
Comparing Object EncodingsKim B. Bruce,1 Luca Cardelli,2 and Benjamin C. Pierce31 Computer Science Department, Williams CollegeWilliamstown, MA 01267, USAkim@cs.williams.edu2 Digital SRC, 130 Lytton AvePalo Alto, CA 94301, USAluca@pa.dec.com3 Computer Science Department, Indiana UniversityLindley Hall 215, Bloomington, IN 47405, USApierce@cs.indiana.eduAbstract. Recent years have seen the development of several founda-tional models for statically typed object-oriented programming. But de-spite their intuitive similarity, di�erences in the technical machinery usedto formulate the various proposals have made them di�cult to compare.Using the typed lambda-calculus F!<: as a common basis, we now o�er adetailed comparison of four models: (1) a recursive-record encoding sim-ilar to the ones used by Cardelli [Car84], Reddy [Red88, KR94], Cook[Coo89, CHC90], and others; (2) Hofmann, Pierce, and Turner's exis-tential encoding [PT94, HP95]; (3) Bruce's model based on existentialand recursive types [Bru94]; and (4) Abadi, Cardelli, and Viswanathan'stype-theoretic encoding [ACV96] of a calculus of primitive objects.1 IntroductionOver the last half decade, several authors have proposed foundational modelsfor statically typed object-oriented programming. Although their motivating in-tuitions and technical machinery are all strongly related to typed lambda-calculiwith subtyping [Car84, CW85, CG92], stylistic di�erences have made rigorouscomparisons di�cult. For example, some models are presented as translationsfrom high-level object syntax into the syntax of a typed lambda-calculus; othersmap high-level syntax directly into a denotational model; still others focus onthe object syntax as a primitive calculus in its own right.In this paper we compare four of these models. The �rst of these, basedon recursively-de�ned records, was introduced by Cardelli [Car84] and studiedin many variations by Kamin and Reddy [Red88, KR94], Cook and Palsberg[CP89], and Mitchell [Mit90]. In its untyped form, this model was used rathere�ectively for the denotational semantics of untyped object-oriented languages.In its typed form, it was used to encode individual object-oriented examples,but had di�culties with uniform interpretations of typed object-oriented lan-guages. The most successful e�ort in this direction was carried out by Cook etal. [CHC90, CCH+89b].



2 In 1993, Pierce and Turner [PT94] introduced an encoding that relied only ona type system with existential types, but no recursive types. This led Hofmannand Pierce [HP95] to the �rst uniform, type-driven interpretation of objects ina functional calculus.At the same conference in 1993, Bruce presented a paper [Bru94] on thesemantics of a functional object-oriented language. This semantics was originallypresented as a direct mapping into a denotational model of F!<:, but has recentlybeen reformulated as an object encoding that depends on both existential andrecursive types.Meanwhile, frustrated by the di�culties of encoding objects in lambda cal-culi, Abadi and Cardelli introduced a calculus of primitive objects [AC96]. Later,however, Abadi, Cardelli, and Viswanathan [ACV96] discovered a faithful encod-ing of that object calculus in terms of bounded existentials and recursive types.(The encoding is simpli�ed in this paper to facilitate comparisons with the otherencodings; in particular, method update is only considered in Section 4.8).In this paper we examine these object encodings and compare their strengthsand weaknesses. Points of comparison include the expressiveness of the object-oriented constructs that can be encoded, the simplicity of the encoding, theuniformity of the encoding (e.g., independence of the encoding from the typesof the objects and methods), and the power and proof-theoretic tractability ofthe underlying type theory used by the encoding.We concentrate, throughout, on the lambda-calculus expressions that formthe targets of the four encodings, eliding the associated \primitively object-oriented" source languages and the encoding functions mapping these into thelambda-calculus. (There are interesting comparisons to be made at this level too,but they are complicated by many inessential syntactic and stylistic di�erencesbetween source languages.) Thus, the phrase \object encodings" in the title ofthe paper can be read as \object-oriented programming styles in typed lambda-calculus."We also stop short of considering classes and subclassing mechanisms. Theseare of course supported|in interestingly di�erent ways|by all four encodings,but a detailed comparison falls outside the scope of this study.Chapter 18 of [AC96] describes and compares several object encodings withrespect to the object-oriented constructions that they can express and the prop-erties that they enjoy. A main di�erence of approach in this paper is in the useof type operators to represent di�erent encodings more uniformly. A paper byFisher and Mitchell [FM96] (see also [FM94]) gives a general tutorial on typesystems for object-oriented languages. It describes the origins and evolution ofthe recursive and existential encodings, and compares them with an axiomaticpresentation of objects.2 Technical PreliminariesThe \ambient type theory" in which our four encodings are expressed is theomega-order polymorphic lambda-calculus with subtyping, System F!<: [Car90,



3CL91, PT94, HP95, PS97, Com94], extended with existential types [MP88], re-cursively de�ned types [AC93], recursive functions, and records. In the interestof brevity, we assume that readers have some prior familiarity with F!<:, withrecursive types, and with the use of existential types for information hiding �a laMitchell and Plotkin. (Prior familiarity with some of the encodings we discusswill also be helpful, but is not required.) In this section, we sketch the syntax ofthe language and briey discuss a few technical points of particular relevance towhat follows.The sets of kinds, types, and terms are given by the following grammar:K ::= Type kind of typesj K->K kind of type operatorsT ::= X type variablej Fun(X:K)T type operatorj T T application of a type operatorj Top(K) maximal type of kind Kj T->T function typej All(X)T universally quanti�ed typej All(X<:T)T bounded universal typej Some(X)T existentially quanti�ed typej Some(X<:T)T bounded existential typej Rec(X)T recursive typej {l:T...l:T} record typee ::= x variablej fun(x:T)e abstractionj e e applicationj fun(X<:T)e type abstractionj e T type applicationj pack [X,e] as T existential package constructionj open e as [X,x] in e existential package usej {l=e...l=e} record constructionj e.l �eld selectionj let x=e in e local de�nitionj letrec x(y:T):T = e in e recursive local de�nitionWe assume standard de�nitions of reduction and conversion, writing m=�n toindicate that m and n are convertible. Although we shall perform conversion stepsin whatever order is convenient for the sake of examples, we could just as wellimpose a call-by-name reduction strategy. (Most of the examples would divergeunder a call-by-value strategy. This can be repaired, at the cost of some extralambda-abstractions and applications to delay evaluation at appropriate points.)We are informal about kinding throughout the paper. In particular, we omitkind declarations on type abstractions, writing Fun(X)T instead of Fun(X:K)T.In the de�nitions of the encodings, we use pairs in addition to records; thesecan, of course, be encoded straightforwardly. We write (m,n) for the pair of m



4and n and use the selectors fst and snd to destruct pairs. S*T is the type ofpairs of S and T.Our formulation of existential types is standard, following (for example)Mitchell and Plotkin's. If S is a type expression, then any element v with type ofthe form S[U/X] can be \packed" into an element (pack [U,v] as Some(X)S)of type Some(X)S.The expression (open o as [X,x] in b) unpacks the existential value o,yielding bindings for the type variable X and the term variable x, whose scopeis the expression b. X represents the hidden, abstracted type, while x representsthe term before it was packed. In particular, the expression (open o as [X,x]in b) where o is (pack [U,v] as Some(X)S) will result in X being bound tothe type expression U and o to the expression v. In order to preserve type-safety,one may only apply operations to x that do not depend on knowing the actualhidden type bound to X.The rules for introduction and elimination of existentials are the usual ones.Informally: T=�Some(X)S ` v : [X 7! U]S(pack [U,v] as T) : T (T-Pack)` o : Some(X)S x : S ` b : B X =2 FV(B)(open o as [X,x] in b) : B (T-Unpack)Note the important side condition on the rule T-Unpack of existentials. If thisside condition were dropped, then the hidden state X could \escape," breakingthe abstraction.In examples, we use the informal pattern-matching notationopen o as [X,(s,m)] in bto abbreviateopen o as [X,x] in let s=fst(x) in let m=snd(x) in b:For example the following de�nes a simple abstraction containing a value oftype X and a function mapping type X to integers:abstr def= pack [{x:String},( {x="source"},fun(s:{x:String}) length(s.x))]as Some(X) X * (X -> Int): OE(CellI)We can use abstr by \opening" it and applying the second component to the�rst component:open abstr as [X,(x,f)] in f(x)



5Because the type of f(x) does not involve X, this is legal according to T-Unpack.However, replacing f(x) by x or f(concat(x, "more")) is illegal according toT-Unpack as these changes would break the abstraction.We can extend the subtyping relation to type functions (functions from typesto types) by de�ning subtyping pointwise. Thus if F and G are type functionsthen F <: G i� for all types X, F(X) <: G(X).I(X)<:J(X)Fun(X) I(X)<:Fun(X) J(X) (S-Abs)Thus if G(X) = fbump:X, eq:X->Boolg and G(X) = fbump:X, eq:X->Bool,set:Int->Xg then F <: G.The following folding and unfolding rules allow us to make use of recursivetypes: Rec(X) I(X)<:I(Rec(X) I(X)) (S-Unfold)I(Rec(X) I(X))<:Rec(X) I(X) (S-Fold)We will use these rules implicitly as needed rather than clutter the presentation.The \Amber rule" is used to determine when recursively-de�ned types aresubtypes: X<:Y ` I(X)<:J(Y)Rec(X) I(X)<:Rec(Y) J(Y) (S-Rec)Note that this rule has a stronger premise than the pointwise subtyping rulefor type operators above (S-Abs). Adopting a pointwise rule for recursive types(i.e., making Rec(X) I(X) a subtype of Rec(X) J(X) whenever I(X)<:J(X))would render the type system unsound [AC93].The letrec construct allows us to de�ne terms using auxiliary functions(which may be de�ned recursively):f:S->T; x : S ` e : T f:S->T ` b : B(letrec f(x:S):T = e in b) : B (T-LetRec)For subtyping quanti�ers, we have a choice of rules. Some of our encodingswill work �ne with the Kernel Fun fragment. One needs the full Fsub rule. Thefollowing is the Kernel Fun rule for bounded polymorphic functions.X<:A ` D<:BAll(X<:A)D<:All(X<:A)B (S-All-KFun)Notice that the bounds on the parameters are identical for Kernel Fun. For thefull Fsub they are allowed to vary:` A<:C X<:A ` D<:BAll(X<:C)D<:All(X<:A)B (S-All-Full-FSub)



63 The EncodingsOur running example throughout the paper will be (purely functional) integerreference cell objects.4 The interface of cell objects is represented by the followingtype operator:CellI(X) def= {get:Int, set:Int->X, bump:X}Operationally, a cell object has three methods: get, which returns its currentcontents; set, which returns a new cell object (we intend that the contents of theresulting object should be set to the integer provided as a parameter, althoughof course the interface type doesn't guarantee this); and bump, which returns anew cell (whose contents should be one greater than the current contents). Therole of the parameter X varies between the encodings we consider, but it may bethought of intuitively as a placeholder for the \type of self." Given an interfaceI, we write O(I) for the type of \objects with interface I."We are interested in the properties of O(I) for di�erent values of O|i.e. fordi�erent ways of encoding objects with interface I. The four O's that we considerin detail are: OR(I) def= Rec(X) I(X)OE(I) def= Some(Y) Y * (Y->I(Y))ORE(I) def= Rec(X) Some(Y) Y * (Y->I(X))ORBE(I) def= Rec(X) Some(Y<:X) Y * (Y->I(Y))OR is a \classical" recursive-record encoding. OE is the \existential encoding" ofHofmann, Pierce, and Turner [PT94, HP95]. ORE is a type-theoretic analog ofBruce's denotational semantics for objects [Bru94]. ORBE is a variant of Abadi,Cardelli, and Viswanathan's type-theoretic encoding [ACV96]. The names aredesigned to remind the reader of the main features of the encodings: R standsfor recursive types, E for existential types, and BE for bounded existentials.The use of type operators (rather than just types) to represent object inter-faces is a way of capturing, uniformly, two di�erent points of view about thetypes of the objects methods: the \external view" of the object, in which themethods are abstract services that can only be invoked by an operation of \mes-sage sending," and the \internal view" of the object when it is being created,in which the methods are concrete values. The internal view of the methods'types varies from encoding to encoding (in two encodings I is applied to therecursively bound type variable X, while in the other two it is applied to theexistentially bound variable Y.) On the other hand, the external view will alwaysbe the same:4 We concentrate here on the purely functional versions of each of the encodings.This choice aids both in formulating each of the systems (for example, it allows usto assume a call-by-name reduction strategy, avoiding some extra thunking for thecorresponding call-by-value variants) and in later comparisons between systems.



7CellMessages def= O(CellI) -> CellI(O(CellI))= O(CellI) -> {get:Int, set:Int->O(CellI),bump:O(CellI)}That is, the messages supported by cell objects can be viewed as a collection offunctions whose �rst parameter (the \self parameter") is a cell object and whoseresults are described by CellI(O(CellI)). Of course, message sends will haveto be interpreted di�erently in each of the object encodings in order to obtainthis form.It is technically convenient to write a single self parameter at the front ofthe whole collection of messages instead of abstracting each message individu-ally on its self parameter. For example, for most of the paper we will assumethat object interfaces are represented by covariant type operators, in which thebound variable appears only in positive positions. That is, each method of anobject implicitly takes a single self parameter and can then return results of theself parameter type but not take any more arguments of this type. Section 4.6discusses the implications of relaxing this restriction to allow \binary" meth-ods with parameters of the same type as the receiver. See [BCC+96] for a moreextended discussion.Note that all of these encodings need to be combined with some kind ofhigher-order bounded quanti�cation to provide satisfactory typings for functionsmanipulating objects. For example, a function that accepts a cell object andsends it the bump message twice is given the typebumpTwice : All(I<:CellI) O(I) -> O(I)capturing the fact that, if it is applied to a colored cell object, the result willalso be colored.We now develop each of the encodings in detail, using the example of cellsto illustrate each one.3.1 OR: Recursive recordsThe encoding of recursive records is fairly straightforward:OR(I) def= Rec(X) I(X)In this case an object is simply a recursive record in which each occurrence of Xstands for the type of the entire record. Thus if T = OR(I) then T = I(T).We can encode a cell object as follows:mycell = letrec mkobj(s:{x:Int}) : OR(CellI) ={ get = s.x,set = fun(n:Int) mkobj({x=n}),bump = mkobj({x=s.x+1}) }inmkobj({x=0}): OR(CellI)



8The recursive function mkobj creates a new object of type OR(CellI), given avalue for the internal state.5Let us introduce the informal syntax o<=l for sending a message l to anobject o. Because objects in this encoding are simply recursively de�ned records,message sending is represented by �eld selection (after unfolding the recursivetype): o<=l def= o.lIt is easy to see that (mycell<=bump)<=get reduces to 1 as follows:(mycell<=bump)<=get=� (mkobj({x=0})<=bump)<=get=� ({ get = {x=0}.x,set = fun(n:Int) mkobj({x=n}),bump = mkobj({x={x=0}.x+1}) }.bump)<=get=� mkobj({x=({x=0}.x+1)})<=get=� mkobj({x=1})<=get=� {x=1}.x=� 1Instead of implementing bump by manipulating the state directly, suppose wewant to implement it in terms of the other methods. We can write:mycell def= letrec mkobj(s:{x:Int}) : OR(CellI) =let self = mkobj s in{ get = s.x,set = fun(n:Int) mkobj({x=n}),bump = self<=set(self<=get + 1) }inmkobj({x=0}): OR(CellI)It is easy to see by reducing the messages sent to self that this is equivalentto the original de�nition, above.3.2 OE: ExistentialsIn the next encoding, we treat objects as pairs of state (with type Y) and methods(with type Y->I(Y)), in which the state component is hidden from the outsideand methods are functions that depend on the state. ThusOE(I) def= Some(Y) Y * (Y->I(Y))5 Note that, if we wanted to enforce a call-by-value reduction scheme, it would benecessary to change the encoding of the bump �eld, as otherwise a call to mkobjwould always diverge. One solution would be to convert the bump �eld to a functionof no arguments returning an object.



9where the bound type variable Y represents the hidden state. We can de�ne acell object as follows:mycell def= pack [{x:Int},( {x=0},fun(s:{x:Int}){get = s.x,set = fun(n:Int) {x=n},bump = {x=s.x+1} })]as OE(CellI): OE(CellI)It is now slightly more complex to send messages as we must \unpack" elementsof existential type before we can access their components. Simple message sendslike get are encoded as:o<=get def= open o as [X,(s,m)] in m(s).getThat is, we open the existential, apply the method suite to the state, and thenextract the appropriate method.However, messages like bump that return new objects with updated internalstate require a bit more, since the resulting object must be re-packed.o<=bump def= open o as [X,(s,m)] inpack [X,(m(s).bump,m)]as OE(CellI)The extra pack in the translation follows from the fact that the return type ofthe method has type Y, rather than the object type. In order to yield a freshobject as result, the state returned by the method must be re-packaged (with theoriginal methods and state type) as an existential value. With this abbreviationit is easy to see that (mycell<=bump)<=get evaluates to 1:(mycell<=bump)<=get= (open mycell as [X,(s,m)] in pack [X,(m(s).bump,m)]as OE(CellI))<=get=� (pack [{x:Int},((methfun {x=0}).bump,methfun)]as OE(CellI))<=get=� (pack [{x:Int},({get={x=0}.x, set=fun(n:Int){x=n},bump={x={x=0}.x+1}}.bump,methfun)]as OE(CellI))<=get



10 =� (pack [{x:Int},({x={x=0}.x+1},methfun)]as OE(CellI))<=get=� (pack [{x:Int},({x=1},methfun)]as OE(CellI))<=get=� open(pack [{x:Int},({x=1},methfun)]as OE(CellI))as [X,(s,m)] in m(s).get=� (methfun({x=1})).get=� {get={x=1}.x, set=fun(n:Int){x=n},bump={x={x=1}.x+1}}.get=� {x=1}.x=� 1wheremethfun def= fun(s:{x:Int}) {get=s.x, set=fun(n:Int){x=n},bump={x=s.x+1}}Because the message-sending code has to repack the object after the send inthe case of bump, but not in the case of get, message-sending boilerplate mustbe generated from types, rather than being de�ned independently of types (as inthe other encodings). On the other hand, the call to mkobj in the set method ofthe OR encoding of cells|which performs essentially the same \repackaging"|isomitted in the OE encoding, so the method bodies themselves are more uniformthan in OR (and the other two encodings to follow).This encoding technique is closely related to semantic models of AbstractData Types. See [MP88] for details. This encoding has also been adopted in[MMH96] in order to represent closures as objects in compilers.In the simple encoding, the \bump" method has no access to the \set" and\get" methods|it's only passed the state as a parameter. But, as for OR, we canalso build mycell in such a way that bump is de�ned in terms of get and set.This time, though, we have to do it a little di�erently. It doesn't help to sendget and set to the whole object, since the result of set is then a whole object,while the bump method is supposed to return just an element of the state type.Instead, we build just the set of methods recursively:



11mycell def= letrec m (s:{x:Int}) : CellI({x:Int}) =let selfmeth = m s in{get = s.x,set = fun(n:Int) {x=n},bump = selfmeth.set (selfmeth.get+1)}inpack [{x:Int}, ({x=0},m)]as OE(CellI): OE(CellI)Note that this encoding can be re�ned by using a bounded existential toexpose some of the instance variables. (This idea will come back later!)OBE(X,R) def= Some(Y<:R) Y * Y->I(Y)In this encoding we are revealing that the state is a subtype of some \publicinstance variables interface" R, but are not specifying exactly what the type ofthe state is.3.3 ORE: Recursion and ExistentialsThe intuition behind the ORE encoding is similar to OE except that any methodsthat return new objects do the repacking of internal state themselves, rather thanrequiring that the sender do it. This eliminates the need for di�erent encodingsof o<=m depending on the type of m.ORE(I) def= Rec(X) Some(Y) Y * (Y->I(X))As with OE, Y represents the state of the object, while the methods are functionsthat depend on the current state. Notice that the types of methods now areexpressed in terms of X, the type of the entire object, rather than just the typeof the Y component. This will make it easier for us to encode message sendsin a more uniform way. Thus a method returning a value of type X is returningan object, not just its state component. As we shall see in Section 4.6, this alsoprovides support for \binary methods."For convenience, de�ne:close def= fun(internalObj:{x:Int} * ({x:Int}->CellI(ORE(CellI))))pack [{x:Int}, internalObj]as ORE(CellI)The function close takes a pair representing the state and method de�nitions(in general, of type Y * (Y->I(X)) and creates an object of type ORE(I) byhiding the type of the state.Now de�ne mycell as:



12 mycell def= letrec methfun(s:{x:Int}) : CellI(ORE(CellI)) ={get = s.x,set = fun(n:Int) close ({x=n},methfun),bump = close ({x=s.x+1},methfun)}in close ({x=0},methfun): ORE(CellI)The function methfun takes a value s representing the state of an object andcreates a record of methods in which each method uses s as the current state.The close function packages up a new state with the method de�nitions givenby methfun, producing a new object of type ORE(CellI). The fact that themethods set and bump use close to return objects of type ORE(CellI) is a keydi�erence from the existential encoding, where these methods simply returnedthe updated state.As in OR, message sending is interpreted uniformly,o<=l def= open o as [X,(s,m)] in (m(s)).lbut each method that returns an object must explicitly call close to repackagethe internal state before it returns. (The call to close here corresponds to thecall to mkobj in the OR encoding.)The expression (mycell<=bump)<=get evaluates to 1 as before.(mycell<=bump)<=get= ((close ({x=0},methfun))<=bump)<=get=� ((pack [{x:Int}, ({x=0},methfun)]as ORE(CellI))<=bump)<=get=� ((methfun {x=0}).bump)<=get=� (close ({x={x=0}.x+1},methfun))<=get=� (close ({x=1},methfun))<=get=� (pack [{x:Int}, ({x=1},methfun)]as ORE(CellI))<=get=� (methfun {x=1}).get=� {x=1}.x=� 1We can implement bump in terms of set as follows:mycell def= letrec methfun(s:{x:Int}) : CellI(ORE(CellI)) =let self = close (s,methfun) in{get = s.x,set = fun(n:Int) close ({x=n},methfun),bump = self<=set (self<=get + 1)}in close ({x=0},methfun): ORE(CellI)



13In this de�nition, s, with type fx:Intg, represents the state while self, withtype ORE(CellI), represents an object with that state. As before, the methodsset and bump both return values of type ORE(CellI).It is useful to compare this de�nition with the corresponding one for OR. Themain di�erence is the splitting of the function mkobj of the earlier de�nitioninto two separate functions methfun and close. In essence, close allows thecreation of new objects by simply packing a new state with an existing methodsuite rather than requiring the creation of a new recursively-de�ned record. ThusOREmakes an explicit distinction between the state component of the object|thepart that changes in response to message-sends|and the methods themselves,which are constant. (Of course, OE makes the same distinction. In ORBE, on theother hand, it becomes somewhat blurred, especially in the variant with methodupdate discussed in Section 4.8.)3.4 ORBE: Recursion and Bounded ExistentialsWe can understand the ORBE encoding by starting with the OE encoding andworking our way up to the more complex one.The OE encoding makes no public commitment about the type of the state:we can choose the state to be a record of instance variables, as we have doneso far, or an element of any other type, so long as we can write methods thatoperate on this state in the appropriate way. In particular, we can choose thestate type to be the type of the object itself! This may seem a slightly strangething to do, but note that it allows us to use the o<=l syntax in the de�nitionof bump:mycell def= letrec mkobj(s:{x:Int}) : OE(CellI) =let self = mkobj s inpack [OE(CellI),(self,fun(self':OE(CellI)){get = s.x,set = fun(n:Int) mkobj {x=n},bump = self'<=set (self'<=get + 1)})]as OE(CellI)in mkobj {x=0}It would be nice if we could use the more uniform encoding of message sendingin OR and ORE. We can do this if we add a recursive de�nition of X while revealingonly some of the information about the actual type of the object. De�ne:ORBE(I) def= Rec(X) Some(Y<:X) Y * (Y->I(Y))In the implementation of mycell, Y will be the actual type ORBE(I) of the entireobject, but we do not reveal this publicly. We can now de�ne an object as follows:



14 mycell def= letrec mkobj(s:{x:Int}) : ORBE(CellI) =let self = mkobj s inpack [ORBE(CellI),(self,fun(self':ORBE(CellI)){get = s.x,set = fun(n:Int) mkobj {x=n},bump = self'<=set (self'<=get + 1)})]as ORBE(CellI)in mkobj({x=0}): ORBE(CellI)With this more re�ned encoding we can now de�ne message sends uniformly(with the same de�nition as in the ORE encoding):o<=l def= open o as [X,(s,m)] in (m(s)).lAs in ORE and OR, this external uniformity comes at the price of having to callmkobj at the end of each method that returns an updated object.For example:mycell<=set= open mycell as [X,(s,m)] in (m(s)).set=� fun(n:Int) mkobj {x=n}Note that the assumption Y<:X is critically used in the typing of o<=bump:the body (m(s)).l has minimal type Y, but in order to satisfy the side con-dition on the open rule for existential types, this has to be promoted to a Y-freesupertype|i.e. ORBE(CellI). This subsumption works as long as Y appears inonly positive positions.4 ComparisonsHaving presented these four models as encodings in a common notational frame-work, we are now in a position to begin comparing them along a number ofdimensions.4.1 Treatment of the self parameterThe four encodings represent four strategies for encoding objects. In OR, methodsdo not take an explicit self argument on invocation. Instead, self is implic-itly bound by a recursive declaration when the object is constructed. In theother three encodings, an argument representing self is explicitly passed to themethods. In OE and ORE, the argument is just the \internal state" of the object,



15while in ORBE the argument is the whole object. In OE, methods that return amodi�ed version of self (such as bump), return just the state part, while in OREand ORBE, such methods return a whole object. Summarizing, we can say thatself-returning methods in OE map internal states to new internal states, whileOR and ORE map internal states to whole objects. ORBE is like OE in that methodsmap states to states, but also like OR and ORE in that what gets returned is awhole object.4.2 Same information, di�erent packagingThe four encodings \represent the same kind of objects," in the sense that anobject in one of the encodings can be wrapped up into an object in any otherencoding that reacts to messages in exactly the same way as the original. In twocases, the \wrapping procedure" is actually trivial:ORBE(I) <: OE(I)ORBE(I) <: ORE(I)This shows that ORBE is the most revealing of the three encodings involvingexistential types, in the sense that OE and ORE can be viewed as variants of ORBEthat make fewer public commitments about their implementation.4.3 Full abstractionA more subtle|and arguably less important|di�erence between the OR en-coding and the encodings based on existentials is that, in the latter three, an\observing context" can perform operations on an object that do not correspondto sending messages and, in some cases, obtain some information about the in-ternal implementation of the methods. With the OR encoding, the only test thatan observing context can make of an object is to look at the results that arereturned by its methods. In the existential encodings, the observer can also ap-ply the methods to a divergent argument, giving it the power to discriminatebetween objects that cannot be told apart just by sending messages in the ordi-nary way. This represents a kind of failure of full abstraction for the existentialencodings.To see this, consider two very simple OE-objectsa def= pack [Int, (0, l=fun(s:Int)5)] as OE(J)b def= pack [Int, (5, l=fun(s:Int)s)] as OE(J)where J(X) def= {l:Int}.The x messages of both objects yield the result 5. But internally, the code forx in a is a constant function, while the code for x in b is an identity function.This fact can be detected by the observer



16 obs def= fun(o:OE(J))unpack o as [X,(s,m)] inm.x(bottom(X))where bottom(X) is a divergent computation of type X, such as:bottom(X) def= letrec f(n:Int) : X = f(n)in f(0)Then the test obs(a) yields 5 (assuming a call-by-name reduction strategy),whereas obs(b) diverges. On the other hand, if we construct OR-objects analo-gous to a and b, this di�erence disappears, since the observer can only see theresult of the x method: it cannot test it by applying its internal implementationto divergent arguments. Similar examples can be constructed for ORE and ORBE.Thus, OR has a claim to being the tightest encoding of the four, in the sensethat the type OR(I) does not allow an observer to test the behavior of an object'smethods directly by applying them to arguments other than the intended selfparameter.Note that the failure of full abstraction described here applies only in thecase of a call-by-name evaluation strategy, since, with call-by-value, applying themethods to bottom always diverges. Since all common object-oriented languagesuse call-by-value, the di�erence is probably not signi�cant in practice.4.4 Uniform methods vs. uniform message sendingAnother di�erence between the encodings is whether they choose to impose theburden of repackaging states into whole objects on the code that sends messagesto objects (OE) or on the bodies of methods inside objects (OR, ORE, and ORBE).In ORE and ORBE, every message is sent by opening the packed object, ap-plying the second (method) component to the �rst (state) component, and thenextracting the appropriate �eld of the result. It is even easier in OR, since noexistential unpacking is needed.In OE, the encoding of message sending depends on the type of the method. Ifthere is no occurrence of the \self type variable" (the bound variable of the typeoperator representing the interface signature) in the result type, then messagesends are encoded as for ORE and ORBE. However if the return type is the self typevariable, then the result of the method must be repackaged as a new existentialvalue (of type OE(I)).Similarly, in OR, ORE, and ORBE, methods that yield updated objects mustreturn in a di�erent way than methods returning simple values such as numbersIn either case, this repackaging introduces some non-uniformity in the en-coding, since the results of methods that return objects must be treated dif-ferently from those that do not. For all of the encodings, it appears that therequired packaging code can be generated automatically, based on the type ofthe method [HP95]. For the extension of the ORBE encoding discussed in Sec-tion 4.8, a more uniform treatment is possible, in which the repackaging code isidentical in all methods [ACV96].



174.5 Strength of underlying type theoryOE works in the \most elementary" type theory|F!<: with the Kernel Fun sub-typing rule. If classes and inheritance are omitted, the underlying calculus iseven strongly normalizing.All the other models require recursive types, which entail recursion and lossof strong normalization. All the models (including OE) use recursive values whenadapted to allow method invocation through self|or, more generally, when ex-tended with classes. In the presence of recursive values, the semantics of the typesystem becomes more challenging; recursive types also complicate the metathe-ory.OR, OE, and ORE work �ne with the Kernel Fun subtyping rule for quanti�ers.ORBE requires the full F<: rule, leading to a substantial increase in the theoreticalcomplexity of the calculus [Ghe95, Ghe93] and the loss of some pragmaticallydesirable properties such as decidability [Pie94]. See [PS97] for more discussionof variants of this rule.The stronger rule is needed in ORBE to validate the usual subtyping rule forobject types. Recall that, in F!<:, bounded existential are encoded in terms ofbounded universals. When comparing two ORBE object types, the Amber rulemust be used �rst on the recursive types, followed by a comparison of existentialtypes where the existential bounds are di�erent type variables. Therefore, ageneral rule for subtyping existential types with di�erent bounds is needed. Thisrule is derivable from the full F!<: rule for universals, but not from weaker rules.Even if existentials are taken as primitive, with a strong subtyping rule,the resulting system has undecidable typing. Karl Crary has observed [personalcommunication] that it may be possible to ameliorate this de�ciency in ORBE byintroducing a single type constructor combining the behaviors of Rec and Some.4.6 Binary MethodsAnother di�erence between the encodings concerns the treatment of binarymethods|methods taking an argument of the same type as the receiver object.Consider the following object interfaces:CellI(X) def= fget:Int, set:Int->X, bump:XgEqCellI(X) def= fget:Int, set:Int->X, bump:X, eq:X->BoolgEqClrCellI(X) def= fget:Int, set:Int->X, bump:X, eq:X->Bool,color:ColorgCellI is our running example of cells; EqCellI adds a method eq that takes a celland compares its contents with the contents of the cell to which the eq messageis sent; EqClrCell adds one more method (whose behavior is unimportant). Thecrucial di�erence between CellI and the other two operators is that CellI iscovariant|that is, S<:T implies CellI(S)<:CellI(T)|which is not the case forEqCellI or EqClrCellI, which both contain occurrences of the bound variableX in contravariant positions. This section and the next explore the consequencesof non-covariant operators as object signatures.



18 Unfortunately, neither the OE nor the ORBE encoding handles non-covariantinterfaces satisfactorily. For example, consider the object type OE(EqCellI)|simple existential cell objects with equality methods:EqCell def= OE(EqCellI)= Some(Y) Y * (Y -> {get:Int, set:Int->Y, bump:Y,eq:Y->Bool})We can create objects with this type exactly as we did in Section 3.2.myeqcell def= pack [{x:Int},( {x=0},fun(s:{x:Int}){get = s.x,set = fun(n:Int) {x=n},bump = {x=s.x+1},eq = fun(s':{x:Int}) s.x = s'.x })]as OE(CellI): OE(CellI)However, it is not possible to send eqmessages to such objects in a way we wouldexpect. Having unpacked the existential, applied the methods to the state, andprojected out the eq �eld of the resulting record, we are left with a function thatexpects a parameter of the same state type. But the second cell object that wewant to pass as argument has its own|possibly di�erent|internal state type, soits internal state is not an appropriate argument. The same observation appliesto ORBE(EqCellI) (even though the state type is partially known).This defect can be repaired to some extent by manually introducing a re-cursion in the interface signatures, binding the contravariant occurrences of the\self variable," and adding explicit object constructors:REqCellI def= Rec(J) Fun(X) {get:Int, set:Int->X, bump:X,eq:OE(J)->Bool}REqClrCellI def= Rec(J) Fun(X) {get:Int, set:Int->X, bump:X,eq:OE(J)->Bool, color:Color}This step allows binary messages to be sent to objects, but involves a nontriv-ial extension to the ambient type theory, since it relies on a recursively de�nedtype operator. Moreover, it destroys the important property of pointwise sub-typing between interfaces: REqClrCellI is not a subtype of REqCellI (whereasEqClrCellI is a subtype of EqCellI).By contrast, with OR and ORE we can create objects with interfaces likeEqCellI and EqClrCellI and send them messages exactly as before: supportfor binary methods is \built in." We illustrate with the ORE encoding:



19myeqcell def= letrec methfun(s:{x:Int}): CellI(ORE(EqCellI)) ={get = s.x,set = fun(n:Int) close ({x=n},methfun),bump = close ({x=s.x+1},methfun),eq = fun(other:ORE(EqCellI))s.x = other <= get}in close ({x=0},methfun): ORE(EqCellI)The type of myeqcell isEqCell def= ORE(EqCellI)= Rec(X) Some(Y) Y * (Y -> {get:Int, set:Int->X,bump:X, eq:X->Bool})= Some(Y) Y * (Y -> {get:Int, set:Int->EqCell,bump:EqCell, eq:EqCell->Bool})Thus the message send myeqcell <= eq(othereqcell) will be well typed aslong as othereqcell has type EqCell. No changes are required to the de�nitionof message sending in either OR or ORE in order to support these binary methods.Thus the recursively-bound type variable in ORE (and OR) enables the de�ni-tion and use of messages whose types involve both covariant and contravariantoccurrences of the object type being de�ned. Because the ORBE encoding doesnot use the recursively-bound type variable in method types, it has the samedi�culties as OE with binary methods.Furthermore, since EqClrCellI is (pointwise) a subtype of EqCellI, we canwrite functions that manipulate both cells and colored cells with equality, byabstracting over subtypes of EqCellI:test5 def= fun(I<EqCellI)fun(o:ORE(I))if o.eq <= (o.set<=5) then "o contains 5"else "doesn't"4.7 Subtyping of Object TypesUnfortunately, the previous example would not work if we simply wrotetest5' def= fun(C<OR(EqCellI))fun(o:C)if o.eq <= (o.set<=5) then "o contains 5"else "doesn't"using an abstraction over types bounded by the object type OR(EqCellI) insteadof the abstraction over type operators I bounded by EqCellI. While this simplerversion is well typed as it stands, it is not very useful because OR(EqCellI) doesnot have any nontrivial subtypes!



20 In general, the pointwise subtyping relation I<:J between object interfacesdoes not imply that the corresponding object types OR(I) and OR(J) are in thesubtype relation. (Nor, similarly, does it follow that ORE(I)<:ORE(J).) On theother hand, it does always follow that OE(I)<:OE(J) and ORBE(I)<:ORBE(J).The built-in support for binary methods in OR and ORE comes at the price ofsubtyping between object types in some cases. In particular, it will only be thecase that I<:J implies OR(I)<:OR(J) and ORE(I)<:ORE(J) when J is covariant.This may or may not be viewed as a serious problem, since we can alwayswrite functions in the form of test5 instead of test5'. Indeed, variations onthis style of \polymorphic programming by bounded abstraction over interfaces"have been proposed in several languages under the names matching, F-boundedquanti�cation, and where clauses [BHJ+87, CCH+89a, BSvG95, AC95, BPF95,DGLM95].4.8 Method UpdateMethod update can be added to encodings of the ORBE avor, by extendingthe encoding with a collection of method updaters. These updaters take a su�-ciently polymorphic new method and return an object with the new method init [ACV96]. Forms of method update can be added also to encodings of the ORavor. See [AC96, p. 268], and [San96].These techniques work for certain presentations of the encodings, but do notadapt trivially to our presentation. However, there is hope of �nding a systematictreatment of method update for all of our encodings. We leave this topic forfurther work.5 ConclusionsTable 1 summarizes the major points of comparison between the four encodingswe have considered. Interestingly, none of the columns completely dominates allof the others. However, we can make some broad comparisons.There are two basic encoding techniques and two hybrids. The principaladvantage of the basic techniques is straightforward intuition: OR represents themost naive view of objects as data values that can be interrogated by namedmessages; OE gives a lower-level picture, showing explicitly that objects consistof state and methods, with the state inaccessible except via the methods. Thehybrid encodings|both of which can be viewed as deriving from OE|are morepowerful, each o�ering a useful re�nement: ORE adds support for binary methods,while a variation of ORBE was the �rst to support method update.This paper is the beginning of a uniform treatment of most known encodings,but more work needs to be done. In particular, we intend to extend this treat-ment to method update and classes. It would also be useful to develop a simpleobject-oriented language supporting the constructs treated here and present itstranslation using each of these encodings.
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