Pt (cii′ |cjj′) and compute a single
iteration of the Power Iteration

Pt+1 (cii′) =
∑
jj′

Pt (cii′ |cjj′)Pt

(
c
jj′

)
. (20)

The estimate of the conditional assignment probability
Pt (cii′ |cjj′) is refined by

Pt+1 (cii′ |cjj′) = Pt (cii′ |cjj′)
Pt+1 (cii′)

Pt (cii′)
. (21)

Due to the convergence properties of the Power Itera-
tion, Pt+1 (cii′) /Pt (cii′) ≥ 1 for valid assignments, and
Pt+1 (cii′) /Pt (cii′) ≤ 1 for invalid ones. Hence, Eq. 21
adaptively increases the entries in Pt (cii′ |cjj′) corresponding
to valid assignments and attenuates the invalid ones. The
proposed PM scheme is summarized in Algorithm 1.

We prove in Appendix B that each of the consecutive steps
in Eqs. 20 and 21 monotonically reduces the objective function
in Eq. 18. In practice, one can use different weighting terms

in Eq. 21, such as
(

Pt+1(cii′ )
Pt(cii′ )

)2
, yielding similar experimental

results, but we were unable to prove convergence for such
terms.
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Algorithm 1 Probabilistic Graph Matching
1: Given the pairwise affinity matrix A∈ Rn1n2×n1n2 , the

number of iterations IterNo and the threshold δ
2: Set Λ0 =A and p0 = 1

n2
1 where p0 ∈ Rn1n2

3: for t = 0 to (IterNo− 1) do
4: qt = Λtpt

5: pt+1 = Normalize (qt)

6: Λt+1 (i, j) = Λt (i, j)
pt+1(i)
pt(i)

7: if ∥pt+1−pt∥2

n1n2
< δ, go to Step 9

8: end for
9: Discretize pt+1

The assignment probability is initialized to be U [0, 1]
n,

and we set P0 (cii′ |cjj′) =A, that is the affinity matrix used
in the SM scheme. In each iteration, Pt (cii′) is normalized
according to the schemes discussed in Section III-A. As a
stopping criterion we used a combination of 20 iterations, and
a predefined threshold δ on the refinement of the probability
vector. The estimated probability is then discretized using the
discretization schemes discussed in Section III. Similar to
the GA scheme, the probability estimate Pt (cii′) computed
by the PM, converges to hard (binary) assignments. Hence,
both the greedy and Hungarian-based discretizations provide
similar results. This formulation does not assume statistical in-
dependence among the different assignments, and thus relaxes
Assumption 2 used by the Zass and Shashua model.

Figure 2 illustrates the evolution of the conditional and
assignment probabilities with respect to the PM iterations. We
generate a set of n = 10 random points xi∈ U [0, 1]

2 and
create a noisy replica of it yi = xi + γi, γi ∼ N (0, 0.1).
Thus, matching two 10×10 graphs. Initially, Pt (cii′ |cjj′) (Fig.
2a) is given by the affinity matrix A and is thus symmetric,
while P1 (cii′) (Fig. 2d) is non-uniform. After 5 iterations
P5 (cii′ |cjj′) (Fig. 2b) is asymmetric and consists of horizontal
non-zero elements corresponding to assignments for which
P5 (cii′) > 0. The assignment probability P5 (cii′) (Fig. 2e) is
close to convergence. After 10 iterations (Fig. 2f), P10 (cii′)
convergence to a binary indicator vector as expected.

A. Computational complexity

The computational complexity of the proposed PM scheme
per iteration, consists of the O(n2

1K
2) operations required for

the matrix-vector multiplication in Step #4 of Algorithm 1, as
well as O(n1K) operations to row-normalize the assignment
matrix, and O(n2

1K
2) operations needed to weigh the affinity

matrix (Step #6). Only step #6 is specific to the proposed PM
scheme, whose overall complexity is O(n2

1K
2), the same as

the SM, GA and Balanced-Graph-Matching [9] schemes.

V. EXPERIMENTAL RESULTS

We applied the proposed approach to synthetically generated
random graphs as well as real images. In the synthetic graphs
simulations we followed the experimental framework used
in previous works [15], [37]. It allows to conduct large-
scale simulations and quantify the accuracy and resiliency

of the proposed scheme, and compare it to contemporary
state-of-the-art algorithms. The same synthetic graph having
a known ground truth, is used as input to all of the different
matching schemes at a time. We also experiment with the
Hotel and House sequences and compare our results to state-
of-the art schemes: the publicly available1 implementation
of the probabilistic matching scheme by Zass and Shashua
[37] (Margin), where we applied the marginalization and
probabilistic optimization to a pairwise affinity matrix. We
also implemented the Spectral Matching (SM) scheme of
Leordeanu and Hebert [21], the Balanced Graph Matching
(BGM) by Cour et al.[9] and Graduated Assignment (GA)
algorithm of Gold and Rangarajan [15]. For these we based our
code on the implementation by Timothee Cour2. In all trials
the same affinity matrix was the input to all of the reference
schemes (and ours). We ran all schemes until ∥pt+1−pt+1∥2

n1n2
<

δ, δ = 10−3 or 20 iterations were executed. We experimentally
verified that allowing more iterations or decreasing δ, did
not improve the results. We used the Hungarian algorithm to
discretize all schemes as it provided better results for the SM
and BGM. The GA and the proposed PM schemes converge
to hard assignment solutions, hence both the Hungarian and
greedy discretizations perform similarly.

A. Matching of random synthetic graphs

In this set of trials we measure the accuracy and resiliency
of our approach to additive noise and outliers. In each trial we
generated a set of n = 200 random points S1 = {xi}ni=1 ,xi ∈
R2, xi ∼ U [0, 1]

2×1 and denote this randomly generated set
as the source set. In the noise trials we added noise to S1

yi = xi + γi, ∀xi ∈ S1, γi ∼ N (0, σ) ,

and denote the distorted source set as the target set S2 =
{yi}ni=1, where xi corresponds to yi. In applications such as
image matching this simulates image distortions, as well as
localization inconsistencies of interest points detectors. In this
trial the matching is one-to-one as we did not add outliers. In
real matching scenarios, descriptors can be used to prune the
set of possible assignment per point xi ∈ S1. We applied the
different schemes with K = {10, 50, 100, 200}. This provides
a varying degree of matching difficulty. Using K = 10
corresponds to having highly discriminative local features, and
the larger K the more difficult the matching.

We measure the matching accuracy as the ratio of correctly
matched points to the total number of points that could
potentially be matched. In all simulations we used the affinity
measure given in Eq. 4 with the same kernel bandwidth ε = 1

n .
For a given noise variance we repeated the same experiment
1000 times by generating 1000 random sets S1 (source graphs)
and adding noise. We report the mean accuracy and standard
deviation over the different trials.

The results are depicted in Fig. 3 where we vary the number
of possible assignments per point K. For the easiest setup in
Fig. 3a with K = 10, the PM is second to the GA. Yet, as K

1The code by Ron Zass is available at: http://www.cs.huji.ac.il/˜zass/gm/
2http://www.seas.upenn.edu/˜timothee/software/graph matching/graph matching.html
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Fig. 2. The convergence of the proposed probabilistic matching scheme. The first row ((a)-(c)) shows the evolution of the conditional assignment probability
Pt

(
cii′ |cjj′

)
with respect to the number of the iterations t = 1, 5, 10. In the second row ((d)-(f)) we depict the corresponding evolution of the assignment

probability Pt (cii′ ).

increases in Figs. 3b-3d and the matching problem becomes
more difficult, the proposed PM scheme proved superior, while
the GA came in second.

Partial matching is of particular interest, as one-to-one
matching is rarely present in actual applications. A feature
points detector might detect points in one image, many of
them lacking corresponding counterparts in the other image.
Hence, in the outlier tests we added points both to the source
and target sets. We generate random sets with n = 200 points
and add 100 random outliers to the source set S1. Those have
no correspondences in the second graph. Their potential K
matches per point are picked randomly. For the inliers we
insert the valid match as one of the K potential matches. We
also added a varying number of outliers to the target set S2,
and random noise N (0, σ), σ = 0.05. The results depicted in
Fig. 4 show that the PM outperformed the other schemes as the
matching problem became challenging for K = {100, 200}.

B. Assignment ranking

We exemplify the assignment ranking approach introduced
in Section III-B by analyzing the noise simulation results
for matching n1 = 200 points to n2 = 200 points using
K = 50 and the SM scheme. The average accuracy results are
presented in Fig. 3b, while the average assignment accuracy
per ranking is shown in Fig. 5. The per ranking results were
averaged over 1000 simulations, where in each simulation we
ranked the assignments by sorting their assignment probabil-
ities according to Section III-B. The validity of the ranking
scheme is exemplified by comparing the accuracy results in
both figures for a given noise level. For instance, consider
the accuracy curves for σ ≈ 0.036 in Fig. 5 and compare
it to the overall accuracy of the SM in Fig. 3b. It follows
that the average assignment accuracy, achieved by choosing all
of the assignments is 43%, but by choosing the leading 100
assignments, we can achieve an accuracy of close to 60%.

In particular, there is a significant difference in the average
accuracy of the best versus the worst assignments.
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σ=0.018 σ=0.036

σ=0.055 σ=0.073

Fig. 5. Probabilisitc ranking of the spectral matching results. We show the
average matching accuracy versus the probabilistic ranking of the assignments,
for several additive noise levels N (0, σ) that were added to the matched sets
of points.

C. Image sequence matching

We applied our approach to the CMU Hotel and House
sequences 3. These were used in multiple works [12], [33],
[4] and provide a baseline for comparison. In order to asses
the matching accuracy we tracked landmark feature points
that were manually labeled and tracked in all frames [4].
This allows to compare the performance of the different
schemes over a varying temporal baseline - the larger the
temporal baseline (differential) between the frames, the larger
the relative deformation, and the more difficult the matching.
We matched each frame to the frames succeeding it and
computed the average matching error per temporal baseline.

3Available at: http://vasc.ri.cmu.edu/idb/html/motion/hotel/index.html
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0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

σ

A
cc

ur
ac

y

 

 SM
GA
PM
BGM
Margin

(c) n = 200,K = 100
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(d) n = 200,K = 200

Fig. 3. Noise test: matching accuracy with respect to varying intensity of an additive noise N (0, σ) that were added to the matched sets of points. In each
simulation we match 200 points with a varying number of K potential assignments. We compared the Spectral Matching (SM) [21], Graduated Assignment
(GA) [15], proposed Probabilistic Matching (PM), Balanced Graph Matching (BGM) [9] and probabilistic Marginalization [37] (Margin).

As in the noise tests in the previous section, we utilized
the number of possible assignments K as a mean to vary
the matching difficulty. For that we used shape-context shape
descriptors [1] as a similarity measure between points. Hence,
when matching a point in a particular frame, it can only be
matched to its K nearest shape descriptors. In some previous
works [12], [33], [4], the shape descriptors were used as
a unary term in the quadratic matching formulation. Such
formulations require to balance the unary versus the pairwise
terms, that encode descriptors versus geometric similarity,
respectively. We found it best to avoid using the unary terms
explicitly, and use them to reduce the assignment space to the
K nearest points.

The results for the Hotel sequence are depicted in Fig.
6. The sequence consists of 101 frames and 30 landmark
points and we vary K = {5, 10, 20, 30}. For K = 5 the
matching problem is well constrained and all schemes perform
similarity. The decline in the accuracy for large baseline values
is due to the inaccuracy of the shape descriptors, as the shape
deformations become substantial. Hence, the true matching is
not within the K = 5 nearest neighbors of the SCs.

For K = 10 the proposed PM scheme came second to
the BGM, whose bistochastic normalization is well suited for
the one-to-one matching in this sequence. As the assignment
problem becomes more difficult (K = {20, 30}), the PM
outperforms the other schemes, with the GA coming in second.

We repeated the above experiment with the House se-
quences that consists of 30 landmark points and 111 frames.
The motion in this sequence is more rigid than in the Hotel
sequence and easier to match. The results reported in Fig. 7
show that for K = 20 both the GA and the PM perform
similarly, but as the matching difficulty increased to K = 30,
the PM proved superior with the minimal average error rate
of ≈ 2%.

It is worth noting that superior results were reported by
Torresani et al.[33] that achieved an accuracy of 100% for the
Hotel sequence. Their approach differs from ours, as the PM
does not utilize unary affinity explicitly as in [33], and the
Dual Decomposition is significantly slower.

D. Timing results

The timing results are reported in Fig. 8. The measure-
ments were taken on a 2.2GHz computer running a Matlab
implementation, where we input the same affinity matrix of
varying size to the different matching algorithms. We applied
10 iterations of each scheme, and for each affinity matrix,
the experiment was repeated 1000 times. Although all of the
schemes are of complexity O(n2

1K
2), we got different timing

results, where the PM and Balanced-Graph-Matching required
the most computational time. We attribute this to our Matlab
based implementation. As the matrix-vector multiplication in
Step #4 of Algorithm 1 (and in the SM, GM and BGM)
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(b) n = 200,K = 50
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(c) n = 200,K = 100
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Fig. 4. Outliers test results, where outliers are introduced to both matched sets. We show the matching accuracy vs. the number of outliers for graphs with
n = 200 nodes, and a varying number of K possible assignments per point. We compared the Spectral Matching (SM) [21], Graduated Assignment (GA)
[15], proposed Probabilistic Matching (PM), Balanced Graph Matching (BGM) [9] and probabilistic Marginalization [37] (Margin).

requires O(n2
1K

2) operations. The same as the weighting of
the affinity matrix within the PM, and the normalization of
the affinity matrix in the BGM algorithm. Yet, the matrix-
vector multiplication is implemented via an optimized internal
Matlab function, while the others are implemented in Matlab
code that is less efficient. Note that even for the problem of
largest dimensions n1K = 10000, the running time of our
approach is just ≈ 5s, and can be significantly reduced by an
optimized C++ implementation.
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Fig. 8. Timing results for the matching schemes. We measure the run time
with respect to the dimensions of the matching problem n ·K. We compared
the Spectral Matching (SM) [21], Graduated Assignment (GA) [15], proposed
Probabilistic Matching (PM) and Balanced Graph Matching (BGM) [9].

VI. SUMMARY AND DISCUSSION

In this work we presented a probabilistic interpretation
of the spectral matching approach of Leordeanu and Hebert
[21]. It is shown to be a maximum-likelihood estimate of
the assignment probabilities, while assuming that the affinity
matrix is an estimate of the joint assignment probability. We
further analyze the GA algorithm of Gold and Rangarajan [15]
and show it to be a MAP extension of the SM approach
(although it precedes the SM chronologically). Based on
our probabilistic analysis we propose a spectral assignment
ranking scheme, that allows to choose the most reliable
matchings. We introduce a novel probabilistic formulation of
quadratic matching that relaxes some of the assumption used
by the SM scheme. Our approach is experimentally shown
to outperform previous schemes, especially as the matching
problem becomes difficult due to the presence of noise and
outliers.

In future, we aim to reformulate the SM scheme by re-
calling that the ML estimate is computed via a rank-one-
approximation (ROA), that is optimal with respect to the
Frobenius norm. Computing the ROA with respect to a Breg-
man measure seems more appropriate and might result in
improved results. The PM approach also seems promising for
analyzing general graphs where the adjacency matrix is binary-
valued. Such graphs are common in domains such as protein
structure prediction and the analysis of social and biological
networks.
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(a) n = 30,K = 5
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(b) n = 30,K = 10
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(c) n = 30,K = 20
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(d) n = 30,K = 30

Fig. 6. Hotel series analysis results. We tracked n = 30 features points over the 101 frames of the sequence, using a varying number of K possible
assignments, and show the matching accuracy vs. the baseline, that is the temporal differential (in frames) between matched frames. We compared the Spectral
Matching (SM) [21], Graduated Assignment (GA) [15], proposed Probabilistic Matching (PM), Balanced Graph Matching (BGM) [9] and probabilistic
Marginalization [37] (Margin).
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VIII. APPENDIX A

Given a n1×n2 assignment problem as defined in Section I,
the assignment matrix Z∈ {0, 1}n1×n2 encodes the mapping
of xi to yi′ if zi,i′ = 1. z ∈ {0, 1}n1n2 is the row-vectorized
replica of Z such that

z = [z1,1...z1,n2 ... zn1,1...zn1,n2 ]
T
. (22)

The pairwise affinity matrix A is given by

A =



Ω2 (c1,1, c1,1) = 0 · · · Ω2

(
c1,1 , c1,n2

)
...

...
Ω2 (c1,n2 , c1,1) = 0 · · · Ω2 (c1,n2 , c1,n2)

...
Ω2 (cn1,1, c1,1) · · · Ω2 (cn1,1, c1,n2) = 0

...
...

Ω2 (cn1,n2 , c1,1) · · · Ω2 (cn1,n2 , c1,n2) = 0


. (23)

and

âi,̂j = a(i−1)n2+i′,(j−1)n2+j′ = Ω2 (cii′ , cjj′) .

In the probabilistic framework, the assignment vector has the
same indexing as in Eq. 22

p =
[
P (c1,1) . . . P (c1,n2) ... P (cn1,1) . . . P (cn1,n2)

]T .
(24)

and the joint and conditional probabilities, P (cii′ , cjj′), and
P (cii′ |cjj′), respectively, follow the same indexing as in Eq.
23.

IX. APPENDIX B
In this section we show that the two-step iterative scheme

presented in Eqs. 20 and 21 is monotonically decreasing the
objective function in Eq. 18. The proof has two parts, the first
(ending in Eq. 26) derives a result that is used in the second
part. The first step of the PM in Eq. 20 is a single iteration
of the Power Iteration scheme that converges in the Frobenius
norm, and thus decreases the objective function for each entry
of Pt (cii′)∑

jj′

Pt (cii′ |cjj′)Pt+1

(
c
jj′

)− Pt+1 (cii′)

2

≤

∑
jj′

Pt (cii′ |cjj′)Pt

(
c
jj′

)− Pt (cii′)

2

= (Pt+1 (cii′)− Pt (cii′))
2 (25)
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(a) n = 30,K = 20
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(b) n = 30,K = 30

Fig. 7. House series analysis results. We tracked n = 30 features points over the 111 frames of the sequence, using a varying number of K possible
assignments, and show the matching accuracy vs. the baseline, that is the temporal differential (in frames) between matched frames. We compared the Spectral
Matching (SM) [21], Graduated Assignment (GA) [15], proposed Probabilistic Matching (PM), Balanced Graph Matching (BGM) [9] and probabilistic
Marginalization [37] (Margin).

Denote by St =
∑
jj′

Pt (cii′ |cjj′)Pt+1

(
c
jj′

)
, hence

P 2
t (cii′)− 2Pt+1 (cii′)Pt (cii′) ≥ S2

t − 2Pt+1 (cii′)St

Assume WLOG Pt+1 (cii′) ≥ Pt (cii′) , (the same proof
mutatis mutandis holds for Pt+1 (cii′) ≤ Pt (cii′)), then

P 2
t (cii′)− Pt+1 (cii′)Pt (cii′) ≤ 0

and

0 ≥ S2
t − 2Pt+1 (cii′)St + Pt+1 (cii′)Pt (cii′)

≥ S2
t − Pt+1 (cii′)St − Pt (cii′)St + Pt+1 (cii′)Pt (cii′)

= (St − Pt+1 (cii′)) (St − Pt (cii′)) .

As Pt+1 (cii′) > Pt (cii′) ≥ 0 and St ≥ 0 then

St − Pt+1 (cii′) < St − Pt (cii′)

and
St − Pt+1 (cii′) < 0 (26)

The result in Eq. 26 will be used in the second part of the
convergence proof, where we show that the second step of the
PM in Eq. 21, decrease the objective function. Namely, we
aim to show that∑

jj′

Pt (cii′ |cjj′)Pt+1

(
c
jj′

)
− Pt+1 (cii′)

2

≥

∑
jj′

Pt+1 (cii′ |cjj′)Pt+1

(
c
jj′

)
− Pt+1 (cii′)

2

=

∑
jj′

Pt (cii′ |cjj′)
Pt+1 (cii′)

Pt (cii′)
Pt+1

(
c
jj′

)− Pt+1 (cii′)

2

.

(27)

Simplifying the above expression we get

St

((
Pt+1 (cii′)

Pt (cii′)

)2

− 1

)
−2Pt+1 (cii′)

(
Pt+1 (cii′)

Pt (cii′)
− 1

)
≤ 0

Assuming Pt+1 (cii′) > Pt (cii′) as before, we have that
Pt+1(cii′ )
Pt(cii′ )

− 1 > 0, and Pt+1(cii′ )
Pt(cii′ )

+ 1 > 2. Thus,

0 ≥ St

(
Pt+1 (cii′)

Pt (cii′)
+ 1

)
−2Pt+1 (cii′) ≥ 2 (St − Pt+1 (cii′))

(28)
Equation 28 is validated by the first part of the proof (Eq.
26), and this implies the reduction of the objective function in
Eq. 27. The proof of the complementary case, Pt+1 (cii′) <
Pt (cii′), can be derived mutatis mutandis.
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